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Lateral line profiles in fast-atom diffraction at surfaces
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Grazing incidence fast-atom diffraction (GIFAD) uses keV atoms to probe the topmost layer of crystalline
surfaces. The atoms are scattered by the potential energy landscape of the surface onto elastic diffraction spots
located at the Bragg angles and on the Laue circle. However, atoms transfer a significant momentum to the
surface, giving rise to possible phonon excitation. This causes the inelastic intensity to spread above and below
the circle along the direction of the surface normal. The relative intensity of the elastic contribution is well
fitted by the Debye-Waller model adapted to GIFAD, but the composite azimuthal line profile governing the
ability to resolve diffraction spots has not been investigated in detail. The paper reports a series of diffraction
measurements of helium on a LiF(001) surface revealing marked differences in the polar (θ ) and lateral (φ)
inelastic profiles but also similarities in the evolution of their line widths σθ and σφ . We observe two regimes:
When elastic diffraction is significant, the Laue circle appears as a reference for inelastic diffraction; the
azimuthal inelastic line shape is an exponential decay and its width increases almost linearly as the scattering
angle deviates from the specular condition. When elastic diffraction weakens, the inelastic line shape evolves
towards a Gaussian and its width is no longer minimum on the Laue circle. As a possible difference with x ray,
neutrons, and electrons, the in-plane motion of surface atoms may not be the dominant cause of the broadening
of the lateral profile in GIFAD.
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I. INTRODUCTION

Grazing incidence fast-atom diffraction at crystal surfaces
(GIFAD or FAD) uses atoms in the keV energy range at
incidence angles around 1◦, so that the largest component of
the velocity or wave vector is parallel to the surface (see Fig. 1
and Table IV). When the surface coherence permits, a rich
diffraction pattern containing up to a hundred well-resolved
diffraction orders can be obtained [1] on a position-sensitive
detector [2]. GIFAD is fast enough to produce several images
per second allowing online tracking of thin film growth in
UHV conditions [3]. Both detection and collection efficien-
cies are close to one because the large projectile kinetic energy
gives rise to a small value of the Bragg angle φB � G⊥/k‖ (see
Table I) where G⊥ is the reciprocal lattice vector and k‖ the
projectile wave vector along the probed crystal axis.

The drawback is that the diffraction spots are close to each
other requiring an angular resolution of a few mdeg. In ad-
dition, the large mass of the projectile gives rise to important
inelastic effects so that the elastic diffraction peaks are accom-
panied by an inelastic component. The resulting azimuthal
line shape is therefore composite but has never been addressed
as such. This is in part because the elastic diffraction was not
observed until Refs. [1,4–7], probably due to a limited surface
coherence in earlier work. The investigation of the azimuthal
(lateral) line shape and in particular the inelastic component
is the main focus of the present paper. As with all diffraction
techniques, the location of the diffraction spot only indicates
the surface periodicity while the detailed information on what
constitutes the unit cell is associated with the relative intensity
Im of the elastic diffraction orders (�mIm = 1). An accurate

comparison with theory requires a careful evaluation of inten-
sities taking into account the spot profile contaminated by the
inelastic profile and the possible overlap of adjacent diffrac-
tion orders. In addition, a better description of the inelastic
profile might provide a better understanding of the inelastic
processes at play.

The elastic profile is represented by a delta function δ(x)
with a weight a and the inelastic one by a function f (φ) listed
in Table II and a weight (1 − a). The sum is then convoluted
(noted *) by a Gaussian of width σb fitted to the beam profile
measured immediately before or after the experiment. The
composite profile, noted f ∗ is given in Eq. (1).

f ∗(φ) = [aδ(φ) + (1 − a) f (φ)] ∗ e−φ2/2σ 2
b . (1)

The paper is organized as follows. Sections II and III
are a brief presentation of the GIFAD technique and elastic
diffraction. Section IV reports the present status of inelas-
tic diffraction and polar and azimuthal line profiles before
analyzing experimental results. The overall line profile is
characterized in Sec. V where its evolution with the pro-
jectile energy and angle of incidence as well as with the
surface temperature and crystallographic direction is reported
in dedicated sections. In particular, Sec. V B presents evidence
that the overall azimuthal line shape does not depend on the
probed crystal direction. Section V C compares the different
forms of line profiles to data recorded in the quasiclassical
region where elastic diffraction is weak and in the quasielastic
region where it is dominant. It emphasizes that the proposed
two-component profile representing the elastic and inelastic
components allows a fair estimate of the Debye-Waller factor
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TABLE I. Bragg angles φB under different conditions.

Direction d⊥ G⊥ = 2π/d⊥ φB at 500 eV φB at 5 keV

[100] 2.02 Å 3.11 Å−1 0.183◦ 0.058◦

[110] 2.85 Å 2.20 Å−1 0.13◦ 0.04◦

(DWF) from the azimuthal line shape close to the one derived
from the decomposition of the polar profile. Similarities and
differences between the overall polar and azimuthal profiles
are also discussed. Section VI corresponds to restrictions of
the above discussions to the azimuthal profile located on the
Laue circle defined by | �k f | = |�ki| where the elastic component
is located so that the contrast with inelastic diffraction is max-
imal. The influence of the line profile on the determination of
the diffracted intensities Im is discussed here. Section VII ex-
tends to any value of the polar angle by investigating internal
dependencies along θ f and φ f within a diffraction image. The
quasielastic and quasiclassical regimes are characterized by
different correlation schemes switching from a linear regime
with the Laue circle as an absolute reference to a more com-
plex polynomial behavior. Section VIII discusses the results
from the perspective of simple models. Table III aggregates
definitions of the geometry and angles used in this paper while
Table IV reports definitions from previous simplified collision
models.

II. GIFAD TECHNIQUE

The technique has been described in detail in Ref. [10] and
only a brief presentation is sketched here. An ion beam of en-
ergy in the keV range is neutralized and drastically collimated
to reduce its angular divergence below 0.01◦ before impacting
on the target crystal surface at an incidence angle θi ∼ 1◦. The
particles reflected around the specular direction are collected
onto a position-sensitive detector placed ∼ 1 m downstream.
By construction, this detector is perpendicular to the direction
of the primary beam so that within minor corrections, the
spatial coordinates (y, z) can be related to the final projectile
velocity vy, vz (see Fig. 1). For convenience, we often use the
associated wave vectors ky, kz. If the quality of the crystal
surface is good enough, diffraction is present in the form of
sharp spots on the Laue circle separated in the y direction
by multiples of the reciprocal lattice vector G⊥ ≡ Gy, k f y =
kiy + mG⊥, where m is the diffraction order and the subscript i
or f stands for the initial or final value. For well-aligned con-

TABLE II. Forms f (x) used to describe the inelastic profiles. A
is a normalization factor such that

∫ ∞
−∞ f (x)dx = 1.

Name Symbol Formula Variance

Expt. decay E A · e−|x/w| 2w2

Gaussian G A · e−x2/2σ 2
σ 2

Lorentzian L A/(x2 + w2/4) undefined
L(w) · G(2w) L · G2 A · e−x2/4w2

/(x2 + w2/4) � 0.48w2

L(w) · G(w) L · G1 A · e−x2/2w2
/(x2 + w2/4) � 0.32w2

Log-normal LN A
xw exp(− ln2( x

x0
)/2w2) � w2x2

0

TABLE III. Definitions used in this paper.

kix, kiy, kiz initial values of the projectile wave-vector �ki

k f x, k f y, k f z final values, we assume k f x � kix

k⊥
√

k2
y + k2

z , wave-vector in the perpendicular plane

k‖ kix � k f x , wave-vector along x
θi arctan(kiz/kix ), incidence angle if kiy = 0
θ f arctan(k f ⊥/k f x ), polar scattering angle
φ f arctan(k f y/k f x ) lateral deflection angle Lab.frame
ϕ f arctan(k f y/k f z ) see Fig. 1
Laue circle k f ⊥ = ki⊥ := energy conservation in y, z plane

see dotted white circle in Fig. 1
θs 2θi, overall elastic scattering angle
E⊥ E0 sin2 θi, perpendicular energy [8,9]
d⊥ periodicity of the atomic rows ⊥ to x

ditions (kiy = 0), the Kapitza-Dirac obliquity factor [11,12]
indicates that diffraction is present only along the y direction
explaining that only one diffraction circle is observed (see
also Refs. [13,14] for a quantum treatment or [15,16] for a
classical approach). As a consequence, the relative intensities
Im can be measured at various combinations of the primary
energy E0 and θi giving the same value of E⊥ = E0 sin2 θi

[17]. A few degrees away from a low index direction, only
the specular spot (m = 0) is present as with a perfectly flat
mirror [18,19]. On LiF, only two crystallographic directions
give rise to diffraction with m �= 0, the [100] and the [110]
directions. The periodicity d⊥ ≡ dy, reciprocal lattice vector
G⊥ = 2π/d⊥, and associated Bragg angles φB are given in
Table I. Taking the crystal normal as the z axis, the incidence
and outgoing angles are listed in Table III.

TABLE IV. Definitions and formulas introduced in simplified
collisions models [7,9,37,38] and mentioned in the discussion.

———– (a) Surface description
TD, ωD Debye temperature and frequency h̄ωD = kBTD

σ 2
z variance of z position at a temperature T: 〈z2〉T

V1D(z) mean planar potential:
∫

x

∫
y PEL(x, y, z)

———– (b) binary collision model
mp, mt projectile and target mass, μ = mp

mt

Er μE0θ
2
b , classical binary recoil energy where θb

is the projectile deflection in this binary coll.
Eloss �Er , Classical energy loss
DWF e−Eloss/h̄ωD Debye-Waller factor for GIFAD

———– (c) Purely repulsive collision model [7,9,37]
Vr (z) V1D(z) is assumed to have the form V0e−
z

with 
 ∼ 2
√

2W and W the work-function

 Stiffness, logarithmic derivative −V̇r (z)/Vr (z)
Eloss

2
3 μE0
θ3

i , Classical energy loss
N := Eloss/Er , effective number of binary coll.

———– (d) Collision model with attractive forces [38]
D well depth of V1D(z)
E⊥ + D Beeby correction to the impact energy [56]
Morse pot. VM (z) = De−
(z−z0 ) − 2De−
(z−z0 )/2


eff defined as −V̇M/VM at the turning point zt [38]
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FIG. 1. Schematic view of a GIFAD experiment. The image is
for 500 eV helium at θi = 1.56◦ along LiF[100] at T = 167 K.

III. ELASTIC DIFFRACTION

The elastic diffracted intensity derives from fully coherent
scattering from perfectly periodic conditions. This corre-
sponds to atoms at the equilibrium position, as if these were
immobile. Using the Debye model, the surface atomic motion
is described by a local oscillator, also called Debye oscil-
lator or high-frequency limit, that after coupling between
neighbors gives rise to the phonon modes as eigenstates of
the system. The quantum aspect here is that the vibration
is represented by a vibrational wave function and the prob-
ability that a surface atom exchanges the momentum δk,
needed to deflect the fast projectile without changing its vi-
brational wave function, is the Lamb-Dicke probability [20].
In this case, the scattering by δk takes place from the cen-
ter of the wave-function, i.e., from the equilibrium position.
Consistently, quantum scattering calculations are usually per-
formed directly from the equilibrium position [8,13,14,21–23]
to represent elastic diffraction. Classical trajectories on this
potential energy landscape (PEL) lead to a surprisingly well-
defined Laue circle even with simplified binary collision
models [20,24]. The diffraction spots are replaced by a contin-
uous azimuthal profile showing a main rainbow and possibly
secondary rainbows in the form of sharp singularities [25,26].
Attaching a semiclassical phase to the trajectories reveals
the discrete structure of Bragg peaks and the modulation of
the elastic diffracted intensity due to interference within the
lattice unit. Supernumerary rainbows become visible when the
phase difference below the rainbow angle exceeds multiples of
2π [17,18,27,28]. However, ad hoc additional treatments are
needed to smooth the rainbow singularities [29] by an Airy-
like profile or to account for the Gouy phase when passing
through a focus [30]. For restricted shapes of the PEL, pertur-
bation theory has also shown interesting results and delivered
analytic expressions to describe atomic diffraction [31,32].

Diffraction of fast atoms has always been observed to be
accompanied by an inelastic component, but the elastic inten-
sity can be isolated and the slowly varying inelastic intensity
suppressed by applying a simply doubly differential polar
filter. This empirical approach produces an intensity located
only on the Laue circle [5,33,34]. The associated azimuthal
elastic profiles were found to be close to pure Gaussians hav-
ing a width identical to the direct beam profile and justifying
the use of the delta function δ(φ) in Eq. (1).

IV. INELASTIC DIFFRACTION

Though most published results show a dominant inelastic
intensity, the inelastic lateral profile has never been investi-
gated extensively. Various empirical forms were proposed to
fit the measured diffraction profiles. One is a combination
of two Gaussians, a narrow one on top of a broader one
with a relative weight a equal for all diffraction orders but
evolving with incidence angle [9]. Another proposal was to
use a Lorentzian [18,35] or a Voigt profile [36] irrespective of
the elastic to inelastic ratio. In the present paper, new forms
are introduced (as summarized in Table II) and the lateral
profile is discussed in detail taking into account explicitly
elastic and inelastic components. The two-dimensional (2D)
color plot corresponds to the raw image in Fig. 1 after the
polar transform of Ref. [5].

With a large band-gap insulator as LiF, probed with helium,
the inelastic processes are expected to be governed by the in-
teraction with surface phonons. At thermal energies and large
incidences (TEAS) where the projectile hits a single surface
atom, this gives rise to the well-known Debye-Waller factor
describing the ratio of elastic intensity as proportional to
e−Er/h̄ where Er is the recoil energy deriving from momentum
conservation and ωD is the Debye frequency (see Table IV).
This is equivalent to the recoil-less Lamb-Dicke probability
used to trap cold atoms.

In GIFAD, it was soon realized that the multiple collision
regime specific to grazing incidences leads to a much more
favorable DWF due to the fact that several (say N) tiny bi-
nary deflections by θb produce less decoherence than a single
deflection by 2θi = N · θb. The DWF is now proportional to
�N

1 e−Er/h̄ωD = e−�N
1 Er/h̄ωD = e−Eloss/h̄ωD . It is the same formula

but the recoil energy of a single binary collision is replaced by
Eloss, the sum of all the classical recoils energies along the
trajectories. It that can be calculated as Eloss � N · Er ∝ Eθ3

i
assuming a purely repulsive form of the PEL [7,9,37] or a
Morse form to account for attractive forces [see Table IV(c)].

The inelastic diffraction intensity is still partly coherent,
as illustrated in Fig. 12 of Ref. [7], which shows that the
intensities Im can be extracted outside of the Laue circle, i.e.,
from purely inelastic intensity assuming an effective incident
wave vector keff = (k f ⊥ − ki⊥)/2 in the perpendicular plane.
In other words, the relative intensities recorded on the circle
of diameter keff encompassing the direct beam position (see.
e.g., Ref. [5] for details) are close to the elastic one that could
be recorded on the Laue circle if the angle of incidence would
be θeff = arctan(keff/k). The consequence is that on the Laue
circle, both elastic and inelastic diffraction point to the same
relative intensities Im. This is compatible with the fact that all
diffraction orders seem to have the same azimuthal line shape.

A. Inelastic polar profile

In terms of data analysis, the overall polar profile is de-
fined in two steps. First, a simple polar transform of the
2D intensity I(ky, kz ) → I(ky, k⊥), preserving the scattering
plane and the direct beam position as invariant spot [5,7].
Second, a projection on k⊥, i.e., an integration along ky

adding the polar profiles of all diffraction orders. Within a
surprising accuracy, this polar profile visible in Fig. 2 was
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FIG. 2. The raw plot in Fig. 1 is polar transformed following
Ref. [5]. The yellow lines are the overall polar and azimuthal profiles
corresponding to intensity projections (full integration) while the red
one is the intensity (x20) of a 0.015◦ band at the specular angle
(θ f = θi).

found to be independent of the probed crystal axis (see
Fig. 4 of Ref. [38]). The polar profile is decomposed into
a sharp central peak having a width similar to that of the
primary beam sitting on top of a much broader one, well
fitted by a log-normal shape (defined in Table II) as ob-
served in fully inelastic conditions [39,40]. Interpreting these
components as the elastic and the inelastic contribution, the
log(DW F ) was found to scale with Eθ3

i T [41] as expected
from Refs. [7,9,37]. The standard deviation σθ of this inelastic
component was found to increase almost linearly with the
angle of incidence θi so that the relative width w ∼ σθ/2θi

(see Table II) is almost constant for 120 meV � E⊥ �
500 meV while it increases rapidly below 120 meV [38,41].
These behaviors could be ascribed to classical scattering on
thermally displaced surface atoms. The increase for E⊥�
120 meV could be related to the effect of attractive forces
bringing the turning point of the trajectory closer to the sur-
face and increasing the effective repulsion at this point. An
effective surface stiffness 
eff [see Table IV(b)] was defined to
describe this effect [38] first identified by Rieder et al. [42]. In
GIFAD, the force at the turning point governs the momentum
transfer to each surface atom and the inelastic effects. This
will be discussed further with the results and in Sec. VIII.

V. OVERALL LATERAL LINE SHAPE

A. Overall lateral profile

The overall azimuthal scattering distributions either on the
Laue circle or integrated over the polar angle are governed
by the number of diffraction peaks rather than by their shapes
[43]. It strongly depends on the probed crystal direction and
the intensities Im are a signature of the shape of the PEL
[17,18,44] formed by the well-aligned rows of surface atoms.
Monitoring the width of this overall azimuthal profile is
enough to identify the crystal axis and corresponds to the

concept of atomic triangulation [17,43]. We focus here, not on
the intensity Im but on the line shape of these diffraction peaks.
Since the first GIFAD observations, this later was reported
to be identical for all diffraction orders of a given diffraction
pattern [9,36].

B. Dependence on the crystal axis: φ scan

The independence of the lateral profile on the crystal axis
was first suggested by Seifert et al. [36] who showed that the
azimuthal profile recorded along a random direction could
be used to fit the line shape of a low-index direction. No
elastic diffraction was identified in this early work, but we
found identical results with well-resolved elastic diffraction
peaks. The finding could be due to the fact that when diffrac-
tion is observed the transverse coherence of the projectile
is necessarily much larger than the unit cell so that only
the mean number of collisions, directly connected with the
target surface density is important. Independently of the exact
mechanism, this seems to be true for the weakly corrugated
LiF surface, as illustrated in Figs. 3 and 4 corresponding to
perpendicular energies E⊥ = 66 meV and 365 meV, respec-
tively. The overall profile recorded along a [Rnd] direction is
compared with different line shapes in Figs. 3(a)–3(d) all con-
voluted by the direct beam profile (Table II). The Lorentzian
L∗ form in Fig. 3(a) has a too-large tail while the Gaussian
one G∗ in Fig. 3(b) has a too-short tail. In Figs. 3(c), 3(d)
the data are equally well fitted by an exponential decay form
E∗ or by the bounded Lorentzian (L.G∗ in Table II) where
the Lorentzian function of width w is multiplied by a Gaus-
sian function forcing the extinction of the long Lorentzian
tail. L · G∗

1 is for a Gaussian with σ = w while L · G∗
2 is for

FIG. 3. The scattering patterns of 500 eV He atoms impinging at
θi = 0.66◦ (E⊥ = 66 meV, Eθ3 = 0.76 meV) on LiF at T = 180 K.
The left panels (a)–(d) are for a random direction [Rnd] compared
with a Lorentzian, Gaussian, exponential, and bounded Lorentzian,
respectively. The right ones are for a [100] direction in linear (f) and
log scale (e). The blue line in (e) is the raw profile in (a)–(d) while the
green lines in (e) and (d) are the convolution of a pure exponential de-
cay with a range φ0 = 0.031◦ by the beam profile with σb = 0.006◦.
f (φ)∗ = (0.52 δ(φ) + 0.48 Ae−|φ/φ0 |) ∗ e−φ2/2σ 2

b .
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FIG. 4. The scattering pattern of 500 eV He atoms impinging at
θi = 1.54◦ (E⊥ = 365 meV) on LiF at T = 180 K. Left panels (a),
(b) are for a random direction while the right ones (c), (d) are for a
[100] direction. Top panels (a), (c) are in log scale. Both directions
are well fitted with a unique line shape, the a value indicates an
inelastic ratio of 83% while the exponential decay range φ0 is here
0.06◦.

σ = 2w and both produce a decent fit with comparable values
of σφ .

Figures 3(e), 3(f) display in log scale and linear scale,
respectively, the overall azimuthal profile recorded at the same
energy and incidence angle but along the [100] direction. The
blue line reproduces the profile Figs. 3(a)–3(d) recorded along
the [Rnd] direction, while the green lines are the line shape
used to fit the data. This line shape is identical to the one used
to fit the [Rnd] direction in Fig. 3(c).

A similar comparison is repeated for an incidence angle
of 1.54◦ and displayed in Fig. 4. The perpendicular energy
E⊥ is now 365 meV and inelastic diffraction dominates. Here
again, the scattering profile recorded along a [Rnd] direction
is well fitted by either an E∗ or L · G∗ profile. Using the
exponential decay form, the decay range is now φ0 = 0.06◦
(compared to φ0 = 0.03◦ at a lower energy in Fig. 3) and the
weight of inelastic diffraction is 83%, almost twice as large
as in Fig. 3. Figures 4(c), 4(d) show the overall azimuthal
profiles recorded along the [100] direction for identical beam
parameters together with the fit by the profile derived from
the [Rnd] direction. The quality of the fit, both in linear and
log scale suggests that indeed, the line profile does not depend
significantly on the probed crystal axis. From Figs. 3 and 4, it
is clear that the shape of the far wings of the lateral profile can
only be investigated along a [Rnd] direction.

C. Choice of functional form

Figures 3 and 4 show that for perpendicular energies of up
to 400 meV, both the pure exponential decay and the bounded
Lorentzian profiles give a very good description after convo-
lution by the beam profile. For larger values of E⊥, as shown
in Fig. 5 recorded at θi = 2.36◦, i.e., E⊥ = 850 meV, a clear
departure from the simple exponential decay can be observed.

FIG. 5. Overall line profile of 500 eV He atoms impinging at
θi = 2.35◦ on LiF at T = 180 K. The same data are plotted in linear
(◦ on left) and log scale (� on right). The L.G∗

1 form provides the best
fit. Depending on the line shape, the elastic intensity [a in Eq. (1)]
varies by a factor ∼ 3.

The L · G∗
2 gives the best fit but slightly overestimates the

length of the tail. The L · G∗
1 form in Table II produces a faster

attenuation of the tail. At even larger values of E⊥, around
2 eV, the lateral profile is best fitted by a simple Gaussian
form (not shown).

D. Dependence on the primary energy: E scan

Figure 6 reports the azimuthal linewidth measured during
an E scan performed along a [Rnd] direction and with a fixed
incidence angle of 0.66◦ with primary energy varied between
300 eV and 3 keV. For all energies, the overall scattering
profiles of the single diffraction peak is well fitted either by
E∗ or by the two L · G∗ forms. The ratio of elastic diffraction
(a in Table II or DWF) drops by two orders of magnitude,
from around 60% at 300 eV (E⊥ ∼ 40 meV) below a fraction

FIG. 6. The polar (σθ�) and azimuthal (σφ �) widths of the
overall inelastic profile recorded along a [Rnd] direction during an E
scan at a fixed incidence angle θi = 0.66◦ are reported as a function
of the perpendicular energy E⊥ with lines to guide the eyes. The scale
on the right-hand side shows the dimensionless unit σ/2θi used in
Refs. [7,38,41].
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FIG. 7. Evolution of the azimuthal σφ (�) and polar σθ (�)
widths during a θ scan at E = 500 eV along a [Rnd] direction
where only the specular peak is present. The coefficient a in Eq. (1)
represents the elastic ratio extracted from a fit of the azimuthal (◦) or
of the polar profile (�). The lines are to guide the eyes.

of a percent at 3 keV (E⊥ ∼ 400 meV), but the width σφ of the
inelastic contribution appears almost constant over the whole
energy range. This is also the case for the polar width σθ over
the same energy range. The surprise is that σφ and σθ have
a comparable magnitude. This contradicts the visual aspect
of a very elongated spot as visible in the inset at 850 meV in
Fig. 8 corresponding to the maximum energy where the elastic
contribution is still clearly visible but very weak. The reason
is that the associated line shapes are very different, log-normal
polar profile [38] has a flat top but short wings, whereas the
azimuthal one, has a sharper peak but a broader base giving
different visual aspects but comparable variances or standard
deviations.

As a simplifying summary, during an E scan, the inelastic
component has almost constant polar and azimuthal width so
that the overall line shape is simply a variable combination of
this fixed inelastic shape plus the narrow elastic one. We now
try to investigate the evolution of the line shape with the angle
of incidence.

E. Dependence on the angle of incidence: θ scan

Using the same procedure and functional forms, Fig. 7
reports the evolution of σφ and σθ vs E⊥ corresponding to
a comparatively large angular range, between 0.3◦ and 2.5◦
for 500 eV helium on a LiF surface at 180 K oriented along
a [Rnd] direction. Here again, σφ and σθ have a comparable
magnitude and now increase rapidly with E⊥ above 200 meV.
The elastic ratio derived from the fit of the polar and azimuthal
profiles do not coincide perfectly but show comparable trends
compatible with previous investigations using only the analy-
sis of the polar profile [41]. The horizontal lines at φ = 0.13
and 0.186◦ in Fig. 7 correspond to the value of the Bragg
azimuthal angle φB associated with the [100] and [110] direc-
tions. Typically, inelastic diffraction features should become
difficult to observe when the inelastic width σφ exceeds the
peak separation φB. Note that the width of the elastic diffrac-
tion remains narrow, but its relative intensity given by the

FIG. 8. The same polar and azimuthal widths as in Fig. 7 are
plotted as a dimensionless relative widths σφ/2θi (�) and σθ/2θi

(�) used in Refs. [7,38]. The lines are to guide the eyes. Inserts are
2D(φ, θ ) profiles at E⊥ = 200 and 850 meV, the one in the top right
corner was recorded separately at 3 keV and 3.5◦ (E⊥ � 10 eV) and
is compressed nine times.

Debye-Waller factor becomes very weak. To summarize the
θ scan, above E⊥ ∼ 200 meV, the inelastic azimuthal width
σφ scales linearly with E⊥ at a rate given by dσφ/dE⊥ =
0.222◦/eV. To explore beyond this linear dependence, Fig. 8
reports the width σθ and σφ relative to the angle of incidence
θi (or to the specular scattering angle θs = 2θi) canceling the
linear increase in Fig. 7. The evolution now compares with the
one observed in Fig. 6 during an E -scan. As a difference, the
comparatively flat section above E⊥ = 200 meV is replaced
by a smooth increase of both σθ and σφ with a possible
convergence around E⊥ = 1 eV.

The log-normal shape was introduced empirically for its
good description of the asymmetric polar profile [40]. It was
later derived as the natural scattering distribution emerging
from a binary collision with a Gaussian thermally distributed
surface atom [7,37]. The constant ratio of w � σφ/2θi is
therefore linked to a simple scattering property. The azimuthal
relative width σφ/2θi introduced here can be interpreted as the
azimuthal width σϕ expressed in the polar coordinates (ϕ, θ )
instead of (φ, θ ) as depicted in Fig. 1.

The 2D(θ, φ) scattering profiles at E⊥ = 200 meV and
850 meV are reported in Fig. 8 and show the evolution to-
wards a more circular pattern with increasing perpendicular
energy. Here again, the difference in line shape along θ and
φ explains that, even when σφ is close to σθ , the impression
of an elongated spot prevails. Exploring much larger energies
and angles we could find situations where σφ becomes larger
than σθ (top right insert in Fig. 8).

Focusing on the DWF, the evaluations from the polar pro-
file using Eq. (1) with a LN (θ ) or from the lateral profile with
L · G(φ) are completely independent and should give identical
values. The results indicated by (�) and (◦) symbols in Fig. 7
show similar tendencies but also significant differences at low
values of DWF probably due to shape-specific difficulties to
isolate an elastic contribution below a few % from the polar or
azimuthal profile. It should also be noted that taking the exact
value σb measured on the direct beam to fit the elastic lateral
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profile always gives a good result, whereas, for very grazing
incidence, Ref. [38] indicates a tendency that a good fit of the
polar profile requires a weak broadening of σb.

F. Summary on the overall azimuthal width

The overall azimuthal scattering profiles have been an-
alyzed in terms of the line shape of the diffraction peaks.
For the conditions investigated here, the line profile does not
depend on the diffraction order so a unique line shape can
be used to fit the overall azimuthal profile. This inelastic line
shape has a comparatively sharp peak and long tails. At low
incidence angles where the elastic contribution dominates, it
is almost impossible to assess the exact shape of the peak,
a simple exponential decay provides a good fit. We found
that the inelastic azimuthal line shape is well reproduced by
a Lorentzian profile multiplied (attenuated) by a Gaussian
function and convoluted by the beam resolution L · G∗ [7]
(Table II). During an E scan, the line width σφ appears rather
stable while during a θ -scan, it also appears stable for val-
ues of E⊥ < 200 meV but increases rapidly above. When
divided by the specular scattering angle θs = 2θi, the polar and
azimuthal widths have a comparable behavior illustrated in
Fig. 8. The next sections will investigate the same properties
but restricted to the Laue circle, i.e., without integrating over
the polar direction.

VI. LINE SHAPE ON THE LAUE CIRCLE

We now focus on the intensity sitting on the Laue circle
where the elastic intensity is maximum. Considering a narrow
polar band of approximately the beam width σb on the Laue
circle (in practice a narrow crescent disk [5]), the weight of
the elastic peak is on the order of σθ/σb larger than on the
overall azimuthal profile investigated in the previous section.
We first recall that, when elastic diffraction is observed, the
elastic and inelastic relative intensity Im on the Laue circle
were found to be equal [7]. Therefore, it is not needed to
separate elastic and inelastic contributions precisely. We use
the same procedure and functional forms but the coefficient a
in Table II describing the relative weight of the elastic peak
is now interpreted as the visibility of elastic diffraction, not
as the DWF. In general, the inelastic width σφ measured on
the Laue circle is smaller than when measured on the overall
profile but it differs only by 10–20 %. Taking the example
of the overall azimuthal profile displayed in Figs. 4(c), 4(d)
where a 17% DWF was estimated, the same fit restricted to
the Laue circle gives a visibility of 49% instead, while the
inelastic azimuthal width σφ is reduced by 10%. Hence, the
dominant effect on the peak profile is the drastic increase in
the ratio of the elastic component.

We explore below two situations where neighboring
diffraction peaks overlap due to a small Bragg angle and/or
to a significant inelastic broadening. Measuring a small
diffracted intensity in the vicinity of intense peaks becomes
difficult and sensitive to the line shape. For simple crystals
where only one maximum and one minimum of the electronic
density are present in the lattice unit, only two semiclassical
trajectories interfere at a given scattering angle φ f as illus-
trated in Figs. 2–4 of Ref. [18]. A simple ray-tracing model

FIG. 9. The central part of the diffracted intensities along LiF
[110] at 5 keV and 0.75◦ (E⊥ = 865 meV) is fitted by two line
profiles of Table II. (a) L.G∗ (E∗ gives equivalent results) (b) G∗.
The odd diffraction orders in blue are expected to be weak (see text)
and this is better reproduced by the fit in (a). The elastic weight is
estimated at around 5% from the polar profile and is hardly visible
here.

indicates that for small lateral deflection, i.e., the rays emitted
from the top of F− or Li+ ions and separated along y by
d⊥/2 are π shifted so that the intensity of the odd orders
oscillates in opposition to that of the even diffraction orders
[33]. On LiF and for values of E⊥ < 1 eV, this is true both
along the [100] and [110] directions (see, e.g., the diffraction
charts in Fig. 3.21 of Ref. [18] or Fig. 2 of Ref. [44] where
each bright diffraction order is surrounded by dark one in the
central region). It means that for these directions, whenever a
central peak reaches its maximum intensity, the adjacent peaks
should be weak and vice versa.

Figure 9 displays the central part of the azimuthal profile
recorded with 5 keV helium along the [110] direction at 0.75◦
incidence where all even diffraction orders (m = 0,±2,±4)
are quite intense. We have tried to evaluate the influence of
the line shapes on the extracted intensities with the idea that
the odd diffraction orders should have an intensity as low as
possible without turning negative. This is only qualitative but
the mean level of the odd diffraction orders is low with the
L · G∗ and the exponential decay profile E∗ whereas it is quite
large with the Gaussian G∗ line shape and produces some
negative values with the Lorentzian profile L∗ (not shown).
Another indication that the Lorentzian profile produces too
broad wings was identified close to the rainbow scattering
angle corresponding to a maximum of the classical deflection
function [17,27]. At this angle, several classical trajectories
are scattered at the same angle and quantum mechanically the
associated diffraction orders tend to have comparable phases
and a significant intensity. The use of a Lorentzian profile was
found to produce an exaggerated intensity level extending to
scattering angles beyond the rainbow angle [7].

A more quantitative strategy to evaluate the quality of
the line shape is to compare intensities Im recorded at very
different E0 and θi conditions but with identical values of
E⊥ = E0 sin2 θi so that Im should be identical [13]. Figure 10
reports diffracted intensities recorded at 300 eV and 5000 eV
and incidence angles of 1.35◦ and 0.33◦, respectively so that
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FIG. 10. Diffracted intensities recorded with He on LiF [110] at
(a) 300 eV, θi = 1.35◦ and (b), (c) 5000 eV and θi = 0.33◦. Both
correspond to E⊥ ∼ 165 meV and were recorded with an angular
resolution 0.007◦ (0.016◦ FWHM). The red lines correspond to a fit
through the data using a common line shape for all peaks. (b) is fitted
by a pure Gaussian while (a) and (c) correspond to the profile E∗(φ)
in Table II. The contribution of the specular peak (blue line) depends
on the line shape.

the energy E⊥ is close to 165 meV in both cases. The angular
resolutions are both around 0.007◦, but they appear quite
different on the detector as the radius of their Laue circle
varies by a factor ∼4. In Fig. 10(a), the diffraction peaks
are well separated and even a poor description of the pro-
file will not alter the derived Im. Oppositely, Figs. 10(b) and
10(c) correspond to the smaller Laue circle recorded at 5 keV
where the diffraction peaks overlap enough to influence their
maximum intensity. The quality of the fit by a Gaussian G∗ in
Fig. 10(b) is less than by E∗ or L · G∗ in 10(c) but the main
result is that only the intensities Im derived from the E∗ or
L · G∗ functional forms compare quantitatively with the values
derived at 300 eV in Fig. 10(a). For instance, the intensity I0 of
the specular peak (m = 0 in blue) is overestimated by almost
50% in Fig. 10(b) whereas the value measured in Fig. 10(c)
differs by only 10% from the value determined in Fig. 10(a)
where the peaks are well separated.

VII. CORRELATIONS BETWEEN θ f AND φ f

By investigating either the overall distribution or the one on
the Laue circle, we have bypassed the internal correlation of

FIG. 11. For 500 eV helium scattered along a [Rnd] direction
at θi = 0.628 ◦ incidence (E⊥ = 60 meV and Eθ3 = 0.66 meV),
the (a) polar ◦ and (b) azimuthal ◦ profiles are decomposed into
elastic ◦ and inelastic ◦ components. The standard deviation of the
azimuthal � and polar � distributions show a linear increase away
from elastic conditions, dotted lines are to guide the eyes. The �
symbol represents θ f /θi and shows the weak variation of the mean
polar scattering angle.

the 2D intensity distribution. We analyze here this correlation
for diffraction along a random direction. For each value of
θ f , the distribution of φ f has properties that are different on
the Laue circle (θ f = θi) and far away from the Laue circle.
We observe no dependence of the mean azimuthal scattering
angle φ f with the final polar angle θ f and a weak evolution
of the mean polar angle θ f with the final azimuthal angle
φ f . This is not the case for the width σφ . In Sec. VI, we
indicated that within typically 10%, the widths σφ measured
on the Laue circle compare with the ones measured on the
overall azimuthal profile. This is mainly due to the fact that the
intensity on the Laue circle is maximum and its contribution
dominates the average. We try below to analyze in more detail
the specificity of the Laue circle.

A. Lateral width σφ versus θ f

At small values of Eθ3
i T/300 where elastic diffraction

dominates, the evolution of the inelastic line shape above
or below the Laue circle is quasisymmetric, the line width
increases almost linearly with the distance to the Laue circle;
σφ = σφs + α|dθ | where σφs is the value measured on the
Laue circle (at specular angle θspec) and dθ = θ f − θi is the
distance to the Laue circle. This indicates that the specular
condition is indeed a reference for the inelastic process. Any
departure from this reference either upward or downward is
accompanied by a significant increase in the width. This is
illustrated in Fig. 11(a) where the blue triangles represent the
standard deviation of the azimuthal distribution as a function
of the polar angle θ f . The width is measured by simple statis-
tical evaluation of the variance σ 2

φ = �φI (φ)φ2/Itot without
trying to separate the elastic and inelastic contributions. As
a consequence, the sharp dip around the specular polar angle
simply outlines that, at this location, the azimuthal distribution
is dominated by the narrow elastic spot. This dip, outlining
the elastic contribution, could be bypassed by fitting the pro-
files to isolate the inelastic contribution but the fit is partly
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FIG. 12. For 500 eV helium scattered along a [Rnd] direction
at θi = 1.45 ◦ incidence (E⊥ = 320 meV and Eθ3 = 8.1 meV), the
(a) polar ◦ and (b) azimuthal ◦ profiles are reported showing no
clear elastic component. The standard deviation of the azimuthal �
and polar � distributions show a diffuse minimum and a possible
quadratic dependence. The � symbols represent θ f /θi and show the
weak variation of the mean polar scattering angle.

unstable, probably because the elastic component is so large
that a variation as small as 0.1 pixel of its line shape [σb

in Eq. (1)] significantly affects the fit. For Fig. 11(a), the
width σφs at the specular angle is estimated by interpolation as
σφs � 0.015◦ and the slope α is close to 0.1 meaning that the
σφ increases by 0.01◦ every 0.1◦ away from the Laue circle.

At larger values of Eθ3
i T/300 where the elastic component

is much weaker than the inelastic one, the evolution of the line
width becomes asymmetric. The position of the minimum line
widths shifts to underspecular conditions (θ f < θi) as illus-
trated in Fig. 12(a) recorded with a surface at 700 K. Figure 13
recorded at room temperature but with 4 keV projectiles ex-
plores fully inelastic condition with Eθ3 above 40 meV where
the DWF is probably less than 10−8 [41]. The shift δθ between
the maximum intensity and the minimum of the line width is

FIG. 13. Same as Figs. 11 and 12 with 4 keV He projectiles
at 1.25◦ (Eθ2 = 1.9 eV, Eθ3 = 41 meV). No elastic component is
visible in the (a) polar ◦ and (b) azimuthal ◦ profiles. The standard
deviation σφ� of the azimuthal distribution associated with a polar
angle θ f shows a minimum located at θmin well below the specular
scattering angle θspec. The polar width σθ� has a quadratic behav-
ior (σφ ∼ 0.14 + 1.4φ2

f ). The mean scattering angle θ f /θi(�) varies
weakly with φ as in Figs. 11–12.

more pronounced than that of Fig. 12 in spite of a smaller
angle of incidence.

B. Polar width σθ versus φ f

This section is in part beyond the main focus of the paper
but is reported here for completeness. We investigate the evo-
lution of the polar width σθ as a function of the departure from
the Bragg condition φ f = mGy. Under a random direction
where only m = 0 is present, the reference is the scattering
plane φ f = φm=0 = 0.

The mean value of the polar distribution θ f /θi depends
only slightly on the azimuthal angle φ f as indicated by red
hollow square symbols (�) in Figs. 11(b), 12(b), and 13(b).
For values of φ f within the FWHM of the azimuthal profile,
the variation of θ f /θi is less than 5%.

The variation of the polar width σθ with φ f (�) is more
pronounced and is comparable to that of the azimuthal width
σθ with θ f (�). At low values of Eθ3 in Fig. 11(b) the de-
pendence is linear while it shows a flat minimum close to
Eθ3 � 10 meV, the observation threshold of elastic diffraction
in Fig. 12(b). In Fig. 11(b), a fit was needed to isolate the
inelastic contribution while a straightforward statistical eval-
uation was performed in Fig. 12(b). At much larger values of
Eθ3, a regime where elastic diffraction cannot be observed,
Fig. 13(b) indicates a pronounced quadratic behavior.

VIII. DISCUSSION

For large band-gap insulators like LiF, the inelastic effect
in diffraction is dominated by interaction with phonons [37].
With atoms at thermal energies and quasinormal incidence,
energy-resolved inelastic diffraction reveals the specific sur-
face phonon modes [45] and, for metals, the coupling could
be traced to the strength of the electron-phonon interaction
[46–48]. In GIFAD, the total energy cannot be resolved in the
meV range and, so far, only the scattering in the perpendicular
plane can be analyzed.

The theory also is much less developed due to the more
complex regime where the projectile interacts with many sur-
face atoms. An attempt to account for the actual phonons
modes involved in the scattering within a quantum treatment
[49,50] seems to indicate a dominant contribution of long
wavelength acoustic modes but no scattering distribution was
produced to be compared with experiments. Random kicks to
the projectile wave packet were proposed to simulate inelastic
profiles [21,51] with properties resembling experimental data
but elastic diffraction is absent and quantitative agreement was
not demonstrated. Using a semiclassical approach, other au-
thors proposed [52–54] to expand the surface thermal motion
in terms of the number n of exchanged phonons labeled Pn-
SIVR (for surface initial value representation). However, from
our point of view, the P0-SIVR, assumed elastic, produces a
distribution having all the properties of inelastic diffraction:
It has a log-normal profile with a relative polar width w =
σθ/2θi only slightly lower than the measured ones [52]. It
stays remarkably constant during an E scan [54] for E⊥ above
200 meV as in Fig. 6 and it follows the observed evolution
with the surface temperature [41]. Here also, there is no sign
of a narrow elastic peak and, if the P0-SIVR is interpreted
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as inelastic, then all the other terms of the expansion should
be present. More problematic, in terms of application, the
approach predicts a very strong variation of the diffracted
intensities Im on the Laue circle with the temperature [53,54],
which is not observed in GIFAD [41] neither in TEAS [55],
apart from lattice thermal expansion. This can probably be
traced back to the fact that neither the random kick nor
the SIVR approaches do consider the Mösbauer-Lamb-Dicke
effect [7], which is a quantum effect (without classical equiv-
alence but uses thermally displaced atoms so that the mean
potential probed by the trajectories is different from the one at
equilibrium [7,51] and becomes temperature dependent.

Simplified models have been developed to connect the
polar and azimuthal profiles to thermal surface properties.
The interaction with the complex phonon system is replaced
by successive independent quantum binary collisions with
the local (Debye) harmonic oscillator representing the sur-
face atom, taking place along the elastic trajectory [7,37].
Each is contributing (if inelastic) to the final inelastic angular
widths σφ and σθ by an elementary (binary) broadening cal-
culated in the classical eikonal approximation. For a purely
repulsive exponential PEL, the scattering profile of a sin-
gle binary collision is a log-normal profile with a relative
width wb = 
σz � σθb/θb where σz is the amplitude of the
thermal motion of a surface atom along z [7]. The DWF is
derived from the assumption that one such inelastic collision
is enough to drive the trajectory inelastic. This seems to fit
the experiment [41] but the expansion of the polar inelastic
profile in terms of the number of inelastic collisions proposed
in Ref. [7] does not. Instead, the inelastic polar profile was
found to have always the maximum width σ 2

θ = Nσ 2
θb

. As if
a single inelastic collision (among N) is enough to induce a
quasiclassical scattering profile where all N binary collisions
become inelastic and contribute to the broadening [38]. In this
respect this is equivalent to the near-classical scattering with
spatial correlations of Ref. [37].

When investigating the effect of attractive forces, two
additional effects were found important [38]: The Beeby cor-
rection factor [56] considers that the impact energy E⊥ should
be replaced by E⊥ + D where D is the depth of the attractive
well [see Table IV(d)]. As in TEAS [57], this correction is
significant for elastic diffraction only at low energy, when
E⊥ ∼ D [58], which is here less than 10 meV [59]. It also
influences the DWF in TEAS but hardly does so in GIFAD due
to the multiple collision regime [38]. The effective stiffness

eff describing the modification of the repulsive forces due
to the attractive terms at the turning point zt has no major
consequence in TEAS [42] whereas in GIFAD it was found
responsible for the rapid increase of σθ/θi at values of E⊥
below 200 meV [38,44] as visible here in Figs. 6 and 8. In
these figures, σφ and σθ have a comparable behavior suggest-
ing that attractive forces are also responsible for the increase
of σφ/θi below E⊥ = 200 meV. Both 
eff and zt are detailed
in Ref. [38].

Focusing on the differences between azimuthal and polar
line widths, we return to the perturbative approach [7] where
these scattering profiles result from the self-convolution of the
binary collision profile. The log-normal inelastic polar profile
was first derived assuming only a surface atomic motion along
z and a projectile trajectory exactly on top of an atomic row

where the force is only vertical so that no lateral deflection is
possible (σφ = 0).

Considering in-plane motion along y produces a narrow
azimuthal Gaussian profile with σφ of only a few mdeg. It
was then proposed to average the scattering properties over all
possible impact parameters y within the transverse coherence
[7,20] (in practice over the lattice unit d⊥). On one hand, the
azimuthal profile became significantly broader and was mod-
eled as having a general L · G shape [7], i.e., a comparatively
sharp Lorentzian peak but with attenuated wings (Table II).
On the other hand, the polar profile keeps its log-normal char-
acter but with a width reduced by 30% because the momentum
transfer is not exactly vertical anymore. This redistribution
between lateral and vertical deflection, quantified by the ratio
of σφ to σθ , depends in part on the elevation zt of the turning
point and should therefore increase from low to high values
of E⊥. On the low-energy side, the ratio should be stable
because the attractive force brings the turning point zt close
to zc, the edge of the attractive well (which is reached even
for E⊥ = 0). On the high-energy side, Fig. 8 indicates that σφ

gets closer to σθ and the top right inset, taken at E⊥ � 10 eV
shows that σφ becomes larger than σθ . This happens for deeply
inelastic conditions where the trajectories could become lo-
calized and where the validity of the above model constructed
around elastic trajectories with surface atoms at equilibrium
is probably limited. These very qualitative features remain
to be confirmed by numerical simulations and quantitative
comparisons but they suggest a possible difference to the
diffraction of x rays, neutrons, electrons, and positrons where
the in-plane motion of surface atoms is considered as the
dominant contribution to lateral broadening of the inelastic
peaks. The physical origin suggested here would be that the
scattering of atoms does not take place close to the nuclei of
the surface atoms.

IX. SUMMARY AND CONCLUSION

We have investigated the lateral line shape both associated
with the overall scattering profile or restricted to the Laue
circle. The first important conclusion is a clear confirma-
tion of the previous findings by Seifert et al. [36] that the
azimuthal diffraction line shape does not depend on the crys-
tallographic axis. We have clarified the issue by separating the
elastic and inelastic contribution and by using, for the inelastic
component, analytic forms convoluted by the primary beam
profile [see Eq. (1)]. A broad range of physical conditions
within the quantum and semiclassical regime where elastic
diffraction can be observed has been investigated. With the
present helium-LiF system, this regime corresponds to values
of Eθ3 � 10 meV. For very low values of Eθ3 � 3 meV,
the inelastic line shape is equally well described by either a
pure exponential decay (E∗ in Table II) or by the product of
a Lorentzian by a Gaussian (L · G∗

1 or L · G∗
2 in Table II). At

values of Eθ3 exceeding several tens of meV only inelastic
diffraction is present and the azimuthal width increases pro-
gressively beyond the Bragg angle φB leaving only a smooth
modulations of the azimuthal intensity [17,27] and progres-
sively vanishing. At even larger values, the line shape evolves
to a Gaussian profile with a width σφ much larger than φB

and the last quantum effect is the principal rainbow azimuthal
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profile, which eventually becomes weaker than the azimuthal
width. Following the analysis of the polar profile with temper-
ature between 177 K and 1017 K [41], the above Eθ3 criteria
derived at room temperature (T ∼ 300 K) should scale with
T/300 where T is the surface temperature in Kelvin.

When analyzing the overall azimuthal profile, i.e., inte-
grated over the polar direction, we found a general behavior
of the azimuthal width σφ rather similar to that previously
observed for the overall polar profile σθ [38]. During an E
scan where the angle of incidence is fixed, the absolute widths
σφ and σθ seem to be remarkably stable for energies E⊥ above
a few 100 meV while they increase rapidly for values of E⊥
approaching a few meV (see Fig. 6). During a θ scan, the
overall tendency is a linear increase of σφ and σθ for E⊥
above 200 meV and a leveling below this value (Fig. 7). The
relative values σφ/2θi and σθ/2θi in Fig. 8 show the sharp
increase below E⊥ = 200 meV and a smooth increase above.
The ratio of purely elastic diffraction was extracted from the
overall azimuthal profile and is interpreted as a measure of
the DWF. The derived values in Fig. 7 are found close to,
but systematically larger than the ones measured from the
polar profiles. Both appear compatible with the specific DWF
adapted to GIFAD [7,9,37,41].

The inelastic profile measured on the Laue circle compares
with that measured on the overall profile. However, we have a
few situations where an accurate determination of the intensi-
ties Im, needed to access the potential energy surface, requires
a precise azimuthal line shape. This implies a good description
of the inelastic component together with a decent evaluation
of the DWF. In addition to the increase of the width, the exact
shape was also found to evolve with E⊥, starting from a pure
exponential decay (E∗) to a quasi-Gaussian profile, but the
L · G∗

1 and L · G∗
2 suggested in Ref. [7] provides a decent fit

both in the quasielastic and quasiclassical regimes as long as
elastic diffraction is larger than 1%. The most salient obser-
vation presented here is the evolution of the inelastic width

as a function of the distance to the Laue circle suggesting
that inelastic diffraction models can be developed from elastic
diffraction. By comparing with previous work on the inelastic
polar profile, the Sec. VIII suggests that the lateral inelastic
profile is more influenced by the surface thermal movement
along z and by the location of the turning point zt than by the
in-plane thermal movement. This appears as another speci-
ficity of atomic diffraction but remains to be confirmed by
more detailed analysis and simulations.

So far the random direction was mainly considered un-
interesting. The above investigations strongly suggest that if
an accurate line shape is needed for quantitative analysis of
diffraction, a reference scattering profile should be recorded
along a random direction. The evolution of this profile could
probably help to track specific surface defects such as adatoms
or terraces, enriching the ability of GIFAD to diagnose the
surface quality before, during, and after the growth process
[1,3].

As to the limitations, we have indications that the above
results are probably not valid for more complex surfaces,
for instance, GaAs(001) β2(2 × 4) [3,33] or Ag(001) [35,60],
where deep trenches become visible only along specific direc-
tions. For metallic surfaces, soft electronic excitations close
to the Fermi level could also contribute to the inelastic signal
[61–63].
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