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Plasmon-enhanced optical nonlinearity in graphene nanomeshes
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Using the density-matrix formalism, we show that graphene nanomeshes (GNMs)—graphene sheets patterned
with antidots—have large plasmon-enhanced nonlinear optical response. GNMs can be designed to behave
as quasi-one-dimensional plasmonic crystals in which plasmons with large propagation lengths are efficiently
excited. The associated third-order Kerr and third-harmonic-generation susceptibility can be as high as 10−7 and
10−9 m2 V−2, respectively, over the mid-to-near-infrared frequency range. Furthermore, carrier-density tuning
in GNMs can flip the propagation direction of plasmonic waves and enables bidirectional switching of optical
signals.
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I. INTRODUCTION

Nonlinear optics offers a promising platform for control-
ling and manipulating light at the nanoscale for nanophotonic
applications [1–5]. Nonlinear optics relies on matter-mediated
photon-photon interactions, which are intrinsically very weak.
Hence, realizing nonlinear nanophotonics requires new mate-
rials and structures that will enhance nonlinear optical effects.

Graphene, the two-dimensional allotrope of carbon, offers
a promising plasmonic platform for optoelectronic and pho-
tonic applications [6–8]. Being a semimetal, graphene has a
lower electronic density of states and a lower number of free
carriers per atom than metals [9]. As a result, plasmons in
graphene are found in a lower frequency range (mid-to-near-
infrared) than in metals (near-infrared to ultraviolet) [10–13].
This makes graphene a more suitable platform for applications
in the telecom spectrum [6–8]. Another advantage of graphene
with respect to metals is that the graphene carrier density and,
consequently, its optoelectronic properties can be electrically
tuned by an external gate voltage. Graphene supports electri-
cally tunable sheet carrier densities of up to ns = 1014 cm−2,
or equivalently, the Fermi energies of up to EF = h̄vF

√
ns ≈

1.2 eV, with the Fermi velocity vF = 106 m s−1 [14–16].
Graphene and its nanostructures strongly interact with

light and are a fitting class of materials for nonlinear op-
tics applications [17,18]. It is therefore not surprising that
graphene nonlinear optics and graphene plasmonics have both
been very active areas of research in recent years [6,19,20].
A proven way to enhance light-matter interaction and non-
linear response is by integration of graphene with systems
that support photonic resonances [1,21–27]. An alternative is
through plasmonic field enhancement combined with quan-
tum confinement [28], which is attractive because of electrical
tunability of the carrier density (and thus plasmonic reso-
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nances) by a back gate. For example, plasmon-enhanced Kerr
nonlinearity of small graphene nanoislands with sub-10-nm
features could be as large as 10−11 m2 V−2, almost four or-
ders of magnitude greater than in graphene sheets [18,29].
However, the synthesis of sub-10-nm nanoislands with precise
geometry, size, and edge termination, which is required for the
control of their plasmonic response [18], is very challenging
and makes these systems difficult to envision in integrated
nanophotonics applications.

In contrast, the synthesis of graphene sheets and integration
of them into nanophotonics and nanoelectronics are mature,
well-developed processes [30,31]. However, launching propa-
gating plasmonic waves in graphene is challenging in practice
because the wave vectors of graphene plasmons are much
larger than the wave vector of the free-space electromagnetic
waves with the same frequency. Owing to the wave vector
mismatch, graphene plasmons cannot be simply excited by
free-space light. Fortunately, one can launch propagating plas-
monic waves in graphene sheets and ribbons patterned with
periodically distributed antidots (holes). The periodicity aids
with momentum conservation, which enables plasmon exci-
tation. Successful plasmon excitation in these structures has
been experimentally demonstrated [32–36].

In this paper, we show that graphene nanomeshes
(GNMs)—graphene sheets patterned with antidots—offer a
promising core material for nonlinear optics applications.
Figure 1 shows the schematic of our proposed graphene
nanomesh sitting on the hexagonal boron nitride (hBN) sub-
strate. The GNM can be fabricated by etching a rectangular
antidot superlattice out of the supported graphene sheet. The
antidot diameter is d and superlattice periods are a and 10a
along the x and y axes, respectively. We chose a periodic-
ity of a = 100 nm and the antidot diameter of d = 30 nm.
Fabrication of such antidot superlattices is entirely feasible
using existing experimental techniques [30,37]. We show that
properly designed GNMs support plasmonic waves with long
propagating lengths in the mid-to-near-infrared frequency
range. Owing to the plasmonic field enhancement, GNMs
have a dynamically tunable, broadband, and strong nonlin-
ear plasmonic response. The GNM third-harmonic-generation
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FIG. 1. Schematic of a graphene nanomesh, placed on an hBN
substrate. Incident light with in-plane TM polarization (meaning
nonzero electric-field component along the plasmon-propagation
direction) causes linear as well as third-order nonlinear optical re-
sponses. Inset: The unit cell of the rectangular superlattice: The
lattice constants along the x and y axes are a and 10a, respectively.
The antidot diameter is d .

and third-order Kerr susceptibilities can be as high as 10−9

and 10−7 m2 V−2, respectively. The latter values far exceed
the Kerr susceptibilities of 10−13 to 10−11 m2 V−2 reported
in other two-dimensional systems such as graphdiyne [38],
black phosphorus [39], tin sufide [40], and tellurium-based
devices [41]. Our findings reveal the capability of quasi-one-
dimensional GNMs for nonlinear nanophotonic applications,
particularly bidirectional switching and modulation of optical
signals.

The rest of the paper is organized as follows. In Sec. II,
we overview the theoretical model and discuss the dominant
scattering mechanisms in the different carrier-density ranges.
In Sec. III, we focus on the plasmonic and optical properties
of the GNMs. We conclude in Sec. IV.

II. THEORETICAL MODEL

The plasmonic excitations of the GNM in Fig. 1(a) are
calculated using the density-matrix approach [17,42,43] in
response to a TM-polarized incident light guided along the x
direction. The time evolution of the electronic density matrix
ρe(t ) in the Schrödinger picture reads

dρe(t )

dt
= − i

h̄
[He + VSCF(t ), ρe(t )] + [ρe(t ) − ρ0]

τF
. (1)

Here, ρ0 is the equilibrium density matrix, He is the unper-
turbed electronic Hamiltonian, VSCF(t ) is the self-consistent
field, and τF denotes the electron relaxation time. To accu-
rately calculate τF , we account for electron scattering via
intrinsic phonons, ionized impurities, surface optical (SO)
phonons of the hBN substrate, and antidot-edge roughness
(AER). For the GNMs of interest, the antidot area is less
than 1% of the unit cell area. Given the relatively tiny
area of antidots, we could accurately approximate the GNM
band structure with the graphene band structure. Hence, the

energy dispersion is approximated as linear and isotropic
Ekl = h̄vF |k|, with l = 1 and l = −1 for the conduction and
valence bands, respectively. We perturbatively solve Eq. (1)
for the density matrix via a similar procedure as in Ref. [17],
and calculate the surface polarization P(s,ps ), with s and ps

denoting the response order and the corresponding harmonic,
respectively. Next, we calculate the macroscopic quantities
such as the linear dielectric function ε, loss function σabs =
−Im{1/ε} (which measures field enhancement), and the sth-
order psth-harmonic nonlinear susceptibility with respect to
the external field (χ (s,ps )). We obtain the plasmon dispersion
by seeking the peaks of the loss function. The plasmon propa-
gation length (Lp) equals 1/�q, where �q is the half width at
half maximum of the loss-function peak in the wave vector
direction [13]. The numerical procedure to solve Eq. (1),
calculation of scattering rates, and optical properties are given
in Appendices A and B. While the derivations of most relevant
scattering rates were published previously in [10], the electron
scattering rate from antidot edge roughness (AER) is new and
had not been published before; details of this derivation can
be found in Appendix B.

In order to have pronounced plasmonic effects, we need
to efficiently couple the diffracted wave and plasmon modes
and excite plasmon modes with sufficiently long propagation
length. To start, it is necessary to have a nonzero compo-
nent of the electric field along the plasmon wave vector (see
Appendix A); if the sheet were considered a planar plasmonic
waveguide, incident light would have to be TM polarized.
While our calculation does not require a specific way of
achieving such excitation, it could be achieved, for example,
by free-space TEM light at oblique incidence. Furthermore,
optimizing the plasmon propagation length and, consequently,
the plasmonic field enhancement requires a thorough knowl-
edge of the contributing plasmon damping pathways. A key
damping pathway is Landau damping, which happens when
a plasmon decays to generate an electron-hole pair. Increas-
ing EF pushes the onset of Landau damping toward higher
frequencies [11,12]. To completely switch off the Landau
damping up to the telecom frequency range, the Fermi energy
should be ∼1 eV (or ns = 7 × 1013 cm−2) [11]. As mentioned
earlier, graphene’s carrier density can be electrically tuned to
these high values by a back-gate bias voltage.

In the absence of Landau damping, other important elec-
tron scattering mechanisms are intrinsic phonons, ionized
impurities, AER, and SO phonons of the hBN substrate. Elec-
tron scattering with intrinsic phonons increases parabolically
with electron energy (see Appendix B). Therefore, at room
temperature and high Fermi energies of interest (∼1 eV),
screened intrinsic phonons become the dominant dissipative
mechanism and significantly diminish the plasmon propaga-
tion lengths. However, screened intrinsic-phonon scattering
decreases with decreasing temperature, and so does its detri-
mental effect on Lp. Figure 2 shows the electron scattering
rates, τ−1(E ), for different scattering mechanisms for EF =
1 eV at 77 K. τ−1 is calculated as a function of energy with
respect to the bottom of the conduction band. We chose very
conservative values for the relevant scattering parameters.
We assume the impurity density 4 × 1011 cm−2, an order
of magnitude larger than in the typical graphene-on-hBN
devices [44]. The AER is assumed to be exponentially
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FIG. 2. Electron relaxation rates for different scattering mecha-
nisms vs energy with respect to the bottom of the conduction band
for a doped GNM with EF = 1.0 eV at 77 K. For the GNM, a =
100 nm and d = 30 nm. The active scattering mechanisms are in-
trinsic phonons (LA/LO phonons), ionized impurities, antidot-edge
roughness (AER), and surface optical (SO) phonons of the hBN sub-
strate. The impurity density is 4 × 1011 cm−2. The AER is assumed
to be exponentially correlated with an rms roughness of 2 nm and a
correlation length of 3 nm. Inset: The GNM electron relaxation time
as a function of the Fermi energy. At low (blue-shaded), intermediate
(magenta-shaded), and high (red-shaded) EF , ionized impurities, SO
phonons, and AER are the dominant scattering mechanisms, respec-
tively. The color of a region in the inset corresponds to the color of
the scattering-rate curve for the dominant mechanism in the main
panel.

correlated, with an rms roughness of 2 nm and a correlation
length of 3 nm. As can be seen, AER scattering is the domi-
nant dissipative mechanism for EF = 1 eV. However, at lower
values of the Fermi energy, other scattering mechanisms dom-
inate. The inset of Fig. 2 shows the electron relaxation time
τF ≡ τ (EF ) as a function of the Fermi energy. At low car-
rier densities, ionized impurities are the dominant scattering
source. If we increase the carrier density up to intermediate
values, SO phonons become the major scattering mechanism.
At high carrier densities, as seen earlier, AER scattering is
the major dissipative mechanism. The AER scattering rate
increases with carrier density but changes negligibly with
temperature. Given the conservative values used to calculate
τF , the electron relaxation time is ∼0.8 ps for EF ≈ 1 eV.

III. PLASMONIC AND OPTICAL RESPONSE
OF GRAPHENE NANOMESHES

Given the electron relaxation time, we can calculate the
plasmon propagation length. Figure 3 shows the normalized
plasmon propagation length Lp/a along the x direction as a
function of frequency for different Fermi energies. Since the
highest optical phonon mode of hBN is 195 meV, we are inter-
ested in the frequencies greater than about 200 meV in order
to avoid plasmon suppression due to the coupling between
plasmons and the substrate SO phonons [10]. With increasing
frequency, Landau damping kicks in and hinders plasmon

FIG. 3. Normalized plasmon propagation length for different
Fermi energies. For lower Fermi energies, Landau damping occurs
at lower frequencies and results in a massive decrease in the plasmon
propagation lengths.

propagation, and requires higher carrier densities to counter.
In Fig. 3, the dips in Lp/a mark the onset of Landau damping.
For EF = 1 eV, Landau damping is negligible in the frequency
range of interest, and we have Lp/a between 8 to 17, with
an average value of 11.8. These long plasmon propagation
lengths imply efficient diffraction coupling and excitation of
plasmonic waves. In contrast to what is happening in the x
direction, plasmons barely travel two lattice constants (20a)
in the y direction and decay too fast to benefit from the
periodic pattern. Since plasmons experience the GNM in
the y direction the same as an unpatterned graphene sheet, the
diffraction coupling is extremely weak to launch plasmons in
this direction. In other words, our designed GNM behaves as a
quasi-one-dimensional (quasi-1D) plasmonic crystal. The 2D
GNM with antidots behaves as quasi-1D plasmonic crystals
by virtue of different periodicity along different axes. A key
advantage of quasi-1D plasmonic crystals over 2D ones is
that plasmonic waves are launched coherently in the prede-
termined direction.

Now, given the appropriately designed GNM, we can in-
vestigate its optical properties by calculating the loss function
(σabs). Figure 4(a) shows the loss function as a function of
EF and frequency. The bright narrow strips correspond to
plasmon resonances. A plasmon is excited when the dif-
ference between the wave vector of the illumination and
the wave vector of the plasmon is an integer multiple of
a reciprocal-lattice vector’s magnitude (i.e., 2πn/a, with
n denoting the diffraction order). For each diffraction or-
der, there is a plasmon branch comprising a pair of bright
narrow strips: Forward-propagating (FWD) and backward-
propagating (BKWD) modes along the x direction. [The
splitting of forward and backward propagation comes from
the asymmetry with respect to the polarization of the in-
put light. There are terms involving a dot product between
the plasmon wave vector and the in-plane electric field that
are key for higher-order field induction; see Eqs. (A4) and
(A6) in Appendix A 1. If plasmons are excited by free-space
light, this would require oblique incidence.] The analytical
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FIG. 4. (a) The GNM loss function as a function of the Fermi energy and frequency. Each branch comprises two modes: Forward- and
backward-propagating waves. (b) Loss function, (c) magnitude of the third-order Kerr susceptibility, and (d) magnitude of the third-harmonic-
generation (THG) susceptibility for a fixed Fermi energy (EF = 1 eV) as a function of frequency for forward-propagating modes. The gray-
shaded areas show the corresponding quantities calculated for the Fermi energy in the range of 0.85 to 1.05 eV. (e) Loss function, (f) magnitude
of third-order Kerr susceptibility, and (g) magnitude of the THG susceptibility for a fixed frequency (ω = 0.8 eV), as a function of the Fermi
energy for forward-propagating (blue) and backward-propagating (red) modes.

plasmon dispersion is n = ξaω2, where ξ = h̄2ε0εb/(e2EF )
and εb denotes the background relative permittivity. (The
background permittivity is defined as the average of the values
for the top and bottom dielectrics. In our case, as the top
half-domain is air, εb = 1+εhBN

2 [10].) Based on the analytical
plasmon dispersion, the frequency separation of two consec-
utive branches (e.g., n and n + 1) equals �ω = (

√
n + 1 −√

n)/
√

ξa, which decreases at higher diffraction orders as
well as higher Fermi energies. Within a branch and for a fixed
Fermi energy, the BKWD and FWD modes are separated by
δω, with the BKWD mode occurring at a smaller frequency.
In the limit of δω � ω, δω is independent of frequency and
equals (2πcξ )−1. For the Fermi energies and frequencies of
interest (EF ∼ 1 eV), δω is ∼5 meV.

After characterizing the plasmonic response of the GNM,
we calculate its nonlinear optical response. Figures 4(b)–4(d)
show the loss function, third-order Kerr susceptibility (χ (3,1)),
and third-harmonic-generation (THG) susceptibility (χ (3,3))
for the FWD modes as a function of frequency and for a
fixed EF . For EF = 1 eV, χ (3,1) and χ (3,3) are as high as 10−7

and 10−9 m2 V−2, respectively. The loss function in Fig. 4(b)
quantifies plasmonic field enhancement, and can be as high as
300–400 at resonance. While plasmon enhancement increases
the GNM optical nonlinearity to unprecedented large values,
its effect is narrowband. Owing to the long propagation length
of plasmons, the loss-function peaks at plasmon resonances
are narrow and, therefore, plasmons significantly enhance
the nonlinear optical response but over a narrow frequency
range. The solution to broaden the nonlinear optical response

is tuning the plasmon resonances by changing the carrier
density by changing the back-gate voltage. The gray-shaded
areas in Figs. 4(b)–4(d) represent the corresponding quan-
tities calculated for Fermi energies in the range of 0.85 to
1.05 eV, or, equivalently, the carrier density range of 5 × 1013

to 8 × 1013 cm−2. By tuning the carrier density over this small
range, very large optical nonlinearity (as high as 10−7 m2 V−2

for χ (3,1) and 10−9 m2 V−2 for χ (3,3)) is achieved over a broad
frequency range. The tunable, broadband, and strong nonlin-
ear plasmonic response makes GNMs an excellent platform
for the modulation of optical signals.

It should be noted that the GNM-on-hBN device also
provides high modulation speed. In the case of our graphene-
based nanomesh, because the carrier mobility is exceptionally
high, the modulation speed is not limited by the carrier transit
time. In fact, the limiting factor is the parasitic response of
the device. For instance, the experimentally measured values
for the unity-power gain frequencies, fmax, of graphene-hBN
devices are ∼10 GHz [45,46].

In addition to modulation applications, GNMs offer im-
pressive capabilities for switching applications. Figures 4(e)–
4(g) show the GNM σabs, χ (3,1), and χ (3,3) as a function of
the Fermi energy at the fiber-optics frequency (ω = 0.8 eV,
or equivalently, 1.55 µm) and for both FWD and BKWD
modes. (See the Supplemental Material for breakdown into
real and imaginary parts [47].) For a given diffraction order
and frequency, the FWD mode is excited at a lower Fermi
energy. By fine-tuning the Fermi energy, which is readily
achieved by a back gate, not only could we control the strength
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of the GNM plasmon and nonlinear optical responses, but
we could also determine the direction of the plasmonic wave.
The latter capability enables bidirectional switching of optical
signals by small changes in the Fermi level, basically moving
the system between FWD and BKWD peaks. It should be
emphasized that, given their frequency separation of ∼5 meV
and carrier-density separation of ∼3 × 1012 cm−2, the FWD
and BKWD modes can be completely resolved.

It is worth emphasizing that the above calculations were
all done for graphene on hBN. For completeness, we also
calculated third-order response of graphene on two other com-
mon substrates, the polar SiO2 and the nonpolar diamondlike
carbon (DLC) [10], and all third-order susceptibilities are
comparable to one another. (See the Supplemental Material
for the role of different substrates [47].) The main reason is
that the AER scattering is the dominant scattering mechanism
in all systems (it overshadows SO scattering in SiO2, and DLC
has no SO scattering). Therefore, the susceptibilities of the
nanomesh do not change drastically on different substrates.
However, SO phonon modes are critical in determining the
operating-frequency range, given that SO phonon modes set
the lower limit of the excitation frequency. Furthermore, the
energy separation between the FWD and BKWD modes de-
pends on the substrate (see above for a δω estimate).

IV. CONCLUSION

In summary, we showed that GNMs have a large plasmon-
enhanced nonlinear optical response. We designed a GNM
that behaves as a quasi-one-dimensional plasmonic crystal in
which plasmons with large propagation lengths are efficiently
excited. The periodicity of the GNM can be optimized for
efficient diffraction coupling at given frequencies. We showed
that the GNM has tunable, broadband, and strong nonlinear
plasmonic response. The third-order Kerr and THG suscepti-
bility can be as high as 10−7 and 10−9 m2 V−2, respectively,
over the mid-to-near-IR range. Moreover, by fine-tuning the
carrier density, we could also switch the direction of the
plasmonic wave. These findings suggest the GNM as a core
material for integrated nanophotonic applications, particularly
for switching and modulation of optical signals.
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APPENDIX A: CALCULATION OF THE GNM NONLINEAR
PLASMONIC RESPONSE

1. The self-consistent-field approximation

Here, we use the perturbation theory to calculate the
graphene nanomesh (GNM) third-order susceptibility. We as-
sume an incident field as Vinc(t ) = Veiq1·r−iωt . r is the position

vector in the x − y plane. The GNM periodic pattern diffracts
the incident light. If a diffracted mode couples with a plasmon
mode, the self-consistent field reads VSCF(t ) = VSCFeiq̃·r−iωt ,
where q̃ is the wave vector of the excited plasmon correspond-
ing to ω and q. The induced carrier density can be written as

n(r, z, t ) = δ(z)
∑
s,ps

n(s,ps )
ind eps (iq̃·r−iωt ), (A1)

where s is a natural number, denoting the perturbation order,
and ps is the harmonics order. Given the expansion of the
induced carrier density, the inhomogeneous wave equation for
the induced potential energy, V (s,ps )

ind (z), reads[
∂

∂2z
+ (

iQps

)2
]
V (s)

ind (psω, z) = − −e

εbε0
n(s,ps )δ(z), (A2)

where (iQps )
2 = εb(psω)2

c2 − |psq̃|2. In the nonretarded regime,
we can assume Qps ≈ |psq̃|. By solving the above equation for
V (s,ps )

ind (z), we obtain

V (s,ps )
ind (z) = e2

εb(psω)ε0

e−Qps |z|

2Qps

n(s,ps ). (A3)

Since we assumed that the quasi-two-dimensional (quasi-2D)
system is lying in the z = 0 plane, we calculate all quantities at
z = 0 and, to simplify the notation, from now on we drop the z
argument. We also assume incident in-plane polarization to be
along the x axis. By knowing that −eE (s,ps )

ind = −i(psq̃)V (s,ps )
ind ,

we rewrite Eq. (A3) in terms of the electric fields:

E (s,ps )
ind =−i(psq̃) · ex

εb(psω)ε0

P(s,ps )

2Qps

(
e

q̃

)s

E
s+ps

2 E∗ s−ps
2 , (A4)

where we defined polarization as

P(s,ps ) = −en(s,ps )

VSCF
s+ ps

2 V ∗
SCF

s−ps
2

. (A5)

(Note the q̃ · ex term stemming from the incident field’s in-
plane polarization along the x direction.) From Eq. (A4), one
can simply obtain an expression for the nonlinear optical
susceptibility in response to the incident field:

χ (s,ps ) =−i(psq̃) · ex

εb(psω)ε0

P(s1+s2 )(p1ω1 + p2ω2)

2ε̃(s,ps )Qps

(
e

q̃

)s

, (A6)

where ε̃(s,ps ) ≡ ε(q̃, ω1)
s+ps

2 ε∗(q̃, ω1)
s−ps

2 and q̃(ω) is the
diffracted wave vector that results in the maximum loss
function among all the diffracted wave vectors. The surface
polarization P(s1+s2 ), needed to obtain the linear as well as
nonlinear susceptibility is calculated next, based on a master-
equation formalism.

2. The master-equation formalism

We assume He to be the unperturbed Hamiltonian of free
electrons in the GNM lattice, with its eigenkets and eigenen-
ergies being represented by |kl〉 and εkl , respectively. k is
the in-plane electron wave vector and l is the band index.
The sth-order and psth-harmonic induced charge density and
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polarization in the second-quantization representation are

n(s,ps )
ind = 1

A

∑
k,l ′,l

〈
c†

kl ck+ps q̃l ′
〉(s,ps )

(kl|k + psq̃l ′),

(A7)

P(s,ps ) = − e

A

∑
k,l ′,l

〈
c†

kl ck+ps q̃l ′
〉(s,ps )

(kl|k + psq̃l ′)

VSCF
s+ps

2 V ∗
SCF

s−ps
2

,

where c and c† are the electronic creation and destruction
operators, respectively, and (k′l ′|kl ) ≡ 〈k′l ′| exp[−i(k − k′) ·
r]|kl〉. Now, we derive a quantum-master equation and per-
turbatively solve it for the higher-order coherence terms,
i.e., 〈c†

kl ck+ps q̃l ′ 〉(s,ps ). The total Hamiltonian within the self-
consistent-field approximation is

H(t ) = He + VSCF(t ), (A8)

where VSCF(t ) = ∑
k,l ′,l VSCFe−iωt (k + q̃l ′|kl )c†

k+q̃l ′ckl + H.c.
In the Schrödinger picture, the equation of motion for the
density matrix is

dρe(t )

dt
= − i

h̄
[He, ρe(t )] − i

h̄
[VSCF(t ), ρe(t )]

− 1

τF
[ρe(t ) − ρe(0)], (A9)

where τF is the electron relaxation time. Now, we use a pertur-
bative approach to solve Eq. (A9) for the density operator. The
perturbation expansion of ρe(t ) is

∑
sps

ρ
(s,ps )
e e−i(psω)t + H.c.

By substituting the perturbation expansion of the density ma-
trix into Eq. (A9), using the mean-field approximation, and
seeking the harmonic solutions, the equation of motion for
〈c†

kl ck+ps q̃l ′ 〉(s,ps ) would be

h̄psω1〈c†
kl ck+ps q̃l ′ 〉(s,ps ) = (εk+ps q̃l ′ − εkl )〈c†

kl ck+ps q̃l ′ 〉(s,ps ) − ih̄

τF
〈c†

kl ck+ps q̃l ′ 〉(s,ps )

+ VSCF

∑
k′mm′

tre
{[

c†
k′+q̃m′ck′m, ρ (s−1,ps−1)

e

]
c†

kl ck+ps q̃l ′
}
(k′ + q̃m′|k′m)

+ V ∗
SCF

∑
k′mm′

tre
{[

c†
k′−q̃m′ck′m, ρ (s−1,ps+1)

e

]
c†

kl ck+ps q̃l ′
}
(k′ − q̃m′|k′m). (A10)

By discretizing the Brillouin zone and employing the vectorial
form, Eq. (A10) could be solved numerically. It should be
noted that the quartic terms of creation/destruction operators
can be simplified to multiplication of two quadratic terms via
Wick’s theorem and mean-field approximation [10].

APPENDIX B: SCATTERING RATES

To accurately calculate τF , we account for electron scat-
tering via intrinsic phonons, ionized impurities, SO phonons
of the hBN substrate, and antidot edge roughness (AER). The
expression for the SO-phonon and ionized-impurity scattering
rates are provided in Ref. [10]. The screened intrinsic phonon
scattering rate reads [16]

�m(E ) = 8

π

D2
ph

�vs

E2

h̄3v3
F

∫ 1

0

�BG

T

x4
√

1 − x2

(ex�BG/T − 1)2
dx, (B1)

where T is the lattice temperature and �BG = 2EF vs/(vF kB)
is the Bloch-Gruneisen temperature. Dph = 25 eV is the de-
formation potential and vs = 2 × 104 m s−1 denotes the sound
velocity in graphene.

Antidot edge roughness: Interaction Hamiltonian
and scattering rate

Here, we derive the interaction Hamiltonian and scattering
rate of electrons and antidot edge roughness (AER) in a quasi-
2D electronic system. The charge density can be assumed as

ρ = −ensδr(z), (B2)

where ns is the surface carrier density. The carrier density’s
variation due to the edge roughness of an antidot centered
at the origin with radius of r0 = d/2, in the cylindrical

coordinates, is

δρ(r, z) = δr(θ )
∂n

∂r
= −ensδr(θ )δr(r − r0)δr(z), (B3)

where δr(θ ′) denotes the edge roughness of the antidot. The
electric potential due to δρ(r) of the antidot is

δ�0(r) = −ens

4πεsκb

∫∫∫
d2r′dz′ 1

|r − r′|δr(θ ′)δr(r′−r0)δr(z′).

(B4)

The 0 subscript denotes that the antidot is centered at the
origin. Taking the Fourier transform of δ�0(r) yields

δ�0(q) ≡ 1

A

∫∫
δ�(r)eiq·rd2r

= −ens

4πεsκb

2π

qA

∫
dθ ′r0δr(θ ′)eiqr0 cos θ ′

. (B5)

The edge roughness function, δr(θ ′), is a periodic func-
tion with a periodicity of 2π . The Fourier series of δr(θ ′)
is

∑
n �neinθ ′

. Substituting δr(θ ′) with its Fourier series
and incorporating eiqr0 cos θ ′ = ∑

m imJm(qr0)eimθ ′
in the above

equation, we obtain

δ�0(q) = −ens

4πεsκb

2π

qA

∑
nm

r0�nimJm(qr0)
∫

dθ ′einθ ′
eimθ ′

= −ens

εsκb

π

qA

[
r0�0J0(qr0) + 2

∞∑
n=1

r0�ninJn(qr0)

]
.

(B6)

In a similar way, it can be shown that the electric potential
induced by the edge roughness of an antidot centered at R0
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is δ�R0 (q) = eiq·R0δ�0(q). However, assuming the same edge
roughness for all the antidots results in an overestimation
of the effective electric potential. To fix this, we substitute

δr(θ ′) in Eq. (B5) with δr(θ ′ + θr ). θr is a random angle with
uniform distribution in the [−π, π ] range. Now, we rewrite
Eq. (B6) for an arbitrary θr :

δ�R0 (q, θr ) = eiq·R0
−ens

εsκb

π

qA
×

[
r0�0J0(qr0) + 2

∞∑
n=1

r0�ninJn(qr0) cos(nθr )

]
. (B7)

To obtain the effective electric potential induced by the ensemble of the antidots, we calculate the rms value of �R0 (q, θr ):

δ�0(q, θr ) = −ens

εsκb

π

qA

[
r0�0J0(qr0) + 2

∞∑
n=1

r0�ninJn(qr0) cos(nθr )

]
. (B8)

Therefore, the effective electric potential is

δ�eff(q) =
√∑

R0

|eiq·R0δ�0(q, θr (R0))|2 =
√

nAD

A

e2ns

εsκb

π

q

[
r0�0J0(qr0) + 2

∞∑
n=1

r0�ninJn(qr0)

]
, (B9)

where nAD denotes the sheet density of antidots. Given the effective electric potential induced by the ensemble of the antidots,
the transition rate from an eigenstate |k′l ′〉 to another eigenstate |kl〉 via AER scattering is

S (kl, k′l ′) = 2π

h̄

nAD

A

[
πe2ns

εsκb|ε(k − k′, ω = 0)|
1

|k − k′|
]2

[
r0�0J0(qr0)+2

∞∑
n=1

r0�ninJn(qr0)

]
|(k′l ′|kl )|2δr(εkl − εk′l ′ ). (B10)

In graphene, εkl = l h̄vF k and |(k′l ′|kl )|2 = (1 + cos α)/2, with α being the angle between k and k′. Assuming an exponential
correlation function for the edge roughness function, |�n|2 = (πd/2)−1�2�(1 + 4n2

d2 �2)−1, where � and � are the rms
roughness and the correlation length, respectively. The expression for �n is accurate for e−πr0/� � 1. The AER scattering
for the exponentially correlated antidot edge roughness reads

�ab/em
m (kl ) = nAD

8π h̄

(
πe2ns

εsκbκ∗

)2
k

h̄vF

∫
dα

[
d�0J0

(
kd sin α

2

)]2 + 2
∑∞

n=1

[
d�nJn

(
kd sin α

2

)]2

(
2k sin α

2 + qTF
)2

1 − cos2 α

2
, (B11)

where qTF represents the Thomas-Fermi screening wave vector [12].
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