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Determination of the Zak phase of one-dimensional diffractive systems with inversion symmetry
via radiation in Fourier space
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Bloch waves in one-dimensional periodic systems carry the Zak phase, which plays a key role in determining
the band topology. In general, for a system that possesses inversion symmetry, the Zak phase of an isolated
band is quantized as 0 or π and is associated with the spatial-field symmetries of the Bloch waves at the
Brillouin-zone center and boundary. Since the radiation losses from leaky systems are strongly associated with
the Bloch waves, one may probe the far-field continuum to determine the Zak phases. Here, we formulate the
radiations from photonic systems in Fourier space at the zone center and boundary and find they reveal the field
symmetries and thereby the corresponding Zak phase. For verification, we have studied the Zak phases of TM
plasmonic and TE photonic crystals by electrodynamic simulations and measuring the topologically properties
of plasmonic crystals using Fourier-space optical spectroscopy and common-path interferometry. In addition, a
topologically protected interface state is demonstrated when two topologically trivial and nontrivial systems are
joined together. Our results provide a simple way for characterizing the band topology of photonic systems via
far fields.
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I. INTRODUCTION

Topological physics has attracted a widespread of inter-
est not only in condensed-matter physics [1–3] but also in
other branches such as ultracold atom [4,5], electromagnetism
[6–8], mechanics [9], acoustics [10,11], and oceanography
[12]. Much attention in this field focuses on realizing the
so-called topologically protected states, which support robust
wave propagation against perturbation and disorder [1–12].
When two topologically trivial and nontrivial systems are
brought together, topological phase transition occurs at the
interface between two systems to yield the Jackiw-Rebbi–
type state [1–3]. As most of the matters are topologically
trivial, the identification and the making of different classes
of topological systems are currently under intensive investi-
gation [13,14]. Likewise, developing methods to characterize
the topological properties of the systems is also of great
importance.

In analogy to the Su-Schrieffer-Heeger (SSH) model, the
band topology of a one-dimensional (1D) periodic system
is determined by Zak phase, γ , which is a geometric phase
[15,16]. For the �th isolated energy band, the γ� emerges when
the Bloch wave travels adiabatically along the band across the
first Brillouin zone from k = −π/P to π /P, where P is the
period of the system [16]. If the system possesses inversion
symmetry, the γ� is quantized as either 0 or π [16]. The zero
or π Zak phase defines the topological invariant of a two-band
system. For a system that supports multiple bands, the topol-
ogy of the band gap of interest is the summation of all γ� of the
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bands below that gap, giving rise to the total γ that is either
even or odd multiple of π for indicating whether the system is
topologically trivial or nontrivial [17,18]. A zero-dimensional
interface state is then formed between two odd and even π

systems.
One notable feature that comes with γ is the distinctive

spatial wave symmetries at the zone center and boundary of
the band [16–18]. The field symmetries are the same for γ = 0
but different when γ = π [18]. The association between γ

and the field symmetry can be understood from the standpoint
of the Wannier function, which sums the Bloch waves carry-
ing all k along a band [19]. Considering the Bloch waves at
two high-symmetry points that have the same field symmetry,
the Wannier function has W (−x) = ±W (x) spatial depen-
dence, leading to γ = 2π

P

∫ ∞
−∞ x|W (x)|2dx = 0 [16]. On the

other hand, for the waves that exhibit different symmetries, the
Wannier function now shows W (−x + P) = ±W (x) depen-
dence, which gives γ = π [16]. Remarkably, the quantization
of γ and the associated field symmetries are carried over to
non-Hermitian systems provided they still possess inversion
symmetry [20]. Therefore, instead of tracing the Bloch waves
one by one along the band to determine γ , one can simply
examine the field symmetries. However, how to measure the
spatial wave symmetry remains challenging.

To date, there are only a few studies focus on measuring the
geometric phase, either Zak or Berry phase [21–24]. Demler
and Bloch and their co-workers were among the first to
combine Bloch oscillation and interferometry in a 1D dimer-
ized cold-atom system to mobilize the Bloch wave across
the Brillouin zone and subsequently measure the γ [21,22].
They prove, for an inversion symmetric system, γ = π

evolves when the intercell interaction is stronger than that of
intracell. Cardano et al. have demonstrated the use of mean
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FIG. 1. (a) The ω-k plot of a 1D optical system that supports guided resonances. Solid and dashed lines are resonant Bloch modes and the
Wood anomalies deduced by using the phase-matching equation. Bloch modes form continuous energy bands that are split by band gaps at
� and X points in the first Brillouin zone. At the gap, two supermodes are formed at lower and higher energies. The Wood anomalies cross
at the � and X points following λo = P/M and P/(M − 1/2). The supermodes of interest at the two points are marked by blue solid circles.
(b) At the second gap, two Bloch-like modes a1/2 propagate in opposite x directions, and each supports one m = 0 input and output ports s0,±.
Output radiation channels from a1/2 carry linear polarizations pointing in opposite directions. (c) At the third gap, a1/2 supports two mirror
symmetric m = 0 and 1 input and output port s0,± and s1,± at ±θi. Polarizations of two output channels from a1 point in same clockwise and
counterclockwise directions to ensure continuity but are opposite to those from a2.

displacement method to determine γ in a chiral Floquet
system [23]. Such method is then extended to other more-
generalized SSH systems where the next-nearest neighbor
interaction is strong enough to break the chiral symmetry
[24]. While most of them focus on tracing the Bloch waves
in momentum space, Gorlach et al. adopt an alternative ap-
proach by probing the spectral positions of the dipolar (bright)
and quadrupolar (dark) supermodes at the zone center, which
reveal the topological invariant of the system [25]. However,
their method is limited to two-dimensional (2D) honeycomb
systems that possess C6 symmetry in which up and down
pseudospins are found to define the nonzero spin Chern
number [26]. Therefore, measuring the supermodes only at
the zone center is sufficient to determine the band topology.
In addition, it is applicable only to the lowest band gap above
the light line but not the others at higher energy. Recently,
Chan and co-workers formulated that the sign of the reflection
phase for the wavelengths within the �th band gap can resolve
the γ� of 1D systems [17,18]. Although the approach has been
applied to several photonic and acoustic systems, it is demon-
strated specifically to stacked multilayer structures in which
one single normal-reflection channel is supported for phase
measurement [27–30]. Particularly, for photonic systems, a
stringent interferometric configuration is required that may
be difficult to be implemented to other more general systems
such as corrugated surfaces [27].

Here, we have developed a simple approach to determine γ

by measuring the radiations from photonic systems in Fourier

space at the Brillouin-zone center and boundary. It is shown
that the radiation emitted by the supermodes exhibits a rich
variety of characteristics such as quasibound state in the con-
tinuum (BIC) [31,32] and even- and odd mirror-symmetric
diffraction pairs that reveal the near-field symmetry and the
γ . To verify our formulation, we perform finite-difference
time-domain (FDTD) simulations on 1D Au plasmonic
and SiO2/Au photonic crystals that, respectively, support
TM- and TE-polarized guided waves. We then fabricate plas-
monic crystals (PmCs) with different geometries and conduct
polarization- and angle-resolved diffraction and phase spec-
troscopy by Fourier-space optical microscopy and common-
path interferometry to study γ . Both the simulation and
experimental results agree very well with the theory. Finally,
a topologically protected interface state is demonstrated by
joining two topologically trivial and nontrivial PmCs together.

II. TEMPORAL COUPLED-MODE THEORY

Assume a 1D optically thick periodic system that sup-
ports guided Bloch modes in the �-X direction is excited by
light illuminated from the reflection side. Figure 1(a) illus-
trates the TM- or TE-polarized ω-k plot with the in-plane
wave vector k = 2πsinθi/λ, where θi is the incident angle
[33–36]. The plot is also known as dispersion relation, and
it provides the necessary conditions for exciting the reso-
nant modes in the system. In analogy to the band-folding
scheme in electronic crystals [37], the excitation requires the
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FIG. 2. (a) Unit cell of 1D PmC for FDTD simulations. Sim-
ulated TM-polarized k- and wavelength-resolved total reflectivity
mappings of PmCs with W=(b) 100, (c) 250, (d) 400, (e) 550, and
(f) 700 nm taken along �-X direction. white dashed lines are cal-
culated by using phase-matching equation, indicating ±1 and −2
Bloch-like SPPs are excited. At � and X points where k = 0 and
0.5, two energy band gaps are formed, featuring two dark and bright
modes located above or below gap. Particularly, at k = 0, a quasi-
BIC is observed at either above or below gap.

incident light to fulfill the phase-matching equation given
as (k + nB

2π
P )

2 = (neff
ω
c )2, where nB is the Bragg scattering

order, c is the light speed, and P and neff are the period
and the wavelength-dependent effective refractive index of
the system, respectively [33,35,36]. Depending on nB, the
resonant modes form several continuous energy bands (solid
lines) spanning across the first Brillouin zone and are divided
by band gaps at the zone center (�) and boundary (X). The gap
arises when two degenerate counterpropagating Bloch modes
interact to yield two nonpropagating supermodes locating at
higher and lower energies [33,34]. Because the neff of the
system is larger than 1, the spectral positions of the super-
modes are lower than the cross points of the Wood anomalies
(WAs), where neff is taken to be 1 (dashed lines) [38]. The
WA cross points at the � and X points are positioned at
λo = P

M and P
M−1/2 , respectively, with M a natural number

that increases sequentially with the cross-point position as
shown in Fig. 1(a) [39]. In this study, we will focus on the
band sandwiched between the second and third gaps with

FIG. 3. TM-polarized total reflectivity spectra of PmCs taken
at � point for different W, exhibiting only one single-reflectivity
dip as bright mode. Red dashed line is band-gap center, indicat-
ing quasi-BIC occurs at shorter wavelength for W= 100, 250, and
400 nm but longer wavelength for W= 550 and 700 nm. At X point,
two TM-polarized mirror-symmetric m = 0 (black square) and 1 (red
circle) (b) reflectivity and (c) phase spectra for W= 100 (top) to 700
(bottom). Green and blue solid lines are best fits determined by CMT.

the supermodes of interest marked as two blue circles. The
generalization to other higher-order bands will be provided in
the Supplemental Material [39]. Given the system possesses
inversion symmetry, the near-field symmetries of the super-
modes sitting on the band thus define the γ .

As the system is leaky, once the supermode is excited, it
will then dissipate into discrete radiation channels via diffrac-
tion. In fact, the output channels in Fourier space follow the
grating equation given as mλ = P(sinθi + sinθm), where θm

is the diffraction angle with m the diffraction order [40].
For example, for the second band gap at the � point where
M= 1 and λ > λo =P, the circled supermode supports only
one single m = 0 specular diffraction order at θm=0 = 0◦, as
shown in Fig. 1(b). Other nonzero m integers do not yield any
propagating orders in the continuum. Likewise, for the third
gap at k = π /P in Fig. 1(c) where M= 2 and λ > λo = 2P/3,
we see 2m−1

3
λ
λo

= sinθm results in m = 0 and 1 as the possible
solutions, and (2m−1)sinθi = sinθm shows two diffractions
occur at θm=0,1 = ±θi. These two specular and back-reflected
orders are mirror symmetric with respect to the surface normal
of the system. Their sum will give the total reflection. In the
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FIG. 4. FDTD-simulated |Ez| near-field patterns of PmCs for different W taken at (a) � and (b) X points, showing their field symmetries
are the same for W= 400 and 550 nm but different for W= 100, 250, and 700 nm.

Supplemental Material, we will extend the diffraction equa-
tion to higher band gaps and show that the number of channels
from each supermode at the � and X points are 2(M − 1) + 1
and 2(M − 1) [39]. In addition, the 2(M − 1) channels at
two points are always presented as mirror-symmetric pairs.
However, the normal diffraction order is present at the � point
but is absent at the X point.

The interaction between two degenerate Bloch modes and
the far-field channels can be formulated within the framework
of temporal coupled mode theory (CMT) [41–44]. For a lossy
and leaky system, at either the � or X point, the dynamics of
two counterpropagating Bloch-mode amplitudes, a1 and a2,
taken under TM or TE polarization are written as

d

dt

[
a1

a2

]
= i

[
ω̃o ω̃c

ω̃c ω̃o

][
a1

a2

]
+ KT [sm,+], (1)

where ω̃o and ω̃c are the complex frequency and coupling
constant, respectively, which are expressed as ω̃o = ωo +
i(�a + �r )/2 and ω̃c = α + iβ, where ωo is the resonant an-
gular frequency, �a and �r are the absorption and radiative
decay rates, and α and β are the real and imaginary parts of
the coupling constant, respectively. The inhomogeneous part
KT [sm,+] defines the light from the continuum to drive a1

and a2 and their form depends on the number of available
incident channels. For a given polarization, the reciprocal
theorem requires that the discrete incoming power-amplitude
vectors for the second and third gaps are [sm,+] = [s0,+] and
[s0,+
s1,+], respectively, following the earlier grating equation, as

illustrated in Figs. 1(b) and 1(c). The second and third gap KT

are given as
[κ̃0,1
κ̃0,2

]
and

[κ̃0,1 κ̃1,1
κ̃0,2 κ̃1,2

]
, where the first and second

subscripts of κ̃m,n are the diffraction order m and mode 1 or 2,
and they define the complex in-coupling constant matrices.

FIG. 5. Measured TM-polarized angle- and wavelength-resolved total reflectivity mappings of PmCs with W=(a) 100, (b) 250, (c) 400,
(d) 550, and (e) 700 nm taken along �-X direction. White dashed lines are ±1 and −2 Bloch-like SPPs determined by the phase-matching
equation. Two band gaps are formed at θi = 0◦ and ∼ 20◦, which correspond to � and X points. Insets are corresponding SEM images of PmCs
with the scale bar = 2 µm.

035403-4



DETERMINATION OF THE ZAK PHASE OF … PHYSICAL REVIEW B 108, 035403 (2023)

It is noted from Eq. (1) that if the system supports multiple
input channels, light incident on only one of the channels is
sufficient for excitation.

We will diagonalize Eq. (1) to provide a clearer physi-
cal picture. After solving the homogeneous part of Eq. (1),
the complex frequencies of the supermodes are ω̃+/− =
ω+/− + i�+/− = (ωo ± α) + i((�a + �r )/2 ± β ), indicating
their spectral positions and decay rates depend on α and β.
We see the real part, ω+/−, of the supermodes are deter-
mined by the magnitude and sign of α and they are separated
by a gap = 2α. On the other hand, for the imaginary part,
�+/−, one supermode has larger decay rate whereas another
one has lower, featuring the bright and dark modes [45].
As the 2 × 2 matrix is non-Hermitian and symmetric, we
then solve for the left eigenvectors to find the transformation

matrix T to be
√

1
2

[1 1
1 −1

]
, and it transforms a1/2 to the

supermodes as
[a+
a−

] =
√

1
2

[a1 + a2

a1 − a2

]
, which are orthogonal

despite the nonhermiticity [43]. Equation (1) is then diagonal-

ized as d
dt

[a+
a−

] = i
[ω̃+ 0

0 ω̃−
][a+

a−
] + T KT [sm,+], indicating

a+/− are now driven individually without any interaction be-
tween them. The Fourier-space output channels can also be
formulated properly. By using conservation of energy- and
time-reversal symmetry, the outgoing radiation channels are
expressed as [sm,−] = C[sm,+] + K[a1

a2
] = C[sm,+] + KT [a+

a−],
where C is the nonresonant scattering matrix [41,42]. Ap-
parently, the radiation from a+/− is manifested by KT, which
results from the superposition between the radiations from the
uncoupled a1/2. Therefore, [sm,−] can be rewritten as

s0,− = c̃s0,+ +
√

1

2
[κ̃0,1 + κ̃0,2]a+ +

√
1

2
[κ̃0,1 − κ̃0,2]a− (2)

and [
s0,−
s1,−

]
=

[
c̃1 c̃2

c̃2 c̃1

][
s0,+
s1,+

]
+

√
1

2

[
κ̃0,1 + κ̃0,2

κ̃1,1 + κ̃1,2

]
a+

+
√

1

2

[
κ̃0,1 − κ̃0,2

κ̃1,1 − κ̃1,2

]
a−, (3)

indicating each supermode has one single-output channel at
the second gap, but two at the third gap.

As the system possesses inversion symmetry, a+/− should
carry odd and even spatial-field symmetries with respect to
the unit-cell center provided they are orthogonal to each other
[20]. Such feature eases the determination of γ . Without
knowing the exact field symmetries of a+/−, we expect the
γ of a continuous band is 0 if both the circled supermodes at
the � and X points in Fig. 1(a) are either a+ or a− but is π

if both a+ and a− are found. To determine whether a+ or a−
is present, we further simplify Eqs. (2) and (3) based on the
relationships between κ̃m,n of a mirror-symmetric diffraction
pair. As an example, for the third gap in Fig. 1(c), the sys-
tem symmetry requires |κ̃0,1| = |κ̃1,2| and |κ̃0,2| = |κ̃1,1| for
a1/2 propagating in the opposite directions. Given the polar-
izations of the radiations from a1/2 scale with κ̃m,n and the
pair from each mode should have the polarizations pointing
either in the same clockwise or counterclockwise direction, as
indicated in Fig. 1(c), to ensure continuity, the symmetry fur-

ther requires two pairs carry opposite polarization directions,
or κ̃0,1 = −κ̃1,2 and κ̃0,2 = −κ̃1,1. In fact, as we see in the
Supplemental Material, for any mirror-symmetric m = p and
q pair, κ̃p,1 = −κ̃q,2 and κ̃p,2 = −κ̃q,1 [39]. As a result, Eq. (3)
can be simplified as

[
s0,−
s1,−

]
=

[
c̃1 c̃2

c̃2 c̃1

][
s0,+
s1,+

]
+

√
1

2

[
κ̃0,1 − κ̃1,1

−(κ̃0,1 − κ̃1,1)

]
a+

+
√

1

2

[
κ̃0,1 + κ̃1,1

κ̃0,1 + κ̃1,1

]
a−. (4)

Likewise, by applying the same argument to the second gap
such that κ̃0,1 = −κ̃0,2, we rewrite Eq. (2) as

s0,− = c̃s0,+ +
√

2κ̃0,1a−, (5)

where a+ is always presented as a quasi-BIC whereas a−
is a bright mode, making a+ the symmetry-protected BIC
regardless of what the values of [ κ̃0,1 κ̃0,2 ]T are [32].
On the other hand, while the supermodes at the third gap in
Eq. (4) are bright and dark, their assignment is difficult and
relies on the interplay between the sign and magnitude of κ̃0,1

and κ̃1,1, which are strongly system-geometry dependent. We
see a+ is the bright mode if κ̃0,1κ̃1,1 < 0 but is dark when > 0.
Interestingly, a+ (a−) can also be quasi-BIC if |κ̃0,1| = |κ̃1,1|
(|κ̃0,1| = −|κ̃1,1|), but such condition can only be met for
certain geometry, which requires careful tuning of the system
parameters.

We then explicitly formulate the discrete far-field channels.
By considering only one single incident channel such that

[sm,+] = [s0,+] and [
0

s1,+
], the scattering coefficients of the

supermodes can be formulated as

s0,−
s0,+

= c̃ + 2κ̃2
0,1

i(ω − ω̃−)
(6)

for the second gap, and

s0,−
s1,+

= c̃2 − 1

2

(κ̃0,1 − κ̃1,1)2

i(ω − ω̃+)
+ 1

2

(κ̃0,1 + κ̃1,1)2

i(ω − ω̃−)
,

s1,−
s1,+

= c̃1 + 1

2

(κ̃0,1 − κ̃1,1)2

i(ω − ω̃+)
+ 1

2

(κ̃0,1 + κ̃1,1)2

i(ω − ω̃−)
, (7)

for the third gap. One sees the radiation losses from a+/−
are Lorentzian, rendering Fano spectral profiles overall [46].
In addition, it is seen from Eq. (7) that the radiations of the
mirror-symmetric pair from a+ are π out of phase whereas
those from a− are in phase. Therefore, Eqs. (6) and (7) pro-
vide good tool for determining the spectral positions of a+/−
by measuring the angle- and wavelength-resolved complex
diffraction mapping of the system in Fourier space. While
the position of the quasi-BIC, i.e., ω+, at the second gap
can be visually identified from the mapping, the ω+/− of the
third gap are estimated by fitting the magnitude and phase,
|s0/1,−/s1,+|2 and arg(s0/1,−/s1,+), spectra of the diffraction
orders with Eq. (7) [39]. The extension of the CMT to any
mirror-symmetric pair at higher-order band gap is provided in
the Supplemental Material [39].
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TABLE I. FDTD and experimental ω± at � and X points for PmCs with different W. Highlighted are coupled modes located on +1 SPP
band. If highlights at � and X points are both a+ or a−, Zak phase is 0. If not, Zak phase is π . Spectral positions of ω+ at � point are visually
approximated at nonzero k and incident angle.

100 nm 250 nm 400 nm 550 nm 700 nm

�, zone center ω+ (eV) ∼1.36 ∼1.37 ∼1.36 ∼1.32 ∼1.30
ω− (eV) 1.32 1.31 1.33 1.36 1.37

FDTD X, zone boundary ω+ (eV) 2.12 2.03 1.84 1.85 1.98
ω− (eV) 1.81 1.88 1.99 1.97 1.84

Zak phase π π 0 π 0

�, zone center ω+ (eV) ∼1.36 ∼1.36 ∼1.36 ∼1.33 ∼1.32
ω− (eV) 1.33 1.32 1.34 1.36 1.36

Experiment X, zone boundary ω+ (eV) 2.02 2.01 1.94 1.95 2.01
ω− (eV) 1.94 1.96 2.01 2.00 1.95

Zak phase π π 0 π 0

III. FINITE-DIFFERENCE TIME-DOMAIN SIMULATION

We verify the CMT model by FDTD simulations. Two
types of optical systems are considered, and they are 1D
Au plasmonic and SiO2/Au photonic crystals. While the
plasmonic crystals support TM-polarized Bloch-like surface
plasmon polaritons (SPPs) [47], the photonic crystals (PhCs)
excite TE waveguide modes [48]. We will present the re-
sults of PmCs here and those of the PhCs are provided in
the Supplemental Material [39]. For the PmCs, the unit cell
is shown in Fig. 2(a), with the period P and groove height
H are set at 900 and 50 nm, respectively, and the groove
width W is varied from 100 and 700 nm with a step size of
150 nm. The corresponding TM-polarized k- and λ-resolved
total reflectivity mappings are calculated along the �-X di-
rection in Figs. 2(b)–2(f), showing the dispersive Bloch-like
SPP bands follow the phase-matching equation given as

εAu
εAu+1 ( 1

λ
)
2 = ( k

2π
+ nB

P )
2
, where εAu is the dielectric constant

of Au, as illustrated by the dash lines in Fig. 2(b) for nB = ±1
and −2 [33]. One sees the ±1 SPP bands cross at the � point
and +1 and −2 SPP bands intersect at the X point, forming
two band gaps at λ = 925 and 650 nm and the supermodes. In
agreement with the CMT model, the supermodes exhibit dark-
(high-reflectivity) and bright- (low-reflectivity) radiation
characteristics.

We will determine the Zak phase of the +1 SPP band,
which is the band of interest in Fig. 1(a). At the � point
for all PmCs, a quasi-BIC is always present, and it can be
approximately visualized at the +1 band for W = 100−400
nm but flips to the −1 band when W increases further by
changing k slightly larger than zero. The corresponding re-
flectivity spectra are plotted in Fig. 3(a), clearly showing only
one single-reflectivity dip is presented as the bright mode.
As a result, we conclude a+ locates at the +1 band for W=
100−400 nm. On the other hand, at the X point, we no longer
can differentiate the spectral positions of a+/− simply by
examining the reflectivity spectra. We simulate the diffraction
orders and find only the m = 0 and 1 mirror-symmetric orders
exist in the continuum, following the grating equation well.
The corresponding |s0/1,−/s1,+|2 and arg(s0/1,−/s1,+) spectra
are calculated in Figs. 3(b) and 3(c) and fitted with Eq. (7)
to determine the ω+/−, �+/−, κ̃0,1 − κ̃1,1, and κ̃0,1 + κ̃1,1

of two supermodes by assuming both the c̃1(λ) and c̃2(λ)
backgrounds complex constants [39,49,50]. The best fits are
displayed as the solid lines. All the fitted ω+/− of the PmCs
are summarized in Table I, where the supermodes that sit on
the +1 band are highlighted. Reminding if two highlights are
either a+ or a−, the Zak phase is 0, but π when they are
different [17,20]. We see in Table I γ = π for W= 100, 250,
and 550 nm but γ = 0 for 400 and 700 nm.

To confirm our findings, we have simulated the |Ez| near-
field intensity profiles at the � and X points of the +1 band by
FDTD in Figs. 4(a) and 4(b) for different W. At the � point,
we see the |Ez| profiles are even with respect to the groove
center for W = 100−400 nm but change to odd afterwards.
On the other hand, the profiles at the X point are odd for
W= 100, 250, and 700 nm but are even for 400 and 550 nm.
Despite the fact that the systems are non-Hermitian, the field
symmetries of the supermodes are either odd or even [20].
As a result, the comparison between the field symmetries
at the two points indicates γ = π for W= 100, 250, and
550 nm but 0 for 400 and 700 nm, inconsistent with the
far-field determination.

IV. EXPERIMENTAL VERIFICATION

A series of 1D periodic Au rectangular groove PmCs
has been fabricated by focused ion beam (FIB), and their
scanning electron microscopy (SEM) images are shown in
the insets of Fig. 5(a)–5(e), showing they have P= 900 nm,
H= 50 nm, and W varying from 100 to 700 nm. After
the sample preparation, the PmCs are then transferred to a
homebuilt Fourier-space optical microscope described in the
Supplemental Material for θi- and λ-resolved diffraction mea-
surements [39]. Briefly, a supercontinuum generation laser is
illuminated on the sample at a well-defined incident angle θi

via the microscope objective lens, and the signals from the
sample are collected by the same objective lens in which the
diffraction orders are projected onto the Fourier space [51,52].
By using an aperture to filter out the desired diffraction order,
a spectrometer-based charge-coupled device detector and a
common-path interferometer are used for measuring the mag-
nitude and phase spectra [53,54].
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FIG. 6. At X point, two measured TM-polarized mirror-symmetric m = 0 (black square) and 1 (red circle) (a) reflectivity and (b) TM-TE
phase-difference spectra for W= 100 (top) to 700 (bottom). Green and blue solid lines are best fits determined by CMT.

By varying θi sequentially and at the same time measuring
the total reflection spectra, we contour plot the TM-polarized
reflectivity mappings in Figs. 5(a)–5(e) for different W along
the �-X direction. They show the nB = ±1 and −2 SPP bands
are present, and the bands are consistent with the phase-
matching equation as illustrated by the dashed lines. From
the mappings, we see at normal incidence, or the � point,
BIC-like mode is always observed near the band gap and its
position can be approximated visually at θi slightly larger than
0◦. The +1 band has a+ for W= 100−400 nm but a− for
larger W. On the other hand, at the X point where the +1
and −2 SPPs cross at θi ∼ 20.5◦, we see the dark and bright
modes are found and their positions depend on W. To estimate
the spectral positions of a+/−, we measure the corresponding
m = 0 and 1 diffraction and TM-TE phase-difference spectra
in Figs. 6(a) and 6(b) and fit them by using Eq. (7) to deter-
mine the ω+/− in Table I, which shows the +1 band is a− for
W= 100, 250, and 700 nm, and is a+ for 400 and 550 nm [39].
Therefore, γ = π for W= 100, 250, and 550 nm but = 0 for
400 and 700 nm in Table I.

Finally, we demonstrate a topologically protected state is
formed at the interface between two topologically trivial and
nontrivial PmCs [6,18]. We construct a heterostructure by
joining two W= 100- and 400-nm PmCs together. Prior to
joining, we have simulated by FDTD the field symmetries
at the � and X points of two PmCs and determine the γ�

of the � = 0, −1, and +1 SPP bands to be π , π , and π ,
respectively, for W= 100 nm, and π , π , and 0, respectively,
for W= 400 nm. Therefore, the sums of γ� give 3π and 2π

for W= 100- and 400-nm PmCs, indicating the −2/+1 (third)
energy gaps at the X point are topologically nontrivial and triv-
ial. We then simulate the heterostructure supercell as shown
in Fig. 7(a) that consists of 14 unit cells of W= 100- and
400-nm PmCs on the right- and left-hand sides, respectively
[55]. Figure 7(b) shows the TM-polarized k- and λ-resolved
reflectivity mapping around the X point along the �-X di-
rection, clearly demonstrating a localized mode is located
at k = 0.5 or θi = 20.5◦ and λ ∼ 640 nm in the mid of the
band gap formed by the crossing of +1/−2 SPPs. We also
have simulated the λ-dependent near-field mapping of the

035403-7



C. LIU, H. R. WANG, AND H. C. ONG PHYSICAL REVIEW B 108, 035403 (2023)

FIG. 7. (a) Schematic of heterostructure by joining W = nontrivial 100- and trivial 400-nm PmCs. Interface is marked by the dashed line.
(b) FDTD-simulated TM-polarized reflectivity mapping of heterostructure taken at X point along �-X direction, showing an interface state is
found within gap at λ = 640 nm. (c) Wavelength-dependent near-field intensity mapping simulated at 20 nm above heterostructure. Interface
is located at x = 0µm, showing strong-field localization. Strong fields at 620 and 670 nm arise from the PmC bulk regions. (d) SEM image of
the W = 100 and 400 nm with the scale bar corresponding to 2 μm. (e) Measured TM-polarized angle-dependent reflectivity mapping of the
heterostructure taken at X point along �-X direction, showing an interface state is found within gap at λ = 625 nm.

heterostructure. For different λ, the near-field intensities at
20 nm above the surface is calculated across the heterostruc-
ture and then contour plotted in Fig. 7(c), showing the
interface is located at x = 0 µ m and the trivial and nontrivial
regions are at x > 0 and < 0µm, respectively. One sees two
strong fields are visible at ∼620 and 670 nm in the PmC
bulk regions away from the interface due to the excitations of
the upper and lower coupled modes. However, the strongest
field strength is observed at the interface, x = 0 µm, at 640
nm, and it decays rapidly into the bulk regions, signifying
the presence of a topologically protected interface state [55].
We have prepared the heterostructure by FIB and its SEM
image is shown in Fig. 7(d) with W= 100- and 400-nm PmCs
on the right- and left-hand sides. The TM-polarized k- and
wavelength-resolved reflectivity mapping of the sample is

illustrated in Fig. 7(e), showing a localized state is found at
θi = 20.5◦ and λ∼625 nm at the X point. We expect it to be
an interface state as projected from the FDTD simulation.

V. CONCLUSION

In summary, we have developed a temporal CMT model
to determine the Zak phase of an isolated band in 1D leaky
photonic systems. At the Brillouin-zone center and boundary,
we find the radiation losses from the supermodes in Fourier
space present different characteristics ranging from quasi-
BIC to odd or even mirror-symmetric diffraction pair, which
are strongly associated with the spatial-field symmetries and
thereby the corresponding Zak phase. For verification, 1D
PmCs and PhCs that support TM- and TE-polarized SPP
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and waveguide modes have been studied by FDTD and the
results agree very well with the theory. We also have pre-
pared 1D PmCs by FIB and examined their diffractions by
using Fourier-space diffraction spectroscopy and common-
path interferometry for determining the Zak phases. In the
end, a topological protected interface state is demonstrated
by joining two topologically trivial and nontrivial PmCs
together.
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