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Effective k · p model of monolayer 1T ′-MoS2 under perpendicular electric field
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We derive the effective k · p Hamiltonian for an electron in monolayer T ′-MoS2 near the Fermi level in the
presence of spin-orbit coupling and a perpendicular electric field. The 4 × 4 k · p Hamiltonian is capable of
describing the nonparabolic energy band dispersion, perpendicular electric field effect, and spin texture, in good
agreement with first-principles calculations. This k · p Hamiltonian provides a simple and convenient way to
understand and manipulate the spin transport properties of monolayer T ′-MoS2 under the perpendicular electric
field. Surprisingly, our model predicts a significantly large out-of-plane spin polarization (Sz) induced by the
charge current along the x direction. We also prove that the mirror symmetry (σh(yz)) leads to the forbidden of
spin polarization (Sz) induced by the charge current along the y direction.
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I. INTRODUCTION

The discovery of graphene has triggered a great leap in
the research on monolayer two-dimensional (2D) materials
[1]. A decade of intense research on fabricating 2D atomic
crystals has revealed many three-dimensional (3D) van der
Waals solids [2–5]. All these 2D materials can be broadly
classified into two types: (1) 2D material with weak spin orbit
coupling (SOC), e.g., graphene [1] and phosphorene [3], and
(2) 2D material with strong SOC, e.g., monolayer indium
selenides [4]. The 2D materials with strong SOC provide a
great platform for spin transport research.

In 2010 experiments demonstrated that MoS2, a pro-
totypical group-VI dichalcogenide, crosses over from an
indirect-gap semiconductor at multilayers to a direct band-gap
one at a monolayer [6]. In 2012 Yao showed that inversion
symmetry breaking together with strong SOC lead to cou-
pled spin and valley physics in monolayer MoS2 and other
group VI dichalcogenides, making possible spin and valley
control in these 2D materials [7]. The spin transport prop-
erties of monolayer MoS2 have since been investigated by
many researchers in theory and experiments. In 2013 Ochoa
and Roldán theoretically studied the intravalley spin-orbit-
mediated spin relaxation in monolayer MoS2. By using a
two-band spin-dependent Hamiltonian, they obtained the spin
lifetimes in monolayer MoS2 larger than nanoseconds [8],
which is in agreement with the valley polarization experiment
[9]. Since the monolayer MoS2 has mirror symmetry σh, there
is no Rashba spin-orbit coupling (RSOC) unless the σh sym-
metry is expressly broken by the perpendicular electric field
(PEF). In 2018 Taguchi theoretically predicted the emergence
of the Edelstein effect, namely, current-induced spin polar-
ization (CISP), in gated monolayer MoS2, where the mirror
symmetry σh is broken by the PEF [10]. All the theoretical
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studies related to the spin transport phenomenon listed above
are based on a reliable spin-dependent effective Hamiltonian,
which can be used to describe the spin texture near the Fermi
surface. Therefore, the development of spin-dependent effec-
tive Hamiltonian is of great significance for the 2D material
with strong SOC, such as monolayer MoS2.

In 2014 using a first-principles calculation, Qian and Li
predicted a class of large-gap quantum spin Hall insulators
in 2D transition metal dichalcogenides with 1T ′ structure,
1T ′-MX2 with M = (W, Mo) and X = (Te, Se, S) [11]. They
developed a 4 × 4 k · p Hamiltonian to describe the topo-
logical band structure, which leads to the quantum spin
Hall effect. By using first-principles calculation, they also
predicted that the PEF gives rise to the topological phase
transition.

Besides monolayer 1T ′-MoS2, other researchers have in-
vestigated the transport properties of distorted monolayer
WTe2 [12,13]. For example, Lau et al. have constructed an
accurate tight-binding model to describe the band structure of
monolayer 1T ′-WTe2 [12]. Based on this model, they studied
the topological edge state in monolayer 1T ′-WTe2. Apart
from the monolayer 1T ′-WTe2, recent research has revealed
that the 1Td phase of monolayer WTe2 also exhibits some
remarkable properties. In 2020 Garcia et al. developed an
effective k · p Hamiltonian to describe the electronic structure
of monolayer 1Td -WTe2 [13]. By using this k · p Hamilto-
nian, they studied the spin Hall effect in 1Td -WTe2. Hu and
Liu constructed a realistic four-band tight-binding (TB) model
for monolayer 1T ′-MX2 (M = Mo, W and X = Te, Se, S) by
combining the symmetry analysis and first-principles calcula-
tions [14].

Although there are already quite a few simplified model
Hamiltonians available for describing the electronic struc-
ture of monolayer distorted MX2 [11–13], no effective k ·
p Hamiltonian has been developed to describe the PEF
effect on spin texture and band dispersion of monolayer
1T ′-MoS2.
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Here we derive the effective k · p Hamiltonian to describe
the monolayer T ′-MoS2 electronic structure in the presence of
SOC and the PEF. With two conduction bands and two valence
bands in the vicinity of the band gap included, our k · p
Hamiltonian can describe not only the nonparabolic disper-
sion, but also the PEF-induced topological phase transition,
in good agreement with the first-principles calculations. Sig-
nificantly, our k · p Hamiltonian can also describe the effect
of PEF on the spin texture, which decides the spin transport
properties in 1T ′-MoS2. Based on our k · p Hamiltonian, we
calculate the CISP response and find that the PEF can give
rise to a significantly large out-of-plane (Sz) spin polarization
when there is a charge current along the x direction. However,
the y direction charge current cannot induce out-of-plane (Sz)
spin polarization. By using symmetry analysis, we conclude
that the y direction current (Jy) to out-of-plane (Sz) spin con-
version is strictly forbidden since the 1T ′-MoS2 has mirror
symmetry σh(yz).

The rest of this paper is organized as follows. In Sec. II
the effective k · p Hamiltonian which can be used to describe
the PEF effect on band dispersion and spin texture is directly
given. In Sec. III we calculate the CISP of the monolayer 1T ′-
MoS2 based on our k · p Hamiltonian. Here our calculations
have already taken into account the disorder effect and obtain
the charge-to-spin conductivity with different PEF for differ-
ent disorder strengths. The summary and final conclusions are
in Sec. IV.

II. EFFECTIVE HAMILTONIAN OF MONOLAYER T ′

TRANSITION METAL DICHALCOGENIDES

The electronic structures of the monolayer 1T ′-MoS2 are
calculated utilizing the Vienna Ab Initio Simulation Package
(VASP) code [15,16] based on density-functional theory
(DFT) [17,18]. The electron exchange-correlation functional
is treated within the generalized gradient approximation
(GGA) of Perdew-Burke-Ernzerhof (PBE) [19] and projected
augmented wave (PAW) [20]. We set the kinetic energy cutoff
to 500 eV for the wave function expansion, and the k-point
grid is sampled by sums over 16 × 16 × 1. The electronic
self-consistent calculations converge up to a precision of
10−8 eV in total energy difference. The Gaussian smearing
method with a width of 0.05 eV was employed. A slab
model, together with a vacuum layer larger than 20 Å, was
employed. The equilibrium crystal structure is taken by fully
atomic relaxation with the maximum force on each atom
less than 0.01 eV/Å. The calculated lattice parameters of the
T ′-MoS2 are Rx = 3.17 Å, Ry = 5.72 Å [Fig. 1(a)]. As we
can see in Fig. 1, the Mo atoms are located in the xy plane. The
S1(S2) atom is located 0.0566 Å (0.0740 Å) away from the
xy plane in the perpendicular direction. The vectors labeled
in Fig. 1(a) (d0−d2) are d0 = [0, 2.1810, 0.0535] Å, d1 =
[1.5871, 2.2629, 0.0063] Å, d2 = [1.5871,−1.2813, 0.0598]
Å, and d3 = [1.5871,−0.8997,−0.1133] Å.

Our numerical results shown in Figs. 2(a) and 2(b) are in
good agreement with the DFT-PBE results obtained in pre-
vious work [11,14]. As we can see in Fig. 2(a), the lowest
conduction and highest valence band are nonparabolic and
the band gap is located around ±� ≈ ±(0.17, 0) Å−1 [red
dots in Fig. 1(c)]. Here we define the K (K ′) valley located

FIG. 1. Crystal structure of monolayer T ′-MoS2. (a) Top view
and (b) side view of T ′-MoS2. For S atoms, we divide them into
two groups [labeled by S1 (orange) and S2 (yellow)], where two
atoms in each group are connected by inversion symmetry. The green
line in (a) represents the reflected mirror σh(yz). (c) Brillouin zone
of monolayer T ′-MoS2. Other T ′-MX2 materials possess the same
lattice structures with different lattice constants. The band gap is
located around the red dots shown in (c).

at −�(+�) as shown in Fig. 2(b). Since the monolayer T ′-
MoS2 has both time-reversal and space-inversion symmetry,
the band structure shown in Figs. 2(a) and 2(b) is strictly de-
generate for different spin in the absence of the PEF. However,
the PEF can break the space-inversion symmetry and give rise
to a spin-splitting band structure shown in Fig. 2(c1). As the
PEF strength increases, the band gap first decreases to zero at
a critical field strength of Ec = 7.36 MV/cm and then reopens

FIG. 2. Calculated electronic structures of T ′-MoS2 using DFT.
(a) Band structure with SOC and (b) band structure along −X ←
� → X path (ky = 0). Here we define the K and K ′ valley located
around red dots shown in Fig. 1(c). DFT results for monolayer 1T ′-
MoS2 under perpendicular electric fields of (c1) Ez = 5.5, (c2) Ez =
7.36, and (c3) Ez = 9 MV/cm, respectively.
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as shown in Figs. 2(c2) and 2(c3). This gap-closing transition
induces a topology change to a trivial phase.

In order to describe the PEF effect on band structure and
spin properties, we construct a 4 × 4 k · p Hamiltonian us-

ing both group theory [21,22] and the tight-binding method
[23] respectively. The detailed process of the Hamiltonian
construction can be found in the Appendix. Here we directly
display the k · p Hamiltonian:

Hk·p =

⎡
⎢⎢⎢⎢⎣

E11 0 w1Ez + c4kx + ic1ky iw2Ez − ic3kx + c2ky

E22 iw2Ez + ic3kx + c2ky w1Ez − c4kx + ic1ky

E33 0

E44

⎤
⎥⎥⎥⎥⎦,

E11 = δ + v1k2
x + v2k2

y + f1Ezkx, E22 = δ + v1k2
x + v2k2

y − f1Ezkx,

E33 = −δ + v3k2
x + v4k2

y + f2Ezkx, E44 = −δ + v3k2
x + v4k2

y − f2Ezkx. (1)

In Eq. (1) we keep only the lowest-order contribution to each
matrix element, and give only the matrix elements in the
upper triangle since the k · p Hamiltonian is Hermitian. All
the parameters in the k · p Hamiltonian are listed in Table I.

The comparison between the results obtained using the k ·
p Hamiltonian and the first-principles calculations are shown
in Fig. 3. Even though all the figures in Fig. 3 display the
results for monolayer T ′-MoS2 under the specific electric field
of Ez = 7 MV/cm, the Hamiltonian in Eq. (1) can also be used
to describe the electronic dispersion and spin texture under
different electric fields (Ez). As we can see in Figs. 3(a1)
and 3(a2), our k · p Hamiltonian captures the nonparabolic
dispersion, which is an interesting feature of the monolayer
T ′-MoS2 that may exhibit unconventional transport proper-
ties. It is worth noting that the PEF splits the band structure
in Figs. 3(a1) and 3(a2) into four bands marked with differ-
ent colors: green, black, red, and blue. Fortunately, the spin
projection (〈sξ 〉, ξ = x, y, z) obtained using our k · p Hamil-
tonian [shown in Figs. 3(b1)–3(d1)] is in agreement with the
results obtained using first-principles calculation [shown in
Figs. 3(b2)–3(d2)]. Here the spin projection (〈sξ 〉, ξ = x, y, z)
stands for the expectation value of spin for a specific Bloch
state (〈sξ 〉 = 〈ψn(kx, ky )|sξ |ψn(kx, ky)〉), where n represents
the band index. In physical view, we can determine whether

TABLE I. Nonzero k · p parameters in the monolayer T ′-MX2

(MX2 = MoS2, WSe2, and WS2) k · p Hamiltonian.

Parameter MoS2 WSe2 WS2 Unit

δ 0.2631 0.3388 0.0897 eV
v1 −9.0503 −58.5032 −12.5025 eV Å2

v2 −1.8201 −0.8201 −1.8201 eV Å2

v3 2.3284 2.2447 1.3501 eV Å2

v4 −0.2109 −0.5109 −0.2109 eV Å2

c1 −1.4025 −1.5021 −1.4025 eV Å
c2 0.6756 −1.0913 0.6756 eV Å
c3 −0.1763 −0.7304 0.6716 eV Å
c4 −0.0661 −0.2738 0.1974 eVÅ
w1 −0.5494 −0.5759 0.4043 e Å
w2 −0.0346 −0.1871 0.0682 e Å
f1 −0.3403 −1.3698 −0.2469 e Å2

f2 0.0902 0.2171 −0.0391 e Å2

there is nonzero spin polarization or not by summing up the
spin projection (〈sξ 〉) for all the Bloch states located at the
Fermi circle. Therefore it is essential to calculate and analyze
the spin projection in k space.

As we can see in Fig. 3, the spin projection 〈sy〉 and
〈sz〉 have values and exhibit odd parity properties along

FIG. 3. Comparison of band structure and spin texture results
along the −X ← � → X direction (ky = 0/Å) calculated using k · p
Hamiltonian shown in Eq. (1) and DFT. (a1) and (a2) are band
structure obtained from the k · p Hamiltonian and the first-principles
calculations. The solid lines of different colors (blue, red, black, and
green) in (b1), (c1), and (d1), respectively correspond to the spin
projection 〈sx〉, 〈sy〉, and 〈sz〉 of different energy bands in (a1). The
solid lines of different colors (blue, red, black, and green) in (b2),
(c2), and (d2), respectively, correspond to the spin projection 〈sx〉,
〈sy〉, and 〈sz〉 of different energy bands in (a2). All these figures are
results for monolayer T ′-MoS2 under specific electric field strength
Ez = 7 MV/cm.
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FIG. 4. (a) Band gap of T ′-MoS2 as a function of perpendicu-
lar electric field (PEF). The two black dots indicate the situations
when the PEF strength is 5.5 and 9 MV/cm, respectively. (b)–(d)
Band structure of monolayer T ′-MoS2 under different perpendicular
electric strength: (b) Ez = 0, (c) Ez = 5.5, and (d) Ez = 9 MV/cm,
calculated using our k · p model Hamiltonian (blue lines) and first-
principles calculations (red lines).

the kx(ky = 0) direction, while the spin projection 〈sx〉
is zero along the kx(ky = 0) direction. This phenomenon
can be explained by symmetry analysis. Since the spin
operator component sy is odd with respect to time re-
versal and mirror reflection σh(yz), invariance under time
reversal and mirror reflection σh(yz) imposes only one con-
dition on the spin projection: 〈ψn(−kx, 0)|sy|ψn(−kx, 0)〉 =
−〈ψn(kx, 0)|sy|ψn(kx, 0)〉 (where n stands for the band index).
Therefore, the spin projection 〈sy〉 exhibits odd parity proper-
ties along the kx(ky = 0) direction. The same analysis can lead
to the conclusion that 〈sz〉 also exhibits odd parity properties.

However, the situation is different for spin projection
〈sx〉. On one hand, the spin operator component sx is
odd with respect to time reversal, and invariance under
time reversal imposes a condition on the spin projection:
〈ψn(−kx, 0)|sx|ψn(−kx, 0)〉 = −〈ψn(kx, 0)|sx|ψn(kx, 0)〉. On
the other hand, the spin operator component sx is even
with respect to mirror reflection σh(yz), and invariance
under mirror reflection σh(yz) imposes another condi-
tion on the spin projection: 〈ψn(−kx, 0)|sx|ψn(−kx, 0)〉 =
〈ψn(kx, 0)|sx|ψn(kx, 0)〉. The spin projection 〈sx〉 along the kx

direction that satisfies both of the above two conditions can
only be zero, as shown in Fig. 3(b1).

Although, we treat PEF Ez as a perturbation in the above
deduction, the k · p Hamiltonian still can be used to predict
the phase transition induced by large Ez. As we can see in
Fig. 4(a), when the PEF Ez increases from zero to signifi-
cantly large, the band gap (Eg) closes and reopens. The phase
transition under the PEF Ez obtained using our model is in
good agreement with the result predicted using first-principles
calculation. Under different PEF strength, the band structure
calculated using our k · p model [blue lines in Figs. 4(b)–
4(d)] is in agreement with the DFT results [red lines in
Figs. 4(b)–4(d)].

III. CURRENT-INDUCED SPIN POLARIZATION

The current-induced spin polarization (CISP), also known
as the Edelstein effect or the charge-to-spin conversion, is that
a charge current driven through a 2D system with Rashba
spin-orbit coupling (RSOC) generates a spatially homoge-
neous spin polarization perpendicular to the applied bias
[24,25]. Thus a nonzero spin polarization is generated in
nonmagnetic systems purely electrically. The PEF that gives
rise to the RSOC effect is responsible for CISP taking place
in monolayer T ′-MoS2, where the RSOC can be tuned by gate
voltages. At low temperature, the CISP response is determined
by the spin texture near the Fermi surface, which can be well
described using our k · p Hamiltonian [Eq. (1)].

According to the Onsager relation, the charge-to-spin con-
ductivity (C-S conductivity) is equal to the spin-to-charge
conductivity, which reads [26,27]

〈Jα; Sβ〉 = − e

2π

∫
d2 p

(2π )2
Tr[JαGR(μ)SβGA(μ)], (2)

where Jα = evα = e∂Hk·p/∂kα (α = x, y) is the current op-
erator, Sβ is the spin operator, and GR(A) is the retarded
(advanced) Green function corresponding to the unperturbed
Hamiltonian Hk·p, taken at the chemical potential μ. For the
clean-limit situation, the C-S conductivity (〈Jα; Sβ〉) could
become divergent. This would not happen in real materials,
where the impurity scattering causes a finite lifetime of the
carriers.

Here we calculate the C-S conductivity with disorder ef-
fects taken into consideration. For a disordered system, GR(A)

in Eq. (2) should be understood as disorder-averaged Green’s
functions:

GR(A) = 1

μ − Hk·p ± i�
, (3)

where � = h̄/(2τ ) is the level broadening due to the disor-
der. For randomly distributed short-range impurities described
by a random potential V (r) with Gaussian correlation
〈V (r)V (r′)〉 = niv

2
0δ(r − r′), we can use the Born approxima-

tion to obtain � = niv
2
0N (μ), where ni is the impurity density,

v0 is the disorder scattering potential, and N (μ) is the density
of states (DOS) at the chemical potential μ.

Using Eq. (2), we calculate the zero-temperature C-S con-
ductivity vs chemical potential μ under different PEF for
different disorder strength and plot the results in Figs. 5(b) and
5(d). The corresponding band structure is shown in Figs. 5(a)
and 5(c). Although there is a topological phase transition
when the PEF increases from zero to 10 MV/cm (shown in
Fig. 4), the charge-to-spin response follows same mode, as
shown in Figs. 5(b) and 5(d). Since the in-plane charge-to-
spin response is much smaller than the out-of-plane response,
we show only the C-S conductivity of 〈Jx; Sz〉. It is worth
noting that the out-of-plane spin polarization Sz induced by
the current along the y direction is forbidden (〈Jy; Sz〉 = 0).
These anisotropic phenomena can be explained by analyzing
spin texture shown in Fig. 6.

Figure 6 shows the spin texture on the Fermi surface of
the T ′-MoS2 monolayer under PEF (Ez = 5.5 MV/cm) with
the Fermi level located at μ = −0.12 eV. As we can see, the
blue (red) circles stand for the Fermi surface without (with)
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FIG. 5. (a), (c) Band structure of T ′-MoS2 monolayer calcu-
lated using the multiband k · p model under different PEF: (a) Ez =
9 MV/cm, (c) Ez = 5.5 MV/cm. (b), (d) Corresponding charge-spin
conductivity 〈Jx; Sz〉 calculated using the multiband k · p model un-
der different PEF, and for different disorder strengths niv

2
0 = 0.8 ×

10−2 (eV Å)2 (green lines), niv
2
0 = 1.6 × 10−2 (eV Å)2 (red lines),

and niv
2
0 = 3.2 × 10−2 (eVÅ)2 (blue lines).

bias along the y direction. The blue (red) arrows at the Fermi
circle represent the spin momentum (namely, spin texture:
〈sx〉, 〈sy〉, and 〈sz〉) of the occupation states at the Fermi circle.
Physically, the spin polarization can be considered as the
summation of all the spin momentum at the red Fermi circles.
Without in-plane bias voltage, the summation of all the spin
momentum at the blue Fermi circles in the K [Fig. 6(a1)] and
K ′ [Fig. 6(b1)] valley is zero, which indicates that there is no
Sx spin polarization. It is obvious that without in-plane bias
voltage, there is no Sy and Sz spin polarization too.

When there is a bias voltage along the y direction, the
electron occupation states are redistributed [28,29], and the
Fermi surface drifts from the blue circles to the red circles
shown in Fig. 6. Since the T ′-MoS2 monolayer has mirror
symmetry (the reflected mirror is the yz plane), the specific
spin momentum in the K valley [red arrow in green box shown
in Fig. 6(a3)] and the spin momentum in the K ′ valley [red
arrow in green box shown in Fig. 6(b3)] have identical values
with opposite directions. Therefore, the y direction charge
current cannot induce a spin polarization along the z direction
(〈Jy; Sz〉 = 0). It is obvious that the y direction current cannot
induce the spin polarization Sy too (〈Jy; Sy〉 = 0).

However, the transform of spin momentum sx under mirror
reflection [σh(yz)] is different from the spin momentum sy or
sz, which gives rise to an identical direction between the spin
momentum in the K and K ′ valleys [as shown in Figs. 6(a1)
and 6(b1), the red arrows in green box have identical value
and point in the same direction]. Therefore, the y direction
charge current can induce the spin polarization only along the
x direction (〈Jy; Sx〉 �= 0).

FIG. 6. (a1) [(b1)], (a2) [(b2)], and (a3) [(b3)] are the 〈sx〉, 〈sy〉,
and 〈sz〉 projected spin texture, respectively, at Fermi level μ =
−0.12 eV near the K (K ′) valley. In all these figures the blue (red)
circle represents the Fermi surface without (with) bias voltage along
the y direction. The PEF along the z direction is Ez = 5.5 MV/cm,
which corresponds to the results shown in Fig. 2(c1).

As we can see in Fig. 7, the bias voltage along the x
direction leads to the electron occupation states redistribution,
and the Fermi surface drifts to the red circles. It is worth
noting that the summation of the x direction projected spin
texture 〈sx〉 at blue (red) Fermi circles shown in Figs. 7(a1)
and 7(b1) equals zero. In other words, there is no x direction
spin polarization induced by the charge current along the x
direction. The vanish of the spin polarization Sx can be un-
derstood by analyzing the spin texture shown in Fig. 7(a1).
Since the system has both time-reversal invariance and mirror
symmetry (σh(yz)), the spin momentum in the small green box
in Fig. 7(a1) has an identical value with an opposite direction
compared with the spin momentum in the small black box.
Therefore, the current (x direction) induced spin polarization
Sx is forbidden 〈Jx; Sx〉 = 0.

We conclude that the symmetry-allowed charge-to-spin re-
sponse is 〈Jx; Sy〉, 〈Jy; Sx〉 and 〈Jx; Sz〉. Although the existance
of charge-to-spin response is decided by the crystal symme-
try, the strength of the response depends on the change of
spin texture induced by the Fermi surface drifting. Accord-
ing to our calculation, the in-plane charge-to-spin response
〈Jx; Sy〉, 〈Jy; Sx〉 is much smaller than the out-of-plane re-
sponse 〈Jx; Sz〉.
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FIG. 7. (a1) [(b1)], (a2) [(b2)], and (a3) [(b3)] are the 〈sx〉, 〈sy〉,
and 〈sz〉 projected spin texture, respectively, at the Fermi level μ =
−0.12 eV near the K (K ′) valley. In all these figures the blue (red)
circle represents the Fermi surface without (with) bias voltage along
the x direction. The PEF along the z direction is Ez = 5.5 MV/cm,
which corresponds to the results shown in Fig. 2(c1).

IV. CONCLUSION

We obtain the effective k · p Hamiltonian for an electron
in monolayer T ′-MoS2 near the Fermi level in the presence
of spin-orbit coupling and a perpendicular electric field. The
4 × 4 k · p Hamiltonian can describe the band dispersion and
perpendicular electric field-induced spin texture very well. By
using the k · p Hamiltonian, we predict a significantly large
out-of-plane spin polarization (Sz) induced by the charge cur-
rent along the x direction. Furthermore, we find that the mirror
symmetry [σh(yz)] leads to the forbidden spin polarization
(Sz) induced by the charge current along the y direction.

APPENDIX

1. Group theory

Here we derive the effective k · p Hamiltonian using group
theory. As shown in Fig. 1, the monolayer T ′-MoS2 has a
rectangular unit cell (red-shaded area) with two Mo atoms and
four S atoms. The monolayer T ′-MoS2 belongs to a nonsym-
morphic space group, containing the following symmetries:
(1) glide mirror T ( Rx

2 )σh: (x, y, z) → (−x, y, z) + Rx
2 and (2)

TABLE II. Character table of point group C2h and the tensor com-
ponents for each irreducible representation. Here (kx, ky) are the three
Cartesian components of an wave vector (that changes sign under
spatial inversion), and (sx, sy, sz) are the three Cartesian components
of spin. Ez stands for perpendicular electric field.

E C2 I σh Tensor components

�+
1 1 1 1 1 {sx}, {k2

x }, {k2
y }, {Ezky}

�+
2 1 −1 1 −1 {sy}, {sz}, {kxky}, {Ezkx}

�−
1 1 1 −1 −1 {kx}, {kxsx}, {kysy}, {Ezsy}, {kysz}, {Ezsz}

�−
2 1 −1 −1 1 {ky}, {Ez}, {kysx}, {Ezsx}, {kxsy}, {kxsz}

screw rotation T ( Rx
2 )C2: (x, y, z) → (x,−y,−z) + Rx

2 . Here
the glide mirror operation can be divided into two symmetry
operations: yz plane mirror reflection σh [the reflective plane
is indicated by the green line in Fig. 1(a)] and translation
Rx
2 along the x direction. The screw rotation is composed of

a 180◦ rotation along the x axes within the translation Rx
2

along the x direction. Although the space group of monolayer
T ′-MoS2 is nonsymmorphic, we can construct the effective
k · p Hamiltonian in the basis of the Bloch function at the �

point using the C2h point group. Table II shows the character
table for C2h point group. The C2h point group consists of four
symmetry operations divided into four classes and hence four
irreducible representations (see Table II).

As we can see in Fig. 8, in the absence of spin-orbit cou-
pling (SOC), the electronic properties of monolayer T ′-MoS2

are dominated by two energy bands in the vicinity of the
Fermi level. Their orbital wave functions at the � point are
|ψc〉 and |ψv〉, which consist of the px orbital of S atoms
[shown in Fig. 8(a)] and d orbitals of Mo atoms [shown in
Figs. 8(b) and 8(c)]. Although there are two different possible
configurations (bonding or antibonding configuration) of the
px orbitals within a unit cell, all the configurations are odd
under the glide mirror operator T ( Rx

2 )σh. Therefore, the orbital
wave functions |ψc〉 and |ψv〉 belong to �−

1 or �+
2 irreducible

representation (IR) of the C2h point group.

FIG. 8. Orbital projections for monolayer T ′-MoS2 from first-
principles calculations. The color represents the weight of a specific
orbital. (a) The projection results from p orbitals of S atom, red for
px , green for py, and blue for pz. (b) The result of contributions from
d orbitals of Mo atoms, red for dxy, green for dyz, and blue for dx2+y2 .
(c) The result of contributions from d orbitals of Mo atoms, red for
dxz, green for dyz, and blue for dz2 .
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Furthermore, it is worth noting that the band structure
crosses over along the � → X direction. This crossover im-
plies that the wave functions |ψc〉 and |ψv〉 belong to different
IR, otherwise the band structure along the � → X direction
will open a gap due to the k2

x term, which belongs to �1 IR.
According to the analyses above, we conclude that there are
only two possible cases: (1) |ψc〉 (|ψv〉) belongs to �−

1 (�+
2 )

IR and (2) |ψc〉 (|ψv〉) belongs to �+
2 (�−

1 ) IR. In either case
we will obtain the same model Hamiltonian.

In the basis {|ψc〉, |ψv〉}, the k · p Hamiltonian assumes the
2 × 2 block form:

H =
[

Hc,c Hc,v

Hv,c Hv,v

]
, (A1)

where Hα,β is the matrix element between |ψα〉 and |ψβ〉, e.g.,
Hc,v = 〈ψc|H |ψv〉. According to the theory of invariants, all
the matrix block (〈ψα|H |ψβ〉) should satisfy two conditions:

(1) The transform of the matrix block under all the symme-
try operations of C2h point group should be invariant.

(2) In addition to the point group symmetry, the k · p
Hamiltonian must obey the time-reversal symmetry.

In order to satisfy condition (1), every term in Hamiltonian
block Hα,β must transform like �γ , where �γ = �α ⊗ �β .
Combining the additional conditions imposed on Hamilto-
nian by time-reversal symmetry, we can easily obtain the
symmetry-allowed Hamiltonian block as follows:

Hcc = {
k2

x

} + {
k2

y

} + {Ezkxsz},
Hcv = {iky} + {kysx} + {kxsy} + {kxsz} + {Ez} + {iEzsx}.

(A2)

Here the braces remind us there is an undetermined coefficient
before each term which can be numerically fitted out. It is
worth noting that the Hamiltonian block Hvv shares the same
form with the Hcc, but the coefficients are different. Substitut-
ing the sx, sy, sz with the Pauli matrix, we obtain the form of
the effective k · p Hamiltonian shown in Eq. (1).

Altogether there are 12 real parameters, including band-
edge energy δ, eight coefficients c1, c2, c3, c4, v1, v2, v3, v4

associated with the k-dependent matrix elements, two coef-
ficients w1,w2 associated with the Ez matrix elements, and
two coefficients f1, f2 that describe the coupling between Ez

and wave vector kx. All these parameters can be determined by
comparing the energy band structure obtained from the k · p
Hamiltonian [Eq. (1)] to the first-principles calculations in the
vicinity of the � point. The fitting results of parameters are
listed in Table. 1.

2. Tight binding

As we can see in Fig. 8(a), the states in the energy win-
dow ([−0.2 eV, 0.5 eV]) are mostly contributed by the px

orbital of an S atom. According to results shown in Figs. 8(b)
and 8(c), the states near the Fermi level are mainly com-
posed of dxy and dxz orbitals of an Mo atom. Here we
construct a tight-binding Hamiltonian in the Hilbert space
constituted by four orbitals {px, dxy, dxz, dx2+y2 } to describe
the electronic structure near the Fermi energy level. Since
there are two Mo atoms (Mo in A and B) and two S1

atoms (S1 in A and B) in the unit cell shown in Fig. 1 red-
shaded area, we write the 8 × 8 tight-binding matrix in the
basis {|dA

x2−y2〉, |dB
x2−y2〉, |dA

zx〉, |pA
x 〉, |dB

zx〉, |pB
x 〉, |dA

xy〉, |dB
xy〉} as

follows:

HTB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 0 0 0 h16 0 h18

h22 0 h24 0 0 h27 0

h33 h34 h35 h36 0 0

h44 h45 h46 h47 h48

h55 h56 0 0

h66 h67 h68

h77 h78

h88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

h11 = h22 = μd + 2td1 cos(Rxkx ), h33 = h55 = μd + 2td2 cos(Rxkx ),

h44 = h66 = μp + 2tp cos(Rxkx ), h77 = h88 = μd + 2td3 cos(Rxkx ),

h12 = 2t1eikyd1y cos

(
Rxkx

2

)
; h16 = 2it2eikyd2y sin

(
Rxkx

2

)
,

h18 = 2it6eikyd1y sin

(
Rxkx

2

)
; h24 = 2it2e−ikyd2y sin

(
Rxkx

2

)
,

h27 = −2it6e−ikyd1y sin

(
Rxkx

2

)
; h34 = tze

−ikyd0y ,

h35 = 2t4eikyd1y cos

(
Rxkx

2

)
; h36 = 2t3eikyd2y cos

(
Rxkx

2

)
,

h45 = −2t3eikyd2y cos

(
Rxkx

2

)
; h46 = 2t5e−ikyd3y cos

(
Rxkx

2

)
,
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h47 = t7eikyd0y ; h48 = 2t8eikyd2y cos

(
Rxkx

2

)
,

h56 = −tze
ikyd0y ; h67 = −2t8e−ikyd2y cos

(
Rxkx

2

)
,

h68 = −t7e−ikyd0y ; h78 = 2t9eikyd1y cos

(
Rxkx

2

)
. (A3)

Here d0, d1, d2, d3 and Rx, Ry are vectors shown in Fig. 1. In the above we give only the matrix elements in the upper triangle
since the tight-binding Hamiltonian is Hermitian.

Around the � point, the tight-binding Hamiltonian can be decomposed into two parts. The first part is the � point Hamiltonian
H0 (where kx = ky = 0):

H0 = diag[μd + 2td1, μd + 2td1, μd + 2td2, μp + 2tp, μd + 2td2, μp + 2tp, μd + 2td3, μd + 2td3]

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2t1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 tz 2t4 2t3 0 0

0 −2t3 2t5 t7 2t8

0 −tz 0 0

0 −2t8 −t7

0 2t9

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A4)

The second part is the perturbation part Hk = [H11 H12
H21 H22

]. The matrix element H11, H12, H21, H22 has the following form:

H11 =
[

0 2it1d1yky

0

]
, (A5)

H12 = H†
21 =

[
0 0 0 it2Rxkx 0 it6Rxkx

0 it2Rxkx 0 0 −it6Rxkx 0

]
,

H22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −itzd0yky 2it4d1yky 2it3d2yky 0 0

0 −2it3d2yky −2it5d3yky it7d0yky −it8Rxkx

0 −itzd0yky 0 0

0 it8Rxkx it7d0yky

0 it9d1yky

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A6)

where kx, ky has a small value.
We can also treat spin-orbital coupling and the perpendicular electric field as small perturbations. In above atomic orbital

space, the SOC Hamiltonian Hso and PEF Hamiltonian HEz can be written as

Hso + HEz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 iλdsy 0 0 0 −2iλd sz 0

0 0 0 iλd sy 0 0 −2iλd sz

0 0 0 0 iλdsx 0

Ez 0 0 0 0

0 0 0 iλd sx

−Ez 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A7)

where λd is the d orbital SOC strength of the Mo atom, and the Pauli matrix sx, sy, sz is acting on the spin subspace. Ez represents
the PEF-induced potential difference between the S atom in the A and B sublattice shown in Fig. 1.
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By transforming the atom basis perturbation Hamiltonian Hk + Hso + HEz into the � point Bloch basis, which can be obtained
by diagonalizing the � point Hamiltonian H0, we get a 8 × 8 k · p Hamiltonian as follows:

Hk·p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1 {iky} {isy} + {isz} {isy} + {isz} {ikx} {ikx} {ikx} {isy} + {isz}
E2 {ikx} {ikx} {isy} + {isz} {isy} + {isz} {isy} + {isz} {ikx}

E3 {isx} {Ez} + {iky} {Ez} + {iky} {Ez} + {iky} {isx}
E4 {Ez} + {iky} {Ez} + {iky} {Ez} + {iky} {isx}

E5 {Ez} + {isx} {Ez} + {isx} {Ez} + {iky}
E6 {isx} {Ez} + {iky}

E7 {Ez} + {iky}
E8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A8)

Here we use E1 . . . E8 to stand for the eigenvalue of Bloch states ψ1 . . . ψ8 obtained by diagonalizing the � point Hamiltonian H0.
As we can see, there is a coefficient which is independent of perturbation strength before each element ({ikx,y}, {isx,y,z}, {iEz}). It
is worth noting that we can divide the set of Bloch states ψ1 . . . ψ8 into weakly interacting subsets A (set of Bloch states ψ4 and
ψ5) and B (set of Bloch states ψ1 . . . ψ3 and ψ6 . . . ψ8), such that we are interested in the subsets A whose Bloch states are near
the Fermi level. In order to obtain the simplified Hamiltonian in the subset A, we can utilize the Löwdin transformation [30]. The
fundamental concept of the Löwdin transformation is to transform the original Hamiltonian H into a new Hamiltonian H̃ , where
the coupling matrix elements (〈ψm|H̃ |ψl〉) of the transformed Hamiltonian matrix H̃ are sufficiently small. Here, |ψm〉(|ψl〉)
represents Bloch state in the A(B) subset. By using Löwdin partitioning, we finally obtain the effective Hamiltonian in the basis
ψ4 and ψ5 shown in Eq. (1).
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