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Tunable properties of excitons in double monolayer semiconductor heterostructures
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We studied the exciton properties in double layers of transition metal dichalcogenides (TMDs) with a dielectric
spacer between the layers. We developed a method based on an expansion of Chebyshev polynomials to solve the
Wannier equation for the exciton. Corrections to the quasiparticle bandgap due to the dielectric environment were
also included via the exchange self-energy calculated within a continuum model. We systematically investigated
hetero double-layer systems for TMDs with chemical compounds MX2, showing the dependence of the inter-
and intralayer excitons binding energies as a function of the spacer width and the dielectric constant. Moreover,
we discussed how the exciton energy and its wave function, which includes the effects of the changing bandgap,
depend on the geometric system setup.
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I. INTRODUCTION

The wide variety of two-dimensional (2D) materials with
different properties has opened up the possibility of atomic
scale heterogeneous integration and combination of differ-
ent layers, thus creating new hybrid structures that exhibit
totally new physics and allow unique functionalities. A rel-
evant perspective review paper in 2013 named this mixing
of isolated layers into stacked heterostructures as van der
Waals heterostructures [1]. Such layer-stacked junctions have
been intensively explored in the past decade, presenting novel
optoelectronics and collective quantum phenomena that, in
turn, one shows to be a highly tunable material platform to
design new high-performance nanoelectronic devices tailored
to a specific purpose based on the layers’ compounds choice
[2–6].

A promising research area within optoelectronics in semi-
conductor 2D materials and its layered structures is related to
the fact that they support the formation of excitons—bound
electron-hole pairs—and excitonic complexes with binding
energies more than an order of magnitude greater than con-
ventional semiconductors, i.e., on the order of hundreds of
meV, and small Bohr radius in the range of several manome-
ters [7–14]. It stems from the reduced dimensionality and
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the associated reduced dielectric screening that, in turn, leads
to strong Coulomb interactions between the charge carriers.
Consequently, the energy levels are renormalized, the quasi-
particle bandgap is modified, and the exciton binding energy
can be tuned by changing the environment [15–17]. There-
fore, an alternative to control the strength of the Coulomb
interaction via structural, sizable, and dielectric environment
is engineering the van der Waals stacking [4,17–19], and
consequently, the interlayer electrostatic coupling between
the constituents, leading to a weakening or strengthening of
the Coulomb binding by increasing or decreasing the spatial
separation between the electron and the hole.

Owing to the interplay between the layer-dependence con-
trol and the highly sensitive excitonic effects in van der Waals
materials, allowing the existence of a huge amount of dif-
ferent combinations of interlayer and intralayer excitons in
homostructures and heterostructures [20–23], aligned with
numerous different reported techniques to deal with excitonic
complexes and even Bose-Einstein condensate of excitons
[24], motivates further exploration of methods to compute
exciton properties given the richness of possibilities to create
and control them.

In this paper, we present a simple yet efficient and ac-
curate method, being less computationally demanding than
the Bethe-Salpeter framework from first-principles and Monte
Carlo approaches and with accurate convergence in compar-
ison with other semi-analytical methodologies based on 2D
hydrogenic excitonic basis [25–28], to solve the excitonic
Wannier equation within the effective mass approximation by
using a basis expansion of the eigenstate wave function into
the Chebyshev’s polynomials. Results for the dependence of
the exciton energy levels (binding energies) and associated
wave functions on the layer separation and dielectric constant
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FIG. 1. (a) Schematic illustration of the double-layered TMDs,
separated by a spacer of dielectric constant ε2 (−d � z � 0) and
width d , immersed in two materials of dielectric constants ε1 (z > 0)
and ε3 (z < −d). This structure sustains both intralayer and inter-
layer excitons. (b) Band alignment as measured from the vacuum
between the four TMDs considered in this paper. The bandgap en-
ergies and their alignments were obtained from DFT calculations in
Ref. [29].

of dielectric spacers are obtained for interlayer and intralayer
excitons in different combinations of double-layer transition
metal dichalcogenides (TMDs) composing heterostructures.

The paper is organized as follows. In Sec. II, we present
the theoretical framework used to solve the excitonic Wan-
nier equation, deriving, in Appendix A, from the Poisson
equation for double-layer system separated by a spacer the
appropriate intralayer and interlayer electrostatic potential
contributions, and in Sec. II A we demonstrate the solution
of Wannier equation for excitons by expanding the excitonic
wave function in Chebyshev polynomials to obtain the bind-
ing energies and wave function in real and momentum spaces.
Section II B is devoted to explaining the procedure to find the
bandgap correction for double-layer semiconductors taking
into account the found electrostatic interaction and starting
from the monolayer bandgap. Results for heterostructures are
discussed in Sec. III, comparing them with the previously
reported results. Finally, in Sec. IV, we summarize our main
findings.

II. METHODOLOGY

We investigate two semiconductor monolayers separated
by a spacer with width d and dielectric constant ε2. The
substrate (z < −d) and superstrate (z > 0) have dielectric
constants ε3 and ε1, respectively, as depicted in Fig. 1(a).
Here, we consider different TMDs semiconductors repre-
sented by the symbol MX2, where M is a metal [molybdenum
(Mo) or tungsten (W)] and X is a chalcogenide [selenium
(Se) or sulfur (S)]. Homo- and heterostructures are formed
by taking the same or different TMDs in the double-layer

FIG. 2. (a) Comparison between different carrier-carrier poten-
tials in momentum space: RK (solid blue curve), Coulomb (dashed
green curve with rhombus symbols), intralayer (dashed orange curve
with circular symbols), and interlayer (dashed red curve) interac-
tions. The interlayer [Eq. (1a) and the intralayer [Eq. (1b) potentials
were calculated considering r1 = r2 = r = 44.68 Å and d = 7.15 Å.
When q is of the order of 1/r, the Coulomb potential deviates from
the other three and a negligible difference between the intralayer
and the RK potentials is observed. The interlayer potential shows a
strong screening that is due to the term proportional to e−qd of Gj (q)
in Eq. (2) when q ≈ 1/d . (b) The relative difference between the
intralayer and the RK potentials, which can be as high as 15% the
shorter the spacer width d .

system, respectively. In Fig. 1(b), we depict the energy gap
values for the four investigated TMDs here. Note that the
resulting heterobilayers lead to a type II band alignment [29]
that strongly favors the formation of interlayer excitons [30].
To correctly predict the exciton energies, determined as the
difference between the bandgap and the magnitude of the
exciton binding energy, we consider the effects of the dielec-
tric geometry on the carrier-carrier interaction as the solution
of the corresponding Poisson equation. We use the Wannier
equation in the effective mass approximation to calculate the
exciton energy, which was proven to coincide with a micro-
scopic model [31]. For the bandgap, we use the exchange
self-energy [32] within the continuum model.

The carrier-carrier interaction was derived from the Pois-
son equation in Appendix A with the geometry presented in
Fig. 1(a) for both intralayer Vii and interlayer Vi j �=i potentials,
defined as the interaction between carriers in the same (in-
tra)layer or in adjacent (inter)layers, and respectively given
by [22]

Vii(q) = −e2

qε0[ε1 + riq + ε2Gj (q)]
, (1a)

Vi j �=i(q) = Vii(q)[cosh(qd ) − Gj (q) sinh(qd )], (1b)

where

Gj (q) = cosh(qd )(ε3 + r jq) + ε2 sinh(qd )

ε2 cosh(qd ) + sinh(qd )(ε3 + r jq)
, (2)

with ri being the screening length of each 2D layer and
i = {1, 2}. Figure 2(a) shows a comparison between differ-
ent interactions in momentum space: Rytova-Keldysh [RK,
Eq. (A22), Coulomb, interlayer [Vi �= j , Eq. (1a) and intralayer
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[Vii, Eq. (1b) potentials. Although they converge to the same
value in the long-wavelength limit, i.e., when q ≈ 1/d , the
interlayer potential deviates from the RK and intralayer po-
tentials. Figure 2(b) emphasizes the difference between the
intralayer and RK interactions magnitudes, showing a differ-
ence of almost 15% between them for a short spacer width.

A. Chebyshev method

The carrier-carrier interaction in the classical regime will
diverge in the infrared limit, which must be handled to solve
the Wannier equation numerically in momentum space. Here,
we use the method developed by Chawla and Kumar [33] to
analytically remove this infrared divergence of the kernel by
expanding in Chebyshev polynomials and analytically inte-
grating out the divergence via Cauchy principal value.

We start with the Wannier equation in momentum space,

Epψ (p) +
∫

dp′

(2π )2
V (p − p′)ψ (p′) = Eψ (p) (3)

that also corresponds to a simplified version of the Bethe-
Salpeter equation in the ladder approximation, when neglect-
ing the exchange term for a two-band system in the effective
mass regime. Decomposing Eq. (3) in partial waves, we have

Epψ�(p) + 1

2π

∫ ∞

0
d p′ p′V�(p, p′)ψ�(p′) = Eψ�(p), (4)

with the interaction given by

V�(p, p′) = 1

2π

∫ 2π

0
dφV (p − p′, φ) cos(�φ). (5)

Now, we consider the hyperbolic conformal mapping

u = ξ p − 1

ξ p + 1
, (6)

with u ∈ [−1, 1] and ξ being a scale parameter, and expand
the momentum space wave function in Chebyshev polynomi-
als Tn, such as

ψ�(u) = f (u)
∑

n

cn,�Tn(u), (7)

where f (u) is a function used to speed up the convergence.
The choice of f (u) shall be discussed later on. Writing the
integrand of Eq. (4) in terms of u, one has

1

2π

∫ ∞

0
p′d p′V�(p, p′)ψ�(p′)

= 1

ξ 2

∫ 1

−1
du′ V�(u, u′)ψ�(u′)(1 + u′)

π (1 − u′)3
. (8)

From the electrostatic nature of the RK potential, one of the
numerically slow step in solving Eq. (4) comes from the 1/q
infrared singularity, that we shall demonstrate how it can be
analytically removed. Now, introducing the expansion given
by Eq. (7) in Eq. (8), one obtains

In,�(u) = 1

ξ 2

∫ 1

−1
du′ V�(u, u′)(1 + u′)

π (1 − u′)3
f (u′)Tn(u′), (9)

where now the 1/q infrared singularity appears explicitly
when u = u′,

In,�(u) = 1

ξ 2

∫ 1

−1
du′ K�(u, u′)Tn(u′)

u − u′ , (10)

with the kernel being set to

K�(u, u′) = V�(u, u′)(1 + u′)
π (1 − u′)3

f (u′)(u − u′), (11)

which vanishes for u = u′. By a careful analysis of Eq. (11),
one has that a convenient choice for the function f (u) is

f (u) = 1 − u3

1 + u
, (12)

which removes the pole at u = 1 in the kernel and will be used
to compute the exciton eigenstates in Sec. III.

Now, we use Chawla and Kumar’s method [33] to compute
the integral in Eq. (10). Decomposing the kernel, Eq. (11), in
Chebyshev polynomials, one gets

K�(u, u′) ≈
M∑

j=0

b j (u)Tj (u
′), (13)

where b j (u)’s are the expansion coefficients. Analytically in-
tegrating Eq. (10), one obtains

In,�(u) = 1

2ξ 2

M∑
j=0

b j (u)[λ j+n(u) + λ| j−n|(u)], (14)

where the λk (u) function is defined in the Appendix B and can
be obtained recursively. Replacing back in Eq. (8), we have
that

∞∑
n=0

[h(u) f (u)Tn(u) + In,� − E f (u)Tn(u)]cn,� = 0, (15)

where

h(u) = h̄2

2μξ 2

(
1 − u

1 + u

)2

. (16)

Truncating the expansion at a maximum value n = N , we can
solve Eq. (15) as a linear homogeneous system (generalized
eigenvalue problem) by choosing N + 1 different values for
u. For this, we can choose the zeros of the TN+1 Chebyshev
polynomial.

B. Bandgap engineering

The quasiparticle band structure of 2D materials depends
on the dielectric environment [6]. To account for this depen-
dence, we employ the semiconductor Bloch equations (SBE)
[34] for the heterostructure depicted in Fig. 1(a). We neglect
the tunneling between the MX2 layers due to the presence of a
dielectric spacer between them. The single particle Hamilto-
nian for the charge carriers in each layer can be described by
the following massive Dirac equation [35]:

Ĥ0,i = τi h̄vF,iσ · pi + σz�
0
s,τ , (17)

whose the mass term �0
s,τ , corresponding to the bare

“bandgap” depends on the spin (s) and valley (τ ) indexes for
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FIG. 3. Schematic illustration of the lowest conduction (CB) and
valence (VB) bands of monolayer TMDs in the vicinity of the K (red
curves) and K ′ (blue curves) points, emphasizing the band splitting
due to SOC and spin flipping for each band in the opposite valley
due to the inversion symmetry. The up (red) and down (blue) arrows
stand for spin-up and spin-down states. SOCCB (SOCVB) corresponds
to the energetic split of the conduction (valence) band.

each layer i. vF,i denote the Fermi velocity of the layer i and
σz is the z Pauli matrix component.

In order to take into account the corrections to the
bandgap, we employed the procedure derived in Ref. [32]
by considering the aforementioned gapped Dirac equation,
the electron-electron interaction, and a dipole coupling with
light. It is well known that TMDs have a strong spin-orbit
coupling (SOC) originating from the d orbitals of the metal
atoms and, consequently, it induces a spin splitting of bands
in monolayer [36], as illustrated in Fig. 3. Thus, by applying
Heisenberg’s equation to the polarization operator, we arrive
at the following exchange self-energy expression for each
layer j, derived by neglecting the four operators’ corrections
in a cluster decomposition scheme analogous to the Hartree-
Fock decomposition, such as [32,34,37]

� j
sτ (k) =

∫
dq
4π2

Vj j (q)nsτ (k − q)
4h̄2v2

F k · q + (
�0

s,τ

)2

4Esτ
jk Esτ

jq

,

(18)
from which we can calculate the dressed bandgap as

� j
sτ = �

j
sτ,0 + � j

sτ (k = 0), (19)

where �
j
s,τ denotes the energy difference between the con-

duction and valence bands with the same s and τ indexes for
each layer j at the K point, the intralayer potential Vj j is given
by Eq. (1a), nsτ is the valence electronic density, and Esτ

jk
is the eigenvalue of the massive 2D Dirac Hamiltonian. The
intralayer interaction depends on the dielectric environment
through the spacer width d , the dielectric constants εi, and the
monolayer screening lengths ri. As our goal is to study the
dependence of the exciton properties on the system geometry,
we fit the monolayers screening length r0 to reproduce the

TABLE I. Ab initio bandgaps [29], Fermi velocity [35], and
calculated bare bandgaps using Eq. (19) and the fit r0’s given in
Table II in Appendix C for the four investigated TMDs and different
combinations of spin and valley indexes.

Materials �↑ (eV) �↓ (eV) vF (eV Å) �0
↑(eV) �0

↓(eV)

MoS2 2.71 2.85 2.76 1.29 1.39
MoSe2 2.37 2.55 2.53 1.18 1.32
WS2 2.96 3.30 3.34 1.35 1.61
WSe2 2.63 3.01 3.17 1.14 1.40

experimental exciton energy of the suspended monolayer for
each MX2 as described in Appendix C.

Using the r0’s given in Table II in Appendix C, we obtain
the bare bandgap �

j
sτ,0 from Eq. (19) for each material and

spin-valley combination for the suspended monolayer, i.e.,
for ε1 = ε2 = εm = 1 and d → ∞. The obtained values are
presented in Table I. With the fitted values of r0 and �0

sτ , we
can solve Eq. (18) for different geometric setups and study
the dependence of the �

j
sτ , i.e., the spin/valley-dependent

transition energy at the K point. The assumed bandgaps,
Fermi velocities, and effective masses for the four investi-
gated TMDs (MoS2, MoSe2, WS2, WSe2) were extracted
from Refs. [29,35,38] obtained via ab initio calculations (see
Table II). Reference [29] performed DFT calculations for 24
different TMD monolayers and their 552 bilayer heterostacks,
in which they compared the obtained parameters with exper-
imental ones, showing that the validity of DFT calculation is
consistent with the experimental measurements, especially in
the accurate capturing of the band structure features. For that,
they assumed a many-body perturbation GW theory to inves-
tigate both monolayer and bilayer TMDs, yielding bandgap
values in good agreement with both experimental and previ-
ously reported theoretical results, as can be cross checked with
Refs. [11,39–47].

In Fig. 4(a), we show that the mutual electrostatic screen-
ing between two monolayers can decrease the value of �

j
sτ

by 50 meV as the interlayer separation decreases to 7.15 Å.
In Fig. 4(b), we show the dependence of �

j
sτ on the spacer

dielectric constant. The huge renormalization of the bandgap
due to the electron-electron interaction [11] is weakened by
the spacer dielectric screening, and as the dielectric con-
stant is increased, the transition energy approaches the bare
value �sτ,0. In Figs. 4(a) and 4(b), it was assumed the
MoS2/MoSe2 heterostructure; however, qualitatively similar
results are expected for the other different TMD layer com-
pound combinations.

III. RESULTS

Based on the formalism presented in the previous sections,
in the current section, we shall discuss the exciton wave
functions and energies, as well as the binding energies, for
different combinations of double-layer TMD heterostructures.
For that, we solve the truncated Eq. (15) using the carrier-
carrier potentials given by Eq. (1a) for the case of intralayer
excitons and by Eq. (1b) for the interlayer excitons. All system
parameters assumed here for each one of the four investigated
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FIG. 4. K − K transition energies of both spins for MoS2 at the
MoS2/MoSe2 heterostructure with respect to the changes (a) in the
interlayer separation d in a suspended sample with ε1 = ε2 = ε3 = 1,
and (b) in the spacer dielectric constant ε2 with a fixed interlayer
distance d = 7.15 Å and external dielectric constants ε1 = ε3 = 1.
Cyan and red curves correspond to up (�MoS2

↑,τ ) and down (�MoS2
↓,τ )

spin results, respectively. The solid lines in (a) represent a monolayer
limit (d → ∞) of the MoS2.

TMDs that composes the double layer are expressed in Ta-
bles I and II, as, for instance, the effective masses, material’s
bandgap, and the 2D material screening length r0 that was
fitted to give the exciton binding energy as explained in Ap-
pendix C. It is worth mentioning that tunneling effects of the
charge carriers between the two layers are neglected here, i.e.,
we consider the approximation that the electron and hole wave
functions of each TMD layer do not overlap.

Figures 5(a) and 5(b) show the binding energy of the in-
tralayer A excitons, which are formed when the electron-hole

FIG. 5. Binding energies (EB) of the intralayer A excitons, re-
ferred to as an electron-hole pair lying in the MoS2 layer, by taking
different layer compounds in the TMD heterostructure formation.
Red solid, green dashed, and blue dotted curves correspond to
MoS2-MoSe2, MoS2-WSe2, and MoS2-WS2 double layers, respec-
tively. Panels (a) and (b) show the dependence of EB on the separation
distance of the layers d , by assuming ε1 = ε2 = εm = 1, and on the
dielectric constant εm, by assuming a fixed interlayer distance of
d = 41 Å and dielectric constants of the substrate and superstrate
as ε1 = ε2 = 1, respectively. An enlargement as an inset in panel
(b) emphasizes the small energetic difference between the binding
energies for the MoS2-MoSe2 heterojunction and the other two,
MoS2-WSe2 and MoS2-WS2, double layers.

pair lies on the MoS2 layer, as a function of the separation
distance (spacer width) d and the dielectric constant of the
spacer εm, respectively. Results for three different layer com-
pounds in the heterostructure formation are shown: (red solid
curve) MoS2-MoSe2, (green dashed curve) MoS2-WSe2, and
(blue dotted curve) MoS2-WS2. As a consequence of the fact
that MoSe2 has the larger r0 value (see Table II) of the four
investigated TMD layers, it was already expected that it would
screen more effectively the electron-hole interaction by the
charge-image effect. As verified in Fig. 5(a), it lowers the
exciton binding energy by almost 20 meV, whereas the WSe2

and WS2 cases present almost identical binding energies due
to their very similar r0 values. From Fig. 5(b), one notices
that the intralayer A exciton binding energies are strongly
affected by the spacer’s dielectric constant εm changes, ex-
hibiting an energetic variation on the order of 300 meV when
εm varies from 1 to 4. Qualitatively similar results were re-
ported in the TMD monolayer case in Refs. [6,16], being
physically understood by the spatial localization of the inter-
layer A exciton depicted in Fig. 5 that lies only in one of the
layers of the double-layer TMD system. Moreover, a small
energetic difference of the order of a few meV is noted in
Fig. 5(b) for the binding energies of the intralayer A excitons
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in the MoS2 when one compares the different investigated
heterostructures. It is emphasized by the enlargement shown
as an inset of Fig. 5(b). It reveals structural independence
in the heterostructure formation on the binding energy as a
function of the dielectric constant, i.e., εm changes similarly
affect the binding energies regardless of the adjacent TMD
layer of the MoS2-formed heterostructure.

Let us now focus on the interlayer exciton. When stacking
different TMD monolayers, the corresponding Dirac K points
in the reciprocal space of each TMD monolayer will not coin-
cide, and the distance between the respective K points of each
layer depends both on the relative rotation of the crystallog-
raphy orientation and the mismatch of the lattice parameters
of each layer. Here, within the effective mass approximation,
we are ignoring both effects. Considering only the uppermost
valence band and the lowest conduction band of each layer,
there are two different kinds of interlayer excitons for the type
II band alignment case (see Fig. 1): (i) the lowest conduc-
tion band between the two 2D materials hosting the electron,
whereas the hole is hosted in the valence band of the adjacent
layer that possesses the highest energy, and (ii) the opposite
formation, i.e., the highest conduction band between the TMD
monolayers hosting the electron, whereas the hole is hosted
in the valence band of the adjacent layer that possesses the
lowest energy. If the corresponding exciton binding energy
has a magnitude smaller than the conduction band offset, this
will result in an excitonic resonance, as the exciton energy lies
inside the conduction band.

Results for these two mentioned kinds of interlayer ex-
citons in double-layer heterostructures composed by MoSe2

and WS2 compounds are shown in Fig. 6. The solid red
(dashed cyan) curve corresponds to the interlayer exci-
ton formed by an electron (hole) from the MoSe2 (WS2)
and a hole from the WS2 (MoSe2). Both interlayer exci-
ton configurations show a binding energy increase when
the layer separation d decreases, attaining values of almost
400 meV for shorter distances of the order of 10 Å [see
Fig. 6(a). Such behavior is easily understood by the electro-
static interaction nature of the electron-hole attraction, which
is enhanced the shorter the interlayer distance. One also
observes in Fig. 6(a) that the energetic difference of the bind-
ing energies for the two configurations of interlayer excitons,
i.e., |EMoSe2-WS2

b − EWS2-MoSe2
b |, increases when the interlayer

distance decreases. Knowing that the interlayer interaction
depends on the layer separation and the screening param-
eters r0 of heterostructures’ compounds, and in addition to
that, here we are switching the layers where the electron and
hole are positioned, one can link this energetic difference
|EMoSe2-WS2

b − EWS2-MoSe2
b | in view of the interlayer exciton

formation and the consequent overall strength switching of
the role of the electrostatic interaction at each layer. Note that
the electrostatic interaction of an electron-hole pair separated
by a dielectric media has its amplitude modulated by the
electrostatic screening of the layers damped by the separation
between them. Thus, by exchanging the layer configuration,
one leads to dampening/enhancing the screening of the ad-
jacent layer owing to the layer separation and, consequently,
to an energetic difference in the binding energy of the exci-
ton. A similar feature is observed in the case that we fixed
the layer separation and vary the dielectric constants of the

FIG. 6. Binding energies (EB) of the interlayer excitons in the
MoSe2 layer by taking different layer compounds in the TMD het-
erostructure formation. Red solid and cyan dashed curves correspond
to MoSe2-WS2 and WS2-MoSe2, respectively, with the interlayer ex-
citon being formed by the electron (hole) of the first (second) referred
compound. Panels (a) and (b) show the dependence of EB on the
separation distance of the layers d , by assuming ε1 = ε2 = εm = 1,
and on the dielectric constant εm, by assuming a fixed interlayer
distance of d = 41 Å and dielectric constants of the substrate and
superstrate as ε1 = ε2 = 1, respectively. An enlargement as an inset
in panel (b) emphasizes the energetic difference between the binding
energies for the MoS2-WS2 and WS2-MoSe2 double layers.

environment. This is present in Fig. 6(b). Note that the inter-
layer exciton binding energy exhibits the same tendency as
the intralayer one [see Fig. 5(b) as a function of the spacer
dielectric constant εm, except for the increased energetic
distancing between the two MoSe2-WS2 and WS2-MoSe2

cases when εm assumes high values, as emphasized in the inset
of Fig. 6(b).

In what follows, we study the exciton energy, which is
defined by

Eexc = Ec − Ev − |Eb|, (20)

where |Eb| is the magnitude of the exciton binding energy, Ec

the bottom of the conduction band, and Ev the top of the va-
lence band associated with the electron and hole, respectively,
that contributes to the exciton formation. For a bright exciton,
this value also corresponds to the energy of the photon that
creates the electron-hole bound state.

From now on, for an MX2 − M ′X ′
2 heterostructure, we

define the interlayer exciton IX1 as the bound-state of the
electron from the lowest conduction band of the first material
and the hole from the highest valence band of the second
material and IX2, as the opposite. In Fig. 7, we show the evo-
lution of the exciton energies, both intralayer and interlayer,
and the bottom value of the conduction band as a function of
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FIG. 7. Exciton energy dependency on (a) the layer separation
and (b) the dielectric media εm for the MoSe2-WSe2 heterostructure.
IXi denotes the ith interlayer exciton, such that IX1 (IX2) is formed
by the electron from the lowest conduction band of the first (second)
material and the hole from the highest valence band of the second
(first) material with result represented by the solid red (dashed cyan)
curve. Solid blue and yellow curves correspond to the intralayer
excitons for WSe2 and MoSe2 cases, respectively. (a) All dielectric
constants are held fixed with the value of 1, and (b) the layer separa-
tion is fixed to d = 41 Å. The shaded gray region corresponds to the
continuum.

[Fig. 7(a) the interlayer spacing and [Fig. 7(b) the dielectric
constant of the spacer. It is worth mentioning that we use as a
reference energy level the top of the valence band, considering
the band alignment of Ref. [29]. One can see in Fig. 7(a)
that the intralayer exciton energies (solid blue and yellow
curves for WSe2 and MoSe2, respectively) are very robust
with respect to the layer separation due to the simultaneous
changes of the bandgap and the exciton binding energy, which
cancel each other out, keeping the energies of the intralayer
exciton unaltered. As the interlayer separation d increases,
the value of each intralayer exciton energy converges to the
suspended monolayer value minus the band alignment energy.
For the interlayer exciton (see solid red and dashed cyan
curves for IX1 and IX2, respectively), we have that the exciton
energy increases due to the weakening of the binding energy,
which arises from the sensitivity of the interlayer interaction
with respect to the layer separation. For instance, notice in
Fig. 7(a) that the interlayer exciton IX1 energy (dashed cyan
curve) increases 0.15 eV for d = 50 Å. By Fig. 7(b), one
observes that the intralayer exciton energy is more sensi-
tive to changes in the dielectric media. By increasing the
dielectric constant of the space εm, the screening is enhanced
and, therefore, weakening the Coulomb interaction. Although
the interlayer exciton binding energy varies less with re-
spect to the dielectric screening, the gap correction is more

FIG. 8. Exciton energy dependency on (a) the layer separation
and (b) the dielectric media εm for the MoS2-MoSe2 heterostructure.
IXi denotes the ith interlayer exciton, such that IX1 (IX2) is formed
by the electron from the lowest conduction band of the first (second)
material and the hole from the highest valence band of the second
(first) material with result represented by the solid red (dashed cyan)
curve. Solid blue and yellow curves correspond to the intralayer
excitons for MoSe2 and MoS2 cases, respectively. (a) All dielectric
constants are held fixed with the value of 1, and (b) the layer separa-
tion is fixed to d = 41 Å. The shaded gray region corresponds to the
continuum. An enlargement around small layer separation is shown
as an inset of panel (a).

acute, leading to a larger fluctuation of the interlayer exciton
energy.

Similarly to Fig. 7, in Fig. 8 we present results for the
exciton energy for (a) different layer separations and (b) di-
electric media of the spacer, but now for the MoS2-MoSe2

heterostructure. By comparing Figs. 7 and 8, one observes
a similar overall behavior for the interlayer and intralayer
excitons, owing to the screened interaction and the geomet-
rical disposition of the heterostructure, showing qualitative
physical trends that are independent of the TMD layers
composition. Unlike the MoSe2-WSe2 case [see Fig. 7(a),
for the MoS2-MoSe2 case, the lowest exciton energy for
small layer separation is the interlayer IX1, as emphasized
in the inset of Fig. 8(a). As seen in Fig. 8(b), the dielectric
media allows tuning both interlayer and intralayer exciton
states, lowering their frequencies as larger the dielectric con-
stant, exhibiting a more pronounced effect on the interlayer
case.

Finally, we explore the spatial distribution of the exciton
wave function (see Appendices D and E for the analytical
formulation of the configuration space wave function and
the comparison of the assumed methodology here with other
theoretical methods). Figures 9(a)–9(d) show color maps of
the intralayer and interlayer exciton wave functions by varying
[(a) and (c)] the interlayer distance d and [(b) and (d)] the
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FIG. 9. [(a),(b)] Intralayer and [(c),(d)] interlayer exciton wave
function for the MoS2-MoSe2 heterostructure as a function of
[(a),(c)] the layer separation and [(b),(d)] the dielectric constant. The
dielectric constants are held fixed at 1 for panels (a) and (c), whereas
the value for the interlayer distance is fixed at d = 41 Å in panels
(b) and (d).

dielectric constant εm of the spacer. Figure 9(a) depicts no
pronounced change in the spatial distribution of the intralayer
exciton wave function when changing the interlayer distance.
This can be linked to the energetic negligible changes in the
binding energy as shown by the very small energetic scale
variation in Fig. 5(a). On the other hand, as already expected,
since by changing the dielectric constant, the electron-hole
interaction should vary, Fig. 9(b) shows different spatial distri-
butions of the intralayer exciton wave function when varying
the dielectric constant of the spacer. The higher εm value,
the lower the electron-hole interaction, and consequently, the
binding energy value becomes smaller [see Fig. 5(b) and
thus the exciton wave function spreads more, i.e., increasing
the exciton size. Figures 9(c) and 9(d) demonstrate that the
interlayer exciton wave function is much more sensitive to
changes in the layer separation [Fig. 9(c) than the intralayer
case [Fig. 9(a). This is to be expected because the Coulomb

interaction for interlayer exciton gets weaker with the increase
of the layer separation, leading to spreading out the in-plane
wave function. From Figs. 9(c) and 9(d), one notices that
the wave function covers a larger spatial region for the in-
terlayer case compared to the intralayer case [Figs. 9(a) and
9(b), for both cases of changing the layer separation [being
up to 35 Å in panel (c)] and the interlayer dielectric constant
[being up to 50 Å in panel (d)].

IV. CONCLUSIONS

In summary, we have presented a theoretical framework
based on an appropriate expansion for the excitonic wave
function basis composed here of the Chebyshev polynomi-
als to solve the excitonic Wannier equation for double-layer
heterostructure formed by different TMDs separated by a
dielectric spacer. The employed method showed a fast con-
vergence and numerical reliability with a computationally
cheap scheme, owing to the recursive relations of the Cheby-
shev polynomials and the Chawla-Kumar decomposition that
allowed us to integrate out the infrared divergence of the
electron-hole interaction.

Based on the mentioned theoretical formalism, we ex-
plored the excitonic spectrum for intralayer and interlayer
exciton configurations and its tunability through dielectric
engineering, which arises from the screened Coulomb inter-
action. We reported that there is a robustness of the intralayer
state with respect to the layer separation, while the interlayer
exciton energy increases due to the binding energy sensitive-
ness to layer separation. By changing the dielectric media, the
intralayer exciton energy decreases, although not as sharply
as the interlayer exciton, which has the weakest binding for
a large dielectric constant. Moreover, we also have obtained
corrections to the bandgap using the semiconductor Bloch
equations formalism, which enables us to understand how
layer separation and dielectric media affect the exciton en-
ergy. Our findings showed that even the energetic ordering
relative to the intralayer and interlayer excitons could be mod-
ified by changes in the layer separation and in the dielectric
constant of the spacer. Therefore, by dielectric engineering of
the surrounding environment, we showed that the excitonic
properties in double-layer van der Waals materials could be
modified, enabling a bandgap control that suits different tech-
nological applications.

We hope that our theoretical framework and results based
on Chebyshev’s polynomial basis for Wannier excitonic com-
plexes will prove useful for the exploration of optoelectronics
properties in different van der Waals materials with a layer-
by-layer stacking and surrounding environment controlling,
and moreover being a simple and efficient tool for explaining
cutting edge experiments in double-layer 2D semiconductors,
such as nonlinear optical susceptibilities.
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APPENDIX A: RK POTENTIAL IN A HETEROSTRUCTURE

In order to derive the RK potential for the chosen
heterostructures, the Poisson equation has to be solved consid-
ering three dielectric regions separated by two layers located
at z = 0 and z = −d (see Fig. 1). Each layer has a polarization
coefficient denoted by r1 and r2, respectively. Considering
a charge Q1 at z = 0, we look for the potential distribution.
The presence of a charge at the uppermost layer will induce
a charge density ρind(�r) due to polarization. Therefore, the
equation, which we must solve is

−∇2φ(�r) = 1

ε0
ρ(�r). (A1)

Replacing the charge density ρ(�r), one gets

−∇2φ(�r) = 1

ε0
(Q1δ(�r) + ρind(�r)). (A2)

The induced charge density term is

ρind = σ1δ(z = 0) + σ2δ(z + d ) − �∇ · �P, (A3)

where �P is the medium polarization. If we consider that the
medium polarization is linear, we can write the last term of
Eq. (A3) as

�∇ · �P = ε0χi �∇ · �E = −ε0χi∇2φ(�r), (A4)

which leads to the following partial differential equation:

−∇2φ(�r) = 1

ε0
[Q1δ(�r) + σ1δ(z) + σ2δ(z + d )

+ε0χi∇2φ(�r)]. (A5)

Next, we apply a planar Fourier transform and rearrange
Eq. (A5), which yields for z > 0 to

(1 + χ1)

(
q2 − ∂2

∂z2

)
�(�q, z) = 0, (A6)

where �q denotes the planar Fourier components. A possible
solution for Eq. (A6) is

�(�q, z) = Ae−qz + A′eqz, (A7)

and by noting that in the limit of large z the potential should
tend to zero, resulting to

�(�q, z) = Ae−qz, z > 0. (A8)

Performing a similar procedure for the surrounded regions
associated with the spacer and the substrate, we obtain,
respectively,

�(�q, z) = B sinh qz + C cosh qz, −d < z < 0, (A9a)

�(�q, z) = Deqz, −d < z. (A9b)

Using the continuity of the potential, let us now rearrange
Eq. (A5) and integrate it around each of the layers, leading
to a system of equations that allows us to determine the
coefficients of the potential. Thus, rearranging Eq. (A5), we
obtain

−(1 + χi )∇2φ(�r) = 1

ε0
[Q1δ(�r) + σ1δ(�z) + σ2δ(z + d )],

(A10)

and integrating around z = 0, we get
∫ +δ

−δ

dzεi

(
q2 − ∂2

∂z2

)
�(�q, z)

= −ε1

(
∂�(�q, z)

∂z

)
z=δ

+ ε2

(
∂�(�q, z)

∂z

)
z=−δ

= Q1

ε0
+ �1

ε0
. (A11)

Next, by evaluating the derivatives and taking the limit δ → 0,
we arrive at

ε1qA + ε2qB = Q1

ε0
+ �1ε0. (A12)

The planar Fourier transform of σ1 and �1 can be found by
using the in-plane polarization

σ1 = −�∇ · �P‖ = −r1ε0[∇2φ(�r)]‖, (A13)

which leads to

�1 = −r1ε0q2�(�q, z = 0) = −r1ε0q2A. (A14)

Replacing Eq. (A14) into Eq. (A12), one gets one of the
equations to obtain the coefficients A, B, C, and D [see below
Eq. (A15a). Moreover, due to the continuity of the potential at
the interface at z = −d , using Eqs. (A9a), (A9b), and (A10),
and also by taking the limit such that δ → 0, noting that
A = C, one obtains the other two equations [Eqs. (A15b) and
(A15c) of the system of equations

(ε1q + r1q2)A + ε2qB = Q1

ε0
, (A15a)

−B sinh(qd ) + A cosh(qd ) = De−qd , (A15b)

ε2[B cosh(qd ) − A sinh(qd )] = (ε3 + r2q)De−qd . (A15c)

Using Eq. (A15c), we can write

De−qd = ε2
B cosh(qd ) − A sinh(qd )

ε3 + r2q
, (A16)

which in turn implies that only A and B are relevant. By
defining the function Gj (q) as

Gj (q) = cosh(qd )(ε3 + r jq) + ε2 sinh(qd )

ε2 cosh(qd ) + sinh(qd )(ε3 + r jq)
, (A17)
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TABLE II. Effective masses, screening factor r0, and the bandgap of each material. The masses are obtained from Ref. [35] and the
screening factors are obtained via a fitting procedure.

Materials me [35] mh [35] r0 r0 [38] �K [29] (eV) Eb (meV)

MoS2 0.47 0.54 27.04 Å 23.45 Å 2.71 −753.0 [48]
MoSe2 0.58 0.6 35.34 Å 26.13 Å 2.37 −711.7 [49]
WS2 0.27 0.36 20.85 Å 16.59 Å 2.91 −900.0 [50]
WSe2 0.29 0.36 21.80 Å 20.09 Å 2.57 −890.0 [51]

the solution of the system of equations [(A15a)–(A15c) for A
and B results in

A = −Q1

qε0[ε1 + r1q + ε2G2(q)]
, (A18a)

B = G2(q)
Q1

qε0[ε1 + r1q + ε2G2(q)]
. (A18b)

The potential in momentum space is then given by

�(�q, z)

=

⎧⎪⎨
⎪⎩

Aeq(z+d )[cosh(qz) + G2(q) sinh(qz)]; z < −d,

A[cosh(qz) − G2(q) sinh(qz)]; −d < z < 0,

Ae−qz; z > 0.

(A19)

Since we are particularly interested in the intralayer and in-
terlayer effects, we can write explicitly, using Eqs. (A17),
(A18a), (A18b), (A19), and by also doing some relabeling,
the following expressions:

Vii(q) = −e2

qε0[ε1 + riq + ε2Gj (q)]
, (A20a)

Vi, j �=i(q) = e2[cosh(qd ) − Gj (q) sinh(qd )]

qε0[ε1 + riq + ε2Gj (q)]
, (A20b)

where Vii(q) and Vi, j �=i(q) are the intralayer and the interlayer
potentials, respectively. A interesting property of the Gj (q)
function [Eq. (A17) is that

lim
d→∞

Gj (q) = lim
d→∞

eqd (ε3 + r jq) + ε2eqd

ε2eqd + eqd (ε3 + r jq)
= 1. (A21)

Using this result in Eq. (A20a), we arrive at a fairly familiar
result

VRK (q) = −e2

qε0(1 + r̄1q)
, (A22)

where r̄1 = r1/(ε1 + ε2). Equation (A22) is the RK potential
in momentum space. A comparison between the derived in-
tralayer [Eq. (A20a) and interlayer [Eq. (A20b) potentials and
the Coulomb potential is shown in Fig. 2.

APPENDIX B: λ RECURRENCE RELATIONS

We define

λi(u) =
∫ 1

−1
du′ Ti(u′)

u − u′ , (B1)

that obeys the following relations:

λ0(u) = ln

∣∣∣∣1 + u

1 − u

∣∣∣∣, (B2)

λ1(u) = −2 + uλ0(u), (B3)

λk+1(u) − 2uλk (u) + λk−1(u) = 2
[1 + cos(kπ )]

k2 − 1
. (B4)

Such recurrence relations and definitions are used in the an-
alytic solution of In,l in Eq. (10) in the Chebyshev method’s
Sec. II A.

APPENDIX C: FITTING PROCEDURE

Our goal is to describe the electrostatic effects due to the
geometry presented in Fig. 3, starting from the exciton bind-
ing energy and bandgap of suspended monolayer samples.
For this, we consider the experimental A exciton energy EA

measured for suspended samples [48–51], the bandgap �K

calculated in Ref. [29], and the SOC splitting of Ref. [35]. The
electron and hole of a bright exciton come from bands with the
same spin and valley indexes, thus, for negative SOCCB (see
Fig. 3), the exciton binding energy is blue-shifted for the same
magnitude.

First, we obtain the screening length r0 fitting the value of
the binding energy of Table II for each MX2 by solving the
Wannier equation (3) with the RK potential (A22). With this
value of r0, we solve the gap equation (19), also considering
the RK potential, to obtain the “bare” transition energy �sτ,0,
which gives the transition energy calculated by Ref. [29].

APPENDIX D: CONFIGURATION SPACE
WAVE FUNCTION

Once Eq. (15) is solved, we can obtain the wave function
in configuration space using the Fourier transform

ψn,�(r) =
∫

d2p eip·rψ�(p)ei�φ′
. (D1)

By implementing the angular integration, we have that

ψn,�(r, φ) = 2

ξ 2
ei�φ

∑
n

cn,�

∫ 1

−1
du

1 + u

(1 − u)3

× J�

(
r

ξ

1 + u

1 − u

)
f (u)Tn(u), (D2)

with J� being the Bessel function of order �. A computation-
ally convenient choice for f (u) is given by

f (u) ≡ (1 − u)3

1 + u
, (D3)
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since it demonstrated a fast convergence. To understand the
assumed procedure, let us exemplify with the calculation of
the following quantity F (q) of interest

〈F 〉 =
∫

dqqF (q)ψn1 (q) . . . ψnN (q). (D4)

To do this, first, we write the above equation in terms of u

〈F 〉 =
∫

duF (q(u))

[
1 + u

(1 − u)3
f (u)

]nN

×
∑

j1... jnN

cn1
j1

Tj1 (u) . . . cnN
jnN

TjnN
(u). (D5)

The next step is to write the integrand of Eq. (D5) in terms of
a single Chebyshev expansion

F (q(u))

[
(1 − u)3

1 + u

]nN −1

×
∑

j1... jnN

cn1
j1

Tj1 (u) . . . cnN
jnN

TjnN
(u)

=
∑

k

bkTk (u). (D6)

To do this, we use the procedure of convolution explained in
Appendix B. After that, we can use the Clenshaw-Curtis to
obtain

〈F 〉 =
∞∑

k=0

2b2k

1 − (2k)2
. (D7)

APPENDIX E: COMPARISON WITH OTHER METHODS

In order to corroborate our obtained results in Sec. III, it is
important to compare the Chebyshev method with a different
method for solving the integral equation Eq. (3). For this pur-
pose, let us compare the method discussed in the paper with
the more traditional quadrature method: the Gauss-Legendre
quadrature. Let us rewrite Eq. (3) as

ψ�(p) = 1

E − Ep

∫ ∞

0

d p′

2π
p′V�(p, p′)ψ�(p′), (E1)

by rewriting the integration as a Gauss-Legendre quadrature
and applying a hyperbolic mapping, we have

ψ�(p) = 1

E − Ep

∑
i

ωi(1 + xi )V�(p, xi )ψ�(xi )

π (1 − xi )3
, (E2)

which is a system of equations in which we search for
unit eigenvalues with different input energies E . Results ob-
tained via the Gauss-Legendre quadrature for the exciton
ground-state binding energy of MoS2 for different numbers
of mesh points for the radial momenta and fixed angular
mesh points are shown in Table III. From Table III, one
can see that the Chebyshev method, whose resulting value
is Eb = −753.0 meV, agrees with the interpolated Nyström
method very well, which is a more computationally demand-
ing method and for a quadratic extrapolation (Np → ∞) gives
Eb = −753.1 meV, i.e., showing an energetic difference be-
tween the methods of 0.1 meV.

To further validate our method, we also compare the
wave functions for the first four states, i.e., ground, first ex-
cited, second excited, and third excited states, obtained via

TABLE III. The convergence of exciton ground state binding en-
ergy as a function of the number of radial momenta mesh points Np,
obtained with RK potential for the MoS2 from the Gauss-Legendre
quadrature method. The number of angular mesh points is 61. The
exciton binding energy of −753.1 meV for Np → ∞ is obtained
with a quadratic extrapolation, while the Chebyshev method yields
a binding energy of −753.0 meV.

Np Eb (meV)

300 −788.3
400 −778.8
500 −773.3
600 −769.5
700 −768.2
800 −765.4
900 −764.1
1000 −762.9
Np → ∞ −753.1

the Chebyshev method (solid cyan curves) and the Gauss-
Legendre quadrature (dashed red curves) in Fig. 10, assuming
the RK potential for the interlayer electron-hole interaction.
Figure 10 shows that both methods are very reliable and
generate similar quantitative and qualitative results. However,
the Chebyshev method exhibits some oscillations for large
momenta, where the wave function is in the order of 10−22.

Another good comparison for the binding energy value
could be achieved with variational-like methods such as
the one by Griffin, Hill, and Wheeler (GHW) [52,53]. Here,
we consider a basis with a set of parameters ζ and calculate
the secular equation generated by the inner product with the

FIG. 10. Comparison of wave functions obtained via (dashed
red curves) the Gauss-Legendre quadrature method and (solid cyan
curves) the Chebyshev method for the first four states of the MoS2

exciton using the RK potential. ψi(p) is the ith excited state for the
s wave. Note that the y axis is in log scale, and the number of peaks
represents the number of nodes in the excitonic wave function.
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Hamiltonian in real space. The basis chosen is

ψn,�(�r) = Anr|�|ei�φ
∑

j

cn
j e

−ζ j r, (E3)

which yields

∑
j

[H (ζi, ζ j ) − S(ζi, ζ j )En]cn
j = 0, (E4)

where

H (ζi, ζ j ) =
∫

drψ∗
n,�(�r)Hψn,�(�r), (E5a)

S(ζi, ζ j ) =
∫

drψ∗
n,�(�r)ψn,�(�r). (E5b)

The set of values for the parameter ζ is chosen in a logarithmic
grid, such as � = �−1 ln ζ . Here, we take � = 5 and set the
interval [−2, 2]. The number of points by which we subdi-
vide the interval is obtained by trial and error, which yields
N = 48. By choosing this set of parameters and grid, we arrive

at a binding energy of Eb = 752 meV, which shows a good
agreement with our Chebyshev results.

Results obtained via a variational-like approach for trion
binding energies and the corresponding three-body wave
functions were reported by Song et al. [54], which used
a decomposition approach of the three-body wave function
with a large Gaussian basis set (N = 1820) multiplied by
Hermite polynomials of nth order, being characterized by
two variational-like parameters related to the anisotropic 2D
Gaussian function, that can be chosen arbitrarily, and one
more associated with the total number of basis functions.
Hiyama et al. [55] also investigated few-body systems using
a variational approach combining the Gaussian expansion and
the Rayleigh-Ritz-based methods, reporting, for instance, the
use of an 880 basis set to calculate bound and scattering states
of 4H trimer. In both cases, a large number of expansion
basis comes from the need to correctly cover the poles of the
Coulomb interaction in k space, which is overcome within
our Chebyshev method since the kernel divergence in the
integration is performed analytically, and the matrix elements
are defined by recursion relations together with projections on
the polynomial basis.
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