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Elementary models of three-dimensional topological insulators with chiral symmetry
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We construct a set of lattice models of noninteracting topological insulators with chiral symmetry in three
dimensions. We build a model of the topological insulators in the class AIII by coupling lower dimensional
models of Z classes. By coupling the two AIII models related by time-reversal symmetry we construct other
chiral symmetric topological insulators that may also possess additional symmetries (the time-reversal and/or
particle-hole). There are two different chiral symmetry operators for the coupled model that correspond to two
distinct ways of defining the sublattices. The integer topological invariant (the winding number) in case of weak
coupling can be either the sum or difference of indices of the basic building blocks, dependent on the preserved
chiral symmetry operator. The value of the topological index in case of weak coupling is determined by the
chiral symmetry only and does not depend on the presence of other symmetries. For Z topological classes AIII,
DIII, and CI with chiral symmetry are topologically equivalent, it implies that a smooth transition between the
classes can be achieved if it connects the topological sectors with the same winding number. We demonstrate this
explicitly by proving that the gapless surface states remain robust in Z classes as long as the chiral symmetry is
preserved, and the coupling does not close the gap in the bulk. By studying the surface states in Z2 topological
classes, we show that class CII and AII are distinct, and cannot be adiabatically connected.
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I. INTRODUCTION

While conventional phases of matter can be classified by
the conventional Landau symmetry-breaking paradigm [1],
topological phase go beyond this framework. They refer to
states of matter that in addition to symmetries are charac-
terized by their topological properties, which are robust and
nonlocal. A well-known example is the integer quantum Hall
effect (IQHE) [2], which is observed in a two-dimensional
electron gas at low temperatures and high magnetic fields.
The transitions between states of the IQHE sample with
different filling fractions are accompanied by a change in
the number of edge modes and occur without any change
in symmetry. The edge modes in IQHE are robust and are
protected by the nonzero first Chern number that determines
the quantized Hall conductance. The IQHE represents an
example of a topological insulator that cannot be smoothly
connected to a trivial insulator without closing a gap. By now
there are many experimentally realized topological insulators
[3–7]. The prototypical example of 1D topological insula-
tor is the polyacetylene polymer chain, accurately described
Su-Schrieffer-Heeger (SSH) model [8–11]. The latter has a Z
topological invariant. In three-dimension there are numerous
realizations of Z2 topological insulators [12–16].

From the mathematical perspective, the entire classifi-
cation of noninteracting topological insulators is complete
[17,18]. It is fully determined by dimensionality and the
presence or absence of chiral symmetry (C), time-reversal
symmetry (T ), and particle-hole symmetry (P). The classi-
fication can be represented in a table form, exhibiting Bott
periodicity [19].

In the periodic table, each class is attributed its own Car-
tan label, which describes the symmetric space of the time

evolution operator. Alternatively, the classes can be classified
based on the sigma model target manifold or/and the sym-
metric space of the flattened Hamiltonian [20]. For a given
symmetry class and dimensionality the system may have Z or
Z2 classification.

As we already discussed in Ref. [21] that focused on
one-dimensional systems, some symmetry classes, thought
topologically distinct in general dimension, can be actually
(topologically) identical for a specific dimension. In the cur-
rent paper, we show that similar phenomena occur in 3D
systems, and focus on the peculiarities of this dimension. In
particular, we demonstrate that the chiral symmetric models
with Z index can be smoothly deformed from one into another
without the gap closing and the change of the topological
index. This result is in agreement with the general table, as
obviously any chiral class can be considered as a subclass
of AIII (that has chiral symmetry only). However, it is not
immediately obvious that topological sectors with the same
winding number of models with different symmetries can be
smoothly connected. The two main goals of our paper are
outlined below.

(1) Construction of concrete lattice realizations of 3D
topological insulators. To date, the most widely studied 3D
topological insulators belong to the Z2 class AII [3,4,12–16].
The remaining classes with chiral symmetry have not been
as thoroughly explored. A few models of topological insu-
lators and topological superconductors have been proposed
for the chiral symmetric classes DIII [22,23], CI [24], and
AIII [25,26]. In our work, we aim to construct the chiral
symmetric models of 3D topological insulators in a unified
manner. To do that, we couple two basic models belonging
to AIII class (in the case of one dimension they correspond
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to SSH chains). By using the sign ambiguity of the chiral
symmetry in odd dimensions, we define two possible chiral
symmetry operators of the combined system, that correspond
to two distinct ways of coupling the AIII models. By imposing
additional symmetries on the coupling terms, we construct the
classes that have T and P symmetries. The winding number in
the weakly coupled case is either a sum or a difference of the
winding numbers that characterize the individual blocks.

(2) Our second goal is to identify the symmetry classes
that are topologically equivalent in 3D, though this is not
conspicuous from the table. Through analyzing the stability
of the surface states via adiabatic deformation of the mod-
els, we illustrate that the three Z classes AIII, DIII, and CI
are topologically equivalent. This implies that it is possible
to construct an adiabatic path between the models of these
classes without closing the gap or altering the topological
invariant. We also show that for Z2 classes no such path can
be constructed, and therefore these two classes are distinct.

The paper is organized as follows: In Sec. II we review the
noninteracting topological classification and the main prop-
erties of the symmetry operators. In Sec. III, we construct
a basic model for topological insulators in class AIII. This
model serves as the building block for constructing the 3D
models in all classes with chiral symmetry. In Sec. IV, we
construct the 3D models in each class with chiral symmetry
by coupling two basic AIII models. We analyze the topo-
logical properties of the constructed models by computing
their topological indices and also, by studying their surface
states. In Sec. V we discuss the topological equivalence of the
constructed models by studying the adiabatic transformations
connecting them. In Sec. VI we discuss possible experimental
realization of our models. Finally, in Sec. VII we summarize
the results.

II. TOPOLOGICAL CLASSIFICATION OF GAPPED
SYSTEMS: GENERALITIES

To have the presentation coherent and self-contained, we
briefly summarize the established properties of noninteracting
topological insulators, starting with the tenfold way of topo-
logical classification.

A. Tenfold way of topological classification

The noninteracting fermionic systems can be divided into
ten symmetry classes according to Altland and Zirnbauer
[17,18] based on symmetries C, T , and P. Depending on the
dimension and symmetry class, the topologically nontrivial
states can be characterized either by Z or Z2 invariant as
shown in Table I. The tenfold classification also exhibits a
periodicity as a function of spatial dimension d , known as Bott
periodicity [19,27]. In particular, a given class has the same
classification in dimension d and in dimension d + period.
The two classes without T or P symmetry (A and AIII, known
as “complex classes”) have a period of 2 when the dimension
is changed, while the other eight classes (known as “real
classes”) have a period of 8. It is also worth mentioning that
one can construct topological models in higher dimensions
using models in lower dimensions, or viceversa, following the
Bott clock (see Appendix A 1). For instance, one can construct

TABLE I. The classification table of noninteracting topological
insulators and superconductors from 1D to 3D [17,18]. The ten
classes of single-particle Hamiltonians are classified in terms of the
presence or absence of chiral symmetry (C), particle-hole symmetry
(P), and time-reversal symmetry (T ) listed from the second column
to the fourth column. The absence of symmetries is denoted by 0.
The presence of the symmetry C is denoted by 1 and the presence
of the symmetry P or T is denoted by either +1 or −1 depending
on whether the symmetry operator squares to +1 or −1. The first
column lists the Cartan labels of the ten classes. The last three
columns list how the classification depends on the spatial dimension
d . The symbols Z and Z2 indicate whether the topological phases in
a given class are characterized by the integer topological invariant Z
or by Z2 invariant. The empty table cells denote trivial classes.

Class C P T d = 1 2 3

A 0 0 0 Z
AIII 1 0 0 Z Z

AI 0 0 +1
BDI 1 +1 +1 Z
D 0 +1 0 Z2 Z
DIII 1 +1 −1 Z2 Z2 Z
AII 0 0 −1 Z2 Z2

CII 1 −1 −1 2Z Z2

C 0 −1 0 2Z
CI 1 −1 +1 2Z

the topological models with topological invariant Z following
the route: BDI (in d = 1) → D (in d = 2) → DIII (in d = 3).
We will exploit this procedure to construct the equivalent of
the SSH chain in three dimensions in Sec. III.

B. Properties of symmetry operators

Next, we review the properties of the symmetry operators
that are used to classify noninteracting topological insulators
and superconductors from the Table I. As shown in Table I,
there are three symmetry operators: chiral symmetry C, time-
reversal symmetry T , and particle-hole symmetry P. In the
single-particle Hilbert space, C is unitary while T and P are
antiunitary [28]. The chiral symmetry operator C anticom-
mutes with the Hamiltonian:

CH (k)C−1 = −H (k). (1)

The chiral symmetry operator is defined up to a phase, namely
eiφC also acts as a chiral symmetry operator.

Without loss of generality, one can restrict the phase by
demanding C2 = 1. Then according to this definition, the
operator C is defined up to a sign. The chiral symmetry is
equivalent to a sublattice symmetry. To show that one can
define the projector operators onto A and B sublattices as

PA = 1 + C

2
, PB = 1 − C

2
. (2)

The projectors satisfy PA + PB = 1 and PAPB = 0. In terms
of those projectors, the Hamiltonian with chiral symmetry
satisfies the following property:

PAHPA = PBHPB = 0. (3)
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This implies that there are no terms in the Hamiltonian
that couple sites that belong to the same sublattice. Note that
Eq. (2) defines sublattices in a mathematical sense, which
can be different from the bare labeling of the atoms in the
original lattice. It follows from Eq. (2) that the sign change
of the chiral symmetry operator C → −C is equivalent to the
swap of the labelings of the sublattices PA ↔ PB. According
to the classification Table I, all Z topological systems in odd
dimension have chiral symmetry.

It is also worth mentioning that a model cannot have
two chiral symmetry operators, because their product yields
a unitary symmetry operator which commutes with the
Hamiltonian, and thus the Hamiltonian can be further block-
diagonalized. Then the topological classification of the model
would be determined by the symmetries of each of the blocks.

Symmetries T and P are antiunitary in the single-particle
Hilbert space, and thus they can be represented as T = UT K
and P = UPK , where UT and UP are unitary matrices and K is
complex conjugation. A Hamiltonian possesses symmetry T
if it satisfies:

UT H∗(k)UT
−1 = H (−k), (4)

and if the model is particle-hole symmetric it satisfies:

UPH∗(k)UP
−1 = −H (−k). (5)

The operators T and P square either to +1 or −1.
Depending on the type of time-reversal and particle-hole

symmetries, there are eight real classes, that together with the
class AIII, which has chiral symmetry only, and A class with
no symmetries, reproduce ten symmetry classes shown in the
Classification Table I. Among them, there are five classes with
chiral symmetry: AIII, BDI, CI, CII, and DIII. Note that if the
system possesses both T and P symmetries it also has chiral
symmetry, C = P · T . Thus, the phases of the operators T and
P can always be chosen such that C2 = 1.

C. Winding number

The chiral symmetric topological systems in odd dimen-
sions can be characterized by a particular topological index,
known as the winding number. It is defined as the index
of the mapping between the Brillouin zone to the space of
projectors onto the filled Bloch states [20]. In 3D this index
can be calculated directly from the Hamiltonian through the
expression [29]

ν3D = 1

48π2

∫
d3k εi jlTr[CH−1(∂ki H)H−1(∂k j H)

× H−1(∂kl H)], (6)

where εi jl is the Levi-Civita antisymmetric tensor. In this
expression, it is implied that C2 = 1. The chiral symmetry
operator explicitly enter into this expression, which reflects
the fact that chiral symmetry is necessary for the definition of
the winding number.

Note that the winding number is defined up to a sign,
that can be switched by the relabeling of the sublattices, as
follows from the fact that the relabeling changes the sign of

the chiral symmetry operator C. Note that because the choice
of sublattices is purely a convention, such relabeling clearly
does not affect any observable quantity, and thus the models
with winding number ν3D and −ν3D are physically equivalent.

D. Overview of mathematical structure

The aim of this paper is to construct models of topological
insulators in three dimensions in all of the universality classes
with chiral symmetry. We then use these models to demon-
strate the equivalence of the Z classes in three dimensions,
as well as discussing the similarities and differences between
the surface states in each case. As it is easy to get lost in
the technical details of this construction, we provide here an
overview of the method.

(1) We first construct a model in the AIII university class,
which has chiral symmetry and no other symmetry. This is the
building block we use to construct models in the other classes.
In the one-dimensional case, one can view a deformed version
of the well known SSH model with broken time-reversal sym-
metry as this building block. In three dimensions however,
there is not such an obvious equivalent of the SSH lattice
model, so we construct one in Sec. III. We do this using a
well known method of dimensional transmutation, building
up from a 1D topological insulator to one in 2D and finally
to one in 3D. The crucial observation here is that two bands
is insufficient to get a nonzero winding number in 3D—the
minimal model has four bands.

(2) We then proceed to take the model h0 in the AIII
class and couple it with its time-reversal symmetric pair
h̄0 = T0h0T −1

0 preserving chiral symmetry. This restores time-
reversal invariance, and depending on the choice of coupling
can result in models in the four remaining chiral classes: CI,
DIII, BDI, and CII. We do this in Sec. IV.

(3) It is not a priori obvious that this method has enough
freedom in the coupling to generate models in all of these uni-
versality classes. The reason is that when two different chiral
symmetric models are coupled together, there are always two
different possible chiral symmetry operators that would result
in an overall symmetry. This gives two broad categories of
coupled models. These two possibilities are easier to see in the
language of the equivalent sublattice symmetry: (a) an A site
in the first model can be coupled to a B site on the second and
viceversa, resulting in explicit sublattice/chiral symmetry; or
(b) an A site in the first can be coupled to an A site on the
second and the same for B sites, which also has sublattice
symmetry after swapping the A and B labels on one of the
models.

(4) The first of these coupling possibilites results in a
model in the class CI, DIII, or even AIII if the coupling is
explicitly chosen to break time-reversal symmetry. In fact,
we show that a single model can go smoothly between these
classes as one varies the coupling parameter—demonstrating
the equivalent of these three Z classes. We discuss the details
of this in Sec. V.

(5) The second of these coupling possibilities results in
models in classes BDI, CII, or AIII—but in this case always
with zero-winding number. While we discuss properties of
these models a little bit in Sec. IV D 3, they are not the main
focus of this work.
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FIG. 1. (a) The corresponding lattice model of Eq. (7). There are
four atoms in a unit cell. The two atoms of similar color form the
space of matrices σ0,x,y,z in Eq. (7). The red layer and gray layer
stacked in the z direction form the space of matrices τ0,x,y,z. Note
that the dashed lines in panel (a) are not hoppings, as hopping within
the same layer is prohibited by the chiral symmetry. The hopping
within the unit cell has the amplitude w, which is shown in the
magnified view of the unit cell. The intercell hoppings with the
amplitude v/2 are illustrated in Figs. 9(b)–9(d) in the Appendix A.
(b) The phase diagram of Eq. (7). The blue and red lines indicate the
phase boundaries. When the red line is crossed, the gap closes and
reopens at one point in the Brillouin zone and when the blue line is
crossed, the gap closes and reopens at three points in the Brillouin
zone. The gray and orange areas indicate the topological phases with
ν3D = 1 and ν3D = −2, respectively.

We finally comment that we demonstrate the equivalence
of the Z topological classes for a wide variety of models in
three dimensions, following earlier work that does the same
in one dimension [21]. We expect this to hold for all mod-
els in all odd dimensions. A general mathematical proof of
this equivalence must rely on the topological properties of
classifying spaces in odd dimensions. We hope to complete
such a mathematical construction and report it in a separate
publication.

III. THE BASIC 3D TOPOLOGICAL MODEL
WITH CHIRAL SYMMETRY

A. The model in class AIII

We construct a 3D topological model (7) by coupling 1D
gapless wires to build a 2D topological insulator and then
stack them to construct a 3D model. The details of this pro-
cedure are outlined in Appendix A. The result is a model of a
3D topological insulator. In momentum space the Hamiltonian
reads

h0 =
∑

k

(τx ⊗ {[w + v(cos kx + cos ky + cos kz )]σx

+ v(sin kxσy + sin kyσz )} + v sin kzτy ⊗ σ0), (7)

where kx, ky, kz are short for k · Rx, k · Ry, k · Rz, with Rx,y,z

being the lattice vector, σx,y,z and τx,y,z are Pauli matrices, and
σ0 and τ0 are 2 by 2 identity matrices. The parameters w and
v are real.

The corresponding lattice model in real space is depicted
in Fig. 1(a). There are four spinless sites in a unit cell. The
red and gray colors represent two different layers which are
denoted by the Pauli matrix τ and the two atoms of the same
color are denoted by the Pauli matrix σ . Hoppings between

layers of the same color are forbidden as their presence would
violate chiral symmetry. We now discuss the symmetries of h0

in some detail.

B. Symmetries and winding number of h0

The model (7) a has chiral symmetry with the operator
C0 = τzσ0. One can define the projection operators onto the
sublattices PA and PB according to Eq. (2). In the case of
the model (7) the sublattices describe atoms in layers of a
different colors. Thus, from Eq. (3), we may conclude that
there are no hoppings between the atoms within one layer. The
model h0 also has two additional symmetries: time-reversal
symmetry T0 = iτyσzK (T 2

0 = −1) and particle-hole symme-
try P0 = τxσzK (P2

0 = +1). However, these two symmetries
are not relevant for our construction and may be broken
by extending the hopping parameter to complex numbers.
This will generate some additional terms that do not change
the topological properties of the model if the change of the
hopping amplitudes remains smaller than the gap which is
controlled by the original hopping parameters. From now on
we will imply that the time-reversal and particle-hole symme-
tries in h0 are weakly broken. In this case, h0 belongs to the
topological class AIII, which has chiral symmetry only. Note
that in one dimension we constructed the simplest AIII model
by breaking time-reversal symmetry in a two-band model of
BDI class that has T 2

0 = +1. The model with T 2
0 = −1 in 1D

requires four bands and can be constructed by coupling two
minimal AIII models [21]. This differs from the case of three
dimensions, as equivalent minimal Z model with T 2

0 = +1 in
3D (class CI) requires at least 8 bands, and not 4 [30], and
thus cannot be used as a minimal building block.

The topological phase diagram of Hamiltonian (7) is shown
in Fig. 1(b). The winding number ν3D can be computed by
using Eq. (6) and yields

ν3D =
⎧⎨
⎩

0, |w| > 3|v|,
1, |v| < |w| < 3|v|,
−2, |w| < |v|.

(8)

According to the general argument above (see also Ref. [21])
the winding number we compute has a sign ambiguity. By
switching A1 with B1 and A2 with B2, the winding number
changes sign ν3D → −ν3D.

C. Surface states of h0

In accordance with general principles, a three-dimensional
topological insulator must be equipped with a robust two-
dimensional surface state. We check this explicitly for our
model and show that this is indeed the case, and h0 in its
topological phase has robust surface states. To do it, we as-
sume the model has a surface perpendicular to the z direction
and remains periodic in the other two directions. Analogous
considerations would give the same results for surfaces in
other directions.

In the topological phase with ν3D = 1, that corresponds
to |v| < |w| < 3|v|, the surface states form a Dirac cone at
kx, ky = 0 in the surface Brillouin zone. In the phase with
ν3D = −2 there are two Dirac cones at the surface. For sim-
plicity let us focus on the topological state with ν3D = 1. The
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effective Hamiltonian of the surface states near the Dirac point
can be obtained by projecting the model Hamiltonian onto the
two zero-energy surface states at kx, ky = 0 (see Appendix B
for the details),

hsur
0 = v(kxηy − kyηx ), (9)

where ηx,y,z are Pauli matrices. Note that the surface Hamil-
tonian is chiral symmetric, and the corresponding chiral
symmetry operator C0 projected onto the surface states is
Csur

0 = ηz. The surface states are robust with respect to weak
perturbations that preserve chiral symmetry ηz and that do not
close the bulk gap. In particular, the allowed perturbations are
proportional to ηx,y, and thus they only shift the position of the
Dirac points, but the spectrum of the surface states remains
gapless.

Note that in the one-dimensional case, the topological sur-
face states of Z insulators must be localized on the same
sublattice [21]. This is related to the fact that in 1D the edge
states are degenerate, that allows to choose them to be eigen-
states of the chiral symmetry operator. This is not possible
in 3D, as the surface states are not degenerate except for
the Dirac point. At this point, they are localized on different
sublattices (see Appendix B) and thus their degeneracy is not
protected. This is consistent with the fact that the position of
the Dirac point in k space can be shifted.

IV. MICROSCOPIC MODELS OF THREE-DIMENSIONAL
CHIRAL TOPOLOGICAL INSULATORS

We now want to construct models in other classes with chi-
ral symmetry. We start by replicating the AIII model discussed
above.

A. Two uncoupled AIII models

The general idea of construction is similar to the one pro-
posed in Ref. [21] for one-dimensional topological insulators.
Though each of the AIII models separately has no time-
reversal symmetry, we can choose them to be time-reversal
partners. Therefore, in the full system, the time-reversal
symmetry is restored. We again emphasise that while philo-
sophically this procedure requires the time-reversal symmetry
in each of the two decoupled blocks to be (weakly) broken,
mathematically it turns out not to matter.

The decoupled Hamiltonian reads

H0 =
(

h0 0
0 h̄0

)
, (10)

where h̄0 = T0h0T −1
0 . Note that h0 and h̄0 are also particle-

hole counterparts of each other: h̄0 = −P0h0P−1
0 . The two

blocks have the same winding number, which follows from
the definition of the winding number (6) and the properties of
the chiral symmetry operator described in Sec. II. Both blocks
h̄0 and h0 possess the chiral symmetry C0 and thus the total
model H0 should also be chiral symmetric. However, due to
a sign ambiguity of the chiral symmetry operator within each
of the blocks (discussed in the Sec. II) there are two ways to
define chiral symmetry in the full model. The first and obvious
choice is to take the chiral symmetry operators of the two

FIG. 2. Two ways of coupling between h0 and h̄0 in Eq. (10).
Atoms circled by solid lines are atoms of the model h0. Atoms circled
by dashed lines are atoms of the model h̄0. The four atoms circled
by the dashed green line form a unit cell. The sublattices of h0 are
labeled by A and B, and the sublattices of h̄0 are labeled by Ā and B̄. In
panels (a) and (b), the sublattices of h̄0 have opposite labelings. The
black solid lines connecting atoms illustrate the couplings consistent
with the chiral symmetry. The couplings in (a) preserve the chiral
symmetry C1 and the couplings in panel (b) preserve the chiral
symmetry C2. Note we did not draw all the allowed couplings here.
In panels (a) and (b), all couplings connecting A to B̄ and B to Ā
preserve the chiral symmetry of the coupled model. In other words,
all couplings connecting the layers of different colors (red to gray)
preserve C1 and all couplings connecting the layers of the same color
(red to red and gray to gray) preserve C2.

blocks with the same sign, so the total operator reads

C1 = s0 ⊗ C0, (11)

where s0 is a 2 by 2 identity matrix acting on the space of two
blocks. Using this chiral symmetry operator, the total winding
number is the sum of the winding numbers of individual
blocks, so the total index is 2ν3D.

However, if we choose the chiral symmetry operators of the
individual blocks to have the opposite sign, then the combined
chiral symmetry may be written as

C2 = sz ⊗ C0, (12)

where sz is Pauli z matrix. This choice implies that the sign
of the winding number of the second block is switched, and
therefore the total winding number is zero. The ambiguity of
the value of the winding number is related to the additional
unitary symmetry C1C2 that is present due to the fact that the
blocks h0 and h̄0 are not coupled. By adding coupling terms,
one can remove this ambiguity by choosing coupling that is
compatible with only one of the chiral symmetry operators.

The lattice models that correspond to the two ways of con-
structing the chiral symmetric system are illustrated in Fig. 2.
There are four atoms in the unit cell consisting of sublattices
of h0 labeled by A and B and atoms Ā and B̄ that belong to the
unit cell of h̄0. When couplings are added the two lattices are
merged into a “big lattice” with the unit cell being double that
of h0. There are two ways to choose the sublattices of this “big
lattice,” depending on the preserved chiral symmetry operator.
In particular, for the chiral symmetry operator C1 sublattices
defined via the projectors (2) correspond to the choice of
sublattices in the original lattice model h0. Therefore, the
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coupling consistent with the operator C1 connects atoms of
a different color. This is illustrated in Fig. 2(a). The case of
the chiral symmetry C2 corresponds to the situation when
the lattice labeling is switched in the second block h̄0. This
is illustrated in Fig. 2(b), where the sublattices are labeled
according to the operator C2. The allowed coupling connects
atoms that have the same color in different layers.

B. Time-reversal and particle-hole symmetry

After discussing chiral symmetry, we discuss the time-
reversal symmetry and particle-hole symmetry of the un-
coupled model H0. Since the two blocks in H0 are the
time-reversal counterparts of each other, H0 is invariant with
respect to two time-reversal symmetry operators that square
to ±1:

T 2 = −1 : T− = sx ⊗ T0 = isxτyσzK,
(13)

T 2 = +1 : T+ = −isy ⊗ T0 = syτyσzK,

where T0 represents the time-reversal symmetry operator re-
lating h0 and h̄0. The matrices sx and sy exchange the two
blocks of H0 and T0 and transform them back.

Similarly, one can construct two particle-hole symmetry
operators:

P2 = +1 : P+ = sx ⊗ P0 = sxτxσzK,
(14)

P2 = −1 : P− = isy ⊗ P0 = isyτxσzK,

where P0 represents the particle-hole operator that relates h0

and h̄0. The chiral symmetry can be obtained by C = T · P:

C1 = T−P+ = T+P− = s0 ⊗ C0,
(15)

C2 = P+T+ = P−T− = sz ⊗ C0.

The reason why H0 has two time-reversal symmetries and
two particle-hole symmetries is the presence of additional
unitary symmetry of the uncoupled model. The coupling of
the two blocks in H0 breaks some of the symmetries and the
coupled system falls into one of the five classes with chiral
symmetry listed in Table I (we constrain the coupling terms
to preserve one of the chiral symmetries C1, C2). Next, we
discuss concrete examples of the coupling terms that realize
models in the chiral symmetric classes from Table I.

C. The microscopic models of chiral topological insulators

The Hamiltonian of the coupled model can be written as

Hα = H0 + Vα, (16)

where α denotes one of the classes with chiral symmetry,
that are DIII, CI, AIII, CII, and BDI. The term Vα connects
the two blocks of H0, preserving the symmetry of class α.
The topological invariants and the symmetry operators of the
corresponding model (16) in each class are summarized in
Table II. As mentioned before, the two chiral symmetries C1

(C2) correspond to the same (opposite) sublattice labelings of
the two blocks h0 and h̄0 in H0 as illustrated in Fig. 2. The
presence of C1 or C2 only requires that the couplings must
be between A and B̄ (also B and Ā). In this case, without
any further symmetries of the coupling, the models belong to
the AIII class. Applying symmetry constraints to the coupling

TABLE II. Topological classes which can be obtained by the
coupled 3D models in Eq. (16). The table lists the presence or
absence as well as the properties of the symmetry operators in each
class. It also lists the topological index the corresponding class has
in 3D. The last column shows the symmetry operators the model
(16) has if it belongs to the class in the same row. The time-reversal
symmetry is given by Eq. (13), the particle-hole by Eq. (14), and the
chiral symmetry is determined by TC Eq. (15).

Class T 2 P2 C Index Symmetry operators

DIII −1 +1 1 Z T−, P+, C1

CI +1 −1 1 2Z T+, P−, C1

AIII 1 Z C1 or C2

CII −1 −1 1 Z2 T−, P−, C2

BDI +1 +1 1 0 T+, P+, C2

allows us to construct the models of CI, CII, DIII, and BDI
classes. Next, we show the specific coupling terms and con-
struct microscopic models in each class.

1. Class DIII, CI

According to Table II, classes DIII and CI have chiral
symmetry C1, therefore the coupling terms need to connect
layers of different colors, red to gray and viceversa, similar to
the case in Fig. 2(a). An example of the coupling structure in
the classes DIII and CI is shown in Fig. 3(a). The hoppings
are indicated by the arrows with amplitude a. If a is real,
then the couplings will preserve time-reversal symmetry T−
and particle-hole symmetry P+. Such a model belongs to class
DIII. In k space, the couplings are written as

VDIII = a

2
(1 + cos kx )(sxτxσx + syτyσx )

(17)
+ a

2
sin kx(sxτxσy + syτyσy),

FIG. 3. Two ways of coupling h0 and h̄0 in the x direction. Same
as the labelings in Fig. 2: The sublattices of h0 are labeled by A and
B. The sublattices of h̄0 are labled by Ā and B̄. In (a) and (b), the
sublattices of h̄0 have opposite labelings. The forms of couplings
in (a) and (b) preserve chiral symmetry C1 and C2 respectively.
(a) may fall into DIII class, or CI class, depending on the hopping
amplitude a. (b) may fall into BDI class, or CII class, depending
on the hopping amplitude b. The arrows of the hoppings indicate in
which direction the hopping amplitude is a and b. For example, in
(a), if a is imaginary (a = i|a|), the couplings are i|a|c†

B2,Rn
cA′

1,Rn
+

i|a|c†
B2,Rn

cA′
1,Rn+Rx + H.c. + . . ..
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TABLE III. All coupling terms that are compatible with the sym-
metries of class DIII and BDI. k can be any one of the momentum
components kx , ky, and kz. fe(k) is any real even function of k. fo(k)
is any real odd function of k. The coupling terms which preserve the
symmetries of class CI (CII) can be obtained from the coupling terms
of class DIII (BDI) by exchanging fe(k) and fo(k).

Class Functions Matrices

DIII fe(k)× (sx, sy ) ⊗ (τx, τy ) ⊗ σx

fo(k)× (sx, sy ) ⊗ (τx, τy ) ⊗ (σ0, σy, σz )

BDI fe(k)× (sx, sy ) ⊗ [τz ⊗ (σ0, σy, σz ), τ0 ⊗ σx]

fo(k)× (sx, sy ) ⊗ [τ0 ⊗ (σ0, σy, σz ), τz ⊗ σx]

which is written in the basis{
cA1 , cA2 , cB1 , cB2 , cĀ1

, cĀ2
, cB̄1

, cB̄2

}T
,

where we have used the short notation, cA1;kx,ky,kz → cA1 .
The Hamilltonian VDIII is not the only possible model with
the symmetries of DIII class—in Table III we list all possible
couplings in k space that are compatible with the symmetries
of this class.

If the hopping a is imaginary, a = i|a|, then the couplings
will preserve time-reversal symmetry T+ and particle-hole
symmetry P−, which puts the model in the class CI. In k space,
this is written as

VCI = |a|
2

(1 − cos kx )(sxτxσy + syτyσy)

+ |a|
2

sin kx(sxτxσx + syτyσx ), (18)

in the same basis as that of VDIII in Eq. (17). All the allowed
couplings of class CI can be obtained from the coupling terms
of class DIII in Table III by exchanging fe(k) and fo(k).

One could also take the hopping a to be complex–which
would give a linear combination of VDIII and VCI in k space.
Such a model still has the C1 symmetry, but no longer has
time reversal or particle-hole symmetries. It would therefore
be in the universality class AIII.

Suppose the coupling VDIII,CI is small, so it does not close
the original energy gap determined by the parameters of H0.
In this case, the winding number of the weakly coupled sys-
tem is the same as that of the uncoupled model H0. Given
the chiral symmetry is C1, the total winding number will be
νtotal = 2ν3D, where ν3D is the winding number of a single
block h0 which is given by Eq. (8). We will later show that the
topological phases are manifested in terms of the protected
surface states in Sec. IV D, as expected from the nonzero
topological indices.

2. Class BDI, CII

Classes BDI and CII have chiral symmetry C2, therefore
the coupling terms need to connect the layers of the same
color, red to red and gray to gray similar to the case in
Fig. 2(b). An example of such a coupling that would be in
class CII or BDI is shown in Fig. 3(b). The hoppings are
indicated by the arrows with amplitude b. If b is real, then
the couplings will preserve time-reversal symmetry T+ and

particle-hole symmetry P+, which puts the model in the class
BDI. In k space the couplings are written as

VBDI = b(1 + cos kx )sxτ0σx + b sin kxsxτ0σy. (19)

Note that VBDI is written in the basis

{
cA1 , cA2 , cB1 , cB2 , cB̄1

, cB̄2
, cĀ1

, cĀ2

}T
,

which is intended to make the form of the Hamiltonian inde-
pendent on the relabelling in Fig. 3(b) and then the symmetry
operators in Eqs. (11)–(14) also apply. Table III lists all the
couplings which preserve the symmetries of class BDI.

If the hopping b is imaginary, b = i|b|, then the couplings
will preserve time-reversal symmetry T− and particle-hole
symmetry P−. This corresponds to a model in class CII. In
k space, the couplings are written as

VCII = |b|(1 + cos kx )syτzσx + |b| sin kxsyτzσy. (20)

VCII is written in the same basis as VBDI in Eq. (19). All
the allowed couplings of class CII can be obtained from the
coupling terms of class BDI in Table III by exchanging fe(k)
and fo(k).

If the coupling strength is small, compared to the gap
opened by the terms of the uncoupled model H0, then the
winding number of the coupled system is the same as in the
absence of coupling. The chiral symmetry of the models CII
and BDI is C2, and thus the total winding number νtotal = 0.
This is a manifestation of the fact that the classes CII and
BDI do not obey Z classification in three dimensions. In
particular, the BDI class is trivial, according to Table I, and CII
is a Z2 topological insulator. This can be directly proven by
calculating the Z2 invariant of HCII. Later, we also verify the
existence of a topologically nontrivial phase in the CII class
by examining its surface states.

Here it is also worth mentioning that by coupling the
two building blocks in Eq. (10), one can obtain models in
both classes with nonzero winding number (DIII, CI, AIII)
and classes with zero winding number (BDI, CII). This is a
result of the sign ambiguity of the topological index as was
discussed in detail in Sec. II C and in Ref. [21]. For each block,
the winding number can be either positive or negative, thus the
winding number of the coupled model can be either the sum
or difference of the absolute values of the two blocks’ winding
numbers. However, this logic applies only to odd dimensions.
In even dimensions the Z index is the Chern number, which
has no sign ambiguity. Therefore, in even dimensions, one can
obtain a model in a Z class by coupling a pair of models with
the same Chern number. To construct a model of Z2 class in
even dimensions one needs to couple models with opposite
Chern numbers. Therefore, one cannot realize both Z and Z2

classes by coupling the same pair of models.
As before, one can also consider the case when the real-

space hopping b is complex, leading to a linear combination of
VBDI and VCII. Such a model would have the chiral symmetry
C2 but no time-reversal or particle-hole symmetries and thus
be in the class AIII. Unlike the case of combing VDIII and VCI,
however, the winding number in this case is zero—so although
such a model would be in a class that exhibits a Z topological
classification, it is always in the topological trivial phase.
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D. Protected surface states of topological insulators

Here we discuss the properties of the surface states of the
constructed models in the topological phase. The topological
nature of the models in the classes with chiral symmetry is
demonstrated by the robustness of gapless surface states.

1. Surface states of the uncoupled model

Let us first focus on the edge states of the uncoupled model.
In Sec. III C we showed that the surface states of the block h0

form a Dirac cone. Thus, the model h̄0 also has the edge states,
as it has the same winding number as h0. If we consider a
surface perpendicular to the z axis, the effective Hamiltonian
for the surface states of the uncoupled system H0 (10) reads

H sur
0 = s0 ⊗ hsur

0 = vs0 ⊗ (kxηy − kyηx ). (21)

If we add coupling between the models h0 and h̄0, then it
might in general gap out the surface states. However, if the
coupling is sufficiently small and compatible with the sym-
metries of a topologically nontrivial class, then the edge states
will remain gapless. We demonstrate this in the next subsec-
tions on the examples of chiral symmetric topological classes.

2. C1 chiral topological insulators

Here we show that the chiral symmetry C1 is the key sym-
metry for the stability of the topological phases in Z classes.
In particular, given h0 is in a topologically nontrivial phase,
as long as C1 is preserved, any weak perturbation can not gap
the surface states described by Eq. (21). In the same basis as
that of Eq. (21), the effective C1 is expressed as Csur

1 = s0ηz,
and therefore, the perturbation matrices which preserve this
symmetry are proportional to s0,x,y,z ⊗ hp. Here the matrix
hp preserves the chiral symmetry of a block, C0 = ηz. It has
been shown in Sec. III C that such perturbations can’t gap the
surface states of the block described by Eq. (9). The s0,x,y,z

matrix couples the same or different blocks of H sur
0 in Eq. (21).

However, by choosing the proper basis in the subspace where
matrices si act, we can always block-diagonalize the perturba-
tion and obtain

H sur = s0 ⊗ hsur
0 + (α0s0 + αzsz ) ⊗ hp. (22)

Since hp does not open a gap in hsur
0 , the perturbation s0,x,y,z ⊗

hp also leaves the edge states H sur
0 gapless. The coupling terms

of the classes DIII and CII by construction preserve chiral
symmetry C1, so they cannot gap the surface states of the
uncoupled model. Therefore, in the weak coupling limit, the
models with chiral symmetry C1 that belong to the classes
AIII, DIII, and CI are all in the topological phase character-
ized by protected gapless surface states. Note, that the other
symmetries are not relevant for their protection.

3. C2 chiral insulators

The existence of chiral symmetry C2 alone is not enough
to make the whole system topological, and additional symme-
tries are needed. To prove that, consider the operator C2 that
in the space of the surface, states is expressed as Csur

2 = szηz.
Consider the perturbation sx ⊗ ηz that preserves C2. In the
basis where sx is diagonal sx → sz, the Hamiltonian of the

surface states takes the following form:

H sur = s0 ⊗ hsur
0 + βsz ⊗ ηz. (23)

This gaps out the surface states in each block hsur
0 of the un-

coupled model Eq. (21), as this Hamiltonian describes the two
massive Dirac fermions with the mass term given by ±βηz.
That explains why the Hamiltonian of the AIII class with C2

symmetry is topologically trivial in the case of weak coupling.
However, the gapless surface states may survive if the model
has other symmetries. This is the case of Z2 class CII, that
also has time-reversal T− and particle-hole P− symmetries.
In the space of the surface states, T−, P− they are expressed
as T sur

− = isx ⊗ ηyK , Psur
− = isy ⊗ ηxK . With the constraint of

these two additional symmetries, no perturbations can gap
the surface states. If one further couples two copies of the
CII model together, then the surface Hamiltonian is expressed
as I4×4 ⊗ hsur

0 . Given the model is in class CII, the symme-
tries Csur

2 , T sur
− , Psur

− need to be preserved. In this case, there
exist perturbations (e.g., oy ⊗ sx ⊗ ηz, oy ⊗ sy ⊗ ηz) which
preserve all the three symmetries, but can gap out the surface
Hamiltonian. This follows from the fact that in the basis where
oy and sx/y are diagonal, the effective Hamiltonian of each
of CII models takes the form of Eq. (23) that corresponds
to a gapped model. This result shows that the CII model is
characterized by topological invariant Z2, not Z.

V. TOPOLOGICAL EQUIVALENCE OF THE Z CLASSES

In this section, we discuss the topological equivalence of
the chiral classes with the same winding number (DIII, AIII,
and CI). Equivalence means the existence of a path along
which one can smoothly transform a model from one class to
another without closing the gap and changing the topological
invariant. The equivalence of the Z chiral classes follows from
the fact that they are characterized by the chiral symmetry
operator C1, and thus the value of the winding number of a
weakly coupled system does not depend on the presence of
other symmetries. In particular, if one considers a Hamilto-
nian of classes DIII or CI and weakly breaks time-reversal
or particle-hole symmetry, the winding number would not be
changed.

This implies that one can construct a smooth path between
different Z classes. For instance, one may consider the Hamil-
tonian H = H0 + tVDIII + (1 − t )VCI, where t ∈ [0, 1]. This
Hamiltonian describes the interpolation between the classes
CI and DIII via the AIII class. If both coupling terms VDIII and
VCI are weak, so they do not close the gap opened by the terms
in H0, then a smooth transition from class DIII to class CI
is achieved. Moreover, the winding number does not change
along the path and if the model has a surface, surface states
won’t be gapped, as was discussed in the Sec. IV.

This is consistent with the fact that all symmetry classes
with chiral symmetry can be viewed as a special case of
AIII class. However, because of the additional symmetries,
the existence of the path that connects the topological sector
of one class to another is not guaranteed. In particular, the
class CI can only have even winding numbers 2Z due to its
additional symmetries, so class CI is only equivalent to the
2Z sector of the classes AIII and DIII.
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It is also worth mentioning that as discussed in Sec. IV D 3,
the model HCII of the class CII is a Z2 topological insulator.
The CII model can be smoothly connected without breaking
chiral symmetry to the trivial sector of the AIII model with C2

chiral symmetry by adding a term that breaks the time-reversal
symmetry and does not close the gap. However, there is no
chiral symmetry preserving path between the CII insulator and
Z topological models with a nonzero winding number. Along
any path that connects these two models, the chiral symmetry
must change from C2 to C1. Therefore, there is a point where
the chiral symmetry changes and the surface states are not
protected and may be gapped.

Moreover, the models of two Z2 classes in 3D are distinct
and cannot be adiabatically connected. This is in full analogy
with the one-dimensional case [21]. Indeed, to construct the
path from the class CII to AII one needs to break the chiral
symmetry but preserve the time-reversal, which is the only
symmetry of the Z2 class AII. However, such perturbations
gap out the surface states of CII. To be specific, let us consider
the Hamiltonian of the surface states Eq. (21) and add the per-
turbation that is compatible with the time-reversal symmetry
T− and breaks the chiral symmetry C2. An example of such
perturbation is V = αsz ⊗ ηz. This term will open a gap in the
two Dirac cones described by Eq. (21).

VI. PROPOSAL FOR A REALIZATION
IN A COLD-ATOM EXPERIMENT

So far the discussion was purely theoretical. To study the
transition between various classes and observe the emergence
of the corresponding surface one needs to realize the con-
structed models in experiments. It is rather hard to control
the parameters of the Hamiltonians in solid-state systems but
seems feasible in cold atomic settings. In this section, we
discuss the possibility of the realization of these models in
cold atom experiments.

As an illustration, consider the simplest model of a chiral
topological insulator that can be used as a building block
for constructing other topological classes. The original model
(7) contains terms that involve the next-nearest hopping in
the z direction, the amplitude of that is the same as that of
nearest-neighbor terms as shown in Fig. 9, see Appendix A.
It is more convenient to consider a modification of this model
that is more experimentally realistic and involves only nearest-
neighbor hopping in the z direction only:

h =
∑

k

τx ⊗ [w + v(cos kx + cos ky + cos kz )]σ0

+ v sin kzτy ⊗ σ0 + Hso, (24)

where Hso is given by

Hso = vτz ⊗ (sin kxσy + sin kyσx ). (25)

The model (24) is also in DIII topological class with symme-
tries C = τz ⊗ σz, T = iτ0 ⊗ σyK and P = τz ⊗ σxK . It has
the same topological phase diagram as the model (7). The
possible values of the winding number are given by Eq. (8).

We stress that although the model (24) and the model (7)
discussed earlier are not identical, they are interchangeable.
One could also use Eq. (24) as the building block in Eq. (10).

FIG. 4. Panel (a) shows the lattice model corresponding to
Eq. (24). The unit cell consists of four atoms. They differ by the
color that denotes the layer degrees of freedom (described by Pauli
matrices τi). There are two types of atoms of the same color in
the unit cell, which may also describe internal degrees of freedom
(described by Pauli matrices σi), e.g., spin. The dashed lines in panel
(a) are not hoppings. The figures in panels (b), (c), and (d) illustrate
the hoppings in the x, y, and z direction correspondingly.

By coupling the two such models one can construct models
of all the classes with chiral symmetry, as described in the
main text. The expressions of the symmetric operators and the
coupling terms will change, but this will not affect our main
results.

The corresponding lattice model of Eq. (25) is illustrated
in Fig. 4. The lattice consists of atoms with internal degrees
of freedom (e.g., spin) described by the Pauli matrices σi, and
τi are the Pauli matrices that describe the layers of different
colors in Fig. 4. Besides the fact that in the z direction it only
has spin-independent nearest-neighbor hoppings, another dif-
ference from the model (7) is that in the model (24) interlayer
hoppings are spin-independent and there are spin-dependent
hopping terms (25) within each layer.

The model (24) has spin-diagonal and spin-flipping terms
(25) that are staggered in z direction. The spin diagonal part
describes a regular hopping on a square lattice in z, y and z, x
directions with hopping amplitude v and in z direction the
hopping is dimerized like in the SSH model, see Fig. 4(c).
The hopping dimerization can be obtained by superposing
two counter-propagating lasers with the wavelengths λ and 2λ

[10,11] that creates a double-well optical potential for atoms.
The realization of similar to Eq. (25) type of terms has been
proposed theoretically [31] and realized experimentally both
in 2D [32] and 3D [33] in the context of Weyl semimetals.
However, these papers discuss the spin-orbit interaction with
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uniform hopping amplitude. The implementation of the stag-
gered part of the spin-orbit coupling is more challenging, and
yet to be developed.

VII. SUMMARY

We constructed elementary noninteracting three-
dimensional lattice models that represent all of the topological
classes with chiral symmetry. This construction enables us
to study the properties of topological insulators that are not
obvious from the general table of the topological insulators.
In addition, the models can be used as the building blocks
that are needed to incorporate the effects of interactions or to
design real materials.

We have built the three-dimensional models from low-
dimensional ones. The basic 3D lattice model belongs to AIII
class. We build it in stages. First, by coupling a set of one-
dimensional SSH chains to construct a 2D QWZ model in the
D class. Then, the latter were stacked in parallel to construct
an AIII model in 3D.

Similar to the SSH model, the unit cell of the constructed
model consists of atoms belonging to two sublattices, labeled
A and B. In addition, there is a “pseudospin” degree of
freedom. The chiral symmetry is equivalent to the sublattice
symmetry, so only hopping from different sublattices is al-
lowed.

To construct other classes with chiral symmetry, we couple
two copies of AIII, which are time-reversal partners. By doing
so we restore the time-reversal symmetry of the full model.
The resulting model possesses all possible symmetries (chiral,
time reversal, and particle-hole). By adding couplings that
break some of the symmetries we build the realizations in all
symmetry classes with chiral symmetry.

There are two possible ways of coupling that correspond to
different choices of chiral symmetry operator. This is related
to the fact that the sign of the chiral symmetry operator can be
changed by the relabeling of the sublattices. One corresponds
to the case when the labels of both sublattices are the same in
both models and the second choice is when in one of the mod-
els the labels are switched A ↔ B. Thus, one can choose two
different chiral symmetry operators in the uncoupled system.
Adding coupling removes this freedom and breaks one of the
chiral symmetries.

Moreover, choosing a specific chiral symmetry allows one
to determine the winding number of a weakly coupled system.
As was proven in Ref. [21], the sign of the winding number
can be changed by the relabeling of the sublattices. There-
fore, the topological index of the weakly coupled system is
determined by the chiral symmetry only and can be either a
sum or a difference of the winding numbers of the uncoupled
building blocks, depending on the preserved chiral symmetry
operator.

Depending on whether the couplings preserve the time-
reversal and (or) particle-hole symmetries and the type of
symmetry operator, the coupled model falls into one of the
five classes with chiral symmetry. We find that the models
which have the chiral symmetry C1 (that corresponds to the
same labeling of the two building blocks’ sublattices) fall in
the classes characterized by the Z topological index. Those
are the classes AIII, DIII, and CI.

We also showed that these models (AIII, DIII, and CI) can
be adiabatically transformed one into another without closing
the gap and without changing the topological index Z. This
means that these three classes are topologically equivalent in
3D. We illustrated this equivalence by studying the surface
states in topological phases and by proving that they remain
gapless and robust as long as the chiral symmetry is preserved
and the perturbations do not close the bulk gap.

The models that are characterized by the second chiral
symmetry operator C2 belong to one of the AIII, CII, and
BDI classes. BDI class is topologically trivial in 3D, and
the CII class is characterized by the Z2 topological index.
By studying the surface states of the constructed models we
explicitly demonstrated that the two Z2 classes CII and AII
are not topologically equivalent.
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APPENDIX A: BUILDING THE 3D MODEL
IN CLASS DIII IN REAL SPACE

This section shows the construction of the 3D topological
model with a nonzero winding number in class DIII in the
route BDI(1D)→D(2D)→DIII(3D).

1. Bott clock of the 10 symmetry classes

We start with a brief review of the known results [19,27],
which are presented here for the sake of a reader. Figure 5(a)
is the Bott clock which shows the Bott periodicity of the
tenfold classification of topological insulators. It shows that
one can obtain a model of dimension d + 1 from a model in
dimension d without closing the gap. Following the general
idea of construction models following the Bott clock [34], we
can obtain the 3D model in DIII class starting from the model
of BDI class (in 1D)→ class D (in 2D)→ class DIII (in 3D).

2. From class BDI in 1D to class D in 2D

The simplest BDI model in 1D is represented by the SSH
model [8]. Its Hamiltonian in k space is given by

HSSH(kx ) = (w + v cos kx )σx + v sin kxσy, (A1)

where σx,y,z are Pauli matrices. The SSH model has the time-
reversal symmetry T = K with T 2 = +1, the particle-hole
symmetry P = σzK with P2 = +1 and the chiral symmetry
C = σz. HSSH has nonzero winding number |ν1D| = 1 when
|w| < |v|.

When w = −v, the gap closes near kx = 0, and around this
point the SSH chain has two propagating modes described
by a Dirac Hamiltonian: heff

SSH = vkxσy. We denote these two
modes as left-propagating and right-propagating modes as
shown in Fig. 6(a). One can put together such N parallel SSH
chains as shown in Fig. 6(b), and introduce new couplings
between chains in the y direction. The couplings only couple
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FIG. 5. The Bott clock. The arrows point to the classes with the
same topological classification as the previous classes when increas-
ing the dimension d → d + 1. The gray and the white partitions
represent classes with and without chiral symmetry, respectively.
+1 and −1 denote the presence of time-reversal symmetry T or
particle-hole symmetry P and they indicate whether the symmetry
operator squares to +1 or −1. The eight real classes are in the outer
circle of the clock with a period of 8. They all have at least one of
the T or P symmetry. The two complex classes are in the inner circle
and have no symmetry T or P. Following the circle, they are related
only to each other and therefore the inner cycle has a period of 2.

the right-moving mode of the nth chain and the left-moving
mode of the (n − 1)th chain. As a result, only the two modes
on the two edges remain uncoupled and gapless: the left-
moving mode of the N th chain and the right-moving mode
of the 1st chain. In this way, we construct the model that has
a bulk gap and a gapless surface state, which is a signature
of a topological phase. The couplings between chains that
gap out the right- and left-moving modes can be written as:
M = α

2 (σx − iσz )|ny〉〈ny + 1|. Now we generalize the con-
structed model and consider the case when w 
= v. We add
the coupling M to Eq. (A1) and write the full two-dimensional
model in k space:

HD(kx, ky) = [w + v(cos kx + cos ky)]σx

+ v sin kxσy + v sin kyσz, (A2)

where we take α = v to avoid too many parameters and sim-
plify our model. The term v sin kyσz breaks the time-reversal

FIG. 6. (a) The two conducting modes of a single SSH chain.
(b) The two-dimensional model in class D by coupling N SSH
chains.

symmetry and the chiral symmetry of Eq. (A1). Thus, the
model (A2) has the particle-hole P = σzK symmetry only
and thus belongs to the class D, characterized by the Chern
number Q2D [20]. It can be computed explicitly and yields
|Q2D| = 1 when |w| < 2|v|, so the model that we constructed
is indeed topologically nontrivial. This 2D model is the QWZ
model [35].

3. From 2D class D to 3D class DIII

Next, we use the two-dimensional model Eq. (A2) to con-
struct the three-dimensional model in class DIII, following the
same logic as that in the last section. When w = −2v, the
gap closes near kx = 0, ky = 0. In the vicinity of this point
Eq. (A2) has two conducting modes in the bulk which are
the eigenstates of heff

D = v(kxσy + kyσz ) The eigenstates of
heff

D = v(kxσy + kyσz ) = v|k|(cos θσy + sin θσz ) are

+v|k| : ψa = 1
2 (1 − ieiθ , 1 + ieiθ )T , (A3)

−v|k| : ψb = 1
2 (1 + ieiθ , 1 − ieiθ )T . (A4)

They are the eigenstates of the particle-hole symmetry
operator: P = σzK , Pψa = αψa, Pψb = αψb, where α is a
complex number.

To build a DIII model, 2 by 2 matrices are not sufficient,
since it is not possible to construct a Hamiltonian that would
preserve both time-reversal and particle-hole symmetries of
this class in terms of Pauli matrices. Therefore, we need to
duplicate the 2D lattice Eq. (A2):

H̃D = τz ⊗ HD = τz ⊗ ([w + v(cos kx + cos ky)]σx

+ v sin kxσy + v sin kyσz ). (A5)

This can be obtained by putting two 2D models (A2) with
parameters w, v and −w,−v together. Then we can have new
symmetry operators. Together with the original particle-hole
operator, they are

T = iτyσzK, T 2 = −1;

P = σzK, P2 = +1;

C = τy. (A6)

This group of operators determines the class DIII. The model
(A5) also has additional symmetries. For instance, it is invari-
ant with respect to C = τx, T = τxσzK . but these symmetries
will be broken by introducing the new coupling terms. When
w = −2v, near the gap closing point kx = 0, ky = 0, there
are now four conducting modes. There are two degener-
ate states that have the energy +v|k|: {ψa, 0}T , {0, ψb}T

and two degenerate states that have the energy −v|k|:
{ψb, 0}T , {0, ψa}T . Now for simplicity, we fix kx = 0 and
write the four eigenstates as +vky: ψA = {−i, 0, 0, 1}T /

√
2,

ψB = {i, 0, 0, 1}T /
√

2 and −vky: ψC = {0,−i, 1, 0}T /
√

2,
ψD = {0, i, 1, 0}T /

√
2 (a unitary transformation has been

acted on the two-states degenerate space). ψA and ψC can form
a space which the symmetries in Eq. (A6) apply, so can ψB and
ψD, as illustrated in Fig. 7(a). Next, we stack N layers of 2D
H̃D on top of each other in the z direction. And we introduce
the couplings between layers which gap all the states in the
bulk, leaving only the state ψA, ψC on the top and e ψB, ψD on
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FIG. 7. (a) An illustration of bulk states of H̃D near kx = 0, ky = 0.
Note that ψA,B,C,D depends on kx, ky, here the horizonal is one
direction in the kx-ky plane. ψA(ψC) and ψB(ψD) are completely
degenerate. ψA,B,C,D are all self-particle-hole symmetric. ψA(ψB) and
ψC (ψD) are chiral and time-reversal symmetric of each other. (b) The
three-dimensional model in class DIII by stacking N class D layers.

the bottom. The requirement can be satisfied by the coupling
matrix M = α

2 (τzσx − iτxσ0)|nz〉〈nz + 1|.
Next, we generalize the model to the case when w 
= −2v.

So we add the coupling terms to the 2D model (A5). As a
result, we obtain a model which is bulk-gaped but has gapless
surface states. It also preserves the symmetry of class DIII
listed in Eq. (A6). We write the total Hamiltonian of this
model in k space:

HDIII(kx, ky, kz ) = τz ⊗ ([w + v(cos kx + cos ky + cos kz )]σx

+ v sin kxσy + v sin kyσz ) + v sin kzτx ⊗ σ0,

(A7)

where we also take α = v to avoid too many parameters. After
the rotation τz → τx, τx → τy Eq. (A7) becomes Eq. (7) of the
main text.

The model HDIII is topological when |w| < 3|v|, its wind-
ing number is

ν3D =
⎧⎨
⎩

0, |w| > 3|v|,
1, |v| < |w| < 3|v|,
−2, |w| < |v|.

(A8)

The corresponding lattice model in real space is

HDIII = H0 + Hx + Hy + Hz, (A9)

with

H0 = w
∑

n

(c†
A,ncB,n − c†

C,ncD,n) + H.c., (A10)

Hx = v
∑

n

(c†
A,n+xcB,n + c†

C,n+xcD,n) + H.c., (A11)

Hy = v

2

∑
n

[c†
A,n+ycB,n + c†

B,n+ycA,n

− (c†
C,n+ycD,n + c†

D,n+ycC,n)
(A12)

− i(c†
A,n+ycA,n + c†

B,n+ycB,n)

+ i(c†
C,n+ycC,n + c†

D,n+ycD,n)] + H.c.,

FIG. 8. Panel (a) is the corresponding lattice model of Eq. (A7).
There are four atoms in one unit cell. The two atoms of similar
color are described by the space of matrices σ0,x,y,z in Eq. (A7). The
red layer and gray layer stacked in the z direction form the space
of matrices τ0,x,y,z. Panels (b) and (c) show all the hoppings. Panel
(b) shows the hoppings of the red layer in the x-y plane. The hopping
terms within the gray layer are the same as in the red layer but with
w → −w, v → −v. Panel (c) shows the hoppings in the x-z plane
where you can find all the hoppings between layers in the z direction.

Hz = v

2

∑
n

[c†
A,n+zcB,n + c†

B,n+zcA,n

− (c†
C,n+zcD,n + c†

D,n+zcC,n)
(A13)

− i(c†
A,n+zcC,n + c†

C,n+zcA,n)

− i(c†
B,n+zcD,n + c†

D,n+zcB,n)] + H.c.,

where n, x, y, z are short for Rn, Rx, Ry, Rz. Rn is the posi-
tion of the unit cell, and Rx, Ry, Rz are the primitive vectors
connecting the unit cells. The lattice is shown in Fig. 8(a).
There are four atoms in one unit cell. The whole lattice is
composed of SSH chains in x direction. The two atoms of
similar color (for example, A and B) form the space of matri-
ces σ0,x,y,z in Eq. (A7). The red layer and gray layer stacked
in the z direction form the space of matrices τ0,x,y,z. The black
lines connecting the atoms in Fig. 8(a) are not the hoppings.
The hoppings in Eq. (A7) are drawn in Figs. 8(b) and 8(c).
Figure 8(b) shows the hoppings of the red layer in x-y plane
and Fig. 8(c) shows the hoppings in x-z plane where one can
find all the hoppings between layers in the z direction. For
convenience in expressing the chiral symmetry, we can do a
unitary transformation to HDIII in Eq. (A7) and transform it to

h0(kx, ky, kz ) = τx ⊗ {[w + v(cos kx + cos ky + cos kz )]σx

+ v(sin kxσy + sin kyσz )} + v sin kzτy ⊗ σ0.

(A14)

After the unitary transformation, the three symmetry operators
become

T0 = iτyσzK, T 2
0 = −1;

P0 = τxσzK, P2
0 = +1;

C0 = τz. (A15)

035418-12



ELEMENTARY MODELS OF THREE-DIMENSIONAL … PHYSICAL REVIEW B 108, 035418 (2023)

FIG. 9. Panel (a) shows the corresponding lattice model of
Eq. (A14). The red layer and gray layer stacked in the z direction
form the space of matrices τ0,x,y,z. Panels (b), (c), and (d) show the
hoppings in the x, y, and z direction.

Here we can still take τz as the Pauli matrix that represents
two layers. Then we have a new lattice of which the chiral
symmetry is the sublayer symmetry. The corresponding lattice
model is given in Fig. 9. The Hamiltonian in real space can be
written as

HDIII = H0 + Hx + Hy + Hz, (A16)

with

H0 = w
∑

n

σxc†
A,ncB,n + H.c., (A17)

Hx = vx

2

∑
n

[σx(c†
A,ncB,n+x + c†

A,ncB,n−x )

− iσy(c†
A,ncB,n+x − c†

A,ncB,n−x )] + H.c., (A18)

Hy = vy

2

∑
n

[σx(c†
A,ncB,n+y + c†

A,ncB,n−y )

− iσz(c†
A,ncB,n+y − c†

A,ncB,n−y )] + H.c., (A19)

Hz = vz

2

∑
n

[σx(c†
A,ncB,n+z + c†

A,ncB,n−z )

− σ0(c†
A,ncB,n+z − c†

A,ncB,n−z )] + H.c. (A20)

The whole lattice model is drawn in Fig. 9(a), in which the
zoom-in figure shows the unit cell. In each unit cell, there are
two groups of atoms labeled A and B. The A-B sublattices

form the space of τ0,x,y,z. The hoppings in Eq. (A17) are
represented by the blue line connecting the A and B groups
in the unit cell. The hoppings between the unit cells in the
x, y, z direction (Hx,y,z) are given in Figs. 9(b), 9(c), and 9(d),
respectively. The chiral symmetry requires that the hoppings
exist only between A and B sublattices. In Eqs. (A18)–(A20),
we have tuned the hopping amplitudes in each direction to be
different. Now the condition of the phase transition between
the trivial phase and topological phase changes from |w| =
3|v| to |w| = |vx + vy + vz| (here vx, vy, vz are all positive or
negative).

APPENDIX B: SURFACE STATES

Here we show how we obtained the surface states of the
3D models. Consider the 3D DIII model in Eq. (A7) as an
example. When w goes across −3v, topological phase tran-
sition happens with the bulk gap closing and reopening at
kx, ky, kz = 0. Near the phase transition when w ∼ −3v, the
physics can be described by the low-energy Hamiltonian:

hDIII(kx, ky, kz ) = v(kxτzσx + kyτzσy + kzτxσ0)

+ (m − vk2)τzσx, (B1)

where k2 = k2
x + k2

y + k2
z and the mass term m = w + 3v. If

there is an open boundary perpendicular to the z direction
at z = 0, then kz is not a good quantum number anymore;
however, the system remains periodic in x and y directions and
thus is characterized by well-defined momentum components
kx and ky. The corresponding Hamiltonian in the presence
of boundary condition becomes Eq. (B1) with kz → −ia∂z,
where a is the lattice constant in z direction. To find the two
degenerate surface states at the center of the Dirac cone, set
kx, ky = 0, so the three-dimensional Hamiltonian becomes a
one-dimensional Hamiltonian in the z direction. Given the
model is in the region z > 0, the boundary condition requires
that the wave functions exist at z > 0 and vanish at z = 0.
By solving the corresponding Schroedinger equation, one can
find there exist zero-energy bound states at the surface in the
case mv > 0 described by the wave functions:

�1(z) = CψA(e−z/ξ+ − e−z/ξ− ), (B2)

�2(z) = CψC (e−z/ξ+ − e−z/ξ− ), (B3)

where the penetration depth ξ−1
± = 1

2a (1 ± √
1 − 4m/v) and

C is the normalization constant. The eigen energies of
�1(z) and �2(z) are both zero. The eigen vectors ψA =
{−i, 0, 0, 1}T /

√
2, ψC = {0,−i, 1, 0}T /

√
2, same as those of

the surface states shown in Fig. 7(a). Equations (B2) and
(B3) describe the wave functions at z � 0. They both decay
exponentially away from the boundary at z = 0 to the region
z > 0. In the region z < 0, we make �1,2(z < 0) = 0. Note we
are now focusing on the case when w goes across −3v and w

satisfies |w| < 3|v|. Then the bound state solutions exist as
mv > 0 and 1 >

√
1 − 4m/v > 0.

The effective surface model can be obtained by projecting
the bulk Hamiltonian onto the surface states �1(z) and �2(z)
in Eqs. (B2) and (B3). This will lead to a 2 × 2 effective
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Hamiltonian:

hsur
DIII =

∫
dzU †(z)hDIII(kx, ky,w − ia∂z )U (z)

= v(kxηy + kyηz ), (B4)

where U (z) = {�1(z), �2(z)}, ηx,y,z are Pauli matrices.
In the same way, one can derive the effective Hamiltonian

of the surface states of the model in Eq. (A14) with the same
open boundary conditions. The surface states at kx, ky = 0 are
in the same form as those of Eqs. (B2) and (B3). The cor-
responding eigen vectors are ψα = {1, 1, 0, 0}T /

√
2, ψβ =

{0, 0,−1, 1}T /
√

2, which are the eigen vectors we used in
Sec. III C in the main text. The penetration depths are also
ξ±. Also, we can obtain the effective model Hamiltonian near
kx, ky = 0 by projecting the model Hamiltonian to the surface
states:

hsur
0 = v(kxηy − kyηx ), (B5)

In addition, the three symmetry operators of model (A14)
T0, P0 and C0 can also be projected onto the surface states
because they preserve all of the three symmetry operators. The
symmetry operators do not affect the z-dependent part of the
wave functions and only act on the eigenvectors ψα,β . Defin-
ing the projection matrix UP = (ψα,ψβ ), the three projected
symmetry operators are T sur

0 = U †
P T0UP, Psur

0 = U †
P P0UP, and

Csur
0 = U †

PC0UP. Next we will prove that T sur
0 , Psur

0 and Csur
0

are the symmetry operators of effective surface Hamiltonian
(B5). By introducing another two orthogonal vectors ψγ and
ψη that are also orthogonal to ψα,β , together with ψα , ψβ

one has a complete set of vectors. Then one can obtain the

form of symmetry operators in the new basis of ψα−δ using
the unitary matrix U = (ψα,ψβ,ψγ , ψδ ). Since the surface
states preserve all of the symmetry operators, if any symmetry
operator acts on an eigenvector of the surface states ψα or ψβ ,
the result will be a linear combination of ψα and ψβ . This
means that in the new basis, all the symmetry operators are
block-diagonal. Take chiral symmetry C0 as an example,

U †C0U =
(

C11 0
0 C22

)
. (B6)

The model preserves the chiral symmetry ChC−1 = −h,
where h is the kx-, ky-dependent Hamiltonian which is going
to be projected to the surface state vectors (the z dependent
part has been integrated out). In the new basis, the relation
becomes

(U †CU )(U †hU )(U †CU )−1 = −U †hU . (B7)

This relation can be further written as(
C11 0
0 C22

)(
h11 h12

h21 h22

)(
C−1

11 0
0 C−1

22

)

= −
(

h11 h12

h21 h22

)
. (B8)

Note that if C11 = Csur
0 and h11 = hsur

0 , we have

Csur
0 hsur

0

(
Csur

0

)−1 = −hsur
0 . (B9)

So far we have proved that the projected operator Csur
0 is the

chiral symmetry operator of hsur
0 in Eq. (B5). In this way,

one can also prove that T sur
0 and Psur

0 are the time-reversal
symmetry operator and particle-hole symmetry operator of the
effective surface Hamiltonian hsur

0 .
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