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Topologically nontrivial and trivial zero modes in chiral molecules
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Recently, electron transport along chiral molecules has been attracting extensive interest and a number of
intriguing phenomena have been reported in recent experiments, such as the emergence of zero-bias conductance
peaks in the transmission spectrum upon the adsorption of single-helical protein on superconducting films. Here,
we present a theoretical study of electron transport through a two-terminal single-helical protein sandwiched
between a superconducting electrode and a normal-metal one in the presence of a perpendicular magnetic
field. As the proximity-induced superconductivity attenuates with the distance from superconducting media,
the pairing potential along the helix axis of the single-helical protein is expected to decrease exponentially,
which is characterized by the decay exponent λ and closely related to the experiments. Our results indicate that
(i) a zero-bias conductance peak of 2e2/h appears at zero temperature and the peak height (width) decreases
(broadens) with increasing temperature, and (ii) this zero-bias peak can split into two peaks, which are in
agreement with the experiments [see, e.g., H. Alpern et al. Nano Lett. 19, 5167 (2019)]. Remarkably, Majorana
zero modes are observed in this protein-superconductor setup in a wide range of model parameters, as manifested
by the Z2 topological invariant and the Majorana oscillation. Interestingly, a specific region is demonstrated
for decaying superconductivity, where topologically nontrivial and trivial zero modes coexist and the bandgap
remains constant. With increasing the pairing potential, the topologically nontrivial zero modes will transform to
the trivial ones without any bandgap closing-reopening, and the critical pairing potential of the phase transition
attenuates exponentially with λ. Additionally, one of the two zero modes can be continuously shifted from one
end of the protein toward the other end contacted by the normal-metal electrode. The underlying physics of the
topologically nontrivial and trivial zero modes is discussed.

DOI: 10.1103/PhysRevB.108.035401

I. INTRODUCTION

Majorana fermion, firstly predicted to be one fundamental
particle by Ettore Majorana in 1937 [1], was considered as an
excitation in condensed matter physics. Unpaired Majorana
fermions were reported on vortices of chiral two-dimensional
p-wave superconductors [2–5]. Kitaev put forward a seminal
model to detect such exotic particles at the two ends of a
nanowire, which may facilitate realizing half-qubits in topo-
logical quantum computing schemes [6]. Since then, a number
of one-dimensional (1D) systems were proposed to observe
Majorana fermions or Majorana zero modes, such as ultracold
fermionic atoms with spin-orbit interaction [7], quantum dot
chains [8,9], helical Shiba chains [10,11], and ferromagnetic
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atomic chains on superconducting substrates [12–16]. Im-
portantly, a possible signature of Majorana fermions is the
emergence of zero-bias conductance peaks in the transmission
spectrum, which were reported in diverse systems during the
past decade [17–21].

On the other hand, chiral molecules including double-
stranded DNA (dsDNA) and single-helical protein have been
receiving extensive attention. For instance, the spin selec-
tivity effect was widely demonstrated in a variety of chiral
molecules [22–27]. Topological states were reported in both
dsDNA and single-helical molecules under a perpendicular
electric field, and a Thouless quantum pump could be realized
by rotating this electric field in the transverse plane [28,29].

Recently, the chiral molecule-superconductor hybrid sys-
tems attracted intensive interest. As early as 2001, Kasumov
et al. firstly measured the electron transport through λ-DNA
connected to superconducting electrodes in a magnetic field,
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demonstrating a zero-bias conductance peak and proximity-
induced superconductivity [30]. Then in 2016, Alpern et al.
fabricated a hybrid system where single-helical protein of
α-helical polyalanine self-assembled on a superconducting
Nb film and observed a zero-bias conductance peak by us-
ing scanning tunneling spectroscopy [31]. They found that
the peak height decreases with increasing the temperature
and its width increases simultaneously, which may be re-
lated to unconventional triplet-pairing components with either
d- or p-wave symmetry [31]. Recently, Millo et al. studied
the electron transport properties of several chiral molecule-
superconductor systems by adsorbing α-helical polyalanine
on different conventional superconductors [32,33]. They
observed a robust zero-bias conductance peak in the trans-
mission spectrum, finding that the peak height is reduced
by increasing the temperature and this peak vanishes in the
strong magnetic field regime, which points toward the topo-
logical triplet p-wave superconductivity [32,33]. All these
experiments share a common feature of zero-bias conductance
peaks in the chiral molecule-superconductor systems and the
underlying physics remains elusive. Theoretically, Tang et al.
investigated the topological properties of a single-stranded
DNA deposited on an s-wave superconductor, finding Ma-
jorana zero modes in this hybrid system [34]. Very recently,
Chen et al. studied the transport properties of a dsDNA
proximity-coupled by an s-wave superconductor, demon-
strating Majorana zero modes as well as topological phase
transitions in this dsDNA-superconductor system [35]. Notice
that all these theoretical works focus on DNA molecules con-
tacted by two normal-metal electrodes under homogeneous
superconductivity, which are completely different from pre-
vious experiments [30–33].

In this paper, we perform a thorough theoretical study of
the electronic properties of a single-helical protein, connected
to a bottom superconducting electrode and a top normal-metal
one, in the presence of a Zeeman field pointing toward the y
axis, aiming to uncover the possible mechanism of the zero-
bias conductance peaks observed in the experiments [31–33].
This two-terminal protein setup, as illustrated in Fig. 1,
resembles the experiments that the α-helical polyalanine self-
assembled normally on a conventional superconductor and
the conductance was measured at the other end of the pro-
tein by an STM tip [31–33]. In the following, the bottom
(top) electrode is termed as left (right) electrode as usual.
In this protein-superconductor system, the pairing potential
attenuates exponentially along the helix axis (z axis), which
captures the main features of the experiments and is termed as
decaying superconductivity here. We find that a zero-bias con-
ductance peak of 2e2/h is demonstrated at zero temperature
and the peak height decreases with increasing the tempera-
ture, which is accompanied by the peak width broadening,
and this zero-bias peak splits into two peaks by increasing
the Zeeman field, consistent with the experiments [31–33].
Besides the existence of Majorana zero modes in a wide range
of model parameters, a specific region is predicted in the
case of decaying superconductivity, in which topologically
nontrivial and trivial zero modes coexist and the bandgap
remains unchanged. In particular, the topologically nontrivial
zero modes can transform to the trivial ones in the absence
of bandgap closing-reopening within this specific region, and

FIG. 1. Schematic diagram of a two-terminal single-helical pro-
tein, contacted by the bottom superconducting electrode S and the
top normal-metal one N, in the presence of a perpendicular Zee-
man field Vy, which points along the y axis. Here, each sphere
represents an amino acid and the dashed line connecting these
spheres depicts the helical structure of the protein. Because of the
proximity-induced superconductivity by the superconducting elec-
trode, the pairing potential emerges simultaneously in the protein
and decays exponentially along the helix axis, as illustrated by
the gradient color. �ψ and �h are the twist angle and the stack-
ing distance between the nearest-neighbor sites, respectively, lm =√

[2R sin(m�ψ/2)]2 + (m�h)2 is the Euclidean distance between
sites n and n + m, and θm = arccos[2R sin(m�ψ/2)/lm] is the space
angle between the solid line lm and the x − y plane, with R the radius.
For clarity, the bottom electrode is named as left electrode and the top
one as right electrode.

the critical pairing potential of the phase transition decreases
exponentially with the superconducting decay exponent λ. In-
stead of localized at the ends, one of the two zero modes could
be localized at any position of the single-helical protein and
be shifted from the left end toward the right one by increasing
the pairing potential. This decaying superconductivity and the
associated phenomena, to the best of our knowledge, have not
yet been reported in nanowire-superconductor systems.

The rest of the paper is organized as follows. In Sec. II,
we introduce the Bogoliubov-de-Gennes (BdG) Hamiltonian
of the single-helical protein with superconductivity, and de-
tail the methods of the nonequilibrium Green’s function and
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the scattering matrix. In Sec. III, the numerical results and
discussion are displayed. Specifically, the differential conduc-
tance of the two-terminal protein is calculated by applying
the nonequilibrium Green’s function, the energy spectrum and
the wave function are calculated by directly diagonalizing the
BdG Hamiltonian without any coupling to the electrodes, and
the Z2 topological invariant is obtained from the scattering
matrix method. In Sec. IV, a summary is given.

II. MODEL AND METHOD

We consider a single-helical protein connected to a su-
perconducting electrode and a normal-metal one under a
perpendicular magnetic field, as sketched in Fig. 1, which is
similar to the experiments [31–33]. The total Hamiltonian of
this two-terminal protein is written as

H = HBdG + HL + HR + Hc. (1)

Here, HBdG is the BdG Hamiltonian of the single-helical pro-
tein with superconductivity in the absence of any coupling to
the electrodes. HL and HR are the Hamiltonians of the left
superconducting electrode and the right normal-metal one, re-
spectively, and Hc describes the coupling between the protein
and the electrodes. HBdG is expressed as

HBdG = 1

2

∑
n,n′

�†
n HBdG(n, n′)�n′ , (2)

with the matrix element

HBdG(n, n′) =
[
Hp(n, n′) + μδn,n′ −i�nσ̂yδn,n′

i�∗
nσ̂yδn,n′ −H∗

p(n, n′) − μδn,n′

]
.

(3)

Here, �†
n = (c†

n↑, c†
n↓, cn↑, cn↓), μ is the chemical potential,

and δn,n′ the Kronecker delta. Because of the proximity-
induced superconductivity by the superconducting electrode,
a pairing potential �n emerges in the single-helical protein.
Notice that since the superconducting wave function attenu-
ates exponentially with the distance from the superconducting
electrode, this pairing potential along the helix axis may be
expressed as �n = �e−n/λ [36–38]. Here, � is the pairing
potential in the superconducting electrode, and λ is the de-
cay exponent, which describes how fast the superconductivity
attenuates along the protein. The unit of λ is the number
of sites. Hp is the Hamiltonian of the protein without any
superconductivity and reads [39]

Hp =
N∑

n=1

εnc†
ncn +

N−1∑
n=1

N−n∑
m=1

tmc†
ncn+m +

N∑
n=1

Vyc†
nσ̂ycn

+
N−1∑
n=1

N−n∑
m=1

2ism cos(ψ−
n,m)c†

nσ̂n,mcn+m + H.c., (4)

where c†
n = (c†

n↑, c†
n↓) is the creation operator at site n

of the protein with length N . εn is the on-site energy,
tm = t1e−(lm−l1 )/lc the mth neighboring hopping integral,
Vy the Zeeman field strength, and sm = s1e−(lm−l1 )/lc

the renormalized spin-orbit coupling (SOC) [39]. Here,
the Zeeman field is parallel to the positive y axis, and the

numerical results remain the same when it points along
either the x axis or any selected orientation within the x-y
plane. lm =

√
[2R sin(m�ψ/2)]2 + (m�h)2 is the Euclidean

distance between sites n and n + m, lc is the other decay
exponent, which characterizes the long-range electron
transport in the protein, R the radius, and �ψ (�h) the twist
angle (stacking distance) between the nearest-neighbor (NN)
sites. σ̂n,m = (σ̂x sin ψ+

n,m − σ̂y cos ψ+
n,m) sin θm + σ̂z cos θm,

θm = arccos[2R sin(m�ψ/2)/lm], ψ±
n,m = (ψn+m ± ψn)/2,

ψn = n�ψ , and σ̂x,y,z the Pauli matrices. Some of these
structural parameters are shown in Fig. 1.

The Hamiltonians of the two electrodes and their coupling
to the protein are written as

HL =
∑

k

εkLa†
kLakL +

∑
k

(�a†
k↑La†

−k↓L + �∗a−k↓Lak↑L),

(5)

HR =
∑

k

εkRa†
kRakR, (6)

and

Hc =
∑

k

(Vka†
kLc1 + Vka†

kRcN + H.c.). (7)

Here, a†
kα

= (a†
k↑α

, a†
k↓α

) is the creation operator for an
electron with wave vector k in the superconducting and
normal-metal electrodes (α = L, R), and Vk is the coupling
between the protein and the electrodes. We emphasize that
the left electrode is superconducting with the pairing potential
� and the right one is normal metal. The retarded Green’s
function can be expressed as

Gr (E ) = [
EI4N − HBdG − �r

L(E ) − �r
R(E )

]−1
, (8)

where E is the electron energy, I4N the identity matrix of
size 4N , and �r

α (α = L, R) the retarded self-energy due to
the coupling to electrode α. We consider the wide-band ap-
proximation and the retarded self-energy of the normal-metal
electrode reads [23]

�r
R(E ) = −i�R/2, (9)

where �R = 2π
∑

k V 2
k δ(E − εkR) represents the coupling

strength between the protein and the normal-metal electrode.
While for the superconducting electrode, the retarded self-
energy reads [40–43]

�r
L(E ) = −i�Lβ(E )

(
1 �/E

�/E 1

)
, (10)

where �L is the protein-superconducting electrode cou-
pling, and β(E ) = |E |/√E2 − �2 for |E | > � and β(E ) =
E/i

√
�2 − E2 for |E | < �. From the Keldysh formula, the

lesser Green’s function can be written as

G<(E ) = [I + Gr (E )�r (E )]G<
0 (E )[I + �a(E )Ga(E )]

+Gr (E )�<(E )Ga(E )

= Gr (E )
[
Gr

0(E )
]−1

G<
0 (E )

[
Ga

0(E )
]−1

Ga(E )

+Gr (E )�<(E )Ga(E ), (11)

where �< is the lesser self-energy, Ga = (Gr )† the advanced
Green’s function, �a = (�r )† the advanced self-energy, and
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Gr,a,<
0 the Green’s functions of the isolated single-helical pro-

tein described by the BdG Hamiltonian in Eqs. (2) and (3).
Since the term [Gr

0(E )]−1G<
0 (E )[Ga

0(E )]−1 is zero for finite
coupling between the protein and the normal-metal electrode,
the first term on the right-hand side of Eq. (11) vanishes. The
lesser Green’s function can then be simplified as

G<(E ) = Gr (E )[�<
L (E ,Vb) + �<

R (E ,Vb)]Ga(E ). (12)

Here, �<
α = i�α diag[ f (E − μα ), f (E − μα ), f (E + μα ),

f (E + μα )] is the lesser self-energy due to the coupling
to electrode α [44], Vb the bias voltage between the left
and right electrodes, f (E ) = 1/[exp(E/kBT ) + 1] the
Fermi-Dirac distribution function, kB the Boltzmann constant,
T the temperature, and μL = 0 and μR = eVb the chemical
potentials of the left and right electrodes, respectively. Then,
the current flowing through the protein can be expressed as
[44,45]

IR = e

h

∫
dEReTr

{
σ
[
G<(E ,Vb)�a

R(E )

+ Gr (E )�<
R (E ,Vb)

]}
, (13)

where σ = diag(1, 1,−1,−1 · · · ) accounts for different
charges carried by electrons and holes. Finally, the differential
conductance of the two-terminal protein can be evaluated as

G = dIR

dVb
. (14)

To elucidate the topological properties of this chiral
molecule-superconductor system, the Z2 topological invariant
is evaluated. Since the protein with decaying superconduc-
tivity is aperiodic, we carry out the scattering matrix method
instead of the one proposed by Kitaev [6], where the former
can be applied to disordered systems [46]. This scattering
matrix method has been widely used to characterize the
topological properties of, e.g., disordered InAs wires [46]
and inhomogeneous Rashba chains [47] coupled to a super-
conducting substrate, and can be described as follows. The
scattering matrix links the incoming and outgoing wave am-
plitudes, and is defined as [46]

(
�+,R

�−,L

)
= S

(
�−,R

�+,L

)
=

(
R T′
T R′

)(
�−,R

�+,L

)
. (15)

Here, �+/−,L refers to the right/left-moving modes at the left
end of the protein, �+/−,R to the ones at the right end, and S is
the scattering matrix. R (R′) and T (T′) are, respectively, the
4 × 4 reflection and transmission matrices at the right (left)
end. On the other hand, this scattering matrix can alternatively
be obtained from the Fisher-Li relation [47,48],

S = I8 − 2π iW†Gr (E )W, (16)

where I8 is the 8 × 8 identity matrix. W represents the
coupling between the protein and both electrodes, and is

TABLE I. Structural parameters of the single-helical protein.

Parameter R �h �ψ l1 l2 l3

Value 0.25 0.15 5π/9 0.41 0.58 0.51

The distance (angle) is in unit nm (rad).

written as

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(√
�R
2π

)
I4 04

04 04
...

...

04 04

04
(√

�L
2π

)
I4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

4N×8

, (17)

where 04 is the 4 × 4 zero matrix. Then, the reflection and
transmission matrices can be obtained from Eqs. (15)–(17). It
has been reported that the reflection from one Majorana bound
state generates a scattering phase π and leads to a phase factor
of −1 [46]. As a result, the sign of det(R) equals the parity of
the number m of Majorana bound states at each end of the
protein, and the topological number Q is expressed as [47,49]

Q = sign[det(R)] = sign[det(R′)], (18)

where Q = 1(−1) corresponds to the topologically triv-
ial (nontrivial) phase. Finally, the Z2 topological invariant
satisfies

(−1)Z2 = Q. (19)

It has been demonstrated analytically in Ref. [46] that the
scattering matrix method is equivalent to the Kitaev method
regarding the topological properties of periodic systems.

III. RESULTS AND DISCUSSION

For the single-helical protein, the on-site energy is taken
as εn = 0 to resemble a homogeneous protein of polyalanine
used in the experiments, the NN hopping integral t1 as the
energy unit, and the renormalized SOC as s1 = 0.12t1. Then,
the NN SOC of the protein is s1 cos(�ψ/2) ∼ 0.077t1 and
estimated to be 7.7 meV for t1 = 0.1 eV, which is comparable
with that reported in carbon nanotubes [50] but smaller than
in 1D nanowires [43,51]. Although such small SOC normally
weakens the superconducting gap, it could be enhanced by
either decreasing the temperature or replacing the narrow-gap
superconducting electrode with a wide-gap one. The structural
parameters are set to R = 0.25 nm, �h = 0.15 nm, �ψ =
5π/9, and correspondingly the Euclidean distance between
two NN sites is approximated as l1 ∼ 0.41 nm. The values
of some basic structural parameters are listed in Table I,
and all these parameters are chosen to mimic the α-helical
protein and are the same as Ref. [39], which explains the
spin-selective phenomenon observed in the α-helical protein
[24]. The molecular length is fixed as 12.0 nm with N = 80,
which is much shorter than that of 1D nanowires [43,51].
The chemical potential is chosen as μ = 1.7t1, the Zeeman
field as Vy = 1.5t1, and the decay exponent characterizing
the long-range electron transport in the protein is fixed as
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lc = 0.09 nm, which is close to the B-form DNA [52]. For
the normal-metal electrode, the coupling strength is set to
�R = 0.05t1 to account for poor protein-electrode contact
[34]. While for the superconducting electrode, the pairing
potential is taken as � = 0.8t1 and the coupling strength as
�L = �R for simplicity, because the differential conductance
is obtained at the normal-metal electrode and does not de-
pend on �L. As the normal coherence length could range
from tens of nanometers to hundreds of nanometers at low
temperatures [53], the decay exponent simulating how the su-
perconductivity attenuates along the protein is set to λ = 100.
In this situation, the normal coherence length of the super-
conducting Nb film is about 15 nm for the protein, which is
larger than the molecular length. For this short protein, our
results demonstrate that topologically nontrivial modes can
exist in a wide range of model parameters, which is different
from other nanowire-superconductor systems where topolog-
ically nontrivial modes disappear for such short nanowires
[43,51]. Besides, the topological properties of the protein-
superconductor system remain unchanged for shorter protein
with length being only 7.5 nm and different protein-electrode
couplings. The values of all above-mentioned parameters will
be used throughout the paper and all the calculations are
performed at zero temperature, unless stated otherwise.

We first consider how the temperature T and the Zeeman
field Vy affect the charge transport properties of the single-
helical protein with decaying superconductivity, which will be
termed as the protein-superconductor system for simplicity.
Figure 2(a) shows the differential conductance G versus the
bias voltage Vb by considering several values of T , which
is obtained from Eq. (14). A zero-bias conductance peak of
2e2/h is clearly demonstrated in the transmission spectrum
at zero temperature [see the black-solid line in Fig. 2(a)],
indicating the existence of two zero modes in the protein-
superconductor system. When the temperature is increased
from T = 0 K to 8 K, the peak height is progressively declined
from G = 2e2/h to approximately 0.25e2/h, which is accom-
panied by the broadening of the peak width [see the other lines
in Fig. 2(a)]. This conductance peak will finally vanish by
further increasing T . These results are in good agreement with
previous experiments that the peak height (width) decreases
(broadens) with increasing T [31,33].

The above evolution phenomenon of the conductance peak
with the temperature originates from the thermal broaden-
ing effect. We know that the electron distribution satisfies
the Fermi-Dirac statistics, and all the electronic states of
the electrode locating within the bias window [−Vb/2,Vb/2]
will contribute to the current IR [see Eq. (13)] and thus to
G. At zero temperature, the Fermi-Dirac distribution func-
tion is a step function and only the electronic states at
the Fermi level of the electrode can affect G. Whereas at
nonzero temperatures, the Fermi-Dirac distribution function
has hyperbolic-tangent-like form and consequently the con-
tribution of the electronic states at the Fermi level will be
decreased. Instead, both electronic states below and above
the Fermi level will influence G, giving rise to the thermal
broadening effect. As a result, the peak height decreases with
increasing T and consequently its width becomes wider. Since
we consider an extremely small bias voltage between the left
and right electrodes, only the electronic states of the protein-

FIG. 2. Electron transport along a two-terminal single-helical
protein by considering different temperatures T and Zeeman fields
Vy. Differential conductance G vs bias voltage Vb for (a) various T
with Vy = 1.5t1 and for (b) several Vy at zero temperature. Here, the
model parameters are N = 80, � = 0.8t1, μ = 1.7t1, and λ = 100.
The temperature is compared by setting t1 = 0.1 eV.

superconductor system around the Fermi level, i.e., the two
zero modes [see the red- and green-solid lines in Fig. 3(a)],
will attend the charge transport process. Therefore, the inte-
gral of G along the Vb axis remains unchanged for different
temperatures [Fig. 2(a)].

We then study the effect of the Zeeman field, as shown in
Fig. 2(b), which plots the bias voltage-dependent G at zero
temperature for different Vy. It clearly appears that the con-
ductance peak locates at zero-bias voltage for Vy = 1.5t1 [see
the black-solid line in Fig. 2(b)]. In contrast, this zero-bias
conductance peak will disappear by increasing Vy and instead
a pair of peaks emerge symmetrically with respect to the line
Vb = 0 [see the other lines in Fig. 2(b)], which is attributed
to the Majorana oscillation, as discussed below. These results
are qualitatively consistent with the previous experiment that
a zero-bias conductance peak appears for small magnetic field
and splits into two peaks by increasing this magnetic field
[33]. However, another experiment reported that the zero-bias
conductance peak does not split with increasing the mag-
netic field upon adsorption of α-helical polyalanine on Au
films grown on superconducting NbN [32], which may be
related to strong hybridization effects at the chiral molecule-
Au interface and deserve further investigations. Although the
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FIG. 3. Energy spectra and Z2 topological invariants of the protein-superconductor system by changing the Zeeman field Vy, the pairing
potential �, and the chemical potential μ. [(a)–(c)] Energy spectra as functions of Vy, �, and μ, respectively. [(d)–(f)] Z2 invariants as functions
of Vy, �, and μ, respectively. The triangles in (a)–(c) mark the point where the differential conductance in Fig. 2(a) is calculated.

zero-bias conductance peak suggests the existence of zero
modes in the protein-superconductor hybrid system, its phys-
ical origin remains unclear.

To understand the physical nature of the zero-bias con-
ductance peak and the possible topological properties of the
protein-superconductor system, the energy spectrum and the
Z2 topological invariant are calculated by varying the Zeeman
field Vy, the pairing potential �, and the chemical potential
μ. Here, the energy spectrum and the wave function shown
below are obtained by directly diagonalizing the BdG Hamil-
tonian in Eqs. (2) and (3), and the Z2 topological invariant
is calculated from the scattering matrix method in Eqs. (15)–
(19). Figures 3(a) and 3(d) display the energy spectrum and
the Z2 topological invariant, respectively, as a function of
Vy. One can see from Fig. 3(a) that the energy spectrum is
always symmetric with respect to the line E = 0, owing to
the intrinsic electron-hole symmetry of the BdG Hamiltonian
[54,55]. In the small Zeeman field regime of Vy < 0.59t1, a
bandgap is clearly demonstrated due to the proximity-induced
superconductivity and its width decreases almost linearly with
increasing Vy [see the red- and green-solid lines in Fig. 3(a)].
This bandgap closes and reopens at Vy ∼ 0.59t1, implying a
possible topological phase transition at this critical Zeeman
field. This phase transition is further confirmed in Fig. 3(d)
where the topological invariant changes from Z2 = 0 to 1
at Vy ∼ 0.59t1. In the intermediate regime of 0.59t1 < Vy <

1.78t1, the two modes closest to zero-energy overlap at E = 0
[see the red- and green-solid lines in Fig. 3(a)] and two Majo-
rana zero modes with Z2 = 1 appear in the energy spectrum
[Fig. 3(d)], leading to the emergence of the zero-bias con-
ductance peak [Fig. 2(a)]. While in the large Zeeman field
regime of Vy > 1.78t1, the two Majorana modes oscillate with
increasing Vy and the oscillating amplitude increases almost
linearly [see the right half part of Fig. 3(a)], which gives rise

to the splitting of the zero-bias conductance peak into two
peaks [Fig. 2(b)]. This phenomenon is named as the Majorana
oscillation [43,56] and regarded as a smoking gun for the
existence of Majorana modes [51]. Indeed, the Majorana os-
cillation of small amplitude corresponds to the topologically
nontrivial modes with Z2 = 1. Interestingly, the oscillation of
large amplitude refers to either the topologically nontrivial
modes or the trivial ones, and the topological invariant oscil-
lates between Z2 = 0 and 1 for Vy > 2.65t1 [see the rightmost
part of Fig. 3(d)], which is termed as the Z2 oscillation.

This Z2 oscillation can be understood from the hybridiza-
tion of the wave functions of the two modes closest to E = 0,
which are generally localized at both ends of the protein.
When the overlapping of the wave functions at the left and
right ends is negligible, these two modes are Majorana zero
modes with Z2 = 1. When the wave function overlapping is
gradually enhanced, this hybridization leads to the deviation
of Majorana modes from E = 0 [51]. The stronger the hy-
bridization is, the larger the deviation of the two modes from
zero energy. Subsequently, the Majorana oscillation takes
place and the oscillating amplitude increases almost linearly
with Vy, see the region of Vy > 1.78t1 in Fig. 3(a). Provided
this hybridization is so weak that the wave functions at the two
ends can be well separated from each other, the two modes
are still topologically nontrivial with Z2 = 1, see the region
of 1.78t1 < Vy < 2.65t1 in Fig. 3(d). When the hybridization
becomes sufficiently strong that the wave functions cannot
be well separated from each other, the topological invariant
oscillates between Z2 = 0 and 1, see the region of Vy > 2.65t1
in Fig. 3(d), which is similar to the Majorana oscillation. In
this situation, the two modes transform frequently between
the topologically nontrivial and trivial modes with increasing
Vy, leading to possible multiple topological phase transitions
in the large Zeeman field regime. In case that the protein is
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FIG. 4. Phase diagrams of the protein-superconductor system in the parameter space of the Zeeman field Vy, the pairing potential �, and
the chemical potential μ. (a) Z2 topological invariant vs Vy and μ. (b) Z2 vs � and μ. (c) Z2 vs � and Vy. The remaining parameters are the
same as those in Fig. 2.

longer than the normal coherence length, the region of the
Z2 oscillation shrinks with increasing λ and finally disappears
when the hybridization of the wave functions at the two ends
becomes negligible.

We then investigate the effect of the superconducting pair-
ing potential � on the energy spectrum and the topological
invariant, as presented in Figs. 3(b) and 3(e), respectively. It
is clear that there does not exist a bandgap in the absence of
pairing potential, and the two modes closest to E = 0 seem to
be separated from each other at � = 0 [see the red- and green-
solid lines in Fig. 3(b)], owing to finite-size effects. When
the pairing potential is incorporated, a bandgap appears and
its width presents nonmonotonic dependence on �. This gap
width firstly increases with � and then decreases with � [see
the left part of Fig. 3(b)]. Interestingly, this bandgap remains
unchanged for 1.60t1 < � < 2.95t1 [see the right half part of
Fig. 3(b)], of which this range is named as specific region. We
stress that several important phenomena can be identified in
this specific region, as further discussed below. In addition, the
two modes quickly overlap at E = 0 with increasing � and
two zero modes appear in a very wide range of �, which can
be divided into two types as characterized by the topological
invariant. The topological invariant changes from Z2 = 0 for
� < 0.08t1 to Z2 = 1 for 0.08t1 < � < 2.09t1, and back to
Z2 = 0 for � > 2.09t1 [Fig. 3(e)], implying a topological
phase transition at the critical values of � ∼ 0.08t1 and 2.09t1.
It is interesting that beyond the Majorana zero modes for
� < 2.09t1, topologically trivial zero modes also exist in the
protein-superconductor system for � > 2.09t1. We point out
that these topologically trivial zero modes can generate zero-
bias conductance peaks in the transmission spectrum as well,
just as the Majorana zero modes. Further inspection demon-
strates that the Majorana zero modes can be distinguished
from the topologically trivial ones by on-site energy disorder
generated by, e.g., stochastic population of external atoms
and counterions around the protein, where the former remains
in the strong disorder regime and the latter becomes fragile
in the presence of disorder. Additionally, the Majorana zero
modes can be discerned from Andreev bound states by, e.g.,
introducing a sharp local potential in a nanowire [57], probing
the correlation between differential conductance spectra mea-
sured at the two ends of a nanowire [58], and implementing a
strongly dissipative electrode [59].

Figures 3(c) and 3(f) show the energy spectrum and the
topological invariant, respectively, as a function of μ. One
clearly identifies the oscillation phenomenon that the two

modes closest to E = 0 oscillate sharply with increasing μ

for μ < 1.34t1, and the oscillation pattern is significantly
modified across the critical value of μ ∼ 0.74t1 at which a
bandgap takes place [see the red- and green-solid lines in
Fig. 3(c)]. In the low chemical potential regime of μ < 0.42t1,
although the oscillating amplitude is small, the topological
invariant is Z2 = 0 [Fig. 3(f)] and consequently the two modes
are topologically trivial. For 0.42t1 < μ < 0.60t1, the topo-
logical invariant oscillates dramatically between Z2 = 0 and
1, which originates from the hybridization effect between the
wave functions of the two modes closest to E = 0 as dis-
cussed above. While for 0.60t1 < μ < 1.34t1, the topological
invariant becomes Z2 = 1 and the two modes are topologically
nontrivial. By further increasing μ, the two modes become de-
generated at E = 0 with Z2 = 1 and the Majorana zero modes
emerge for 1.34t1 < μ < 1.91t1. In the high chemical poten-
tial regime of μ > 1.91t1, the two modes oscillate around
E = 0 again and the Majorana oscillation is identified with
Z2 = 1, where the topologically nontrivial zero and nonzero
modes coexist.

We then investigate the topological phase diagrams of the
protein-superconductor system in different parameter spaces
by taking into account Vy, �, and μ. Figure 4(a) shows the
topological invariant as functions of Vy and μ. One can see that
the topological invariant is Z2 = 0 in the small Zeeman field
regime of Vy < 0.58t1 [see the leftmost blue part in Fig. 4(a)]
and thus all the modes are topologically trivial, which is
independent of μ. When the Zeeman field is increased up to
Vy ∼ 0.58t1, the topological invariant could transform to Z2 =
1 and gives rise to the Majorana modes. This is consistent
with the previous study that a sufficiently large Zeeman field
is necessary to drive effective p-wave superconducting states
into topological superconducting phase [60], where the p-
wave superconductivity in the single-helical protein could be
induced by the combination of SOC and pairing potential [61].
With increasing Vy, the range of μ supporting the Majorana
modes with Z2 = 1 is enlarged almost linearly [see the yellow
part in Fig. 4(a)], which is accompanied by the topological
phase transition at the blue-yellow border. Remarkably, a
number of yellow strips are found in a wide area of the
Vy − μ space [see the bottom-right part in Fig. 4(a)], because
of the Majorana oscillation. It is clear that the topological
invariant oscillates between Z2 = 0 and 1 by increasing either
Vy or μ, implying multiple topological phase transitions.

Figures 4(b) and 4(c) plot the topological invariant in the
� − μ space and the � − Vy space, respectively. It can be
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FIG. 5. Energy spectra, wave functions, and Z2 topological invariants of the protein-superconductor system by considering both decaying
and homogeneous superconductivity, as a function of the pairing potential �. [(a)–(c)] Energy spectra vs � for λ = 200, 1000, and ∞,
respectively. [(d)–(f)] Spatial distribution of wave functions |�|2 of the zero modes for λ = 200, 1000, and ∞, respectively, as a function of
�. [(g)–(i)] Corresponding Z2 invariants vs �. Here, the vertical and horizontal cyan-dotted lines in (d) and (e) denote the lines � = �λ and
n = (N + 1)/2, respectively. �λ corresponds to the topological phase transition point in the case of decaying superconductivity, and �c to the
homogeneous one. The other parameters are the same as those in Fig. 2.

seen that all the modes are topologically trivial for extremely
weak pairing potentials of � < 0.02t1, irrespective of μ and
Vy. This critical value of � ∼ 0.02t1 decreases with increasing
N and remains nonzero in the limit N → ∞, so do the other
ones, e.g., � ∼ 0.08t1 in Fig. 3(e). In other words, a finite
pairing potential is necessary to ensure topologically nontriv-
ial phases. When the pairing potential reaches � ∼ 0.02t1, a
number of discrete Majorana modes are identified in both the
� − μ space and the � − Vy space. And the Majorana oscilla-
tion emerges simultaneously, where the topological invariant
oscillates with increasing μ or Vy albeit of no oscillation phe-
nomenon by changing �. In the � − μ space, the chemical
potential range of the Majorana modes decreases with � and
all the modes return to the topologically trivial ones when
� > 2.30t1, which is accompanied by the disappearance of
the Majorana oscillation in the strong pairing potential regime
of � > 1.08t1, as shown in Fig. 4(b). Contrarily, both the
Majorana oscillation and the Majorana modes remain in a
wide range of � in the � − Vy space [Fig. 4(c)]. Additionally,
the Majorana modes could exist at extremely low even zero
chemical potential [Figs. 4(a) and 4(b)] and at small Zee-
man fields of Vy ∼ 0.18t1 [Fig. 4(c)]. Therefore, we conclude

that the Majorana modes can be observed in the protein-
superconductor system in a very wide range of the Zeeman
field, the pairing potential, and the chemical potential. We
stress that the phase diagrams of the protein-superconductor
system, such as the oscillation of the topological invariant,
are different from previous studies on single-stranded DNA
[34], dsDNA [35], multichannel Majorana nanowires [62],
and antiferromagnetic chains [63], which originate from the
decaying superconductivity and finite-size effects.

We have demonstrated above the topologically nontrivial
zero modes as well as the trivial ones in the single-helical
protein contacted by the left superconducting electrode and
the right normal-metal electrode. Nevertheless, the physical
origin of these trivial zero modes and the influence of the
decaying superconductivity remain unclear. In the following,
we investigate the topological properties of the protein-
superconductor system by taking into account several decay
exponents λ.

Figures 5(a) and 5(b) show the energy spectrum versus
� with the decay exponent λ = 200 and 1000, respectively.
As a comparison, Fig. 5(c) displays the energy spectrum
by considering homogeneous superconductivity along the
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single-helical protein, i.e., λ = ∞. The energy spectra are
similar for different values of λ, including the evolution of
the bandgap and the two modes closest to zero energy, as
shown in Figs. 3(b) and 5(a)–5(c). Interestingly, there always
exists a specific region in the protein-superconductor system
with decaying superconductivity, where the gap width remains
constant by changing �. The range of this specific region
shrinks from [1.60t1, 2.95t1] for λ = 100 to [1.55t1, 2.05t1]
for λ = 200, and to [1.48t1, 1.54t1] for λ = 1000, and the
associated bandgap decreases with increasing λ. In sharp con-
trast, this specific region vanishes in the case of homogeneous
superconductivity and is reduced to a single point at which
the bandgap closes and reopens [Fig. 5(c)]. Since the bandgap
closing-reopening process refers to a topological phase tran-
sition [64], intriguing phenomena may be expected in this
specific region, as shown below. Besides, the two zero modes
will be separated from each other at sufficiently strong pairing
potential and finally the bandgap increases with �.

Figures 5(d)–5(f) show the spatial distribution of wave
function |�|2 of the zero modes versus � with λ = 200,
1000, and ∞, respectively, while Figs. 5(g)–5(i) plot the
corresponding topological invariants. At extremely weak
pairing potential regime of � < 0.05t1, the wave function
could be delocalized over the whole system for both de-
caying and homogeneous superconductivity [see the leftmost
parts of Figs. 5(d)–5(f)], and the associated topological in-
variant is Z2 = 0, owing to finite-size effects and weak
proximity-induced superconductivity. We point out that the
wave function will be localized at the two ends of the protein
for long molecular length. With increasing �, the Majorana
zero modes with Z2 = 1 appear and the wave function is local-
ized at the two ends as expected, for whatever the values of λ.
It is surprising that in the case of decaying superconductivity,
the localized wave function can gradually move from the left
end contacted by the superconducting electrode to the right
end with increasing � when the pairing potential surpasses the
critical value [see the white-oblique trajectories in Figs. 5(d)
and 5(e)]. In other words, the wave function can be localized
at any position of the protein by properly tuning �. Here, the
moving of the localized wave function is termed as the migra-
tion process, which only occurs in the aforementioned specific
region of the protein-superconductor system with decaying
superconductivity. This migration process would be beneficial
for implementing the braiding of the Majorana zero modes
and for constructing the topological qubits [65,66].

Besides the tunable position of the localized wave func-
tion, we then discuss the other interesting phenomena in this
specific region. It is well known that the topological phase
transition is usually accompanied by the bandgap closing-
reopening [64], as further confirmed in Figs. 5(c) and 5(i)
where the bandgap closes and reopens at �c ∼ 1.45t1 with
the topological invariant changing from Z2 = 1 to 0. Sur-
prisingly, this picture is completely modified by considering
the decaying superconductivity. During the migration process
in which the bandgap remains constant, the topological in-
variant can transform from Z2 = 1 to 0 at the critical value
�λ, indicating a topological phase transition at �λ. This crit-
ical pairing potential decreases from �λ ∼ 2.09t1 for λ =
100 to �λ ∼ 1.80t1 for λ = 200, and to �λ ∼ 1.51t1 for
λ = 1000. Interestingly, the dependence of �λ on λ can be

approximated as

�λ ∼ �ce(N+1)/2λ. (20)

Furthermore, we find that the crossing point between the
lines � = �λ and n = (N + 1)/2 locates in the middle of
the white-oblique trajectories [see the cyan-dotted lines in
Figs. 5(d) and 5(e)]. This indicates that for the Majorana zero
modes, the wave function is localized at the left half part and
the right end of the protein; whereas for the topologically
trivial zero modes, it is localized at the right half part and the
right end. As a result, the topologically nontrivial and trivial
zero modes can be discerned experimentally by measuring
their local density of states, i.e., ρ(n) = |�(n)|2. By further
increasing �, the wave function is localized at the right end
for the decaying superconductivity [see the rightmost parts
of Figs. 5(d) and 5(e)], in sharp contrast to the homogenous
case that the wave function will be delocalized over the whole
system [see the rightmost part of Fig. 5(f)].

Although we have demonstrated the topologically nontriv-
ial and trivial zero modes in the single-helical protein when
the superconductivity decays exponentially along the helix
axis, three issues remain unclear: (i) the emergence of the
specific region with constant bandgap in the case of decaying
superconductivity, (ii) the occurrence of the migration process
and the topological phase transition in this specific region, and
(iii) the reason why the phase transition point decreases with
increasing the decay exponent. We will attempt to solve these
issues in the following.

The emergence of the specific region with constant
bandgap may be understood from the bandgap evolution in
both periodic and aperiodic systems, as shown in Fig. 6. For
the periodic protein with homogeneous superconductivity,
the bandgap satisfies Eg = 0 at � = �c and increases
almost linearly when the pairing potential deviates from
�c [Figs. 5(c) and 6(a)], i.e., Eg ∼ β|� − �c| with β the
slope. The phase is topologically nontrivial for � < �c

and becomes trivial for � > �c. In the case of decaying
superconductivity, i.e., �n = �e−n/λ, this aperiodic protein
can be divided into many slices and the pairing potential could
be constant within each slice when it is sufficiently short.
Here, each slice is taken as a single site. Then, the nth site of
�n refers to a sub-bandgap E ′

g(n) ∼ β|�e−n/λ − �c|, just the
same as the periodic protein. For large λ, the pairing potential
along the helix axis decreases almost linearly [Fig. 6(b)]
and thus the sub-bandgap at site n can be simplified as
E ′

g(n) ∼ β�c| n−nc
λ

| with nc ≡ λ ln(�/�c). Subsequently, a
“V”-shaped potential, generated from these site-dependent
sub-bandgaps, emerges in the aperiodic protein with decaying
superconductivity for a specific � [Fig. 6(c)], where
the left (right) edge of this “V” shape corresponds to
�n > �c (�n < �c). This “V”-shaped potential confines
the charge transport through the aperiodic protein, leading to
discrete energy levels and the appearance of a bandgap Eg in
the energy spectrum. In the vicinity of �c, the “V”-shaped
potential E ′

g(n) ∼ β�c| n−nc
λ

| remains unchanged for different
� and this “V” shape moves parallel toward the right end
of the protein with increasing � [Figs. 6(b) and 6(c)].
This implies that the discrete energy levels induced by the
“V”-shaped potential remain the same for different �, leading
to the specific region of constant bandgap in the aperiodic
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FIG. 6. Schematics of discrete energy levels and specific region of constant bandgap in the aperiodic protein with decaying superconduc-
tivity. (a) Dependence of bandgap Eg on the pairing potential � for the periodic protein with homogeneous superconductivity. (b) Decaying
pairing potential along the helix axis of the aperiodic protein with decaying superconductivity, which can be divided into many slices of
constant pairing potential. (c) “V”-shaped confinement produced by site-dependent sub-bandgaps E ′

g(n) in the aperiodic protein with decaying
superconductivity. Here, the seemingly linear dependence of �n on n in the aperiodic protein originates from the fact that the decay exponent
of λ = 100 is larger than the molecular length of N = 80. �c refers to the critical pairing potential at which the topological phase transition
occurs in the periodic protein with homogeneous superconductivity.

protein with decaying superconductivity. Furthermore, when
the decay exponent λ is gradually increased, the “V” shape
becomes flatter and the induced confinement will be reduced,
leading to the decrement of the bandgap [Figs. 3(b), 5(a),
and 5(b)]. In the limit of λ → ∞, the “V” shape becomes
completely flat accompanied with the disappearance of the
confinement, and thus the bandgap vanishes [Fig. 5(c)].
Therefore, the aperiodic protein possesses a specific region of
constant bandgap and the periodic protein with homogeneous
superconductivity can be regarded as a special case of the
aperiodic protein in the limit of λ → ∞.

We then interpret the interesting phenomena in this specific
region. Figures 7(a)–7(d) show the schematic diagrams of
the relation between the topological phase and the pairing
potential in the protein-superconductor system, where the first
panel corresponds to the homogeneous superconductivity and
the remaining ones to the decaying superconductivity. Here,
the black-solid lines describe the evolution of the pairing
potential along the single-helical protein and the green-solid
ones show the wave function |�|2. All the orange- and cyan-
dotted lines denote the critical pairing potential �c for the
homogeneous superconductivity, where the topological phase
transition occurs. The yellow regions refer to the topologically
nontrivial phase and the red ones to the trivial phase. For the
homogeneous superconductivity, i.e., �n = �, the Majorana
zero modes appear when �n < �c, as characterized by the
yellow region in Fig. 7(a). Correspondingly, the zero modes
are localized at both ends of the protein and the wave function
is symmetric with respect to the line n = (N + 1)/2 [see the
black-solid line in Fig. 7(a)]. When �n > �c, a topological
phase transition takes place and all the modes become topo-
logically trivial, which will be characterized by the red region
(not shown here).

We then consider the pairing potential decays exponen-
tially along the protein, i.e., �n = �e−n/λ. In the limit case
�1 < �c where all the pairing potentials in the protein are
smaller than �c, the Majorana zero modes will emerge [see
the yellow region in Fig. 7(b)] and be localized at both ends as
well albeit of asymmetric wave function [see the green-solid
line in Fig. 7(b)]. In the other limit case �N > �c that all
the pairing potentials are larger than �c, the Majorana zero

modes transform to the topologically trivial ones and will be
localized at the right end [see the red region and the green-
solid line in Fig. 7(d)].

Of particular interest is the intermediate regime where
�N < �c < �1, which is just the aforementioned specific
region in the protein-superconductor system and will be dis-
cussed in detail as follows. As shown above, the aperiodic
protein with decaying superconductivity could be divided into
two segments by the criterion �c at the specific site N ′ where

FIG. 7. Schematics of the topological properties and the spatial
distribution of wave function |�|2 in the protein-superconductor
system by considering both decaying and homogeneous supercon-
ductivity. (a) Homogeneous superconductivity with all the pairing
potentials �n = � and � < �c. Decaying superconductivity with
the pairing potential satisfying (b) �1 < �c, (c) �N < �c < �1, and
(d) �N > �c. Notice that the pairing potential along the helix axis
attenuates exponentially and thus �N < �N−1 < · · · < �1. Here, the
black-solid lines describe �n at site n of the single-helical protein
and the green-solid ones show |�|2. The orange- and cyan-dotted
lines denote the critical pairing potential �c for the homogeneous
superconductivity, at which the topological phase transition takes
place. The yellow regions refer to the topologically nontrivial phase
and the red ones to the trivial phase.
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�N ′+1 < �c < �N ′ . In the left segment, all the pairing poten-
tials satisfy �n > �c and this segment is topologically trivial
regarding the criterion �c [see the red region in Fig. 7(c)].
Contrarily, all the pairing potentials in the right segment
satisfy �n < �c, which is topologically nontrivial and iden-
tified by the yellow region in Fig. 7(c), just the same as
Fig. 7(b). As a result, one zero mode will always be localized
around the site N ′, i.e., the topologically nontrivial-trivial in-
terface [see the green-solid line in Fig. 7(c)]. With increasing
�, the crossing between the black-solid line and the cyan-
dotted one moves toward the right end, and thus the zero mode
will be shifted from the left end to the right end, as can be
seen from the white-oblique trajectories in Figs. 5(d) and 5(e).
Although this zero mode can be localized at any site of the
protein in this specific region, the topological properties of
the whole aperiodic protein are determined by the interplay
between the topologically nontrivial segment and the trivial
one, which may be simply judged by the segment length.
In other words, when the topologically nontrivial segment is
longer than the trivial one, the former segment dominates the
electronic properties of the protein and thus the topological in-
variant characterizing the topological properties of the whole
systems is Z2 = 1. Contrarily, when the topologically nontriv-
ial segment is shorter than the trivial one, the latter segment
becomes dominant and the topological invariant switches to
Z2 = 0. As a result, the topological invariant changes from
Z2 = 1 to 0 when the left mode passes through the middle of
the protein. Therefore, the critical pairing potential �λ of the
topological phase transition for the decaying superconductiv-
ity is expressed as �(N+1)/2 = �λe−(N+1)/2λ = �c, which is
just Eq. (20) derived from the numerical calculations.

IV. CONCLUSIONS

In summary, we investigate theoretically the topological
properties of a single-helical protein sandwiched between
a superconducting electrode and a normal-metal one. In
this protein-superconductor system, we firstly address the
decaying superconductivity that the pairing potential attenu-
ates exponentially along the helix axis of the protein, which
is closely related to previous experiments. Our numerical
results are qualitatively consistent with these experiments
that a zero-bias conductance peak of conductance quantum
is observed at zero temperature and the peak height (width)
decreases (broadens) with increasing the temperature, and this
zero-bias peak splits into two peaks by increasing the Zeeman
field. Besides, this protein-superconductor system exhibits
Majorana zero modes in a wide range of model parameters. In

sharp contrast to homogeneous superconductivity, a specific
region is demonstrated in the protein-superconductor system
with decaying superconductivity, where the bandgap remains
constant. In particular, both topologically nontrivial and trivial
zero modes exist in this specific region, and the topologically
nontrivial zero modes can transform to the trivial ones in the
absence of bandgap closing-reopening. For the Majorana zero
modes, the wave function is localized at the left half part and
the right end of the single-helical protein; whereas for the
topologically trivial zero modes, it is localized at the right half
part and the right end, which may provide an experimentally
accessible way to discern the topologically nontrivial and
trivial zero modes in the protein-superconductor system.
In other words, instead of localized at the ends, one of the
two zero modes could be localized at any position of the
protein and be shifted from the left end toward the right one
by increasing the pairing potential. Our theoretical study
offers a unique perspective for the emergence of zero-bias
conductance peaks in previous experiments and a deep
understanding of the intriguing topological properties of
chiral molecule-superconductor systems. The single-helical
protein may provide an appealing platform to study Majorana
physics, because Majorana modes can exist in the protein
but disappear in one-dimensional nanowires with such small
spin-orbit coupling and short system size.

Finally, we would like to point out that this decaying
superconductivity and the associated interesting phenomena
have not yet been reported in previous studies. These phe-
nomena induced by the decaying superconductivity, such as
the coexistence of topologically nontrivial and trivial zero
modes, as well as the topological phase transition with-
out bandgap closing-reopening, may also exist in inorganic
nanowire-superconductor systems. This avenue deserves fur-
ther investigation and our paper may stimulate the interest on
chiral molecule-superconductor systems.
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