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Silicon and germanium adamantane and diamantane monolayers as
two-dimensional anisotropic direct-gap semiconductors
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Structural and electronic properties of silicon and germanium monolayers with two different diamondoid
crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap
semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active
direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer
crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These
stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing
area of opto-electronics in two-dimensional materials and the established silicon-based technologies.
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I. INTRODUCTION

Silicon is the basic element of modern (micro) electronics
[1,2]. Due to its excellent electronic mobility, in addition to
its high abundance in the Earth’s crust and its nontoxicity, it
is of fundamental importance for manufacturing semiconduc-
tors and photovoltaic materials [2–4]. Crystalline silicon is a
semiconductor with an indirect band gap, transmitting more
than 95% of all wavelengths of infraredspectrum [3], while
silicon nanostructures can present direct band gap and emit
visible-spectrum electromagnetic radiation [1,5,6] or even
be a good conductor [7]. Germanium is also an elementary
semiconductor of major importance in the field of electronics
[3,8]. Crystalline germanium doped with arsenic, gallium, or
other elements is used as transistor component in a number
of electronic applications [8,9]. Germanium nanostructures
present physical properties of relevance to new technologies
[5,10], such as applications in infrared optoelectronics [10].
The unique allotropic affinity of nanostructures compared
to the bulk material points to their more versatile integra-
tion strategies and benefits for semiconductor technology and
other applications [4,11,12].

Borlido et al. [13] predicted the existence of two-
dimensional (2D) stable silicon crystal structures, based on
reconstructed silicene on Ag (1 1 1) substrate, such as zigzag
and armchair dumbbell silicene nanosheets, which are both
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indirect gap semiconductors (with gaps of 1.11 eV and
1.60 eV, respectively), as obtained by first-principles calcula-
tions using the Heyd-Scuseria-Ernzerhof (HSE06) functional
[13]. Hydrogen functionalization of these structures is en-
ergetically favorable and hydrogenated zigzag and armchair
dumbbell silicene nanosheets were shown to be semicon-
ductors like their pristine counterparts, but with larger band
gaps (2.07 eV and 1.78 eV, respectively), with electronic
band features sensitive to strains [14]. In addition, they also
confirmed by theoretical studies that the hydrogenated struc-
ture has robust structural stabilities, which are essential for
their practical potential applications [14]. Other 2D allotropic
silicon structures have been investigated, such as silicene,
that presents an extremely low thermoelectric performance,
but hydrogenation can be an effective band regulation strat-
egy in this case, considering the hydrogenation ratio with
the method of changing the geometric structure, that would
modify the band structure to obtain an ideal band gap value
and thermoelectric performance [15]. In experimental terms,
the dumbbell silicene phase was experimentally realized by
controlled growth of Si pentamer chains on Ag(110) substrate
[16]. Half-hydrogenated structures of silicene and germanene
(2D allotropic phase of Germanium) have already been syn-
thesized, where one Si (or Ge) sublattice is fully H saturated
and the other sublattice is intact. These structures showed sta-
bility and a large bandgap compared to their pure counterparts
[17,18].

The crystal lattice of bulk silicon and germanium is the
same as in diamond. Another material family that presents
a structure similar to the rigid structure of diamond are
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diamondoids, the hydrocarbon molecules C4n+6H4n+12, where
n refers to the quantity and arrangement of “cages” that
form the unit cell [19,20]. The simplest polycyclic diamond
is the equivalent of n = 1 diamandoid C10H16, and these
are called adamantanes [21]. Sila- and germa-adamantane
(Si10H16 and Ge10H16) have the same structural form as hy-
drocarbon adamantane, however, their electronic properties
are less affected by hydrogen termination [22]. Monolayers
can be constructed from isolated sila- or germa-adamatane
molecules, considering two possible configurations for the
connection among unit cells, allowing one to form monolayers
composed of one or two “cages” of silicon or germanium,
hydrogenated on the surface. In an equivalent perspective,
these structures can also be visualized as isolated planes in the
(1 0 0) and (1 1 1) directions of the diamond bulk structure,
passivated with hydrogen, whose unitary part corresponds to
a single and two “cages,” respectively. We name the result-
ing (Planar ADAmantene) structures respectively PADA-I and
PADA-II, where I and II represents the number/arrangement
of “cages” that form the diamond base unit of the planar
monolayer.

In this paper, we theoretically detail the mechanical and
(piezo-)electronic properties of Si and Ge adamantane and
diamantane monolayers, i.e., the PADA-I and PADA-II planes
in our nomenclature. We employ ab initio density functional
theory (DFT) methods using the hybrid functionals known to
provide accurate band gaps and molecular dynamics simula-
tions to investigate thermal stability. Our results demonstrate
that these monolayer crystals are thermodynamically stable
and, depending on the crystal configuration, may exhibit an
optically active band gap in the visible frequency range with
highly anisotropic effective masses. The former feature is
highly desirable for the applicability of these two-dimensional
materials in devices compatible with existing silicon-based
optoelectronic technology, whereas the latter opens a funda-
mental exploration avenue toward anisotropic excitonics and
hyperbolic plasmon- and/or exciton-polariton physics in these
materials and their heterostructures.

II. THEORETICAL FRAMEWORK

A. Explored Si/Ge adamantane structures

The unit cell of Si (or equivalently, Ge) bulk crystals is
sketched in Fig. 1(a). From this unit cell, by choosing planes
in different crystallographic directions, one can construct pla-
nar crystals in a variety of structures, including the gapless
materials known as silicene and germanene, see Ref. [13]
for an overview. Here, we focus on the structures presented
in Fig. 1(b), labeled PADA-I (Si8H8 as DSi-I and Ge8H8 as
DGe-I) and PADA-II (Si6H4 as DSi-II and Ge6H4 as DGe-II),
which bear resemblance with the crystals known as adaman-
tane and diamantane, respectively. Atomic positions of these
monolayer crystal structures are provided in the Supplemental
Material [23].

In-plane strain is defined as

ε = a − a0

a0
, (1)

FIG. 1. (a) Sketch of the unit cell of Si- and Ge-based planar
adamantane (PADA) crystals, with hydrogen atoms in white (left)
and the adjacent atoms in the crystal shown in light blue (right). Two
types of planar adamantane crystals can be formed out of this unit
cell, labeled here (b) PADA-I and (c) PADA-II, with top and side
views. For PADA-I, x and y directions are similar. (d) 2D Brillouin
Zone of PADA-I and PADA-II along with high symmetry points.

where a0 and a denote lattice constants before and after ap-
plying in-plane strain. ε > 0 corresponds to tensile strain and
ε < 0 compressive strain.

The formation energy of these compounds on a per atom
basis is calculated as

E f = (E − x ESi(Ge) − y EH2 )/(x + y), (2)

where E is the energy of system of interest, ESi(Ge) and EH2 are
the per atom energies of bulk Si (or Ge, depending upon the
material being investigated) and of the isolated H2 molecule,
respectively. x and y denote the number of Si (Ge) and H
atoms in the structure. As the free standing monolayers pos-
sess higher energy than their bulk counterparts, they all lie
above the bulk phases in the formation energy hull. Therefore,
we also calculate formation energy with respect to 2D phases
of Silicon and Germanium as

E2D
f = (E − x ESi(Ge),2D − y EH2 )/(x + y), (3)

where symbols have the same meaning as in Eq. (2), but
taking monolayer Silicene (Germanene) as reference for Si
(Ge) energies.

B. Electronic properties

The calculations were performed using first-principles
density functional theory (DFT) as implemented in the
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Vienna ab initio simulation package (VASP) [24,25]. Pro-
jector augmented wave (PAW) [25,26] pseudopotentials were
used for the electron-ion interactions. The exchange cor-
relation part of the total energy was approximated by the
generalized gradient approximation (GGA) using Perdew-
Burke-Ernzerhof (PBE) type of functional [27]. A vacuum of
15 Å is included along the z axis to avoid spurious interactions
between the periodic images. To obtain the ground state en-
ergy structure a complete structural relaxation was performed
using the conjugate-gradient method until the forces were
converged to within 0.005 eV/Å. The Brillouin zone was
sampled with a well-converged gamma-centered k mesh of
17 × 17 × 1 for PADA-I, and 15 × 11 × 1 for PADA-II
compounds. Four valence electrons for Si and Ge (s2 p2) and
one for H were used in the pseudopotential. A plane wave
energy cutoff of 550 eV was used for the structural relaxation
and electronic structure calculations.

PBE often underestimates the bandgaps, therefore, the
electronic properties were reevaluated using the HSE func-
tional [28]. In the HSE calculation, one-fourth of the PBE
exchange was replaced by the Hartree-Fock exact exchange
(α = 0.25), and screening parameter µ= 0.20 was used. This
choice of parameters is often termed as the HSE06 functional.
Electronic band structure plots and carrier effective masses
are computed using the Sumo package [29]. To investigate the
possibility of light emission/absorption from the conduction
and valence band-edge states of the adamantane monolayers,
we calculate the transition dipole moment (TDM) in order to
check if transitions between these states are parity forbidden
[30]. TDM is defined as the electric dipole moment associated
with a transition between the initial state and the final state
[30]. The TDM of two energy eigenstates ψi and ψ f with
energy Ei and E f can be written as

Pi→ f = ih̄

(Ei − E f )m
〈ψi|P|ψ f 〉, (4)

where m is the free electron mass, and P is the momentum
operator. The transition probability between two eigenstates
is defined as a sum of the square moduli of TDM (P2), as
implemented in the VASPKIT [31].

C. Phonon dispersion, mechanical properties,
and thermal stability

For phonon dispersion calculations, the atoms in the crystal
were displaced by 0.02 Å using the finite displacement super-
cell approach as implemented within the PHONOPY [32,33]
package, and forces for these configurations were calculated
using VASP [24,25]. In order to obtain well converged phonon
frequencies, a supercell of 4 × 4 × 1 (for PADA-I) and 6 ×
4 × 1 (for PADA-II) was used, along with an energy cutoff of
500 eV, and a strict energy convergence criterion of 10−8 eV.
For all the phonon calculation, Brillouin zone was sampled at
a �-centered 3 × 3 × 1 k mesh. Translation and rotational
invariance together with Born-Huang symmetry constraints
were applied on the calculated harmonic interatomic force
constants [34,35]. The relaxed- and clamped-ion elastic stiff-
ness tensors are calculated within the small displacement
method using stress-strain relationship [36], as implemented
in VASP. In addition, the piezoelectric stress coefficients were

directly obtained using density functional perturbation theory
(DFPT) [37] with a largek-point grid 27 × 27 × 1 and energy
cutoff of 600 eV.

To probe the thermal stability of PADA-I and PADA-II
monolayers, ab initio molecular dynamics simulations
(AIMD) were carried out at 300 K and 600 K, with total
simulation time 10 ps in an NVT ensemble. Here, a timestep
of 2 fs was used, AIMD simulation was allowed to run for
5000 steps, and 4 × 4 × 1 (256 atoms) and 6 × 4 × 1 (240
atoms) were used for PADA-I and PADA-II compounds, re-
spectively. Temperature was controlled using a Nosé-Hoover
thermostat [38] and �-point-only was used for Brillouin zone
integration.

III. RESULTS AND DISCUSSION

A. Structural, dynamical, mechanical, and thermal stability

First, in order to discuss the energetic feasibility of these
compounds, we have calculated their bulk and 2D formation
energies as per described in Eqs. (2) and (3), which are in-
cluded in Table I. When the formation energy is calculated
with respect to bulk Si and Ge phases, all four monolayers
lie marginally above the convex hull, although energy differ-
ence is only <55 meV/atom for Si and <133 meV/atom for
Ge monolayers. These small formation energies with respect
to bulk phases indicate the possible energetic feasibility of
these monolayers. As alluded before, 2D monolayers are of-
ten in higher energy than their bulk counterparts, therefore,
we also calculate the formation energy with respect to 2D
phases of Si and Ge (E2D

f ), namely Silicene and Germanene,
respectively. As verified in Table I, the E2D

f of these mono-
layers is negative. For comparison, we also calculated the
E2D

f formation energies of these structures without hydrogen,
which are much higher than the corresponding hydrogenated
monolayer. This indicates the hydrogenation is an energeti-
cally favorable process to realize the monolayer of Si and Ge.
Next, we address the dynamical stability of Si and Ge adaman-
tane and diamantane 2D crystals, by calculating the phonon
dispersions as shown in Fig. 2. The dynamical stability of
the DSi-I, DGe-I, DSi-II, and DGe-II monolayers is validated
since phonon dispersions for neither of the four investigated
structures exhibited imaginary phonon frequencies. Next the
mechanical properties of these structures are examined by
calculating the elastic-stiffness tensor components, which are
listed in Table I. We find that all four considered structures
are mechanically stable and obey the Born stability criteria.
For example, the tetragonal symmetry structure (PADA-I)
should satisfy C11 > 0, C33 > 0, and C11 > C12. Similarly, for
the orthorhombic structure (PADA-II), C11 > 0, C33 > 0, and
C11C22 > C2

12 should be satisfied. As one verifies in Table I,
all necessary and sufficient conditions for elastic stability are
indeed fulfilled.

It has been shown that hydrogen atoms may diffuse both in
bulk silicon and at its surface [39–43], therefore it is necessary
to check the stability of these monolayers at finite tempera-
tures. In order to probe the thermal stability of these structures
we also performed AIMD simulations using an NVT ensem-
ble with constant particle number, volume, and temperature.
These results are shown in Figs. 3(a) and 3(b) for DSi-I and
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TABLE I. Calculated bulk (Ef ) and 2D (E 2D
f ) formation energies, elastic and piezoelectric coefficient for DSi-I, DGe-I, DSi-II, and DGe-II

crystals. Due to crystal symmetry in DSi-I and DGe-I, C11 = C22. DSi-II and DGe-II belong to a centrosymmetric space group and therefore
do not exhibit piezoelectricity. Values in the parenthesis correspond to E 2D

f formation energy of these phases without H atoms. After removing
hydrogen the PADA-II phases relax in the dumbbell structure.

E f E2D
f Elastic tensor (N/m) ei j (pC/m) di j (pm/V)

System (eV/atom) (eV/atom) C11 C22 C12 C33 e14 e36 d14 d36

DGe-I 0.132 −0.107 (0.10) 34.88 34.88 21.14 26.68 33.70 6.80 1.52 0.26
DSi-I 0.055 −0.265 (0.14) 42.31 42.31 27.55 31.95 28.40 3.10 1.16 0.10
DGe-II 0.105 −0.182 (− 0.06) 81.14 27.17 8.85 22.88
DSi-II 0.33 −0.350 (− 0.097) 100.36 34.83 11.34 27.32

DSi-II. The simulation snapshots are also shown at the 4
and 8 ps. Although the computed potential energy slightly
fluctuates along the simulation time, no considerable lowering
of potential energy over time is observed. Within the simula-
tion duration and temperature range explored here, hydrogen
atoms are always bonded with Si atoms and no hydrogen
diffusion in the lattice is observed. Moreover, as one verifies
in the presented snapshots, apart from minor distortions, the
crystallinity of DSi-I and DSi-II structures is preserved even
at a temperature as high as 600 K. Similar results for DGe-I
and DGe-II are included in the Supplemental Material [23].
AIMD simulations are computationally very expensive, there-
fore we have limited our investigations up to 600 K. Although
these results do not fully guarantee the thermal stability of
these monolayers (as the results of AIMD simulation tend
to vary with respect to super-cells size, simulations duration,
and temperature), they surely indicate the possibility of these
structures being stable at high temperatures.

FIG. 2. Phonon dispersions of Si and Ge PADA-I [panels (a) and
(c), respectively] and PADA-II monolayers [panels (b) and (d), re-
spectively]. For better visualization, only the low frequency portion
of phonon dispersion is shown. The hydrogen phonon modes here
extend up to ∼ 64 THz.

B. Piezoelectricity

The piezoelectric effect is known to generate an electric
dipole moment as a result of applied mechanical stress in
noncentrosymmetric materials. Theoretical predictions and
experimental observations [44–47] have demonstrated that in
2D materials the piezoelectric constants can be enhanced.
Among the materials studied here, PADA-I crystals are non-
centrosymmetric and are expected to exhibit piezoelectricity,
whereas PADA-II crystals are centrosymmetric and, thus, do
not show piezoelectric properties. The application of strain
induces polarization in noncentrosymmetric crystals, which is
described by the third-rank piezoelectric stress ei j, and the
strain tensor di j . ei j is related to dik by elastic stiffness tensor
elements Cik as per

ei j = dikCik . (5)

The PADA-I monolayers have P4̄21m symmetry (space group
111 and point group 4̄2m). Considering the crystal symmetry,
the tensor equation (5) can be rewritten as

⎛
⎝

e14 0 0
0 e14 0
0 0 e36

⎞
⎠=

⎛
⎝

d14 0 0
0 d14 0
0 0 d36

⎞
⎠

⎛
⎝

C11 C12 0
C12 C22 0
0 0 C66

⎞
⎠.

(6)

Solving Eq. (6) for the nonzero tensor elements yields

d14 = e14
C11

C2
11 − C2

12

; d36 = e36

C66
. (7)

Here, d14 and d36 stand for induced polarization in the x or
z direction when the strain is applied in the yz or xy di-
rection, respectively. The computed relaxed-ion piezoelectric
constants are listed in Table I. The calculated relaxed ion
piezoelectric coefficients for both DSi-I (d14 = 1.16 pm/V)
and DGe-I (d14 = 1.52 pm/V) crystals are smaller than the
coefficients for MoS2 and larger than those for h-BN [44].
Previous reports have shown that under functionalization with
hydrogen and/or fluorine, the piezoelectric properties of sil-
icene can be significantly improved [48]. It was shown that
hydrogen and fluorine codecorated silicene exhibit d31 value
of 1.6 pm/V, which is comparable to our calculated values for
PADA-I monolayers. Therefore, we conclude that adamantane
silicon and germanium monolayers are promising for further
flexo- and piezoelectric studies and purposes.

035302-4



SILICON AND GERMANIUM ADAMANTANE AND … PHYSICAL REVIEW B 108, 035302 (2023)

FIG. 3. Potential energy profiles for (a) DSi-I and (b) DSi-II structures during the AIMD simulations at 300 K (top panel) and 600 K
(bottom panel), respectively. The snapshots of corresponding atomic configurations are also shown at 4 ps and 8 ps.

C. Electronic structure

The band structures of Si and Ge adamantane and dia-
mantane monolayers, as obtained with HSE06 functional,
are shown in Fig. 4 and Eq. (5). While the DGe-II (DSi-II)
monolayer exhibits an indirect (direct) gap in the infrared
range, both DGe-I and DSi-I monolayers exhibit direct band
gaps in the blue-violet range, which is of significance toward
optoelectronic applications. Notice that the actual optical gap
is still expected to be redshifted by a few hundred meV due to
exciton binding energy.

It is possible that light-induced transitions between the
conduction and valence band edge states in the direct gap
structures, found here for PADA-I monolayers as well as
DSi-II, are in fact forbidden by symmetry rules. The latter

FIG. 4. Calculated band structures (top panel) and transition
dipole moments (in units of Debye, bottom panel) of (a) Ge and
(b) Si monolayers with PADA-I crystal configuration, as obtained
with HSE functionals. The top of the valence band is taken as the
energy reference. The colors represent the orbital contributions in
each state.

would obviously hinder the application of these materials in
optoelectronics. To check, we therefore calculate the transi-
tion dipole moment (TDM) between band-edge states using
Eq. (4) at each point of the first Brillouin zone. Results are
shown in the bottom panels of Figs. 4 and 5, where we observe
that the dipole moment at the gap (� point) is significant only
for the DSi-I and DGe-II. This allows us to conclude that Si
and Ge PADA-I monolayers are stable and exhibit optically
active direct gap near blue-violet range.

From the top panels of Figs. 4 and 5, one clearly observes
that Si and Ge in both PADA-I and PADA-II monolayer
crystal forms exhibit highly anisotropic band structures both
for electrons and holes, where holes in the former exhibit
particularly high effective masses (i.e., almost flat bands)
in the �M direction. Electron and hole effective masses, as

FIG. 5. Calculated band structures (top panel) and transition
dipole moments (bottom panel) of (a) Ge and (b) Si monolayers with
PADA-II crystal configuration, as obtained with HSE functionals.
The top of the valence band is taken as the energy reference. The
color code is the same as in Fig. 4.
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TABLE II. HSE06 calculated bandgaps in (eV) and carrier ef-
fective masses (in units of the free electron mass m0) along different
directions in PADA-I and PADA-II Si and Ge monolayers. In PADA-
I monolayers, effective masses are calculated along �X and �M
directions, whereas in PADA-II monolayers, they are calculated
along �X and �Y directions. The PBE bandgaps and effective
masses are given in parenthesis.

Effective mass (m)

hole electron

�-X �-M (I) �-X �-M (I)
System Bandgap (eV) �-Y (II) �-Y (II)

DGe-I 2.96 0.36 12.10 0.24 11.7
(2.17) (0.33) (11.89) (0.23) (11.5)

DSi-I 3.11 0.50 13.52 0.22 0.29
(2.33) (0.51) (12.48) (0.22) (0.24)

DGe-II 1.70 0.09 0.47 0.14 0.10
(1.04) (0.08) (0.49) (0.11) (0.28)

DSi-II 2.17 0.15 0.54 0.12 1.52
(1.50) (0.15) (0.56) (0.12) (1.67)

calculated from the band curvatures at �, are presented in
Table II. The effective masses have also been calculated using
both PBE (values within parenthesis in Table II). The PBE
values of the effective masses are in good agreement in terms
of the order of magnitude with the HSE06 ones. Notably, the
hole effective masses both in Si and Ge PADA-I structures
reach tens of the free-electron mass m in the �M direction,
while being nearly two orders of magnitude lower in the �X
direction. Electron bands are also significantly anisotropic
in all structures, except for the DSi-I case. Such high
anisotropy of electron and hole bands in PADA-I and PADA-II

monolayers is expected to motivate future studies involving,
e.g., transport properties with anisotropic mobilities [49,50],
as well as optoelectronic properties with hyperbolic plasmon
or excitonpolaritons, in a similar fashion as discussed in other
anisotropic 2D materials such as black phosphorus and transi-
tion metal trichalcogenides [51–56].

D. Strain effects on the band gap and effective masses

As is characteristic for 2D materials, the electronic band
structures of the Si and Ge monolayers investigated here are
prone to tunability via mechanical stress. Before exploring
their strain dependent electronic properties, let us first in-
vestigate the dynamical stability of these strained systems
by performing phonon calculations under various compres-
sive and tensile strains. Figures 6 and 7 show the calculated
phonon dispersions for strained PADA-I and PADA-II com-
pounds, respectively. Figure 6 shows that PADA-I monolayers
become dynamically unstable (i.e., they exhibit negative
phonon frequencies) even for compressive strains as small as
2%, whereas the DGe-II (DSi-II) monolayer in Fig. 7 remains
dynamically stable for compressive strains up to 10% (8%).
As for tensile strain, both PADA-I and PADA-II systems
remain dynamically stable at least up to +20%. Therefore,
in what follows, the strain dependent electronic properties
of PADA-I monolayers will be investigated here only under
tensile strain, where they are clearly stable, while electronic
properties of PADA-II systems will be discussed under both
compressive and tensile strain.

Figure 8(a) shows the calculated energy gap of all the Si
and Ge PADA-I and PADA-II monolayers as a function of
applied biaxial compressive (negative) and tensile (positive)
strain. Details of their band structures are shown in Figs. S1
and S2 in the Supplemental Material [23]. The gaps in all

FIG. 6. Phonon dispersion of (a) DGe-I and (b) DSi-I under selected compressive (−) and tensile strains (+). Both compounds remain
dynamically stable up to 18% tensile strain, whereas they both become unstable at 2% compressive strain.
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FIG. 7. Phonon dispersion of (a) DGe-II and (b) DSi-II under selected compressive (−) and tensile strains (+). Both compounds remain
dynamically stable up to 18% tensile strain, whereas DGe-II (DSi-II) becomes unstable at 12% (10%) compressive strain.

cases are significantly reduced by strain and, particularly,
DGe-II becomes metallic at threshold tensile strain value of
14%. Interestingly, strain enables transitions from indirect to
direct characters of the gap in several cases. The gaps of
PADA-I Ge and Si monolayers, which are both direct in the
absence of strain (see Fig. 4), become indirect at high val-
ues of tensile strain. Conversely, DGe-II exhibits an indirect
gap in the absence of strain (see Fig. 5), which becomes
direct at 6% tensile (8% compressive) strain. As for DSi-II,
it exhibits a direct gap without strain, which remains direct
for all values of strain investigated here. Under compressive
strain, the bandgap of DSi-II becomes indirect as the strain
exceeds 4%, but becomes direct again for strain larger than
7%. Even so, in all the observed transitions from indirect to
direct gap in PADA-II monolayers, we have verified that the
dipole moment for their conduction and valence states around
the gap remains zero, just as observed for the unstrained case
in Fig. 5. Therefore, despite the observed strain-induced direct
gap character, the PADA-II monolayers remain less relevant
for optoelectronics applications as compared to the Si and Ge
PADA-I systems.

In order to understand the effect of applied tensile strain
on the band curvatures, we plot in Figs. 8(b)–8(e) the carrier
effective masses along selected high symmetric directions for
both hole (negative values) and electron (positive values). As
observed in Figs. 8(b) and 8(c), tensile strain significantly
reduces the hole effective masses along �M direction in both
PADA-I compounds. For instance, at zero strain, holes in
DGe-I have an effective mass 12.5m0 along �M which, at 18%
tensile strain, becomes 2.1m0. Similarly, the hole effective
mass along the same direction in DSi-I reduces from 13.2m0,
at zero strain, to 1.5m0 at 18% tensile strain. The high electron
effective mass along �M in DGe-I is also strongly sensitive

to the applied tensile strain and can be significantly tuned,
see Fig. 8(b), whereas for DSi-I those masses are much less
sensitive to strain. Effective masses for electrons in PADA-I
crystals along the �X direction are not significantly modified
by strain and, therefore, are not shown in the Figs. 8(b) and
8(c). As for the PADA-II compounds, in both Si and Ge
variants, the hole effective mass monotonically decreases with
tensile strain, see Figs. 8(d) and 8(e), although with much
weaker dependence as compared to the PADA-I cases. Sim-
ilarly, the electron effective masses also decrease with tensile
strain. The crossover in electron effective masses in DGe-II
around 6% tensile strain is associated with the previously
discussed indirect-to-direct bandgap transition.

The control of carrier effective masses via strain, as demon-
strated here, allows one to tune carrier mobilities in the Si and
Ge adamantane/diamantane monolayers. Within the deforma-
tion potential theory, mobility of charge carriers in a material
is inversely proportional to the square of their effective masses
[50,57]; hence, the observed drastic reduction in carrier effec-
tive masses, particularly in PADA-I compounds, is expected to
lead to significant enhancement in carrier mobilities of these
monolayer crystals.

IV. CONCLUSIONS

In summary, we have presented first-principles calculations
of the electronic, vibrational, and mechanical properties of
diamondoidlike Si and Ge monolayers. Both their adamantane
and diamantane structures, labeled here PADA-I and PADA-
II, respectively, are found thermodynamically, dynamically,
and mechanically stable.

Si and Ge diamantane (PADA-II) monolayers are both
semiconductors, with gaps of ≈2.17 eV and ≈1.7 eV,
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FIG. 8. (a) Dependence of the band gaps of PADA-I Si (DSi-I)
and Ge (DGe-I), and PADA-II Si (DSi-II) and Ge (DGe-II) mono-
layers on applied biaxial strain. Negative (−) and positive (+) strain
values correspond to compressive and tensile strains, respectively.
The vertical solid line at 0% is a guide to the eyes. Horizontal solid
and dotted lines indicate the strain region where the bandgap is direct
and indirect, respectively. Variation of carrier effective masses m∗ (in
units of the free electron mass m0) under tensile strain is shown for
DGe-I (b), DSi-I (c), DGe-II (d), and DSi-II (e).

respectively, and qualitatively similar valence bands. How-
ever, they exhibit strikingly different conduction bands—
while the DSi-II has a direct gap, with the conduction band
minimum at the � point, the DGe-II exhibits indirect gap, with
conduction band minimum at the Y point. Nevertheless, the
direct gap in DSi-II is not optically active, as verified by the
zero dipole moment between conduction and valence bands
at the � point. On the other hand, calculations of the strain
tensor components of the PADA-II Si and Ge crystals reveal
that they are both very good piezoelectric materials.

Differently from PADA-II structures, the DSi-I and DGe-
I both exhibit optically active direct gaps of ≈3.11 eV
and ≈2.96 eV, respectively, with highly anisotropic effective
masses. We showed that these gaps and effective masses
can be broadly tuned via applied strain. The relevance of
this result is twofold: (i) the optically active gap in DSi-I
and DGe-I enables their use in optoelectronic devices with
a frequency range from near the blueviolet down to the red
(under strain) which would be naturally compatible and easily
integrated with current silicon-based technologies, and (ii)
the strong effective mass anisotropy observed here renders
these materials and their heterostructures a platform for the
investigation of anisotropic, possibly hyperbolic, polaritons,
as well as the emergent anisotropic excitonic phenomena and
correlated phases.
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