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Enhanced thermoelectric properties in phosphorene nanorings
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Using the tight-binding approach, we calculate the thermoelectric properties of phosphorene nanorings in
the absence and presence of a perpendicular magnetic field, and we investigate the effect of symmetrically
and asymmetrically positioned leads. Our findings indicate that the symmetry/asymmetry of our designed
nanostructures, the geometrical characteristics of the ring, and the magnetic flux are three important factors
in controlling their thermoelectric properties. Our results show that when zigzag phosphorene nanoribbons
(ZPNRs) are coupled symmetrically/asymmetrically to rectangular rings, a large band gap is induced in the
electronic conductance due to the suppression of the contribution of edge states. This gives rise to a remarkable
increase in the thermopower response compared to the case of pristine ZPNRs. More intriguingly, we realized
that the significantly smaller electronic thermal conductance and the reduced phonon thermal conductance of
these phosphorene-based nanostructures result in a remarkable improvement in the figure of merit. Moreover,
for asymmetric connection configurations with armchair-edged leads, we found that although the thermopower
is almost intact, a remarkable reduction of the electronic and phononic thermal conductance leads to a notable
improvement in the figure of merit. Also, our numerical calculations showed that by changing the magnetic
flux through the nanoring, a drastic increase in the thermopower is observed near an antiresonance point.
We demonstrate the tunability of the thermopower and the possibility to switch on and off the thermoelectric
response with magnetic flux. Our results suggest phosphorene nanorings as promising candidate nanostructures
for thermoelectric applications.
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I. INTRODUCTION

Designing devices with optimal thermoelectric (TE) prop-
erties is highly desirable for future energy harvesting and
environmental issues [1]. TE materials occupy a special place
for clean energy research, since they directly convert heat into
electrical energy and vice versa and can be used as electri-
cal power generators and cooling (heating) devices. The TE
efficiency is given by the dimensionless figure of merit ZT =
S2σT

κ
, where S is the Seebeck coefficient (SC) or thermopower,

σ and κ are the electrical and thermal conductivities, respec-
tively, and T is the temperature. From this relation we see
that a reduction in thermal conductivity (while the electri-
cal conductivity is kept almost the same) leads to a strong
improvement of the TE efficiency. One way to accomplish
this task is to construct nanostructures of bulk TE materials
[2]. Here, the enhanced TE figure of merit ZT is due to
phonon scattering with boundaries and quantum confinement
effects. The TE efficiency can be further enhanced by making
nanorings [3,4] and taking advantage of the Aharonov-Bohm
(AB) effect when we apply an external magnetic field, which
allows us to tune the magnetoresistance of the system [5–7].

Among nanostructured semiconducting materials, two-
dimensional (2D) phosphorene has received a lot of attention
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recently due to its great transport properties and potential
applications [8–15]. This structure consists of a single layer or
a few layers of black phosphorus, and it has been successfully
fabricated [10,11,14]. From these studies, it is suggested that
because of its remarkable electronic, mechanical, and optical
properties, it offers great promise for applications in electronic
and optoelectronic devices [16–25]. In addition, due to
superior thermoelectric characteristics, it is also proposed
that phosphorene nanostructures are highly promising for
thermoelectric devices, and it could be their key application
in the future [26]. Various factors may significantly affect the
three parameters that are used to quantify the figure of merit
in this structure. For single crystals of bulk black phosphorus,
experiments found that the value of SC is about 340 µV/K at
room temperature [27]. It was shown that gate-tuning is a suc-
cessful way to control the TE power coefficient in a thin flake
of black phosphorus [28]. These experimental measurements
verified that the SC of ion-gated bulk black phosphorus can
reach 510 µV/K at 210 K, which may result in a large increase
of ZT compared to that of bulk single crystal at room temper-
ature. The puckered structure of monolayer phosphorene has
led to anisotropy in its electrical and thermal properties [29].
Theoretical studies showed that this distinct feature gives rise
to orthogonal electrical and thermal conductances [30]. This
results in a higher σ/κ ratio and thus in a rather large figure of
merit ZT ∼ 1 (at room temperature) along the armchair direc-
tion of monolayer phosphorene [30]. Moreover, it is believed

2469-9950/2023/108(3)/035425(12) 035425-1 ©2023 American Physical Society

https://orcid.org/0000-0002-7394-3275
https://orcid.org/0000-0001-7013-8927
https://orcid.org/0000-0003-3507-8951
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.035425&domain=pdf&date_stamp=2023-07-31
https://doi.org/10.1103/PhysRevB.108.035425


BOROJENI, SISAKHT, FAZILEH, AND PEETERS PHYSICAL REVIEW B 108, 035425 (2023)

that the utilization of nanoribbons of such 2D materials is a
way to enhance the TE efficiency. Theoretical calculations
predicted that using phosphorene nanoribbons (PNRs) as ther-
moelectric material can lead to improved TE efficiencies [31].
The effect of the edge states on the thermopower in zigzag
phosphorene nanoribbons (ZPNRs) was recently investigated
[32]. It was shown that by applying a transverse electric field,
one can completely push the edge modes into the bulk bands
and maximize the bulk energy gap, which results in enhanced
thermoelectric power in PNRs [32]. Also, it was found that
the passivation of edge phosphorous atoms with hydrogen in
both types of nanoribbon edges [31], and even oxidation in
phosphorene oxide [33], enhances the thermopower.

These studies confirm that nanoribbon-based structures of
monolayer phosphorene are candidates to improve the TE
properties and the advent of efficient TE nanodevices. Re-
cent studies reported the production of high-quality PNRs
with relatively large and uniform lengths that may renew the
interest in the study of thermoelectric properties in nanorib-
bons and nanostructured systems made of phosphorene [34].
Nanorings made of two-dimensional materials are possible
nanostructures that may be used to improve TE efficiency.
For example, TE properties of rectangular graphene nanorings
have been investigated and were proposed to build tunable
TE generators [3,35]. In such systems, the improvement in
their TE performance was attributed to the emergence of Fano
line shapes or Breit-Wigner line shapes in the transmission
coefficient, which depend on the geometrical characteristics
of the ring and the applied side-gate voltage [3]. However,
despite the numerous works [28–33] on the TE properties of
phosphorene and phosphorene nanoribbons, the TE perfor-
mance of rectangular phosphorene nanorings has remained
elusive so far.

In the present work, inspired by the mentioned methods
to improve the TE performance in graphene nanorings, we
investigate the thermoelectric characteristics of rectangular
phosphorene nanorings for both symmetrical and asymmetri-
cal attachment of leads. We investigate the effect of an applied
external magnetic field on the TE properties of these rectan-
gular rings, and we show how the thermoelectric coefficients
are controllable in our designed systems by a perpendicular
magnetic field. Also, we examine the role of ring size and the
symmetry of the connection configuration of leads on the TE
response of these systems.

II. MODEL AND FORMALISM

The system under study is a rectangular phosphorene
nanoring with a symmetric or asymmetric coupling to two
leads, as shown in Figs. 1(a) and 1(b). In each configuration,
two semi-infinite zigzag- or armchair-edged nanoribbon of
phosphorene connect to a nanoring. The geometry of a rectan-
gular quantum ring is determined by the inner and outer sides
Lin, Win, Lout, and Wout. In monolayer phosphorene (MLP),
each phosphorus atom (P) is covalently bonded to three neigh-
bor phosphorus atoms, and they form a puckered structure as
depicted in Figs. 1(c) and 1(d). The lattice constants of MLP
are a = 4.38 Å and b = 3.32 Å. There are four P atoms in the
rectangular primitive unit cell of MLP. The generally accepted
low-energy tight-binding (TB) Hamiltonian for pristine MLP

FIG. 1. Parts (a) and (b) show schematically symmetric and
asymmetric coupling of a rectangular phosphorene ring to two leads.
The geometrical parameters of the system are shown. Parts (c) and
(d) show the top view and side view of the lattice structure of mono-
layer phosphorene, respectively. a and b are lattice vectors. t1, . . . , t5

denote the used hopping parameters in our TB model.

is given by [36]

HMLP =
∑
i �= j

ti jc
†
i c j, (1)

where c†
i (ci) is the creation (annihilation) operator of an elec-

tron at the ith ( jth) atom, and ti j are the hopping parameters
for different nearest neighbors that run over the five hopping
parameters t1, . . . , t5 [see Figs. 1(c) and 1(d)]. The specific
values of these hopping parameters as suggested in [36] are
as follows: t1 = −1.220 eV, t2 = 3.665 eV, t3 = −0.205 eV,
t4 = −0.105 eV, and t5 = −0.055 eV.

In our systems of interest [Figs. 1(a) and 1(b)], the bulk of
MLP is selectively cut or modified, resulting in the exposure
of bare edges or dangling bonds at the surface of the material.
The bare edges and geometry of our lead-nanoring-lead con-
figurations can have a significant impact on their electronic
and transport properties. Due to the reduced dimensionality
in these configurations, their electronic and thermal proper-
ties become highly sensitive to the surface or edge structure,
which can lead to unique electronic states or enhanced TE
properties. Additionally, the geometry of the ring can affect
the symmetry of the electronic states and alter the probability
of electronic scattering and tunneling, leading to a modifica-
tion in the transport properties such as conductivity, mobility,
and TE response. These bare edges and boundary conditions
can be modeled using the TB approximation by imposing
certain constraints on the hopping integrals or eliminating the
hopping terms involving the edge atoms. This is because the
dangling bonds do not have neighboring atoms to which they
can hop, and therefore, their contribution to the electronic
structure should be ignored. Hence, the whole Hamiltonian
of our lead-nanoring-lead system can be written as a sum of
four parts: the Hamiltonian of the left (right) lead, the Hamil-
tonian of the central nanoring device, and the Hamiltonian that
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describes the coupling between the leads and the device. This
Hamiltonian can be written in block matrix form as

H =

⎛
⎜⎜⎝

HL HLD 0

H†
LD HD HDR

0 H†
DR HR

⎞
⎟⎟⎠, (2)

where HL and HR are the Hamiltonians of the left and right
leads, respectively, HD is the Hamiltonian of the central de-
vice (nanoring) as scattering region, and HLD and HDR are
the coupling Hamiltonians between the leads and the ring.
Note that in our analysis, we assume the size of the ring
is sufficiently large to preclude direct hopping between the
left and right leads. In the rectangular ring, we label each
phosphorus atom with a unique index from 1 to N to specify
their position. For the left (right) lead, the lattice sites extend
infinitely in one direction and we can label each phosphorous
atom with a unique index from −∞ to 0 (N + 1 to +∞).
Therefore, using Eq. (1), the Hamiltonian of the left (right)
lead, and the nanoring in the second quantized representation,
are given by

HL(R) =
0(+∞)∑

i, j=−∞(N+1)

ti jc
†
i c j,

HD =
N∑

i, j=1

ti jc
†
i c j, (3)

respectively, and in each relation i �= j, and ti j ∈ t1, . . . , t5.
The coupling Hamiltonian between the left (right) lead and
nanoring is written as

HLD =
0∑

k=−∞

N∑
l=1

tkl c
†
kdl ,

HDR =
N∑

m=1

∞∑
n=N+1

tmnd†
mcn, (4)

where d†
m (dl ) is the creation (annihilation) operator for an

electron in the nanoring, and c†
k (cn) is the creation (annihi-

lation) operator for an electron in the left (right) lead. tkl (tmn)
represents the hopping integral between site k (m) in the ring
and site l (n) in the left (right) lead. The sum runs over all
sites in the nanoring and all sites in the leads that are directly
coupled to the device.

To evaluate the thermoelectric response of the lead-
nanoring-lead system, the transmission coefficient needs to be
determined. Various methods can be employed to achieve this,
such as utilizing the transfer-matrix technique in the scattering
approach [37,38] or utilizing the Fisher-Lee relation associ-
ated with the real-space Green’s-function method [37]. The
S-matrix in a coherent device establishes a relationship be-
tween the incoming and outgoing wave amplitudes, allowing
us to determine the response of a lead to an excitation originat-
ing from another lead. On the other hand, the Green’s function
is a more versatile tool that enables us to obtain the response at
any point, whether inside or outside the conductor, in response
to an excitation from any other point. When dealing with non-
interacting transport, we only need to account for excitations

arising from waves incident from the leads. For such exci-
tations, the Green’s function and S-matrix are conceptually
similar, and the choice of which to use is primarily a matter
of preference [37]. To calculate the conductance of the lead-
nanoring-lead system using the S-matrix approach, it is neces-
sary to determine the relationships between incoming and out-
going waves, as well as match the coefficients for these waves
in the scattering region. An energy eigenstate |ψE 〉 of the
lead-nanoring-lead system can be expressed as a linear com-
bination of eigenstates |φ±

L,nE 〉 and |φ±
R,nE 〉 in the left and right

leads, respectively, and by an unknown eigenstate |φD,E 〉 in the
nanoring. Thus, we can express an eigenstate of the system as

|ψE 〉=
⎧⎨
⎩

∑
n(a+

L(R),n|φ+
L(R),nE 〉+a−

L(R),n|φ−
L(R),nE 〉) for L(R),

|φD,E 〉 for ring,

(5)

where we have represented the incoming and outgoing
wave amplitudes by vectors a+

L(R) = (a+
L(R),1, a+

L(R),2, . . . ) and
a−

L(R) = (a+
L(R),1, a+

L(R),2, . . . ), respectively, and each vector
includes all the various modes in the corresponding lead. The
outgoing amplitudes can be expressed linearly in terms of the
incoming amplitudes by the S-matrix as(

a−
L

a+
R

)
=

(
r t̃

t r̃

)(
a+

L

a−
R

)
, (6)

where r and t are the reflection and transmission matrices
in the scattering matrix S(E ). In Eqs. (5) and (6), matching
the wave functions allows one to determine the coefficients
of the incoming and outgoing waves in the scattering region.
This shows clearly that the geometry of the leads and the
boundary conditions at the interface between the leads and the
device region play a crucial role in determining the transport
properties of the system. The transmission probability T
can be calculated from the S-matrix by taking the modulus
squared of the transmission coefficient: TLR(E ) = tr{tt∗}. So,
the two-terminal conductance of charge carriers through a
nanoring is given by

G = 2e2

h

∫ (
−∂ f0

∂E

)
TLR(E )dE , (7)

where f0 is the Fermi distribution function 1/[e(E−μ)/KBT + 1]
at temperature T , and TLR(E ) denotes the transmission coef-
ficient of our lead-nanoring-lead system [37,38]. To evaluate
the transmission coefficient and local density of states using
the Green’s-function method, one can derive the retarded
(advanced) Green’s function of the ring by computing the
retarded (advanced) self-energies of the connected leads:

Gr(a)
D = [

Er(a) − HD − �
r(a)
L (E ) − �

r(a)
R (E )

]−1
, (8)

where �L(R)(E ) is the self-energy related to the left (right)
lead, and Er = E + iη (Ea = E − iη). The conductance
σ (E ) of our systems at Fermi energy (EF ) between a pair of
leads L and R is given by

σ (E ) = 2e2

h
TLR(E ) = e2

h
tr

[
	L(E )Gr

D(E )	R(E )Ga
D(E )

]
,

(9)
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where 	L(R) = i[�L(R)(E ) − �
†
L(R)(E )]. Given the retarded

Green’s function of the central device, it is straightforward to
calculate the local density of states (LDOS) at each site i of
the central region using the relation [37]

ρi(E ) = − 1

π
ImGr

ii(E ). (10)

In the Landauer-Buttiker formalism, the thermopower S
and the electronic contribution to thermal conductance κe

are expressed in terms of the moments of the transmission
coefficient [39]

Kn =
∫ ∞

−∞

(
−∂ f0

∂E

)
βn(E − μ)nTLR(E )dE , (11)

via the following equations:

S = −kB

e

K1

K0
, (12)

κe = 2k2
BT

h

[
K2 − K2

1

K0

]
, (13)

where β = 1/kBT . In the present study, for computational
analysis, we employ the PYBINDING code package [40]
to construct the tight-binding Hamiltonians for our
lead-nanoring-lead device. Subsequently, we evaluate the
transport properties using the S-matrix method, which is
implemented in the Python package KWANT [41]. Also,
we use analytical methods based on Green’s functions to
elucidate the underlying physics of the observed phenomena.

III. RESULTS

We design our phosphorene-based nanostructures with the
aim to enhance the TE performance compared to the TE
responses of pristine PNRs. So, before proceeding with our
main systems, we first examine the electronic conductance
G, the Seebeck coefficient S, the electronic thermal conduc-
tance κe, and the thermoelectric power factor PF = GS2 for
pristine PNRs. We identify ZPNRs and armchair phosphorene
nanoribbons (APNRs) by the number of zigzag chains or
dimer lines present across the ribbon’s width. They are la-
beled as N-ZPNR or N-APNR, respectively. In Figs. 2(a) and
3(a), cyan curves show the calculated conductance for typi-
cal samples 16-ZPNR (W = 3.50 nm) and 20-APNR (W =
3.32 nm), respectively. The intriguing electronic properties
of ZPNRs and APNRs have a direct consequence on their
transport characteristics. The conductance of both ZPNRs
and APNRs exhibits quantized plateaus G = n(2e2/h), where
2e2/h is the conductance quantum and n denotes the num-
ber of available transport modes at energy E . As seen, the
ZPNR shows a conductance plateau of value G = 2(2e2/h)
near the zero-energy region because of the contribution of
edge-propagating states along the zigzag boundaries. On the
other hand, due to the absence of propagating edge modes in
the APNR, there exists no quantized plateau in the midgap
region. Furthermore, the lack of electron-hole symmetry in
the electronic band structures of PNRs leads to an asym-
metry of their quantum conductance with respect to μ = 0.
Figures 2(b) and 3(b) (cyan curves) depict the numerically cal-
culated thermopower S for the ZPNR and APNR, respectively.

FIG. 2. (a) Electronic conductance, (b) thermopower, (c) power
factor, and (d) electronic thermal conductance as a function of
scaled chemical potential for 16-ZPNR (cyan curves), an asymmetric
PRZL (orange curves), and a symmetric PRZL (purple curves). The
structural parameters for PRZLs are set to Win = Wout/2 = WL =
3.5 nm and Lin = Lout/2 = 1.66 nm. The temperature is set to kBT =
0.021|t1| in our calculations.

A comparison between the thermopower of the ZPNR and
APNR shows that the presence of midgap edge modes dras-
tically affects the SC, and hence is sensitive to the topology
of the boundaries in a PNR. We have illustrated in Figs. 2(c)
and 3(c) the corresponding power factors, which clearly shows

FIG. 3. (a) Electronic conductance, (b) thermopower, (c) power
factor, and (d) electronic thermal conductance as a function of
scaled chemical potential for 20-APNR (cyan curves), an asymmetric
PRAL (orange curves), and a symmetric PRAL (purple curves). The
structural parameters for PRALs are set to Win = Wout/2 = WL =
3.32 nm and Lin = Lout/2 = 1.75 nm. The temperature is set to
kBT = 0.021|t1| in our calculations.
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that in the ZPNR case, due to the mentioned edge modes, a
maximum power factor appears near the zero Fermi energy.
The cyan curves in Figs. 2(d) and 3(d) display the electronic
thermal conductance κe as a function of the chemical potential
μ for ZPNR and APNR, respectively. As seen, due to the
lack of electron-hole symmetry, κe is also asymmetric around
μ = 0.

Now, we investigate the thermoelectric performance of a
phosphorene ring with zigzag leads (PRZL). One approach to
improve the SC in phosphorene is by creating a substantial
band gap in phosphorene nanostructures with zigzag edges,
which exhibit metallic characteristics. This can be achieved
by connecting two narrow leads of PNR to a rectangular
phosphorene nanoring as schematically depicted in Fig. 1.
We couple two PNRs with zigzag edges to a rectangular ring
for both symmetries. The corresponding results are shown in
Figs. 2(a)–2(d) for asymmetric (orange curves) and symmetric
(purple curves) configurations. It is found that for a symmetric
connection configuration, the conductance and thermopower
are considerably affected compared to the case of pristine
PNRs. A comparison between the cyan and purple curves in
Fig. 2(b) shows that in this case, the absolute value of the
maxima is notably greater than that of the ZPNR counterpart.
In Fig. 2(a), one can see that for the symmetric case, the first
conductance plateau in ZPNR disappears completely, which
is understood as an induced large band gap in the electronic
conductance due to the suppression of the contribution of edge
states. We have shown in Fig. 4(a) the electronic local density
of states (LDOS) for a symmetric PRZL at μ = 0 eV to
clearly show the suppression of the edge modes contribution
to the electronic conductance near connection regions. As
a result, the peak value of the thermopower for this PRZL
around zero chemical potential is enhanced to 58KB/e (=
4988 µV/K). On the other hand, for an asymmetric PRZL,
the situation is different. Figure 4(b) displays the LDOS of
electrons for this configuration at μ = 0 eV. As seen, in this
ringlike geometry a path between the electrodes is observed,
and the original first conductance plateau still exists [see
Fig. 2(a)], though its height decreases due to blocking the
other path of edge modes propagation. While the enhancement
of the maximum power factor in asymmetric PRZL [orange
curve in Fig. 2(b)] compared to that of ZPNR may not be par-
ticularly significant, the key observation here is that nanorings
exhibit significantly lower electronic thermal conductance κe

[as shown in Fig. 2(d)] compared to ZPNR. Consequently, our
designed phosphorene-based nanostructures have the poten-
tial to improve the figure of merit ZT .

Next, we examine the thermoelectric performance of a
phosphorene ring with armchair leads (PRAL). Figure 3 de-
picts the same quantities as in Fig. 2 for both asymmetric
(orange curves) and symmetric (purple curves) connection
of leads. A comparison between the two nanostructures re-
veals a significant reduction in electronic conductance for the
symmetric PRAL compared to the asymmetric case. To offer
additional insight into our statement, we have shown in Fig. 5
the spatial LDOS of the transport modes at μ = 2 eV. As
seen in the symmetric case [Fig. 5(a)], the wave packets of
electrons primarily reside within the attached left and right
leads, with fewer bound states found in the central device.
This reduces the propagation probability of electrons from

FIG. 4. Spatial LDOS for (a) a symmetric and (b) an asymmetric
PRZL at μ = 0 eV. The parameters used are the same as in Fig. 2.
The color bar denotes the electronic density distribution across the
device.

the left lead to the right one or vice versa. On the other
hand, the LDOS of the asymmetric configuration [Fig. 5(b)]
exhibits more bounding states in the central device, and thus
it increases the probability of electron transmission which
emerges as conductance peaks. In the case of the asymmetric
PRAL, the band gap remains nearly unchanged, resulting in
a similar SC compared to APNR. Interestingly, for the sym-
metric PRAL, a remarkable enhancement in the band gap can
be observed, leading to an increased maximum value of the
SC. It is intriguing to note that the symmetric PRAL exhibits
an electronic thermal conductance [purple curve in Fig. 3(d)]
more than one order of magnitude smaller than that of AP-
NRs at the corresponding location of the maximum power
factor. Consequently, one can anticipate a significant enhance-
ment in the TE performance for these phosphorene-based
nanostructures.

Now, let us investigate the influence of the nanoring size
on the electronic conductance and thermopower of PRZLs.
Our focus is on symmetric PRZLs. Figures 6(a)–6(d) illus-
trate the calculated electronic transport coefficients for two
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FIG. 5. Spatial LDOS for (a) a symmetric and (b) an asymmetric
PRAL at μ = 2 eV. The parameters used are the same as in Fig. 3.
The color bar denotes the electronic density distribution across the
device.

symmetric PRZLs with different sizes. The orange and cyan
curves show the results for the first set of parameters Win =
2.6 nm, Lin = 81 nm, Wout = 8.76 nm, Lout = 86.32 nm, and
WL = 4.38 nm, and the second set of structure parameters
Win = Lin = Wout/2 = Lout/2 = WL = 4.38 nm, respectively.
The results clearly show that the thermopower depends signif-
icantly on the size of the considered nanorings. In general, the
smaller the ring, the better TE response we get. For instance,
in the second case, the maxima S enhances and leads to a peak
value of 48 KB/e (= 4128 µV/K) at zero energy.

In addition, the SC spectrum of the PRZL exhibits some
other small oscillations at higher chemical potentials, yielding
changes in the sign. Figures 7(a) and 7(b) show a zoomed-
in view of Figs. 6(a) and 6(b) (cyan curves) in the scaled
chemical potential of 1.37–1.48. As seen, the transmission
coefficient exhibits Fano resonances and/or antiresonances
that do not exist in ZPNRs. We show in Fig. 7(c) the LDOS
of the Fano resonance peak. The reason behind the appear-
ance of Fano resonance peaks is the interaction between the
electronic states of the ring and connected leads. As seen, the
mentioned LDOS shows localized states in some regions of
the ring, implying that the Fano resonances are closely related
to the appearance of these bound states [42]. Theoretically, the
complexity of a system can be reduced while preserving the
underlying physics of Fano resonances and/or antiresonances
by using the transformative capabilities of the decimation
method [43–46]. By following the formal procedure of this
method, our configurations can be perceived as an effective

FIG. 6. Cyan curves show (a) electronic conductance, (b) ther-
mopower, (c) power factor, and (d) electronic thermal conductance as
a function of scaled chemical potential for a symmetric PRZL with
a set of parameters KBT = 0.021|t1|, Win = 2.6 nm, Lin = 81 nm,
Wout = 8.76 nm, Lout = 86.32 nm, and WL = 4.38 nm. Orange curves
show the same quantities for another symmetric PRZL with the set of
parameters KBT = 0.021|t1|, Win = Lin = Wout/2 = Lout/2 = WL =
4.38 nm.

quantum wire and an array of side-coupled effective quantum
dots. Due to the hybridization and renormalization effects
that occur during the decimation process, the hopping inte-
grals and on-site energies of the nanostructure can undergo
changes. These modifications give rise to the emergence of
new effective quantities in the simplified system. The schemes
shown in Figs. 8(a) and 8(c) represent two simplified models
that are similar in nature to our symmetric and antisymmetric
configurations.

We first examine a symmetrical configuration in which
two effective impurity sites labeled as 1 and 2 form a double
quantum dot. These sites are connected to left and right leads,
as shown in Fig. 8(a). In this model, each site is assumed to
possess a single energy level, and we neglect interdot and in-
tradot electron-electron interactions. The total Hamiltonian of
the system can be expressed as H = HD + Hleads + Htunneling.
Here, HD is the Hamiltonian of the two-impurity sites, with
the assumption that there is no tunneling coupling between
them:

HD =
2∑

i=1

εid
†
i di. (14)

Also, Hleads describes the dynamic of leads, and Htunneling

accounts for the tunneling between impurity sites and leads by
the tunneling couplings 	L(R). By assuming that the Green’s
functions of the leads are imaginary around the energy ε0 and
show minimal dependence on energy in this region, we can
make use of the wide-band approximation [47]. Consequently,
the self-energy can be expressed as �

r(a)
L(R)(E ) = ∓i	L(R)/2.

Therefore, using Eqs. (8) and (14), the inverse of the retarded
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FIG. 7. (a) and (b) Zoomed-in views of Figs. 6(a) and 6(b) in
the scaled chemical potential of 1.37–1.48. (c) LDOS at the Fano
resonance peak.

Green’s function for the central region is written as

[
Gr

D

]−1 =
(

Er − ε1 + i
2	11

i
2	12

i
2	21 Er − ε2 + i

2	22

)
, (15)
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-5

-4

-3

-2

-1

0

lo
g 10

T(
E)

t=0.2 eV
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(d)
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ε0 ε0 ε0

ε0 ε1

ε2

t0 t0
t

L
L

L
R

ε0 ε0 ε0ε0 ε0
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FIG. 8. Two semi-finite 1D chains are connected in (a) sym-
metric and (c) asymmetric configurations to scattering regions. The
scattering regions have two single-level site energies ε1 and ε2, and
they are connected to the chains through couplings 	L and 	R.
(b) Semilog plot of the transmission probability as a function of
energy for configuration (a) for ε1 = 1 eV, ε2 = 2 eV, and different
values of γ . (d) The same quantity for 	L = 	R = 0.2 eV, ε0 = 0 eV,
ε = 1.5 eV, and various values of the coupling t .

where 	i j = 	i jL + 	i jR. In this symmetrical configuration,
both the diagonal and nondiagonal matrix elements of the
matrices 	L(R) have equal values, denoted as 	i jL(R) = γL (R).
From Eq. (15), the retarded Green’s function is given by

Gr
D = 1

�

(
Er − ε2 + i

2γ i
2γ

i
2γ Er − ε1 + i

2γ

)
, (16)

where � = (Er − ε1)(Er − ε2) + iγ (Er − ε), γ = γL + γR,
and ε = (ε1 + ε2)/2. Subsequently, the advanced Green’s
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function can be obtained directly using Eq. (16). Upon in-
serting them into Eq. (9) and performing a straightforward
calculation, the electron transmission is determined as

T (E ) = 4γLγR

[(E − ε1)(E − ε2)/(E − ε)]2 + γ 2
. (17)

Figure 8(b) illustrates the semilog plot of the transmission
probability as a function of energy for ε1 = 1 eV, ε2 = 2 eV,
and different values of γ . As seen, the prominent char-
acteristic observed in this model is the occurrence of an
antiresonance at E = ε, where the transmission completely
vanishes. This phenomenon occurs due to a destructive quan-
tum interference between the paths involving impurity levels
1 and 2. Hence, the interference mechanism in our system
can be clarified by employing this simple model, enabling us
to gain a basic understanding of the fundamental factors that
contribute to the characteristics of conductance, including the
emergence of antiresonance phenomena.

Now, let us consider an asymmetric single-channel con-
figuration, which consists of two semi-infinite 1D leads
connected to impurity sites 1 and 2 [see Fig. 8(c)]. Similarly,
the system can be characterized by the total Hamiltonian H =
HD + Hleads + Htunneling. In this configuration, the Hamilto-
nian of two-impurity sites is written as

HD =
2∑

i=1

εid
†
i di + t (d†

2 d1 + d†
1 d2), (18)

where the coupling between them is described by the tunnel-
ing coupling t . The dynamics of the leads is described by
Hleads, while 	L(R) takes into account the tunneling between
impurity site 1 and the leads through the tunneling couplings
Htunneling. Thus, by utilizing Eqs. (8) and (14), we can express
the inverse of the retarded Green’s function of the central
region as

[
Gr

D

]−1 =
(

Er − ε0 −t
−t Er − ε

)
+ i

2

(
	11 0
0 0

)
, (19)

where 	 = 	L + 	R. By employing Eq. (9), we can eas-
ily demonstrate that the zero-bias transmission is expressed
as T (E ) = 	L	R|Gr

11|2, where Gr
11 = (Er − ε)/{(Er − ε0 +

i 	L(R)

2 ) − (Er − ε)} represents the retarded Green’s function at
the impurity site 1. This result directly leads to the transmis-
sion function

T (E ) = 4	L	R

4[E − ε0 − t2/(E − ε)]2 + 	2
. (20)

We have shown in Fig. 8(d) the semilog plot of the trans-
mission probability as a function of energy for 	L = 	R =
0.2 eV, ε0 = 0 eV, ε = 1.5 eV, and various values of the cou-
pling t . In this model, a notable feature is the presence of an
antiresonance at E = ε, resulting in a complete suppression of
transmission. This behavior can be attributed to a destructive
quantum interference between the direct path passing through
impurity level 1 and an alternative path involving the coupled
site. Additionally, in proximity to the antiresonance, a Fano
peak emerges, which can enhance the thermoelectric proper-
ties of the system. This can be understood as follows. Take the
chemical potential near a Fano-like antiresonance. According
to Eq. (12), the thermopower S is proportional to K1, whose

value is assessed by the integrand (− ∂ f0

∂E )(E − μ)TLR(E ),
where (E − μ) is an odd function around μ. As a result,
a larger asymmetry of transmission coefficient TLR(E ) leads
to an increase in K1, and thus a higher TE response. Such
behavior is evident in Fig. 7(b), which shows the behavior of
the SC near the Fano-like antiresonance. Such behavior of the
SC near the Fano-like antiresonance is also evident for our
symmetric PRZL, as shown in Fig. 7(b).

Given the availability of electronic transport quantities, it
is important to assess the impact of thermal conductance on
the figure of merit in our lead-nanoring-lead systems. This
aspect holds significance as there is a reduction in thermal
conductivity caused by phonon scattering at the boundaries.
The ballistic thermal conductance of a nanoribbon of width
W is given by [48]

Gph = k2
BT

h

∫ ∞

0

(
Mλ

L + λ

)
ph

x2ex

(ex − 1)2
dx, (21)

where M represents the number of phonon modes, λ corre-
sponds to the mean free path of phonons, and x ≡ h̄ω/kBT .
Using this equation, we can express the thermal conductance
in the ballistic limit (L 
 λ) as follows:

Gb
ph = k2

BT

h

∫ ∞

0
Mph

x2ex

(ex − 1)2
dx. (22)

To examine how the thermal conductance depends on temper-
ature and sample width, we evaluate the number of phonon
modes that contribute to the thermal transport. It has been
shown that the number of phonon modes is directly related
to the number of wavelengths that can fit within the cross
section of the nanoribbon [48]:

Mph � 2W

h/p
× Naco = 2Naco

W

λaco
. (23)

Note that in monolayer phosphorene, it is known that acoustic
phonons play a major role in phonon transport at room tem-
perature [49]. Therefore, we focus solely on their contribution
in our analysis. By using the relation λaco = 2πvaco/ω, where
vaco represents the acoustic phonon velocity, we can rewrite
Eq. (23) as follows:

Mph � 2NacokBTW

hvaco
x. (24)

By substituting this relation into Eq. (22) and evaluating the
corresponding integral, we obtain

Gb
ph � 12ζ (3)Naco

k3
BT 2W

h2vaco
, (25)

where ζ (3) is the Riemann zeta function at 3 and its numer-
ical value is � 1.20. Although this approximation may not
accurately capture the temperature dependence over a wide
temperature range, it predicts a linear relationship between the
thermal conductance and the width of phosphorene nanorib-
bons, which is in very good agreement with other works
[50,51]. First-principles studies [49] have demonstrated that
the longitudinal acoustic branch along the zigzag direction,
characterized by a group velocity of ∼7.8 km/s [49,52], plays
a dominant role in determining the phonon thermal conductiv-
ity of phosphorene. Hence, by substituting numerical values
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into Eq. (25) at T = 300 K, we obtain

Gb
ph � 0.98W (nW / K), (26)

where W is written in units of nm. This result is in good
agreement with the findings obtained using the nonequilib-
rium Green’s-function method, where the thermal phonon
transport along the zigzag direction is characterized by Gb

ph �
1.31W + 0.07 (nW / K) [50].

During the process of heat transfer in our rectangular rings,
phonons, which play a crucial role in thermal transport, en-
counter interfaces and boundaries. These irregularities make
the phonons scatter and deflect from their original paths,
hindering their overall propagation. Therefore, this scatter-
ing mechanism disrupts the coherent flow of heat, leading
to a reduction in the thermal conductivity of the system. In
this situation, we can envision a rectangular nanoring in a
mesoscopic-like regime, where the mean free path of phonons
becomes comparable to the nanoring size due to scattering
at the boundaries. In this regime, the phonon thermal con-
ductance can be defined for a nanoring with an effectively
one-dimensional cross-section of width Weff as [48]

Gr
ph = κr

ph
Weff

Leff + λeff
, (27)

where κr
ph, Leff, and λeff represent the phonon thermal conduc-

tivity, the effective size, and the effective phonon mean free
path of the rectangular ring, respectively. We can estimate the
decrease in thermal conductivity in our rectangular nanoring
by adjusting the thermal conductivity of a nanoribbon at its
ballistic limit using a single parametric function [49,53]

κr
ph � κb

ph

1 + l0/Leff
, (28)

where l0 is a parameter. For phosphorene, we adopt the values
of 66 and 83 nm for the parameter l0 in the zigzag and arm-
chair directions, respectively [49]. Using Eq. (28), we rewrite
Eq. (27) in the form

Gr
ph � 1

(1 + l0/Leff )(1 + Leff/λeff )
Gb

ph, (29)

where Eq. (26) can be used for ZPNRs. For symmetric and
asymmetric attachment configurations, we define the effective
mean free path within rings as Lsym

eff = (Lout + Wout − Win)/3
and Lasym

eff = (2Lout + Wout − Win)/4, respectively.
By utilizing the aforementioned estimations and the nu-

merically calculated electronic transport quantities for our
systems, we can estimate the figure of merit ZT using the
equation

ZT = GS2

κe + Gr
ph

T . (30)

(Note that when using this equation, we perform a unit trans-
formation [nW/K → 1741(2k2

BK/h)] for Gr
ph.)

Figure 9(a) illustrates the calculated figure of merit at room
temperature for described systems in Fig. 2. In our calcula-
tions, we used Eq. (26) to evaluate the thermal conductance of
the ZPNR. As observed, the enhancement in thermoelectric
properties resulting from electron contribution, along with the
decrease in thermal conductance in both configurations, has
led to a significant increase in the maximum figure of merit.

FIG. 9. (a) and (b) Dimensionless figure of merit ZT as a func-
tion of scaled chemical potential for systems as described in Figs. 2
and 3, respectively.

For APNRs, we employ the relation Gb
ph � 0.39W + 0.05

(nW/K) extracted from the data presented in Ref. [50]. We
present in Fig. 9(b) the corresponding figure of merit for
systems with parameters described in Fig. 3. Our result re-
veals a remarkable enhancement in the maximum figure of
merit for both symmetric and asymmetric PRALs compared
to corresponding APNR.

Finally, we examine the effect of applying a perpendicular
magnetic field on the TE performance of a PRZL. By applying
a perpendicular magnetic field B to the plane of a MLP nanor-
ing, the hopping parameters ti j in Eq. (1) are modified as

ti j → ti j exp

(
i
2πe

h

∫ rj

ri

A · dl
)

, (31)
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FIG. 10. (a) Contour plot of the electronic conductance as a
function of the applied magnetic field and the Fermi energy for
a symmetric PRZL. The set of parameters are KBT = 0.021|t1|,
Win = 2.6 nm, Lin = 81 nm, Wout = 8.76 nm, Lout = 86.32 nm, and
WL = 4.38 nm. The electronic conductance (b) and thermopower
(c) of the symmetric PRZL at Ef = 0.732 eV.

in order to include Peierl’s phase factor, where A is the vector
potential. It has been shown [5] that by applying a perpen-
dicular magnetic field to PNRs, the conductance experiences
dramatic oscillations at special Fermi energies, leading to a
giant magnetoresistance (MR) in zigzag PNRs. Here, we show
that the TE performance of a PRZL is highly dependent on the
magnetic flux. We only focus on the symmetric case because
in this configuration the thermopower changes more rapidly
compared to the ZPNRs. Figure 10(a) depicts the contour plot
of the conductance as a function of the applied magnetic field
and the Fermi energy for a symmetric PRZL with structure

parameters KBT = 0.021|t1|, Win = 2.6 nm, Lin = 81 nm,
Wout = 8.76 nm, Lout = 86.32 nm, and WL = 4.38 nm. Note
that here we have increased the size of the nanoring to reduce
its oscillation period in the presence of the magnetic field. In
this situation, the effective area of the nanoring is relatively
large, and as a result, the period of AB oscillations is small,
which makes it experimentally feasible. We approximate the
period of oscillation as �B = 2πφ0/S̄, where S̄ = (Sin +
Sout)/2 is the average area of the outer and inner nanorings
[54]. In our case, the average area is 472.41 nm2, resulting in
an oscillation period of �B ≈ 8.73 T. As seen in Fig. 10(a),
the conductance exhibits an oscillative behavior as a function
of the applied magnetic field with a period of ∼8.7 T, which
agrees very well with our theoretical prediction. As seen from
Figs. 10(b) and 10(c), the electronic conductance G and the
thermopower S also have a periodic character by changing
the magnetic field. This leads to a drastic increase in the ther-
mopower S near an antiresonance point. Two salient features
that we realize from these figures are the high tunability of
the thermopower and the possibility to switch on and off
the thermoelectric response of the phosphorene nanoring with
the magnetic flux. Remarkably, the differential SC can be
about eight times larger than the one in the absence of the
magnetic field. This confirms the excellent thermoelectric
response of this phase-coherent mesoscopic device, making
it a promising quantum heat engine in a closed-circuit
configuration [55].

IV. SUMMARY AND CONCLUSION

In summary, we investigated the thermoelectric proper-
ties of different phosphorene nanorings with symmetrical or
asymmetrical connected leads. We utilized the effective low-
energy TB model of monolayer phosphorene to construct the
TB Hamiltonian of our devices and to characterize their elec-
tronic conductance, thermopower, and thermal conductance
within the Landauer-Büttiker formalism. Our results showed
that quantum interference of localized electronic states in
the nanorings and the electronic wave packets in the leads
profoundly affect the TE properties of the system. We found
that for a symmetrical connection of zigzag leads to rectan-
gular rings, the original first conductance plateau completely
collapses due to the suppression of the contribution of edge
states. This induces a wide gap in the system, giving rise to
dramatically enhanced peak values in thermopower of such
configurations. We also showed that the TE performance of
these systems depends on the size of the ring, and one can
reach maximum thermopowers of ∼5000 µV/K. Interest-
ingly, we realized that the substantial decrease in electronic
and phononic thermal conductance for both symmetric and
asymmetric connection of zigzag leads results in a remarkable
enhancement in the figure of merit. Furthermore, in the case
of asymmetric connection setups with armchair-edged leads,
we observed that although the thermopower remains almost
intact, there was a significant reduction in both electronic and
phononic thermal conductance, resulting in a noteworthy im-
provement in the figure of merit. Moreover, the Fano antireso-
nances that appeared in the quantum conductance of phospho-
rene nanorings lead to characteristic features in the Seebeck
coefficient. We showed the tunability of the thermopower and
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the possibility to switch on and off the thermoelectric response
of phosphorene nanorings by an applied magnetic field. Our
study confirmed the promising thermoelectric properties of
these phase-coherent mesoscopic devices, and we propose
them as potential thermoelectric candidates.
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