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Superexchange is one of the vital resources to realize long-range interaction between distant spins for large-
scale quantum computing. Recent experiments have demonstrated coherent oscillations between logical states
defined by remote spins whose coupling is given by the superexchange interaction mediated by central spins.
Excavating the potential of superexchange requires a full understanding of the interaction in terms of control
parameters, which is still lacking in literature. Here, using full configuration interaction calculations, we study a
two-electron system in a linear triple-quantum-dot device in which the left and right dots are occupied by a single
electron each, whose spin states are defined as qubits. The numerical nature of the full configuration interaction
calculations allows access to the microscopic details of the quantum-dot confining potential and electronic wave
functions, some of which are overlooked in the celebrated Hubbard model but turn out to be critical for the
behavior of superexchange. Following experimental demonstrations of superexchange interactions, we focus on
the detuning regime where the charge ground state yields an empty middle dot. We have found that, when the
detunings at the left and right dots are leveled, the superexchange can exhibit a nonmonotonic behavior, which
ranges from positive to negative values as a function of the middle-dot detuning. We further show that a larger
relative detuning between the left and right dots causes the magnitude of the superexchange to increase (decrease)
for an originally positive (negative) superexchange. We then proceed to show the results for a much larger
left-right dot detuning. Using a Hubbard-like model, we present analytical expressions of the superexchange and
have found that they conform well qualitatively with the numerical results. Our results suggest that even a simple
configuration of delocalized two-electron states in a linear triple-quantum-dot device exhibits superexchange
energy with nontrivial behaviors, which could have important applications in spin-based quantum computing.
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I. INTRODUCTION

The Heisenberg exchange interaction lays the foundation
of spin-based quantum computation in semiconductor quan-
tum dots [1–19]. Utilizing the electrostatic nature of the elec-
tron configurations in quantum-dot arrays, exchange-based
quantum gates offer tunability of the interaction strength, per-
mitting universal quantum computation. However, exchange
coupling only materializes for nearest-neighbor interactions,
limiting the realization of large-scale quantum computing in
which long-range interactions are desired.

To achieve scalable quantum computation, various cou-
pling schemes for long-range interactions have been proposed,
including capacitive Coulomb interaction [20–30], hybrid
spin-circuit quantum electrodynamics architectures, which
utilize couplings between electron spins and photons in mi-
crowave cavities [31–41] and the method of electron shuttling
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in which remote spins are physically brought closer to enable
nearest-neighbor exchange interaction [42–48]. The former
two schemes suffer from susceptibility to charge noises due
to the introduced dipole for the enhancement of the coupling
strength, whereas, the latter requires a careful pulse design
to preserve spin and phase coherence during the shuttling
operation [44,48].

An alternative coupling scheme involves mediators formed
by electron-spin states between distant logical spins, termed
as the superexchange [49–68]. Virtual exchange through
mediators enables a long-range linkage between remote
spins, giving rise to the superexchange interaction. Cur-
rent experimental demonstrations on superexchange include
single-quantum-dot mediators with various electron numbers
(e.g., zero [61], one [66], or multiple electrons [63]), and the
singly occupied quantum-dot chain [67]. Also, the spatial sep-
aration of logical spin states can potentially serve to mitigate
cross talk during the single-qubit operation [62].

For a linear triple-quantum-dot (TQD) device with two
electrons, systematic studies on the superexchange interac-
tion between two spins in the singly occupied outmost dots
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have been conducted [60,61,65]. In particular, Ref. [61] has
concluded that the superexchange energy, denoted as Jse, is
positive and monotonic with respect to the relative detuning
between outmost dots. Similarly, based on the results derived
from Hubbard model, Ref. [60] has theoretically demon-
strated that Jse is always positive in the detuning region where
the electron occupation in the middle dot is zero. In an-
other theoretical work on superexchange in a triangular TQD,
Ref. [65] shows that the presence of an empty quantum-dot
mediator contributes a modest enhancement to the nearest-
neighbor (nn) exchange between two logical spins.

Although the aforementioned works are instrumental in un-
derstanding the mechanism of superexchange in quantum-dot
devices, more comprehensive studies exploring the superex-
change interaction in other regimes of parameters are still
lacking. In this paper, we study superexchange interaction in
a linear TQD device in which the logical states are defined
by two electron spins in the left and right dots, whereas,
maintaining an empty middle dot. Following the experimental
demonstrations in quantum-dot devices [63,66,67], we only
consider the detuning region where the charge ground state
yields an empty middle dot. In particular, we study the tunabil-
ity of Jse in terms of the detuning values and the existence of
sweet spots, which are crucial for high-fidelity gate operations
[7,69–80].

We employ full configuration interaction (full CI) calcula-
tions to numerically simulate superexchange energy Jse. Using
the full CI method allows us to associate the behaviors of Jse

to the details of the dot parameters, i.e., confinement strengths
and interdot distances. Moreover, adopting full CI techniques
is important to avoid obtaining erroneous exchange couplings
between closely spaced QDs, a common issue encountered
by the minimal basis models, i.e., Heitler-London and Hund-
Mulliken approximations [73,81]. It should be noted that,
although CI techniques have been adopted in Ref. [65] for a
linear TQD, the results are limited to Jse of a two-electron
mediator at a particular detuning value. In contrast, our paper
focuses on Jse of an empty mediator dot for ranges of detuning
values.

We will show that, when the left-right detuning ε is zero,
Jse yields a nonmonotonic behavior, which switches from
positive to negative values as a function of the middle-dot
detuning �. The switching sign of Jse is found to be present
only for a larger quantum-dot confinement strength with a
smaller interdot distance. Also, the nonmonotonicity of Jse

gives rise to a sweet spot with respect to both the middle-
dot detuning and left-right detuning. We will also show that
when a sufficiently large left-right detuning ε is applied, an
originally negative Jse switches to a positive value. We are
able to understand the sign switching of Jse using a generic
Hubbard model in which the Coulomb exchange terms are
included as explained below. In the charge regime where
the middle dot is empty, we confirm that the sign switch-
ing and sweet spot of Jse cannot be reproduced using the
Hubbard model [60] or the extended Hubbard model [82],
highlighting the significance of the full CI method. Our
results suggest that the superexchange, among other novel
coupling schemes in multi-quantum-dot devices, may open a
viable route for scalable quantum-dot quantum information
processing.
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FIG. 1. Schematic of a TQD device. � jα indicates the α-th
orthogonalized Fock-Darwin (F-D) states in dot j, where j ∈
{L, M, R}. Jse (magenta arrow) indicates the superexchange between
dot L and R.

This paper is organized as follows. In Sec. II, we provide
the details of the TQD system of interest, including the full CI
calculations to obtain the relevant eigenvalues and eigenstates
(Sec. II A) and the analytical expressions of Jse (Sec. II B). In
Sec. III, we present the numerical results of Jse. In Sec. III A,
we show the extensive results of Jse, i.e., the values of Jse as
functions of � and ε, and identify three main behaviors of Jse.
In Secs. III B–III D, we discuss those behaviors separately: (1)
Sec. III B discusses the behavior of Jse as a function of � when
ε = 0; (2) Sec. III C discusses the changes in Jse for moderate
values of ε, i.e., ε > 0; (3) Sec. III D discusses Jse for a large
ε, i.e., ε � 0. We then compare our paper with other relevant
works in Sec. IV. We conclude our findings in Sec. V.

II. MODEL

A. CI

We consider an n-electron system Hamiltonian,

H =
n∑

j=1

h j + HC, (1)

with the single-particle Hamiltonian h j = (−ih̄∇ j + eA/c)2/

2m∗ + V (r) + g∗μBB · S and the Coulomb interaction HC =∑
e2/ε|r j − rk|, where A is the vector potential and B is the

magnetic field. As shown schematically in Fig. 1, the potential
function of a TQD, V (r), is modeled as

V (r) =

⎧⎪⎪⎨
⎪⎪⎩

V (r|RL) + ε, x < −x′
L,

V (r|RM) + � −x′
L < x < x′

R,

V (r|RR) − ε x > x′
R,

(2)

where

V (r|R) = 1
2 mω2

0(r − R)2, (3)

r = (x, y) is the two-dimensional vector on the plane of
electron gas. RL = (−x0, 0), RM = (0, 0), and RR = (0, x0)
are the positions of the parabolic wells minima. x′

L (x′
R) is

the potential cut determined by locating the value of x at
which the potential values of the left (right) and middle
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dot are equal at y = 0. � and 2ε are the middle-dot de-
tuning and the relative detuning between the left and the
right dots, respectively. We denote the left, middle, and right
dots as “L,” “M,” and “R,” respectively. The effective mass
m∗ is 0.067 electron mass in GaAs. ω0 is the confinement
strength. B = Bẑ is the perpendicular magnetic field, and S
is the total electron spin. Throughout this paper, the mag-
netic field is set at B = 0.845 T. The charge configuration
of the ground state in the TQD is denoted as (NLNMNR),
where Nj indicates number of electrons in dot j. Also, we
denote a singlet (triplet) state formed by two antiparallel spins
as |S(NLNMNR)〉[|T (NLNMNR)〉]. For example, a singlet state
formed by two electrons with each electron occupying the left
and right dots is denoted as |S(101)〉.

We solve the Hamiltonian H using the full CI technique
[83]. In this paper, we use the solutions to a single-
particle Hamiltonian with a parabolic potential function in
the presence of a magnetic field, i.e., the F-D states as the
single-particle basis. For a given number of F-D states, we
construct all possible two-electron Slater determinants and
write down the explicit matrix form of the Hamiltonian H .
We can then solve the problem by diagonalizing H (see Sec. I
in the Supplemental Material [84] for details). The numerical
results of the system are obtained by keeping 10 orthonor-
malized F-D states in each dot, resulting in a total of 30 F-D
states in a TQD device for the CI calculations. As suggested
by the convergence of superexchange energy Jse, this setup is
sufficient to accurately simulate a two-electron system in the
TQD device. Before we present the numerical results of full
CI in Sec. III, we first obtain an analytical result of Jse based
on the generalized form of Hubbard model [85] as shown in
the following subsection, Sec. II B.

B. Analytical analysis of Jse

To understand the qualitative behavior of Jse from full
CI results, we derive the approximated form of the superex-
change energy. The original Hamiltonian, Eq. (1), can be
written in the second quantization form (see Sec. II in the
Supplemental Material for details [84]), resulting in a generic
Hubbard model [85], which includes all possible Coulomb in-
teractions terms. In addition, we have found that the low-lying
physics of the superexchange energy from CI results can be
well described using an effective Hamiltonian in which only
the lowest orbital in each dot is considered. In this case, the
generic Hubbard-Hamiltonian can be simplified as follows:

HHubbard =
∑

jσ

μ jσ c†
jσ c jσ +

∑
j<k

(t j,kc†
jσ ckσ + H.c.)

+
∑

j

Ujn j↓n j↑ +
∑
σσ ′

∑
j<k

U ′
j,kn jσ nkσ ′

−
∑
σ 
=σ ′

∑
j<k

Je
j,kc†

jσ c†
kσ ′ckσ c jσ , (4)

In Eq. (4), j, k ∈ {L, M, R} refer to the orbitals in left (L),
middle (M), and right (R) dots, respectively, whereas σ, σ ′
refer to the spins σ, σ ′ ∈ {↑,↓}. In the above generic Hubbard
model since only the lowest orbital in each dot is considered,
the orbital index α is suppressed. μ jσ is the chemical potential

of an electron in dot j, t j,k is the tunneling energy between
dots j and k, Uj is the on-site Coulomb interaction in dot j,
U ′

j,k is the interdot Coulomb interaction between dots j and
k, Je

j,k is the Coulomb exchange interaction between dots j and
k. In Eq. (4), we have dropped other Coulomb-related terms
which are negligible. The condition j < k refers to the order-
ing from left to right. The detuning values are 2ε = μL − μR

and � = μ2 − (μL + μR)/2.
For a two-electron system hosted in a TQD, Jse is defined

as the energy splitting between the lowest-singlet and -triplet
states in the (NLNMNR) = (101) region. Following the exper-
imental demonstrations of superexchange interaction [86], we
only consider Jse in the detuning region where the ground
charge state is (101). We use the notation |η〉′ to denote an
eigenstate whose main composition is |η〉, i.e., 〈η|η〉′ ≈ 1.
Also, the energy of state |η〉 is denoted as E|η〉. With the
notations defined above, Jse = E|T (101)〉′ − E|S(101)〉′ . In the fol-
lowing, we introduce the notation tξ to denote the energy
shifts derived from the perturbation theory, where t = tL,M =
tM,R is the nearest-neighbor tunneling, and ξ is the ratio of t
to the energy differences between states. Alternatively, the en-
ergy shifts are represented to be proportional to the admixture
probabilities of excited states in the logical eigenstates, which
we denote as φ.

The discussions on the analytical expressions of superex-
change based on the generic Hubbard model, denoted as
JHubbard

se , are divided into two cases: (1) ε � 0, whereas, the
values of |ε| is small. In this case, E|S(020)〉 > E|S(002)〉 >

E|S(011)〉 > E|S(101)〉 [87], cf. Fig. 2(a); (2) ε � 0. In this case,
E|S(020)〉 > E|S(011)〉 > E|S(002)〉 > E|S(101)〉, cf. Fig. 2(b). These
two cases are discussed separately in Secs. II B 1 and II B 2.

1. JHubbard
se for ε � 0

Based on the generic Hubbard model [85,88], the analyti-
cal expression of superexchange for ε � 0 is (see Sec. III A in
the Supplemental Material [84] for derivations)

JHubbard
se (�, ε � 0) ≈ −2Je

L,R + (
tξt,nn − 2Je

L,M

)
ξ 2

t,se

= −2Je
L,R + Jnnξt,se2 , (5)

where

Jnn = tξt,nn − 2Je
L,M, (6a)

ξt,nn = 2t

E|S(200)〉 − E|S(110)〉
, (6b)

ξt,se = t

E|S(110)〉 − E|S(101)〉
, (6c)

Je
L,M(Je

L,R ) is the nearest-neighbor (next-nearest-neighbor)
Coulomb exchange energy between two neighboring (out-
most) dots.

In Eq. (5), the terms in the round brackets in the first line
denote the nearest-neighbor exchange coupling that occurs
virtually in the excited energy states, cf. the dashed blue
double-headed arrow with the notation ξt,nn in Fig. 2(a). In
analogy to the nearest-neighbor exchange in the singly occu-
pied dots in a double-quantum-dot (DQD) device [73,89,90],
we denote those terms as Jnn. The term ξt,se denotes,
in addition to Jnn, the higher-order tunneling contribution
to the superexchange JHubbard

se , cf. the solid blue and red
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FIG. 2. Schematic energy-level structures of the system for (a) ε � 0 and (b) ε � 0. Note, since the energy splittings between states vary
depending on � and ε, the energy levels are not to scale.

double-headed arrows with the notation ξt,se in Fig. 2(a). Note
that Je

L,R and Jnn yield the energy unit, whereas, ξt,nn and ξt,se

yield the unity unit.
When ε � 0, Eq. (5) indicates that JHubbard

se results from
the interplay between the virtual nearest-neighbor exchange
term Jnn, the higher-order tunneling induced term ξt,se, and the
long-distance Coulomb exchange term between two outmost
dots Je

L,R.

2. JHubbard
se for ε � 0

Using the generic Hubbard model, the analytical expres-
sion of superexchange for ε � 0 is (see Sec. III B in the
Supplemental Material [84] for derivations)

JHubbard
se (�, ε � 0) = −2Je

L,R + t (ξtt,se + ξt,LM)

∝ −2Je
L,R + t (φ|S(002)〉 + δφ|(011)〉), (7)

where

φ|S(NLNMNR )〉 = |〈S(NLNMNR)|S(101)〉′|2,
φ|T (NLNMNR )〉 = |〈T (NLNMNR)|T (101)〉′|2,

δφ|(011)〉 = (φ|S(011)〉 − φ|T (011)〉), (8)

whereas,

ξtt,se =
(

t

�E|S(011)〉,|S(002)〉

)2 t

�E|S(002)〉,|S(101)〉
,

ξt,LM = t

�E|S(011)〉,|S(101)〉
− t

�E|T (011)〉,|T (101)〉
,

(9)

�E|η1〉,|η2〉 = E|η1〉 − E|η2〉. In Eq. (7), the term tξtt,se(tξt,LM)
denotes a four-tunneling process (two-tunneling processes),
cf. the solid blue double-headed arrow (the dashed blue and
red double-headed arrows) in Fig. 2(b). Note that JHubbard

se
yields the energy unit, whereas, ξtt,se and ξt,LM yield the
unity unit. The tunneling processes in Fig. 2(b) indicate that
JHubbard

se can be made proportional to the admixture probabil-
ities of the excited states in the logical eigenstates, φ|η〉, cf.
the third line in Eq. (7). Similar to the physical mechanism
of ξ , φ|S(002)〉[φ|(011)〉] arises from a four-tunneling process
(two-tunneling processes).

In this paper, the analytical expressions of superexchange,
denoted as JHubbard

se in Eqs. (5) and (7), are adopted to provide
qualitative descriptions for the behavior of superexchange
energy. Note the different notations between JHubbard

se and Jse

in the following sections: The former describes the analyti-
cal behavior of superexchange energy in terms of Hubbard

parameters, whereas, the latter is the exact numerical results
using full CI calculations.

III. RESULTS

In this section, we discuss the values for Jse in differ-
ent parameter regimes. For illustration purposes, throughout
this paper, we plot Jse with positive and negative values as
solid and dashed lines, respectively. It should be noted that,
throughout this paper, the numerical values of Jse are obtained
directly from full CI results without mapping to the generic
Hubbard model, i.e., taking the energy difference between the
lowest singlet and triplet states. Other quantities, e.g., the tun-
neling terms ξ and admixture probabilities φ in Eqs. (5) and
(7), are obtained by mapping to the generic Hubbard model,
which allows us to comprehend the behaviors of Jse from
the perspective of the analytical expressions of JHubbard

se (see
Secs. IV and V in the Supplemental Material for the details
on evaluating the values of ξ and φ, respectively). It should
be noted that the numerical values shown in the following
figures, including Jse, ξ , and φ, are extracted directly from
the CI results. The only approximation made is the qualitative
descriptions of the behavior of Jse based on the changes in the
values of ξ and φ and the expressions of JHubbard

se in Eqs. (5)
and (7). The values of Jse are obtained in the same way as the
CI methods in Ref. [65]. On the other hand, it is in contrast to
Ref. [60] in which Jse is evaluated from Hubbard model.

A. Jse vs � and ε

Figure 3 shows the results for (a)–(d) h̄ω0 = 25 meV,
x0 = 30 nm, and (e)–(h) h̄ω0 = 7.28 meV, x0 = 50 nm. Note
that, in Figs. 3(b), 3(d), 3(f), and 3(h), the values of Jse

are only provided in the detuning regimes where the ground
charge states are (101), cf. the stability diagrams in Figs. 3(a)
and 3(e).

To compare our findings with experimental results, Jse is
extracted along the double-headed white arrows as shown
in Figs. 3(c) and 3(g) with the corresponding values of Jse

provided in Figs. 3(d) and 3(h), respectively. Figures 3(d) and
3(h) show that, within the part that gives Jse > 0, Jse yields a
monotonic decrease along the white arrows in Figs. 3(c) and
3(g). In addition, the magnitude of Jse includes the values of
Jse demonstrated in Ref. [61]. In Ref. [61], at the detuning
value that is close to the triple-transition-point of the (200),
(110), and (101) regions, the system exhibits a strong Jse with
a magnitude of ∼3.75 µeV (900 MHz). On the other hand,
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FIG. 3. Stability diagrams and Jse for (a)–(d) h̄ω0 = 25 meV, x0 = 30 nm and (e)–(h) h̄ω0 = 7.28 meV, x0 = 50 nm. (a) and (e) Stability
diagrams with the red, green, and blue color code defined as (128NL, 128NM, and 128NR ). (b) and (f) Jse vs � and ε in the (101) region. The
green region marks the transition from Jse > 0 to Jse < 0. Jss denotes the sweet spot with respect to � and ε, i.e., ∂Jse/∂� = ∂Jse/∂ε = 0.
(c) and (g) show the zoom in view of (a) and (e), respectively, as indicated by the dashed line boxes. (d) and (h) Jse vs � and ε. The pairings
of � and ε are given by the white double-headed arrows in (c) and (g). Two values of Jse demonstrated in Ref. [61] are presented as red stars.

at the detuning value, that is away from the triple-transition-
point, the system exhibits a weak Jse with a magnitude of
∼0.625 µeV (150 MHz). In the region where Jse > 0 as shown
in Figs. 3(d) and 3(h), the values of Jse that are positive and
decrease monotonically as a function of ε agree with results
presented in Ref. [61], cf. the red star symbols.

In addition, Figs. 3(b) and 3(f) show that the values of
Jse exhibit a nontrivial behavior when a larger detuning re-
gion is considered. In particular, the behavior of Jse can
be divided into three cases, as enumerated in the following
paragraphs.

First, we consider the values of Jse at ε = 0. For a large h̄ω0

and smaller x0, the values of Jse experience a sign-switching
event as a function of �, cf. the solid yellow double-headed
arrow in Fig. 3(b). On the other hand, for a small h̄ω0 and
larger x0, the values of Jse are negative in all values of �,
cf. the solid yellow double-headed arrow in Fig. 3(f). The
qualitative analyses of this behavior of Jse will be provided
in Sec. III B.

Second, we consider the values of Jse for ε > 0. The de-
tuning region where ε > 0 is defined when the ordering of the
energies of singlet states is E|S(020)〉 > E|S(002)〉 > E|S(011)〉 >

E|S(101)〉, cf. Sec. II B 1 and Fig. 2(a). For a large h̄ω0 and
smaller x0 under a fixed value of NM, the magnitude of an
originally positive Jse increases for a larger ε, cf. dashed
double-headed arrows in Fig. 3(b). On the other hand, for
a small h̄ω0 and larger x0, under a fixed value of NM,
the magnitude of an originally negative Jse decreases for a
larger ε, cf. dashed double-headed arrows in Fig. 3(f). Note
that the changes of the magnitude of Jse are less obvious
in the density plots in Figs. 3(b) and 3(f). More evident

comparisons on the values of Jse for different ε’s will be
provided in Sec. III C, where the qualitative analyses of Jse

are also included.
Third, we consider the values of Jse when ε � 0. The de-

tuning region where ε � 0 is defined when the ordering of the
energies of singlet states is E|S(020)〉 > E|S(011)〉 > E|S(002)〉 >

E|S(101)〉, cf. Sec. II B 2 and Fig. 2(b). For a small h̄ω0 and
larger x0, a negative Jse switches to a positive value when ε

is largely increased, cf. yellow star symbols in Fig. 3(f). The
qualitative analyses of this behavior of Jse will be provided in
Sec. III D.

B. Jse vs � at ε = 0

1. Jse switches sign in the (101) region

In this subsection, we discuss the sign-switching event
observed for Jse at ε = 0, cf. the yellow solid double-headed
arrow in Fig. 3(b). The sign-switching event of Jse is found for
a TQD device with a large h̄ω0 and smaller x0, cf. Figs. 3(b)
and 3(f). To understand the physical mechanism giving rise
to the sign switching of Jse, the explicit values of Jse and
other relevant quantities at ε = 0 are presented in Fig. 4. The
following discussion on the numerical values of Jse is made in
reference to the results presented in the left half of Fig. 4, i.e.,
Figs. 4(a)–4(d).

It is helpful to start the discussion at the large � region
(� > 14.5 meV), which shows that Jse < 0, cf. Fig. 4(a).
This can be understood using Eq. (5), which gives JHubbard

se ≈
−2Je

L,R as ξt,se ≈ 0 for E|S(110)〉 − E|S(101)〉 � 0. This is in
contrast to a two-electron system in a DQD in which energy
shifts on the singly occupied states are present for the singlet
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FIG. 4. Results of Jse, eigenvalues of singlet and triplet states, and ξt vs �. The results are obtained for ε = 0 with dot parameters
(a)–(d) h̄ω0 = 25 meV, x0 = 30 nm and (e)–(h) h̄ω0 = 7.28 meV, x0 = 60 nm. (a) and (e) Superexchange energy Jse vs �. Positive and
negative Jse’s are plotted as solid and dashed lines, respectively. Jss denotes the sweet spot. The bottom axes label the � values with the
corresponding values of NM are labeled at the top axes. The arrows in the insets denote the changes in ξt,se and ξt,nn with respect to �,
whereas, the lengths of the arrows indicate the magnitude of the changes. (b) and (f) ξt,l vs � with l ∈ {nn, se}. The values are presented as
ratios to those at � = �∗, i.e., ξt,l (�) = ξt,l (�)/ξt,l (�∗). Lowest eigenvalues of [(c) and (g)] singlets and [(d) and (h)] triplets vs �. At ε = 0
since E|S(110)〉′ = E|S(011)〉′ [E|S(200)〉′ = E|S(002)〉′ ], they form a hybridized state |S(110; 011)+〉′ = (|S(011)〉′ + |S(011)〉′)/

√
2 [|S(200; 002)+〉′ =

(|S(200)〉′ + |S(002)〉′)/
√

2]. Also, since E|T (110)〉′ = E|T (011)〉′ , they form a hybridized state |T (110; 011)−〉′ = (|T (011)〉′ − |T (011)〉′)/
√

2.
The number of asterisks (*) indicate the degrees of excitation from the ground configurations.

state, whereas, forbidden for the triplet state due to Coulomb
blockade. This is also in contrast to the superexchange en-
ergy evaluated using Hubbard model [60], which neglects the
Coulomb exchange energy Je

L,R.
Next, we focus at the region where � is moderately large,

i.e., 9 meV < � < 14.5 meV (the light blue background
region). Figure 4(a) shows that |Jse| increases when � de-
creases. This can be attributed to the decrease in ξt,nnξ

2
t,se for

a decreasing �, cf. Eq. (5), conforming with the decrease in
black line in the light blue region in Fig. 4(b).

Lastly, we inspect the small � region, i.e., 0 < � <

9 meV) as indicated by the magenta background. Figure 4(a)
shows that, starting from � = 9 meV, when � decreases, an
initially negative Jse increases until it switches to positive
Jse, which continues to increase for smaller �. Figure 4(b)
(magenta background) shows that the increase in Jse with
decreasing � can be attributed to the increase in ξt,nnξ

2
t,se

(black line). In that detuning region, Fig. 4(b) shows that the
increase in ξt,nnξ

2
t,se (black line) is dominated by the substan-

tial increase in ξ 2
t,se (blue line).

To conclude this subsection, we have shown, for a large
h̄ω0 and smaller x0, that Jse is negative at large � and switches
to a positive value at small �. We have found that the sign-
switching event is due to the enhancement of the higher-order
tunneling induced term ξt,se, which originates from the tun-
neling between the lowest two singlet states and the lowest
two triplet states, cf. Fig. 2(a). In addition, the nonmonotonic
behavior of overall energy shift (tξt,nnξ

2
t,se ) leads to a non-

monotonous Jse, giving rise to a sweet spot with respect to
� and ε, cf. the black star symbol in Fig. 4(a).

Before moving on, it is worth commenting on the existence
of the zero-crossing and nonmonotonic behavior of Jse in
terms of the choice of confinement model. First, as men-
tioned previously, the negative Jse in a TQD arises at large �

regardless of the choice of confinement model. If another
potential model, such as a quartic model [72,81], is chosen,
the interdot tunneling would be enhanced, such that a larger
range of � exhibits Jse > 0. This is because the zero cross-
ing occurs when the magnitude of the overall energy shift
(tξ 2

t,seξt,nn), which is proportional to the interdot tunneling, ex-
ceeds the magnitude of Coulomb exchange energy (|−2Je

L,R|).
Second, analyses above show that the nonmonotonous Jse

arises from the interplay between different tunneling terms
ξ , whose denominators are the energy differences between
states, cf. Eq. (6). Therefore, the nonmonotonous of Jse can
be alternatively interpreted as the interplay between two en-
ergy differences in terms of �, i.e., the increase in E|S(200)〉 −
E|S(110)〉 and the decrease in E|S(110)〉 − E|S(101)〉 for a decreas-
ing �. Such changes in the energy differences apply to any
confinement model. The above discussions argue that the
nonmonotonous and zero crossing of Jse could be observed
regardless of the choice of confinement model. However, con-
firming the claim quantitatively is currently out of the scope
of this work.

2. Jse < 0 in the (101) region

In this subsection, we provide analyses to understand the
negative Jse at ε = 0 as indicated by the yellow solid double-
headed arrow in Fig. 3(f). For a small h̄ω0 and larger x0,
negative Jse is observed in the whole range of � in the (101)
region, cf. Figs. 3(b) and 3(f). The corresponding explicit
values of Jse and other relevant quantities are provided in the
right half of Fig. 4 [91], i.e., Figs. 4(e)–4(h). In particular,
Fig. 4(e) shows, in the (101) region, that Jse < 0 in the whole
range of �.

The qualitative behavior of the negative Jse as a function
of � and its description based on the magnitude of ξt,nnξ

2
t,se

035402-6



UNIVERSAL CONTROL OF SUPEREXCHANGE IN LINEAR … PHYSICAL REVIEW B 108, 035402 (2023)

follow the discussions in the previous subsection, Sec. III B 1.
However, different from the values of Jse for a large h̄ω0 and
smaller x0 [Fig. 4(a)], Fig. 4(e) shows that Jse is always nega-
tive and exhibits a monotonic behavior. This can be attributed
to the smaller nearest-neighbor tunneling value t observed
for the system. Fitting the full CI results to the generic
Hubbard model shows that t = 255 µeV for the previous sys-
tem (h̄ω0 = 25 meV and x0 = 30 nm), whereas, t = 33 µeV
for the current system of interest (h̄ω0 = 7.28 meV and
x0 = 60 nm). As discussed in the previous subsection, the
increase in ξ 2

t,se is essential in switching an originally negative
Jse to a positive one, cf. Eq. (5). As ξ ∝ t , a relatively small t
leads to a smaller ξ 2

t,se, resulting in Jse remaining negative in
the whole range of � in the (101) region, cf. Fig. 4(e).

To conclude this subsection, we have shown for a small
h̄ω0 and larger x0, that Jse is negative in all ranges of � in the
(101) region. We further show that Jse maintains a negative
value due to the smaller value of nearest-neighbor tunneling t .

In addition, a comparison between the behaviors of Jse in
Figs. 4(a) and 4(e) suggests that a TQD device with a smaller
h̄ω0 and larger x0 has a higher tendency to exhibit a negative
Jse or vice versa. Extensive CI calculations of Jse for vari-
ous values of h̄ω0 (not shown here) conform with the claim
above.

C. Jse vs � for ε > 0

In this section, we provide analyses on the values of Jse for
ε > 0. In particular, we would like to understand the physical
mechanism that gives rise to the changes in Jse when the val-
ues of ε changes, cf. yellow dashed double-headed arrows in
Figs. 3(b) and 3(f). The values of Jse in Figs. 3(b) and 3(f) are
extracted and provided in detail in Fig. 5 [91]. The condition,
ε > 0, denotes the detuning regime where the order of the
energies of singlet states is E|S(002)〉 > E|S(011)〉 > E|S(101)〉, cf.
Figs. 5(b) and 5(f). In Figs. 5(a) and 5(e), we choose to plot
the values of Jse as a function of NM instead of � to compare
different values of ε. This is due to the values of Jse being
determined by the hybridization between the logical states and
higher-lying states, which is related to the electron densities in
dot M.

For a large h̄ω0 and smaller x0, Figs. 5(a) and 5(c) show that
Jse is positive and increases as a function of ε. The positive Jse

indicates, in those detuning regimes, that Jnnξ
2
t,se > 2Je

L,R, cf.
Eq. (5). Therefore, the increase in Jse can be attributed to the
increase in ξt,nnξ

2
t,se as a function of ε as shown in Fig. 5(d).

On the other hand, for a small h̄ω0 and larger x0, Figs. 5(e) and
5(g) show that Jse is negative, and its absolute value decreases
as a function of ε. The negative Jse indicates, in those detun-
ing regimes, that Jnnξ

2
t,se < 2Je

L,R, cf. Eq. (5). Therefore, the
decrease in the absolute value of Jse can be attributed to the
increase in ξt,nnξ

2
t,se as a function of ε as shown in Fig. 5(h).

Since JHubbard
se ≈ −2Je

L,R + (t ′ξt,nn − 2Je
L,M)ξ 2

t,se [Eq. (5)], the
increase in ξt,nnξ

2
t,se compensates the negative value of −2Je

L,R,
resulting in a smaller magnitude of superexchange as shown
in Fig. 5(g).

To conclude this section, we have shown, when the value of
ε increases, that the magnitude of Jse increases (decreases) for
an originally positive (negative) Jse. We further demonstrate,
for an increasing ε, that the changes of the magnitude of Jse

FIG. 5. (a) and (e) Jse vs NM for ε > 0. The values of NM should
be perceived as inversely proportional to �. The values of Jse at NM =
10−1 are indicated as diamond symbols. (b) and (f) Eigenvalues of the
singlet states vs � at a particular value of ε. (c) and (g) Jse vs ε for
NM = 10−1. The arrows in the insets indicate the changes in ξt,se(L,M)

and ξt,nn with respect to �, whereas, the lengths of the arrows denote
the magnitude of the changes. (d) and (h) ξt,l vs ε with l ∈ {se, nn}.
The values of ξt,l are plotted as ratios to the values at ε = ε∗ and
� = �∗, i.e., ξt,l (�, ε)/ξt,l (�∗, ε∗). The top axes in (c), (d), (g), and
(h) indicate the corresponding � for maintaining NM = 10−1. The
values of Jse and ξt,l for the values of ε in (a) and (b) are denoted as
diamond symbols.

can be attributed to the increase in the tunneling-induced term
ξt,nnξ

2
t,se.

D. Jse vs � at ε � 0

In this section, we provide analytical descriptions on the
sign switching of Jse observed between ε = 0 and ε � 0, cf.
two yellow star symbols in Fig. 3(f). The explicit values of Jse

and other relevant quantities are presented in Fig. 6.
In Fig. 6(b), ε = 3.2 ∼ 3.6 meV corresponds to the case in

which ε � 0 as discussed in Sec. II B 2. In particular, the con-
dition ε � 0 denotes the detuning regime where the order of
the energies of singlet states is E|S(011)〉 > E|S(002)〉 > E|S(101)〉,
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FIG. 6. (a) Eigenvalues of singlet states vs � for ε = 3.4 meV.
(b) Jse vs NM for ε = 0 meV (black line), 3.2 meV (blue line),
3.4 meV (red line), and 3.6 meV (magenta line). Solid and dashed
lines indicate Jse > 0 and Jse < 0, respectively. (c) The composition
of |S(002)〉 in |S(101)〉′, φ|S(002)〉, vs NM for the values of ε in (b).
Note that since E|S(200)〉 = E|S(002)〉 at ε = 0, the black line refers to
|〈S(200; 002)+|S(101)〉′|2. (d) δφ|011〉 vs NM for the values of ε in
(b) where δφ|011〉 = φ|S(011)〉 − φ|T (011)〉. NM should be perceived to be
inversely proportional to �. The values of δφ|011〉 for ε = 0 are not
shown since δφ|011〉 � 10−4. The magenta background indicated the
(101) region where 10−2 < NM < 10−1. The dot parameters are as
follows: h̄ω0 = 7.28 meV, x0 = 50 nm.

cf. Fig. 6(a). Figure 6(b) shows that a negative Jse at ε = 0
switches a positive value when ε � 0. The sign switching of
Jse from a negative to a positive value can be attributed to the
larger values the admixture probabilities, φ|S(002)〉 and δφ|(011)〉,
cf. Eq. (7). The claim above conforms with the values shown
in Figs. 6(c) and 6(d), which shows more than one order in
the increase for φ|S(002)〉 and a large magnitude enhancement
for δφ|011〉.

To conclude this section, we have demonstrated that an
originally negative Jse at ε = 0 switches to a positive one
at ε � 0. We further deduce that the sign switching of Jse

can be ascribed to the increase in the magnitude of the four-
tunneling process term φ|S(002)〉 and the two-tunneling process
term δφ|011〉 at ε � 0.

IV. RELEVANCE TO OTHER WORKS

Superexchange interaction between two delocalized elec-
trons in a TQD device has been theoretically evaluated
using Hubbard model in Ref. [60]. However, since the Hub-
bard model only includes the on-site Coulomb interaction,
whereas, excluding other types of Coulomb interaction, some
subtle yet important Coulomb interaction terms might be over-
looked. In fact, in contrast to the full CI results in Fig. 3 in
the detuning region where the ground charge state is (101),
the sign switching and sweet spots of Jse are not found [60].
We focus on the case where the ground charge state is (101)
since it is of experimental interests [63,66,67]. We further
confirm that the inclusion of the interdot Coulomb interaction
in the extended Hubbard model [82] does not lead to the
sign switching of Jse in the (101) region. This reaffirms that
the sign switching of Jse is a result of the interplay between

the tunneling term Jnnξ
2
t,se and the long-distance Coulomb

exchange term Je
L,R as discussed in Sec. III B 1.

Experimentally, coherent coupling between two delocal-
ized electrons in a TQD devices has been demonstrated
[58,61]. In particular, Ref. [61] has demonstrated spin ex-
change between two distant spins whose superexchange
energy is positive, i.e., Jse > 0. However, the superexchange
interaction has only been demonstrated at two detuning points
as discussed in the second paragraph of Sec. III A. In contrast,
our work takes a step further to show an extensive study of
Jse in a larger range of detuning values, which reveals a richer
behavior of Jse, cf. Fig. 3.

V. CONCLUSION AND DISCUSSION

We have shown, using full CI calculations, that the su-
perexchange interaction between two delocalized electrons
in a TQD device exhibits a nontrivial behavior with respect
to the control parameters. When ε = 0, a symmetric TQD
device with a larger confinement strength and shorter interdot
distance yields a Jse curve that switches from a positive value
at small � to a negative value at large �. Also, the changes
between positive and negative values of Jse are not monotonic,
giving rise to a sweet spot with respect to � and ε. Enabled by
the crossing from a positive Jse to a negative Jse, the existence
of the zero value Jse is important to realize a true “turn off” of
an exchange gate. Comparison between the numerical results
of Jse for ε = 0 to the analytical expression of Jse [Eq. (5)]
indicates that the nonmonotonic behavior of Jse can be at-
tributed to the interplay between the virtual nearest-neighbor
exchange Jnn and the higher-order tunneling induced term
ξt,se. Also, the sign switching of Jse is found to be related to
the competition between the tunneling term Jnnξ

2
t,se and the

long-distance Coulomb exchange term 2Je
L,R.

When ε > 0, we have demonstrated that the magnitude of
Jse as a function of ε is largely influenced by the tunneling
term Jnnξ

2
t,se, whose magnitude increases for a larger ε. At a

larger ε, a positive Jse exhibits a larger magnitude, whereas,
a negative Jse exhibits a smaller magnitude. The contrasting
behavior of |Jse| between opposite signs of Jse stems from the
negative sign of the long-distance Coulomb exchange term
−2Je

L,R.
Entering the detuning regime where ε � 0, we have found

that an originally negative Jse at ε = 0 switches to a positive
one at large ε. We have deduced that the sign switching of
Jse can be ascribed to two reasons: (1) The enhanced ad-
mixture between the ground singlet, |S(001)〉, and the first
excited singlet, |S(002)〉. This admixture arises from a four-
tunneling process; (2) A larger admixture between the ground
singlet |S(001)〉, and the excited singlet |S(011)〉, compared to
the same type of admixture between triplets. This admixture
arises from a two-tunneling process. The sign switching ob-
served for the values of Jse suggests that this setup may serve
as a quantum simulator when either an antiferromagnetic
interaction, ferromagnetic interaction or both are required
[92–95].

Our results have shown that depending on the quantum-dot
and control parameters, the superexchange interaction medi-
ated by an empty quantum dot in a TQD device exhibit a
nontrivial behavior, which ranges from positive to negative
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values. The richness of the properties of Jse may be har-
nessed to enhance the capabilities of spin qubits in quantum
dots.
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