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Theoretical treatment of the Rashba effect in angle-resolved magnetoresistance
of a two-dimensional oxide layer
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The Rashba interaction is known to yield unusual effects in two-dimensional electron solids. One of these is
the magnetotransport under the combined influence of an in-plane electric field and a magnetic field. The result
is an anisotropic magnetoresistance that characterizes the band propagation concomitant with the spintronic
influence of the Rashba coupling and the Zeeman interaction with the applied magnetic field. With the recent
experimental results in mind, we present here a fully microscopic treatment of the underlying relaxation behavior
using the methods of dissipative quantum statistical mechanics. The employed Kubo formula for the conductivity
helps to make connection with particle diffusivity of the two-dimensional electronic solid and also under certain
limits, with the semiclassical Boltzmann transport equation for the conductivity. The presented theory is in good
agreement with recent data.
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I. INTRODUCTION

Emmanuel I Rashba had pioneered a new field of research
during the 1960s to the 1980s by delving into the various
ramifications of the well-known spin-orbit interaction when
it comes to two-dimensional electron solids [1]. The work has
had such a far-reaching impact on contemporary solid-state
physics, for example in carbon-based systems, topological
insulators, geometric phase problems, spintronics, etc., that
Physical Review B, in its December 2022 issue, had decided
to honor Rashba on his 95th birthday by launching a series
of Rashba effect-related contributions [2]. The present paper
is one such tributary attempt wherein we present results on
how the effect influences transport phenomena under a weak
electric field in a two-dimensional oxide layer, being further
probed by an in-plane magnetic field.

The focus here is then on anisotropic magnetoresistance
(AMR) and planar Hall effect (PHE) as can be measured
through the conductivity tensor which is calculated in linear
response theory (LRT) with the aid of the Kubo formula
[3]. The specific system of theoretical interest is an interface
of LaV03 and KTa03 (LVO-KTO) that has recently received
much active attention in our experimental group [4]. The
observed “negative longitudinal magneto resistance (NLMR)”
and the “chiral anomaly” had so far been believed to be the
hallmark of topological Dirac and Weyl semimetals [5–15].
However, what our oxide material, endowed with a strong
Rashba coupling, has provided is believed to be a paradigm
shift for certain unusual signatures of NLMR that may lead to
possible engineering of nonmagnetic materials for magnetic
sensors [4].
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The classical Kubo formula for the nontransient conductiv-
ity tensor reads [16]

σμγ = β

∫ ∞

0
dt

〈
jμ(0) jγ (t )

〉
0, (1)

where β equals (kBT )−1, kB being the Boltzmann constant
and T the temperature and the j′s are the current density
components. The variable t is the time elapsed from its initial
value of zero, on which the current density depends in view
of its dynamic evolution. The indices μ and γ are x or y in
the present case of a 2DEG (two-dimensional electron gas)
chosen in the XY plane, in which the electric field is applied
along the μ direction. Finally, the angular brackets denote a
statistical mechanical average with the aid of an underlying
density operator, with the suffix 0 indicating that the average
is to be calculated in LRT in the absence of the applied electric
field. We undertake to provide in the text a critical reappraisal
of Eq. (1) based on a minimal model that incorporates the
Rashba interaction within a band picture in the tight-binding
(TB) approximation [17].

When it comes to low temperature dissipative quantum
transport of an electron there are several directions in which
Eq. (1) has to be generalized: (a) The prefactor in conjunction
with the statistical weight provided by the density operator
has to incorporate the Fermi distribution of electrons, (b) the
current density which in turn is related to velocity has to be
regarded as a quantum operator the eigenvalue of which is a
group velocity that arises from the bands split by the Rashba
coupling (see below) in an underlying Bloch lattice, and (c)
most topically, the dynamics of the velocity operator has to be
viewed in light of contemporary approaches to dissipation in
quantum systems [18,19].

As far as points (a) and (b) are concerned, there have
been recent advances in terms of a semiclassical Boltzmann
transport equation that brings out the omnipresent Fermi
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distribution and the band splitting of the group velocity op-
erator. That formula reads [20–22]

σμγ = (
e2τ/m

) ∑
k,B

(−∂ f B
st /∂εB

k

)
vB

μ (k)vB
γ (k). (2)

Here e is the electron’s charge, m is its (effective) mass,
f is the Fermi distribution (with a subscript indicating its
“stationary” form) given by

f B
st = [

1 + exp β
(
εB

k − ∈F
)]−1

, T → o, (3)

with ЄF being the Fermi energy. The derivative of f B
st is calcu-

lated with respect to the band energy εB
k , and the v′s are band

velocity eigenvalues. The index k which is summed over is the
wave number in the Bloch reciprocal space of the TB lattice,
the magnitude of which is nearly kF, the Fermi momentum,
because as T → 0,

(−∂ f /∂ ∈) ≈ δ(ε − ∈F). (4)

The additional summation over the band index B runs over
two values +1 and −1 of the electron’s spin that occurs in
the Rashba coupling. The crucial simplifying input in this
semiclassical theory is the “relaxation time approximation”
in which the velocity correlation is a single exponential in
τ that appears as a featureless parameter. It is this last step
which needs a much closer look in terms of the dependence
of the relaxation time τ on the band index k if any, the
temperature T, and other parameters of the external heat bath
that is responsible in the first place in triggering relaxation (or
dissipation) in the system. We will make a critical examination
of Eq. (2) and interalia provide a microscopic theory for
τ based on a system-plus-bath approach of nonequilibrium
statistical mechanics [18,19].

Given this background the paper is organized as follows.
In Sec. II A, we introduce the Hamiltonian for the system of
our focus which is split into three components: (1) for the
underlying 2DEG in a TB description, (2) for the Rashba
interaction, and (3) for the Zeeman coupling due to the in-
plane external magnetic field B. It is pertinent here to point
out that although our system Hamiltonian resembles that of
much-studied graphene in the so-called Dirac limit, the spin
here is that of an itinerant electron while that in graphene
is a pseudospin representing the occupation of an unpaired
electron in a honeycomb lattice [23–25]. The system Hamil-
tonian given by (1)–(3) can be exactly diagonalized within the
2 × 2 Hilbert space of the electronic spin, thus yielding the
band velocities. In Sec. II B, we revisit the Kubo formula and
indicate how the Fermi distribution occurs naturally via the
initial density operator in thermal equilibrium over which the
expectation in Eq. (1) is to be computed. With this modified
Kubo formula at hand, we turn our attention in Sec. II C, to
elucidate the parameter range that is of interest in the ex-
perimental system of our focus [22]. As it turns out, the
Rashba, the Zeeman, and the thermal energy are all of the
same order at, say T ∼ 10 K, whereas the tunneling energy
	 is ∼5000 K. Therefore, as far as the heat bath-induced
dissipative dynamics is concerned, only the TB Hamiltonian
matters. The same is true for the equilibrium density matrix.
Thus, while the influence of the Rashba and the Zeeman
interactions is crucial in calculating the band velocities, they

can be ignored in the relaxational dynamics. With this proviso
we next present our central result in Sec. III which hinges on
relating the velocity correlation in the Kubo formula to elec-
tron diffusivity in the TB lattice. This enables a microscopic
analysis for the relaxation time τ from a system-plus-heat bath
formulation [26,27]. With the analytically derived results for
the conductivity tensor and hence the resistivity tensor at our
disposal, we provide in Sec. IV a comparison with the exper-
imental results. Finally, Sec. V concludes with a summary of
our principal results.

II. SYSTEM HAMILTONIAN

A. Hamiltonian and band velocities

As stated in the Introduction, our system of interest is a
2DEG described by a nearest-neighbor TB model under the
additional influence of a Rashba spin-orbit coupling and a
Zeeman term due to a B field that is taken in an arbitrary
direction in the XY plane at an angle of ϕ with the x axis.
The system Hamiltonian is then

Hs = Ho + HR + HZ, (5)

where

Ho = −	
(
Q+

x + Q+
y

)
, Q+

x,y = Kx,y + H.a.,

Kx =
∑
nx,ny

|nx, ny〉〈nx + d, ny|, (6)

Ky =
∑
nx,ny

|nx, ny〉〈nx, ny + d|,

with 	 being the frequency (in units of Planck constant ђ = 1)
with which the electron tunnels from one site to its nearest
neighbor site and d is the lattice parameter for the underlying
square lattice. The summation is over indices characterized by
two coordinates nx and ny. The translation operator Kx puts
the electron one lattice site ahead in the x direction and its
Hermitian adjoint (denoted by H.a.) does the opposite move.
The operator Ky performs the same in the y direction.

We next come to discuss the Rashba Hamiltonian HR. For
this we need to define the velocity operator (distinct from the
band velocity) which is the time derivative of the position
operator given by

N = iNx + jNy, Nx = �nx|nx, ny〉, (7)

and similarly for Ny. Here i and j are unit vectors along the
x and y axes. The time derivatives are given by the respective
commutators with Ho yielding for the velocity operators

vx,y = −id	Q−
x,y, Q−

x,y = Kx,y − H.a. (8)

The Rashba Hamiltonian can then be constructed as

HR = −id	�(σxQ−
y − σyQ−

x ), (9)

where the constant � that characterizes the strength of the
Rashba coupling subsumes the internal electric field that is
created by the materials preparation of the oxide layers.

Finally, the piece that augments the system Hamiltonian is
the Zeeman coupling with the applied field:

Hz = −B(σx cos ϕ + σy sin ϕ), (10)
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where the amplitude B is taken to absorb constants like the
Bohr magneton and the g factor.

It is evident that the presence of the Rashba effect
intertwines the dynamics along the x and y directions. Fur-
thermore, the effect helps entangle the spin with the electron
motion leading to “spintronics.” What the Rashba coupling
also does is to split the bands into two. However, the saving
grace is that all the translation operators and their Hermitian
adjoints commute with each other and hence the Bloch wave
number k remains a good quantum number [28]. Therefore,
the system Hamiltonian Hs, while being off-diagonal in the
2 × 2 Hilbert space of the electron’s spin, remains diagonal in
the Bloch |k〉 space. The four relevant matrix elements of Hs

are

〈k,+|Hs|k,+〉 = 〈k,−|Hs|k,−〉
= −	〈k|(Q+

x + Q+
y )|k〉

= −2	(cos dkx + cos dky), (11)

〈k,+|Hs|k,−〉 = 〈k,−|Hs|k,+〉∗
= −id	�〈k|(Q−

y + iQ−
x )|k〉 − B e−iϕ

= 2d	�(sin dky − i sin dkx) − B e−iϕ.

(12)

The corresponding 2 × 2 matrix can be easily diagonalized
yielding for the band energy two eigenvalues [22]:

ε+,−
k = −2	(cos dkx + cos dky)(+,−)

√
Sk,

Sk = B2 + 2Bλ(sin dkx sin ϕ − sin dky cos ϕ)

+ λ2(sin2dkx + sin2dky), λ = 2d	�, (13)

from which the band velocities can be derived from the
relation

v(k)+,− = (∂ε+,−
k /∂k). (14)

B. Kubo formula revisited

In this subsection we first provide a brief overview of the
quantum mechanical interpretation of the Kubo formula. The
aim is to justify the occurrence of the Fermi distribution func-
tion (or more accurately, its derivative with respect to energy)
as in the semiclassical theory embodied in Eq. (2).

We first expand the meaning of the correlation function
in Eq. (1) in the canonical ensemble of statistical mechanics
[29]:

β〈 jα (0) jγ (t )〉0 = βTr{ρ(t = o) jα (0)eiH t jγ (o) e−iHt}, (15)

where

ρ(t = o) = exp(−βHs ) exp(−βHb)/ZsZb, (16)

with Hs being the system Hamiltonian given by Eq. (3) on-
wards, Hb is the Hamiltonian for the bath, (to be specified
below)and Z’s are the corresponding partition functions. As
is customary in the analysis of quantum dissipative systems
[18,19] the bath is taken as a large system of noninteract-
ing quantum harmonic oscillators, coupled linearly with Hs

in terms of the displacement coordinates of the oscillators.
Viewed as a collection of elementary quantum excitations, the

bath could represent either phonons or electrons other than the
one of interest in band propagation. The spectral densities of
these elementary excitations determine whether the concerned
bath is a phononic or an electronic one [18,19].

The time evolution of the current density operator, on the
other hand, is governed by the full Hamiltonian H embracing
the system, the bath and their interaction:

H = Hs + HI + Hb, (17)

wherein the model for HI, assumed linear in the bath co-
ordinate as implied above, in the spirit of the spin-boson
Hamiltonian of dissipative quantum systems [30], will be
indicated in detail below, in Sec. III C.

The scenario is that at time t = o, the system of interest
is taken to have come to equilibrium at the temperature T of
the bath in line with the Gibbsian canonical ensemble picture
of equilibrium statistical mechanics. Hence the initial density
matrix has the factorized form of Eq. (16). Having set our time
at t = o we imagine the system’s equilibrium to be disturbed
by the application of a weak electric field that is applied, say,
in the x direction. Relaxation processes induced by HI then set
in, as the electric field causes energy absorption by the system
with corresponding transitions in the bath in order to balance
the net energy. The electric field would cause a current, not
only along the x axis, but also a Hall current along the y axis as
well, because of the presence of the magnetic field [embodied
by Hz in Eq. (5)] in conjunction with the Rashba interaction
HR. The Kubo idea is to examine the asymptotic steady-state
limit of the time-integrated correlation function in Eq. (1).

Because the current density is a system operator that com-
mutes with the bath Hamiltonian, Eq. (15) can be further
rearranged as

β〈 jα (0) jγ (t )〉0 =βTrs[exp(−βHs )/Zs] jα (0)[(U (t ))av jγ (o)],

(18)

where the bath-averaged time-evolution operator in the Liou-
ville space is given by [19]

(U (t ))av =
∑
b,b′

〈b|ρb|b〉(b, b|U (t )|b′, b′). (19)

A comment is in order regarding the definition indicated
in Eq. (19). What has been achieved in (. . .)av is the “tracing-
out” of the degrees of freedom of the heat bath, weighted by its
own density matrix ρb. In the path integral formulation of the
time evolution of the density operator ρ (t) in the Schrödinger
picture, this step is tantamount to rewriting the system ob-
servables in terms of the so-called influence functional [31].
While the latter is a formal step, an explicit modeling of the
bath such as in terms of quantum harmonic oscillators with
specific spectral properties yields useful, tractable expressions
for the influence functional.

The next step is to take the prefactor β inside the trace and
rewrite the statistical weight in Eq. (18) as

β exp(−βHs ) = {−[∂/∂Hs] exp(−βHs )}. (20)

At this stage we specialize to the model at hand and recog-
nize that the system Hamiltonian Hs is diagonal in the Bloch
space of the TB lattice and moreover the current density or
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the band velocity operator is also diagonal in this representa-
tion. Furthermore, in order to account for the Pauli exclusion
principle for electrons at low temperatures we transit to the
grand canonical ensemble from the canonical ensemble. Ac-
cordingly, the trace over the states of Hs would yield from
Eq. (18)

β〈 jα (0) jγ (t )〉0 =
∑

B,k,k′

{ − (
∂fB

k

/
∂εB

k

)
vB

k,α

× (k, k; B, B|(U (t ))av|k′, k′; B, B) vB
k′γ

}
.

(21)

The problem then boils down to computing the matrix
elements of the averaged time-evolution operator.

C. Parameter range of interest

In the experimental system under consideration, the Fermi
energy ЄF = −1.42	, corresponding to a filling factor of 1/2
electron per site implying “half filling,” on average [22]. Thus,
the tunneling energy is of the same order as the Fermi energy
whereas both are nearly 500 times larger than the Rashba
energy HR, the Zeeman energy HZ, and the thermal energy
kBT . In fact, for T = 10 K, the magnetic field B ∼ 13 T
and the Rashba constant λ ∼ 15 K, the estimated value of
the tunneling energy is 	 ∼ 0.5 eV which is of the order
of 5000 K while the Fermi energy is of the same order.
The upshot is that the overwhelmingly dominant term in the
system Hamiltonian is the tunneling energy in the underlying
tight-binding model which leads to significant simplification
in the analysis of the experiment. Thus, while the presence of
the Rashba and the Zeeman couplings is crucial for the band
velocities and therefore in the AMR and PHE measurements,
their influence on both the Fermi distribution (providing the
statistical weight to the velocity correlation) and the time
evolution of the band velocity operator (leading to relaxational
or dissipative dynamics) can be largely ignored.

Given the above consideration, the band index B occa-
sioned by the Rashba spin splitting can be omitted in the
Fermi function as well as in the time-development operator.
Consequently, the Kubo formula for the electric conductivity
tensor can be rewritten from Eq. (1) and subsequent analyses
embodied in Eqs. (18)–(21) as

σαγ =
∫ ∞

0
dt �B, k, k′ [−(∂fk/∂εk )]vB

k, α

× (k, k|(U (t ))av|k′, k′)vB
k′y, (22)

where the band energy εk appearing above can be approxi-
mated as [cf. Eq. (11a)]

εk = −2	(cos dkx + cos dky). (23)

The relevant components of the conductivity tensor from
which the resistivities ρxx (for AMR) and ρxy (for PHE) can be
obtained by inverting a 2 × 2 matrix, are given by α = γ = x
and α = x, γ ; = y, respectively. The problem then is reduced
to a detailed analysis of the bath-averaged time evolution
operator which is the crux of the present work and is presented
in the next section.

III. RELAXATIONAL DYNAMICS

A. A stochastic framework

In order to motivate our calculation of the averaged time-
evolution operator we first put forward a stochastic model
picture. The physical scenario in interpretating the expression
in the integrand of Eq. (22) is the following. In the reciprocal
Bloch space, we start from a band velocity vB

k,α at time t = o.
As time progresses the velocity of the electron undergoes
multiple scattering processes due to defects or phonons or
other electrons, etc., as in the Drude model [20]. We assume
the scattering to be a Markov process for which only the initial
and the final steps matter. The interpretation of (U (t ))av is that
it is a conditional probability of, given that the initial velocity
is vB

k,α , finding the velocity as vB
k,γ at time t . For a stationary

Markov process

(U (t ))av = exp (W t ), (24)

where W is the (time-independent) “relaxation matrix” or the
“rate matrix.”

One familiar approach in gas phase spectroscopy, adequate
for our motivational purpose, is to imagine “strong collisions”
for the underlying scattering processes in which W is assumed
to have the form [32,29]

W = ν (T − I ), (25)

where ν is a mean rate of collisions, T is a collision matrix,
and I is the unit matrix. The strong collision model assumes

(k, k|T |k′, k′) = p(k′), (26)

independent of the initial momentum state |k〉, p(k′) being the
a priori probability of landing into the momentum state |k′〉.
Evidently, the form of T is consistent with detailed balance of
transitions, which further yields

(U (t ))av = exp(−νt ) δk,k′ + [1 − exp(−νt )] p(k′). (27)

When we substitute Eq. (27) into Eq. (22) only the diagonal
term—the first term on the right in Eq. (27)—survives the
independent summation over k and k′; it corresponds to the
decaying velocity correlation from its initial value in a given
kth state. On the other hand, the second square-bracketed term
describes the decay of the mean velocity which is related to
the time derivative of the mean position. Because the latter
is zero in the absence of a forcing field, we are led to the
Boltzmann kinetic theory formula of Eq. (2), upon carrying
out the time integral in Eq. (27), provided we identify the
inverse of ν as the Drude relaxation time τ . The purpose of
this section is to present below a microscopic justification for
this Markov scenario.

B. Connection with particle diffusion

Before we embark on our system-plus-bath analysis (in
Sec. III C below) we make a further preliminary discussion
on how to connect the conductivity to particle diffusivity.
To do this, we take note of the parameter range of our at-
tention, as amplified in Sec. II C. It is clear that once the
band velocities are specified in accordance with Eq. (14) viz.,
vx(k) = ∂εk/∂kx and vy(k) = ∂εk/∂ky, the time evolution
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(sans the Rashba and Zeeman interactions) proceeds indepen-
dently along the x and y axes. Thus, as far as the relaxation
dynamics are concerned, we may look at the simpler one-
dimensional problem in computing the correlation function

Cxx(t ) = 〈vx(o)vx(t )〉, vx(t ) = [(U (t ))av vx(o)], (28)

and employ a stratagem to relate C(t) to the particle diffusiv-
ity. For this, it is to be noted that the position operator from
which the velocity operator is derived is

X (t ) = X (o) +
∫ t

o
dt ′ vx(t ′), (29)

and hence the variance is given by

〈[X (t ) − X (o)]2〉 =
∫ t

o
dt ′

∫ t

o
dt ′〈vx(t ′′)vx(t ′)〉

= 2
∫ t

o
dt ′(t − t ′)C(t ′), (30)

where, in the last step, we brought in a prefactor 2 by first
changing the upper limit of the second integral over t ′′ to
t ′ instead of t , used stationarity of the velocity correlation,
did one partial integration over t ′′, and, finally, employed the
definition of C(t) as in Eq. (28). The procedure is standard in
the theory of diffusion processes [31]. From Eq. (30) we then
immediately have a relation between the electrical conductiv-
ity σxx and particle diffusivity Dxx, because

Dxx = Lim (t → ∞) [(d/dt )〈(X (t ) − X (o))2〉]

=
∫ ∞

o
dt Cxx (t ). (31)

The above scenario can be immediately adapted to the
one-dimensional version of the TB model at hand for which
the position operator has the structure

X = dNx = d�nx|nx〉〈nx|, (32)

and the corresponding velocity operator is

vx= − i[Ho, Nx], (33)

where now [cf., Eq. (6)],

Ho = −	(Kx + K†
x ), Kx = �nx|nx〉〈nx + d|. (34)

Thus [cf. Eq. (8)]

vx = −id 	(Kx − K†
x ). (35)

In the preceding discussion, we have employed the com-
mutation properties, special to the TB model [28]

[Nx, Kx] = −Kx, [Nx, K†
x ] = K†

x . (36)

C. Spin-boson-like model for diffusivity

With the material in Secs. III A and III B at hand, our objec-
tive now is to relate our conductivity calculation to the particle
diffusivity for a TB chain. The result for the diffusivity al-
ready exists in the literature [26,27,33] but, for the sake of
contextuality and for consistency with notations employed in
this paper, we outline the treatment based on the system-bath
approach outlined above. We therefore spell out the form of

the total Hamiltonian in Eq. (17) which now reads

H = Ho + HI + HB, Ho = −	(Kx + K†
x ),

HI = dNx�gq(bq + b†
q), HB = �ωqb†

qbq. (37)

Relaxation occurs because HI commutes with neither Ho

nor HB, causing energy transfer between the two otherwise
independent systems. The Hamiltonian is spin-boson-like for
dissipative tunneling in a symmetric double well wherein the
tunneling term in Ho replaces −	σx while the occupation
operator Nx stands for σz [34–36].

In order that the coupling strength gq may be treated to
all orders in perturbation it is useful to make a “polaronic”
transformation [37–41] on H with the aid of

S = exp −Nx�q(gq/2ωq) (bq − b†
q). (38)

Using the commutation relations in Eq. (36) the trans-
formed Hamiltonian reads

H ′ = SHS−1 = −	(KxB+ + K†
x B−) + HB,

(39)
B+ = exp (gq/2ωq) (bq − b†

q),

where B− is obtained by the Hermitian adjoint of B+. The
polaronic transformation then transfers the onus of the cou-
pling to the tunneling term itself which further implies that
any perturbation treatment would be tantamount to results up
to the order 	 [2] though interaction with the bath is treated
to all orders [42].

Unlike in the correlation function occurring in the Kubo
formula, in which we work in the Heisenberg picture wherein
the time dependence is assigned to the velocity operator, it is
convenient to invoke the Schrödinger picture in which it is the
density operator that is endowed with time dependence. Thus,
the time variation of the mean-squared position is obtained
from

(d/dt )
〈
N2

x (t )
〉 = Tr

[
(d/dt )ρ(t )N2

x (o)
]
, (40)

where

(d/dt )ρ(t ) = −i [H, ρ(t )]. (41)

Because the transformation under S leaves the number
operator Nx invariant we may equivalently express Eq. (40)
as

(d/dt )
〈
N2

x (t )
〉 = Tr

[
(d/dt )ρ ′(t ) N2

x (o)
]
, (42)

where ρ ′(t ) is the polaron-transformed density operator that
obeys the modified Liouville equation

(d/dt )ρ ′(t ) = −i [H ′, ρ ′(t )], (43)

the solution of which reads

ρ ′(t ) = e−i H′ tρ ′(o) ei H′ t. (44)

Consistent with our relaxation theory approach the initial
density matrix retains its factorized form, i.e.,

ρ ′ (o) = ρ(o) = ρo × ρb. (45)

The mathematical meaning of the step above is to choose
that the electron is initially localized at a given site, the occu-
pation operator of which commutes with S [26].
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The next step, necessary for ascribing time dependence to
the new bath operators B+ and B−, is to go to the interaction
picture,

H ′
I (t ) = exp(itHb)H ′

I exp(−itHb),

HI(t ) = −	[KxB+(t ) + K†
x B−(t )],

B′
+(t ) = exp(itHb) B+(o) exp(−itHb). (46)

The polaron-transformed density operator in the interac-
tion picture,

ρ ′
I (t ) = exp (−itHb)ρ ′(t ) exp (−itHb), (47)

now obeys the equation

(d/dt )ρ ′
I (t ) = −i[HI (t ), ρ ′

I (t )]. (48)

Because Hb, inherent in the interaction picture, commutes
with Nx, we may write the trace operation in Eq. (38) in a
disjointed form,

(d/dt )
〈
N2

x (t )
〉 = Trs

{
[(d/dt )(U (t ))avρo]N2

x (o)
}
, (49)

where Trs {. . .} denotes a restricted trace operation over the
Hilbert space of Ho in Eq. (30) and [U (t )]av is the bath-
averaged time-evolution operator, given by Eq. (19).

Defining then a time-evolved density operator for the sys-
tem alone, as

ρo(t ) = [(U (t ))avρ
′
I (t )], (50)

it can be shown to obey a time-convolution-less master equa-
tion of the Gorini-Kossakowski-Sudarshan-Lindblad form
[43],

(d/dt )ρo(t ) = [(U (t ))avρo(t )]

=
∫ ∞

o
dt ′ Trb[HI (t ′), [HI (o), ρBρo(t )]]. (51)

Our remaining task is to substitute Eq. (51) into Eq. (49)
and compute the mean-squared displacement. This task has
already been carried out in [26] although the authors had
employed the time-convolution form of the master equation.
It has been pointed out by the same authors however that the
result for the mean-squared displacement is independent of
whether one uses the time-convolution or time-convolution-
less master equation [33].

The final expression for the time variation of the mean-
squared displacement reads [26]

(d/dt )〈[dNx(t )]2〉 = (d	)2
∫ t

o
dt ′〈〈B−(o)B+(t ′)〉〉 + c.c.,

(52)
where the double angular brackets represent thermal average
over the heat bath, and c.c. signifies the complex conjugate.
We have [19]

〈〈B−(o)B+(t )〉〉 = exp −
∫ ∞

o
dω[J (ω)/ω2][coth (βω/2)

× (1 − cos ωt ) + i sin ωt]}, (53)

where we have gone to a continuum limit of the bosonic
excitations of the bath and concomitantly have introduced
a spectral density J(ω). Note that if the bath were absent

[J (ω) = o] we would recover ballistic motion wherein

〈[dNx(t )]2〉 → (d	t )2, (54)

which prompts us to define a quantal velocity as [28]

vqu = (d	), (55)

independent of the band index k. Additionally when we
switch on the bath, the averaged time-evolution operator,
embodied under the integral over t in Eq. (52), remains in-
dependent of k, which turns out to be in conformity with the
assumption, which was stipulated at the outset in [22].

Goaded by the observation in the paragraph above, we can
identify the matrix elements of the time-development operator
as

(k, k|(U (t ))av|k′, k′) = 〈〈B−(o)B+(t ′)〉〉 + c.c.δ′
k k. (56)

Interestingly, this form is already inherent in our earlier
stochastic model considerations [cf. Eq. (27)]. Our final result
for the conductivity tensor can then be written as

σαγ = (e2/m)
∫ ∞

0
dt�B, k[−(∂ fk/∂εk )] vB

k, α vB
k, y,

× exp

{
−

∫ ∞

o
dω[J (ω)/ω2]

×[coth (βω/2)(1 − cos ωt ) + i sin ωt] + c.c.

}
. (57)

At first sight, the conductivity expression appears to have
the Boltzmann kinetic theory form. However, what is note-
worthy is that the relaxation time τ , though independent of k,
has a much richer structure given by

τ =
∫ ∞

0
dt exp

{
−

∫ ∞

0
dω[J (ω)/ω2]

× [coth (βω/2) (1 − cos ωt ) + i sin ωt] + c.c.

}
.

(58)

This expression for τ is quite general irrespective of
whether we are dealing with a phononic or an electronic
bath. The latter feature can be only unravelled when we make
specific inputs about the spectral density J(ω). We shall make
a further analysis of τ in the next section when we delve into
the experimental results in light of Eq. (57).

IV. FREQUENCY SCALES AND COMPARISON
WITH EXPERIMENT

As stressed earlier, the characteristics of the heat bath cap-
tured by the spectral density J(ω) naturally depend on whether
the excitations are mediated by phonons or other electrons or
impurities, leading to various levels of complexity [19]. How-
ever, and for illustrative purposes, we will present results for
the much-used Ohmic dissipation model—an apt description
of electron-hole excitations near the Fermi surface [44]—that
is linear in ω for small ω and is governed by a cutoff frequency
ωc. For the case of the phononic bath the spectral density
is a nonlinear function of ω, with the level of nonlinearity
being dictated by whether the phonons are acoustic or optic
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FIG. 1. (a) Plot of longitudinal resistivity ρxx as a function of in-plane angle ϕ of the applied magnetic field with respect to the electric
field for different values of the magnetic field. (b) Variation of the Hall resistivity ρxy with respect to ϕ for different strengths of the magnetic
field (after [22]).

[19]. While the phonon case can also be analyzed within the
present formulation, we refrain from doing so for the sake
of simplicity in our analytic treatment. Besides, the presently
available experimental data do not warrant such an elaborate
numerical analysis.

It is pertinent however, at this stage, to further amplify the
meaning of Ohmic dissipation. It is well known in a path
integral formulation of the density operator that the reduced
density operator, after tracing out the bath coordinates, yields
an influence functional of the Feynman-Vernon form [31].
This process is facilitated by the factorized form of the initial
density matrix as in Eq. (45) or Eq. (16). What the explicit
assumption of the nature of the bath in terms of quantum har-
monic oscillators and the additional assumption of the Ohmic
nature of the bath excitations does is to make the system obey,
in the Heisenberg picture, a quantum Langevin equation with
constant damping. Otherwise, we will end up with a Langevin
equation endowed with a friction term in the structure of a
memory kernel [31].

First, we discuss high temperature results within the Ohmic
dissipation. By “high temperature” we do not mean such
temperatures at which Kramers barrier activation [45] in the
underlying TB lattice takes place, but simply that kBT � ωc

upon restoring the Planck constant to the right. As it turns
out, it is convenient to employ the so-called Drude cutoff for
describing the high temperature results that assumes for J(ω)
a Lorentzian form [26,33]

J (ω) = 2α ω
[
ω2

c

/(
ω2 + ω2

c

)]
, (59)

where α is the so-called noise parameter that yields the (di-
mensionless) strength of the heat bath coupling. We have then,
from Eq. (58), in the notation of [26],

τ = 2
∫ ∞

0
dt cos[A1(t )] exp[−A2(t )], (60)

A1(t ) = πα[1 − exp(−ωct )],

A2(t ) = −2πα[ωct + exp(−ωct ) − 1]/ωcβ. (61)

Further simplification ensues when we consider the long-
time regime ωct � 1, which is quite appropriate as we are
only interested in the asymptotic expression for the conductiv-
ity. In that situation the exponent acquires the form of a simple
exponential and we recover the Drude τ for the semiclassical

theory of Eq. (2) in which

τ = [
kBT/παω2

c

]
cos(πα). (62)

In the experiments on the other hand, one is interested in
the low temperature region below 10 K for which we must
look into the opposite limit of kBT � ωc, when the expres-
sions for A1(t ) and A2(t ) in Eq. (60) have different and more
complex forms:

A1(t ) = 2α tan−1(ωct ),

A2(t ) = αln
(
1 + ω2

c t2
) + 2α ln{β sinh(πt/β )/πt}. (63)

Once again, we can simplify these expressions by going to
the long-time limit ωct � 1, when

A1(t ) = πα,

A2(t ) = 2α ln{β ωc sin h(πt/β )/π}. (64)

In this case, the Drude time has a much richer structure of

τ = 2 cos (πα)
∫ ∞

o
dt exp {−2α ln [β ωc sin h(πt/β )/π ]}.

(65)
Finally, the relevant band velocities to be substituted into

the conductivity expression in Eq. (57) are obtained by taking
the derivatives of the band energy in Eq. (12) with respect to
the appropriate wave vector components. We find [22]

(v+, −
k )x = −2d	 sin dkx(+,−) (2

√
Sk ) (∂/∂kx) Sk. (66)

A similar expression for (v+,−
k )y holds by replacing kx by

ky. For the purpose of graphical illustration of our analytic
results we rewrite Eq. (57) as

σxx = τ (e2/m) �k[(∂ fk/∂ε+
k )(V +

k,x)2 + (∂ fk/∂ε−
k )(V −

k, x)2],

σxy = τ (e2/m) �k[(∂ fk/∂ε+
k )V +

k,x V +
k,y + (∂ fk/∂ε−

k )V −
k,xV −

k,y].

(67)

Here, τ is given by Eq. (65) while the band velocities are to
be read out from Eq. (66) supplemented by Eqs. (4) and (12).
The corresponding resistivities can be calculated from

ρxx = σxx/
(
σ 2

xx + σ 2
xy

)
, ρxy = σxy/

(
σ 2

xx + σ 2
xy

)
. (68)
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FIG. 2. Plot of dimensionless relaxation time τωc versus
rescaled temperature T/ωc for different values of the noise parameter
and different values of the cut-off frequency ωc.

It is evident that if we multiply the resistivities by τ , the an-
gular variation of the rescaled resistivity will be governed by
the ϕ dependence of the band velocities. This is demonstrated
in Fig. 1(a) by plotting the longitudinal resistivity (AMR) ρxx

as a function of the in-plane angle ϕ of the applied mag-
netic field with respect to the electric field, and in Fig. 1(b),
the corresponding Hall resistivity (in PHE) ρxy, for different
strengths of the magnetic field. The transition from a two-peak
to a four-peak structure of the Hall resistivity is very much in
conformity with experimental observations [22].

However, what was not measured so far in the experiments
is the temperature dependence of the oscillation amplitudes,
plotted in Fig. 1. This would need a separate calculation for
the relaxation time τ as in Eq. (65) which is one of the main
thrusts of the present paper. In addition to the temperature,
τ depends on the noise parameter α and the bath cutoff
frequency ωc, both of which emerge from our microscopic
treatment of the quantum heat bath. These results are pre-
sented in Fig. 2 which illustrate the temperature variation
of the relaxation time τ for distinct values of α and ωc. As
would have been anticipated, τ monotonically decreases as
the temperature increases towards the classical limit.

V. SUMMARY AND CONCLUDING REMARKS

We have presented here a comprehensive treatment of
the Rashba coupling-dominated oxide layers in which planar
resistivities have been earlier measured at low tempera-
tures in the presence of an in-plane magnetic field. Three
distinct kinds of interactions dominate the physics of this
two-dimensional spintronic system. Of these, the band energy
turns out to be more than three orders of magnitude larger
than the competing effects of the Rashba energy arising from
the intrinsic electric field normal to the oxide layer and the
Zeeman energy due to the applied magnetic field. The exper-
imental probe is a weak, time-independent electric field (or
current), also applied in the plane. The corresponding linear
response is governed by the Kubo conductivity tensors.

Our theoretical analysis is based on a fully quantum
mechanical system-plus-bath approach in which ideas of dis-
sipative quantum systems have been employed that make
use of the familiar spin-boson Hamiltonian. Thus, we go
beyond the extant semiclassical treatment that pivots around
the classical Boltzmann transport equation. We show that the
largeness of the band energy in comparison with the Rashba
and the Zeeman couplings yields a simplified formalism
in which the conductivity can be related to the particle-
diffusivity in the manner of an Einstein kind of relation. As a
result, the average time-development operator becomes inde-
pendent of the band indices k and a Boltzmann equation-type
conductivity formula emerges albeit the underlying relaxation
time explicitly depends on the temperature and other bath
parameters—features that are outside the realm of semiclas-
sical methods. It is an interesting theoretical issue to relax
the condition of the largeness of the band energy and treat
it on the same footing as the Rashba and the Zeeman energies.
The necessary framework is expected to need a more elaborate
investigation of the master equation for the density operator.
Such a treatment, beyond the scope of the present study, is left
for future work.
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