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Hall effect in a two-dimensional disordered Lorentz gas
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Using a combination of experiment and simulation, we study the magnetotransport in a two-dimensional
disordered Lorentz gas with circular obstacles. Our focus is on the investigation of the Hall effect at obstacle
densities beyond the low-density limit. However, as a reference, we also consider very low obstacle densities.
Here, the magnetotransport properties, as obtained from the simulation and the experiment of a pristine sample,
can be well described in terms of the Drude-Boltzmann model. For intermediate and high obstacle density,
only for very low magnetic fields B, we find a linear dependence of the Hall resistance �xy on B, albeit with a
Hall coefficient that does not reflect properly the carrier density. At larger magnetic fields but still below the
onset of the Landau quantization as well as the magnetic-field-induced conductor-to-insulator transition, striking
nonlinearities of �xy(B) due to classical memory effects are observed. Moreover, the scattering time obtained
within the Drude-Boltzmann model develops into a phenomenological parameter that decreases with increasing
magnetic field.
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I. INTRODUCTION

Lorentz gases can be seen as a paradigm for the study of
transport phenomena in heterogeneous media [1,2]. A simple
disordered version of a two-dimensional (2D) Lorentz gas
consists of a fluid of noninteracting tracer particles that is
exposed to a random arrangement of circular obstacles. An
experimental realization of such a system can be achieved via
a two-dimensional electron gas (2DEG) with lithographically
imprinted obstacle structures. In particular, such a 2DEG in
Ga[Al]As semiconductor heterostructures often provides elec-
trons with a high mobility that one can consider to a good
approximation as quasiclassical noninteracting fermions. Ex-
perimental realizations of Lorentz gases with such 2DEGs and
circular obstacles with a radius of the order of a micrometer
can be well modelled in terms of classical molecular dynamics
(MD) simulations. In this paper, we use a combination of
experiment and MD simulation to elucidate the magnetotrans-
port in a 2D disordered Lorentz gas, with a special focus on
the Hall effect.

Since its discovery [3], the Hall effect, i.e., the buildup
of a transverse voltage in conductors exposed to a perpen-
dicular magnetic field B, has developed into a whole family
of phenomena, like the quantized Hall effects [4,5], the spin
Hall effect or anomalous Hall effects in topological insulators.
Its relevance for scientific and technological progress can
hardly be overestimated. For example, the integer quantum
Hall effect is used as resistance standard, and the study of
the fractional quantum Hall effect has triggered the concept
of composite fermions [6]. Hall sensors are omnipresent to

detect magnetic fields, and carrier densities in metals and
semiconductors are routinely determined from the Hall resis-
tance as a function of B. Its slope is usually constant with a
high robustness in nonferromagnetic materials. Corrections
of the Drude conductivity by electron-electron interactions
[7,8] have been reported in samples of relatively low electron
mobility [9–11]. They cause a temperature-dependent Hall
slope without textures as a function of the magnetic field.
Weak localization, the most prominent quantum correction
at small magnetic fields, does not influence the Hall slope
in the single particle picture [7,11]. At low mobilities below
≈1 m2/Vs, the interplay of interactions and weak localization
can cause a B dependence of the Hall slope [12]. Furthermore,
in the absence of interactions, the Hall slope is not ex-
pected to show a temperature dependence for constant carrier
densities [13].

Some mechanisms causing nonlinearities, however, are
known, such as magnetic-field induced electron transfers be-
tween the free electron gas and a nearby doping layer [14],
interactions close to the metal-insulator transition [15,16],
edge and impurity scattering in ballistic Hall crosses [17–19],
and localized spins [20]. A recently discovered type of non-
linear Hall effect is the quadratic dependence of the Hall
voltage on the driving current, which originates from a bro-
ken inversion symmetry and is suited to study topological
aspects of quantum phases [21]. Here, we report the detec-
tion of nonlinearities in the Hall effect in a 2D Lorentz gas
that originate from classical memory effects and render the
conventional carrier density determination from a Hall anal-
ysis inaccurate for samples containing such obstacles to a
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substantial density. The effects reported here thus have a
distinctly different character than the negative Hall resistance
reported for periodic arrays of obstacles, where the magnetic-
field dependent guidance of the electrons through the array
plays an important role [22]. Furthermore, the reported non-
linearities in the Hall slope, which have been explained
in terms of rings of low, temperature-dependent resistivity
around each element of a periodic antidot lattice [23] have
a very different character. It should be noted that the physics
of 2D Lorentz gases discussed here is substantially different
from that of antidot lattices [24–26], where the arrange-
ment of the obstacles is periodic rather than random, leading
to a characteristic mixed phase space where regular islands
are embedded in a chaotic sea of motion, which manifests
itself via classical commensurability resonances in the mag-
netoresistance. This phenomenology is strongly suppressed
by relatively small deviations from a perfect periodicity of
the obstacles [27] or by additional disorder [28] and thus
absent in Lorentz gases. The obstacles present in our sam-
ples are in the classical regime, and one can neglect a weak
localization correction, which has been reported to gener-
ate nonlinearities in the Hall effect in some inhomogeneous
two-dimensional electron systems [29]. In this paper, we also
study the magnetotransport of Lorentz gases in the regime of
very low densities. Since the size of our obstacles is larger
than the Fermi wavelength, our samples are in the classical
regime, in the sense that the obstacles do not modify the weak
localization [30]. Both the experimental and the simulation
data indicate for this regime that the Drude-Boltzmann (DB)
theory, based on a linear Boltzmann equation, provides a
quantitatively accurate description of magnetotransport prop-
erties and the Hall effect over the entire range of magnetic
fields. This finding challenges a theory of Bobylev et al.
[2,31,32], based on a generalized Boltzmann equation. Below,
we also discuss a theoretical approach of Dmitriev et al.
[33,34] where corrections to the Hall coefficient according to
DB theory are calculated via an ad hoc modification of the
Boltzmann equation.

In the next Sec. II, we highlight some specific properties
of the Drude and the (generalized) Boltzmann model, which
are relevant for the description of Lorentz gases. Section III
introduces the considered Lorentz gas model and gives the
main details of the simulation. Section IV is devoted to
the experimental setup, the measurement techniques, and the
determination of the electron density via the Landau quantiza-
tion of the electronic cyclotron orbits at high magnetic fields.
The results on the magnetotransport are presented in Sec. V.
Eventually, we summarize and draw conclusions (Sec. VI).

II. THE DRUDE AND (GENERALIZED) BOLTZMANN
MODELS IN RELATION TO LORENTZ GASES

The Drude model [35] can be seen as a minimal model
for the classical Hall effect. In its two-dimensional version,
the electrons are represented as noninteracting tracer particles
with charge e in a magnetic field of magnitude B that is
oriented perpendicular to the tracer’s plane of motion, say in
z direction. In the absence of any scatterers, an electron per-
forms a circular motion with cyclotron frequency ωcy = eB

m� ,
with m� the effective mass of an electron. The surrounding
medium by which the electrons are scattered is effectively
taken into account in terms of a frictional force − m�

τDr
�v, with

�v the velocity of an electron and τDr a diffusive time scale that
is of the order of the mean free time between two collisions.

A microscopic description that is equivalent to the latter
Drude model is provided by the linear Boltzmann equa-
tion (LBE) [1]. This is a kinetic equation from which one
obtains a quantitative prediction for the diffusive time scale
τDr (unlike the Drude model where τDr is just an “input
parameter”). In the framework of the LBE, one considers a
two-dimensional Lorentz gas in a square of linear dimension
L where a point tracer particle moves through a fixed random
arrangement of N overlapping circular obstacles of radius R.
The tracer particle is elastically scattered by the obstacles
and thus its speed v0 = |�v| is a constant of the motion. A
control parameter for the transport of the tracer particle is
the reduced number density of obstacles, ρ = N

L2 πR2. For the
case of zero magnetic field B, it has been shown that the LBE
becomes exact in the Grad limit [36], i.e., for ρ → 0 keeping
the mean-free path between collisions, � = πR

2ρ
, constant (this

implies R → 0 and ρ/R2 → ∞).
The central quantity to study the magnetotransport in the

two-dimensional Lorentz gas is the conductivity matrix σ that
can be introduced as follows. Applying a sufficiently small
electric field �E in the plane of motion, i.e., in the xy plane, the
resulting steady-state current �j is given by

�j = σ �E . (1)

Here, due to isotropy the diagonal elements of σ are equal,
σxx = σyy. For the nondiagonal elements, σxy = −σyx holds.
The magnetoconductivity σxy is expected to be nonzero in the
presence of a magnetic field.

In the framework of the DB model, the elements of σ can
be analytically calculated and one obtains

σxx = σ0
1

1 + ω2
cyτ

2
Dr

, (2)

σxy = σ0
ωcyτDr

1 + ω2
cyτ

2
Dr

, (3)

where the conductance of the electron gas at B = 0, σ0, is
given by

σ0 = nee2τDr

m�
, (4)

with ne the electron density. For the diffusive time scale, the
LBE predicts τDr = 3

4 t0 with the mean free time t0 = �/v0 =
πR

2ρv0
. The diffusion constant at B = 0 can be expressed as [1]

D0 = 1

2
v2

0τDr = 3π

16

v0R

ρ
. (5)

Inverting the matrix σ yields the resistance matrix �, with
the magnetoresistance �xx and the Hall resistance �xy as two
independent elements. According to Eqs. (2) and (3), the mag-
netoresistance is just the inverse of the zero-magnetic field
conductance, �xx = 1/σ0, and the Hall resistance follows a
simple linear dependence on B,

�xy = RDHB, (6)

where the Drude-Hall coefficient RDH is inversely propor-
tional to the electron density ne, RDH = 1/(nee).

An essential assumption of the LBE is the
“Stosszahlansatz” according to which successive collisions
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are uncorrelated and independent of each other. As pointed
out by Bobylev et al. [2,31,32,37], in the presence of a
magnetic field even in the Grad limit memory effects may
become important and thus the assumption of uncorrelated
collisions might be no longer valid. This is obvious for
orbits where the tracer particles move in circles without ever
hitting an obstacle. But with a finite probability it is also
possible that after the collision with a certain obstacle a tracer
particle recollides with the same obstacle. In order to take into
account such recollision events, Bobylev et al. have proposed
a generalized non-Markovian Boltzmann equation that leads
to the following modified expressions for σxx and σxy:

σxx = σ0
1 − p2

1 + ω2
cyτ

2
, (7)

σxy = σ0

[
ωcyτ (1 − p2)

1 + ω2
cyτ

2
+ p2

ωcyτ

]
, (8)

with p = exp(− π
t0ωcy

) = exp(− 2ρv0m�

eRB ) and the diffusive time
scale τ given by

τ = t0

1 − 1−p2

2p2

[ 1−p2

2p ln
( 1+p

1−p

) − 1
] . (9)

The denominator of this expression for τ exhibits a rather
weak dependence on the variable p and thus on the magnetic
field B. It decreases monotonically from 4/3 at p = 0 (B = 0)
to 1 in the limit p → ∞ (B → ∞). Note that in the limit
p → 0, Eqs. (7) and (8) respectively approach Eqs. (2) and
(3), as obtained from the LBE. Below we will compare the
predictions for σxx and σxy from the LBE and the generalized
Boltzmann equation to results from simulation and experi-
ment at very low densities. Another approach that tries to
incorporate memory effects into the LBE has been proposed
by Dmitriev et al. [33,34]. Here, a B-dependent correction
to the Drude-Hall coefficient RDH is predicted that becomes
stronger towards low magnetic fields. However, below we
show that this prediction is not in agreement with the findings
from our simulation. Beyond the low-density limit, the trans-
port is strongly affected by memory effects, i.e., correlated
collisions with the obstacles that are not taken into account
by the low-density theories. For intermediate and high den-
sities, there is only the mode-coupling theory by Götze and
Leutheusser [38] that describes the magnetotransport of the
Lorentz gas. However, this theory has not been worked out
to an extent that systematic comparisons to simulations or
experiments would be possible.

In the following, we study the magnetotransport of the
disordered two-dimensional Lorentz gas at very low obsta-
cle densities as well as densities that are far beyond the
low-density limit. We consider both an experimental real-
ization of the Lorentz gas in terms of a two-dimensional
electron gas (2DEG) in a Ga[Al]As semiconductor het-
erostructure as well as event-driven computer simulations.
Our focus is on the understanding of the Hall resis-
tivity �xy; in particular we extract the Hall coefficient
RH from experiment and simulation and show that it is
not possible to obtain reliable estimates for the electron
density from the measured values of RH at intermediate

or large obstacle density. As we shall see, this also requires
a thorough study of the longitudinal magnetotransport.

III. LORENTZ GAS MODEL: SIMULATION DETAILS

Classical event-driven simulations [39] are used to study
the magnetotransport of a tracer particle with charge e = 1.0
and mass m� = 1.0 through a two-dimensional matrix of N
randomly distributed circular obstacles with radius R. The
obstacles are placed in a square with linear dimension L,
assuming periodic boundary conditions both in x and y direc-
tion. We consider systems with obstacle densities ρ = 0.0012,
0.012, 0.1963, 0.3927, 0.5890, and 0.7853 (for the definition
of ρ, see Sec. II). The tracer particle is subjected to a uniform
magnetic field B that acts perpendicular to the plane of motion.
The absolute value of its velocity is fixed to v0 = 1.0. In
the absence of obstacles the tracer particle performs a cir-
cular motion with cyclotron frequency ωcy (see above) and
the cyclotron radius Rcy = v0/ωcy. Below, we use a reduced
magnetic field B̃, defined by B̃ = B/B0 with B0 = m�v0/(eR).
In terms of this reduced magnetic field, the cyclotron radius
can be written as Rcy = R/B̃.

In the simulation, one obtains the conductivity tensor via
the calculation of the diffusion tensor D. The elements of
this tensor Di j (with i, j = x, y) are given by the Green-Kubo
relation [1]

Di j =
∫ ∞

0
dt

〈
vi(0)v j (t )

〉
, (10)

where 〈. . . 〉 denotes an ensemble average. Note that for the
diffusion coefficients Di j the relations Dxx = Dyy and Dxy =
−Dyx hold. For a degenerate Fermi gas in two dimensions,
the elements of the diffusion tensor can be related to the
conductivity tensor via

σi j = 2nee2

m�v2
0

Di j, (11)

with ne the density of electrons. Interactions between the
electrons are neglected throughout our study. The conductiv-
ities σi j can be directly extracted from the experimental data.
Therefore, the diffusion coefficients Di j from the simulation
are converted to the σi j’s using Eq. (11).

Figure 1 displays typical trajectories for different densities,
at each density for B̃ = 0.05 (red lines) and B̃ = 0.15 (blue
lines). In the following, our focus is on the magnetotransport
at low B̃ fields where the cyclotron radius is large compared
to the obstacle radius of the tracer particle. The considered
obstacle densities are below the percolation threshold at ρc ≈
1.128. Above this threshold, i.e., for ρ > ρc, the tracer particle
is localized and both σxx and σxy vanish. In the presence of
a magnetic field, at a given density ρ < ρc, there is a sec-
ond localization transition that occurs at a critical field B̃c =
(
√

ρc/ρ − 1)−1. For B̃ > B̃c, the conductivity σxx vanishes.
However, the magnetoconductivity σxy remains finite and, as
shown by Kuzmany and Spohn [40], is inversely proportional
to the magnetic field, σxy ∝ B̃−1 eπρ . As a consequence, the
ansatz (12) is expected to fail when one approaches B̃c and is
certainly incorrect for B̃ > B̃c. Indeed, this behavior is con-
firmed by our data (see below).
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FIG. 1. Snapshots of trajectories from the simulation at B̃ =
0.05 (red lines) and B̃ = 0.15 (blue lines) for the densities
ρ = 0.1963 (upper-left panel), ρ = 0.3927 (upper-right panel), ρ =
0.5890 (lower-left panel), and ρ = 0.7853 (lower-right panel).

IV. EXPERIMENTAL SETUP AND MEASUREMENT
TECHNIQUES

A GaAs/Al0.3Ga0.7As heterostructure containing a two-
dimensional electron gas (2DEG) 150 nm below the surface is
used. At liquid helium temperatures, the pristine 2DEG has an
electron density around ne = 2.42 × 1015 m−2 as determined
from the Shubnikov-de Haas (SdH) oscillations (see below),
and a typical electron mobility around 340 m2/Vs, which
depends somewhat on the position of the array on the wafer
and on the cooldown. The corresponding Fermi velocity and
mean-free path are v0 = 2.17 × 105m/s and �e = 31 µm,
respectively. The Lorentz arrays are patterned into sections of
the Hall bar and have an area of 120 µm × 100 µm. The volt-
ages are measured via probes of 10 µm width and with a
separation of 100 µm. The preparation of the Lorentz arrays
has been described in detail elsewhere [41]. In brief, circular
indentations of ≈150 nm depth and at random positions have
been patterned by electron beam lithography and subsequent
reactive ion etching. Due to a lateral depletion length of ap-
proximately 75 nm, their actual relevant radius is accordingly
larger than the lithographic one, amounting to 500 nm. The
reduced obstacle densities of the arrays correspond to those
also chosen in the simulation (see above). A scanning electron
microscope picture of the sample at ρ = 0.1963 is shown in
Fig. 2. It should be mentioned that the observation of memory
effects is also possible on other types of random but static
potential landscapes [42–44].

The transport measurements are carried out in the mixing
chamber of a 3He/4He dilution refrigerator with a base tem-
perature of 25 mK as well as in a 4He gas flow cryostat for
temperatures above 1.2 K. Both cryostats are equipped with
superconducting solenoids with maximum magnetic fields

10µm
FIG. 2. Scanning electron microscope picture of a section of the

sample with ρ = 0.1963. The bright area corresponds to the Hall
bar and a voltage probe containing the two-dimensional electron gas,
which is removed by an etch step in the dark regions.

above B = 8 T. An AC current of amplitude 500 nA and a
frequency of 17.7 Hz is applied, and the voltage drops across
the arrays in longitudinal (x) and transverse (y) directions are
recorded via the voltage probes using lock-in amplifiers (SR
830 from Stanford Instruments). All data shown are obtained
by sweeping the magnetic field across its zero point and
subsequent symmetrization for ρxx(B) and antisymmetrization
for ρxy(B), respectively, in order to eliminate possible mu-
tual admixtures. The data shown for dρxy/dB are numerical
derivatives of the antisymmetrized measurements of ρxy(B).
The sharp peak of ρxx(B) at B = 0 allows us an accurate
determination of the magnetic field offset of about 0.2 mT in
our system, most likely due to some magnetic flux trapping.
Figure 3 shows the Hall resistance �xy as a function of the
magnetic field B at different temperatures T for the density
ρ = 0.589. Here, we display on the upper axis of abscissae
the reduced magnetic field B̃ = B/B0 with B0 = 165.2 mT
(to compute B0, we have assumed that the effective electron
mass is m� = 6.097 × 10−32 kg). For each temperature, one
can identify an initial linear regime of the function �xy(B)
at sufficiently low B field. The range of this linear regime
increases with increasing temperature, accompanied by a de-
crease of the slope. This can be clearly inferred from the
derivative d�xy(B)/dB(B) [Fig. 3(b)], using a logarithmic ab-
scissa. Here, the constant that one can read off at small values
of B corresponds to the Hall coefficient RH. As is evident from
the figure, with increasing temperature, RH approaches the
Drude-Hall coefficient RDH = 2.44 × 103 
/T (marked by
the horizontal bold black line). With increasing temperature,
the scattering of the electrons by phonons becomes more and
more important and thus our result indicates that phonons
lead to a randomization of the electron motion, i.e., succes-
sive collisions of electrons with the obstacles tend to become
uncorrelated. As a consequence, the Drude model seems to
hold at sufficiently high temperature (at our highest temper-
ature, T = 32 K, we find the Hall coefficient RH ≈ 2.63 ×
103 
/T, which is already close to the Drude-Hall value
RDH ≈ 2.44 × 103 
/T). In the following, we only consider
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FIG. 3. (a) Hall resistance �xy, as obtained from the experiment,
as a function of the magnetic field B in unit of Tesla (lower axis of
abscissae) and the reduced magnetic field B̃ (upper axis of abscissae)
at different temperatures T for the array with ρ = 0.589. (b) Deriva-
tive d�xy/dB(B) corresponding to the data in (a). The horizontal
black line at 2438 
/T corresponds to the value of the Drude-Hall
coefficient RDH. The vertical black line marks B̃ = 1.0. Adapted from
Ref. [41].

the data measured at the lowest temperature, T = 100 mK.
At this temperature, one may assume that any contributions
from electron-phonon scattering processes can be neglected
and thus in this case the experiment approximates best the
model considered in the simulations. Figure 3 indicates that
the slope of �xy does not lead to reliable estimates of the
electron density ne. This issue will be discussed in more detail
below. However, reliable estimates of ne can be obtained from
the SdH oscillations that are evident, e.g., in the derivative
d�xy/dB in Fig. 3(b) at T = 100 mK. These oscillations re-
flect the quantization of the electron gas in Landau levels
with energies Ej = (k − 1

2 )h̄ωcy, k = 0, 1, 2, 3, . . . . To obtain
ne, we have analyzed the SdH oscillations in the magnetore-

0 20 40 60 80
index j

0.0

5.0

10.0

15.0

B
j-1

 [T
-1

]

pristine
ρ = 0.1963
ρ = 0.3927
ρ = 0.5890
ρ = 0.7853

0.0 0.2 0.4 0.6 0.8
ρ

2.4

2.5

2.6

n e
[1

015
/m

2 ]

FIG. 4. Location of the SdH minima, B−1
j , as a function of the

index j for the pristine sample and the samples at the different
obstacle densities (here, j = 1 just corresponds to the first minimum
that can be identified). Note that the data are shifted on the ordinate
with increasing value of ρ in steps of 1 T−1. The inset shows the
electron density ne as function of ρ, resulting from the slope of B−1

j .

sistance �xx (see below). One expects [45,46] that �xx has
a SdH minimum whenever a multiple j of h̄ωcy is equal to
the Fermi energy EF = π h̄2ne/m�. Hence, the equation B−1

j =
je/(π h̄ne) holds. The derivative of this equation with respect
to j gives s ≡ dB−1

j /d j = e/(π h̄ne) and thus ne = e/π h̄s.

Figure 4 shows B−1
j as a function of j for a pristine sample and

the samples for the different densities. The pristine sample is
an unpatterned Hall bar of identical geometry, integrated in
the chip that hosts the four Lorentz arrays. From the slopes
of B−1

j ( j), we have determined the electron density ne as
function of density ρ (inset of Fig. 4). While we obtain an
electron density around ne = 2.58 × 1015 m−2 for the samples
with finite obstacle density ρ, a significant lower value of
ne ≈ 2.39 × 1015 m−2 is found for the pristine samples. This
indicates that the etching step reduces the number of doping
electrons captured in the surface states, which therefore con-
tribute to the electron density in the 2DEG.

V. RESULTS ON THE MAGNETOTRANSPORT

In this section, we present the results on the magneto-
transport, as obtained from experiment and simulation. As a
reference, we first analyze the simulation results at very low
obstacle densities as well as those from the experiment for
the pristine sample. Here, we check to what extent the low
density data can be described in the framework of the DB
model. Then, we investigate the behavior at intermediate and
high density to see how memory effects affect the transport
properties, in particular with respect to the behavior of the
Hall resistance at low magnetic field.

A. Low obstacle densities

For the analysis of the transport at intermediate and high
density, it is useful to first get an idea about the density range
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FIG. 5. (a) Conductivity σxx as a function of B̃ for the densities
ρ = 0.0012, 0.012, and 0.1963. The results of the simulation are
compared to the predictions of the DB theory, Eq. (2), and the theory
of Bobylev et al. [2], Eq. (7). The inset shows the corresponding data
for the magnetoresistance �xx . (b) Same as in (a), but now for the
magnetoconductivity σxy and the Hall resistance �xy in the inset.

where the low-density theories are applicable. For B = 0, the
DB theory (based on the LBE) provides an exact analytical
formula for the conductivity in the Grad limit, see Eq. (4).
Also in the presence of a magnetic field, both the LBE as
well as the generalized Boltzmann equation [2] give analytical
predictions for σxx, σxy, �xx, and �xy [cf. Eqs. (2)–(9)] that can
be checked by the simulation without using any fit parameter.
Below we refer to the results based on the generalized Boltz-
mann equation as Bobylev theory or Bobylev approach.

Figure 5 displays the comparison of simulation and theory
for the obstacle densities ρ = 0.0012, 0.012, and 0.1963. Note
that we do not show the results of the Bobylev theory for σxy

and �xy in Fig. 5(b) since they are very similar to the cor-
responding ones obtained from the DB theory. The different

quantities are plotted double-logarithmically as a function of
the reduced magnetic field B̃. At the two lowest densities, the
DB result is in quantitative agreement with the simulation if
the value of B̃ is significantly below the critical field B̃c, which
is at B̃c ≈ 0.034 for ρ = 0.0012 and at B̃c ≈ 0.115 for ρ =
0.012. This is remarkable since the DB theory outperforms
the Bobylev approach, which, according to Refs. [2,32,37],
is supposed to be exact in the Grad limit. For ρ = 0.1963,
the conductivity σxx from the simulation exhibits a similar
monotonic decay, as predicted by the DB theory, but there are
significant quantitative differences between simulation and
theory already at small magnetic fields. Thus, the density
ρ = 0.1963 is beyond the low-density regime where the DB
theory applies. However, the Hall resistance �xy (inset of
Fig. 5) seems to follow the same linear behavior on B̃ for
the three densities. Below we will see that this is different
when approaching the regime of high densities. As we shall
see now, the experimental pristine sample can be seen as a
two-dimensional Lorentz gas at low density that can be well
described by the DB theory. Here, the obstacles are impurities
by which the electrons are scattered. Since we neither know
the density of these impurities nor their effective size, we have
to use the ratio R/ρ in Eqs. (2) and (3) for the DB theory
and Eqs. (7) and (8) for the Bobylev theory as a fit parame-
ter. Assuming R/ρ = 55.5 µm, we find excellent quantitative
agreement of the DB results with the experimental data both
for σxx and σxy as well as �xx and �xy (Fig. 6). The differences
between experiment and theory of σxy as well as �xy at low
B fields are probably due to inaccuracies of the measurement
around B = 0. For σxx as well as for �xx, at B ≈ 0.1 T the
SdH oscillations set in. Of course, these oscillations cannot
be described in the framework of the DB theory. However,
the DB result seems to provide an “average curve” around
which the SdH oscillations take place. Again we find that the
Bobylev theory is worse than the DB theory in that it starts
to strongly deviate from the experimental data of σxx and �xx

for B � 0.002 T. For σxy and �xy, DB and Bobylev theory are
very similar and therefore we do not show the results of the
Bobylev theory in Fig. 6(b).

B. Intermediate and high obstacle densities

The density range at which memory effects become impor-
tant and at which the DB theory starts to fail on a qualitative
level can be identified from the behavior of the conductivity
σxx. Figure 7 shows σxx(B)/σxx(B = 0), as obtained from ex-
periment (solid lines) and simulation (circles), as a function
of B̃ for different densities ρ in a double-logarithmic plot.
For the low densities (ρ = 0.012 for the simulation and ex-
perimental pristine sample), we observe a quick decay that is
well described by the DB theory. For ρ � 0.1963 and at small
magnetic fields, B̃ � 0.1, there is a very weak dependence of
σxx/σxx(B = 0) on B̃, i.e., the value of σxx is very close to that
at B̃ = 0 for each of the considered densities. At ρ = 0.1963
and ρ = 0.3927, the weak dependence on B̃ is followed by a
monotonous decrease of σxx with increasing B̃ while at larger
densities (here, ρ � 0.589), the diffusion coefficient increases
up to a maximum before it decreases monotonically at larger
magnetic fields (for an explanation of this feature see Ref.
[41]). Simulation and experiment are in good agreement for
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FIG. 6. (a) Conductivity σxx as a function of B for the experi-
mental pristine sample in comparison to the DB theory, Eq. (2), and
the theory of Bobylev et al. [2], Eq. (7). In the latter theoretical
expressions, the ratio R/ρ = 55.5 µm is used to obtain the best
match with the experimental data (see text). The inset shows the
corresponding data for the magnetoresistance �xx . (b) Same as in (a),
but now for the magnetoconductivity σxy and the Hall resistance �xy

in the inset.

B̃ � 1.0. For larger values of B̃, the experimental data display
a slower decay and quantum effects become important, as in-
dicated by pronounced SdH oscillations. This quantum effect
tends to enhance σxx when approaching the critical magnetic
field B̃c. In contrast to that, the simulation is purely classical
and one observes a rapid decrease of σxx towards B̃c. How-
ever, in the following, we are mainly interested in features
at small magnetic fields, B̃ < 1.0, i.e., the region of good
agreement between simulation and experiment with respect to
the quantity σxx(B)/σxx(B = 0). In the framework of the DB
model, there is a simple relationship between σxx and the Hall
conductivity σxy. As can be inferred from Eqs. (2) and (3), in
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FIG. 7. Comparison between experiment (solid lines) and sim-
ulation (circles) for the reduced conductivity σxx/σxx (B = 0) as a
function of B̃ for ρ = 0.1963, 0.3927, 0.5890, and 0.7853. Also
included are the data of the pristine sample and the simulation at
ρ = 0.012, both in comparison to DB theory (dashed black lines).

this case the relation

σxy = ωcyτσxx (12)

holds for arbitrary values of B. Note that we have replaced
τDr by τ in Eq. (12), because in the following we use this
equation to analyze simulation and experiment at obstacle
densities far beyond the low-density limit. Then, Eq. (12) still
holds for sufficiently low magnetic fields and allows to extract
the diffusive time scale τ .

As for low densities, the Hall conductivity σxy is of course
zero at B̃ = 0 and it increases with increasing B̃ up to a
maximum, the location of which moves to larger values of
B̃ with increasing density ρ [see Fig. 8(a) for the experiment
and Fig. 8(b) for the simulation]. The validity of Eq. (12) for
low values of B̃ is demonstrated in Fig. 8 for ρ � 0.1963.
Here, the solid lines correspond to the quantity ωcyτσxx where
the parameter τ is a “fit parameter”, used to obtain the best
agreement between σxy and ωcyτσxx at low values of B̃. Note
that the values of τ are indicated in Fig. 8 for the different
densities. In order to obtain τ from the experimental as well
as the simulation data, we have used the equation

τ = lim
B̃→0

1

ωcy

σxy

σxx
= lim

B̃→0

R

B̃v0

σxy

σxx
. (13)

Then, the idea is to read off τ from plots of the right-hand side
of this equation as a function of B̃ for B̃ → 0. As Fig. 8 shows,
for the experiment as well as for the simulation, Eq. (12) holds
up to values of B̃ with ωcyτ ≈ 0.5.

The failure of Eq. (12) can be interpreted—at least for
intermediate magnetic field strengths B̃—in terms of a B̃-
dependent effective time scale τeff . At low values of B̃, both
in experiment and simulation this time scale decreases with
increasing B̃. At higher values of B̃, the behavior of τeff is
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FIG. 8. Hall conductivity σxy (circles) and ωcyτσxx (solid lines)
as a function of B̃ for different densities for (a) the experiment and
(b) the simulation. The values of τ are indicated in both panels.

different in experiment and simulation. In the simulation, σxx

vanishes in the limit B̃ → B̃c while σxy ∝ B̃−1 for B̃ > B̃c (see
Ref. [40]). This is reflected in the behavior of the simulation
data at large values of B̃. Here, the quantity ωcyτσxx exhibits
a rapid decrease at large magnetic fields while, for all the
densities, σxy displays only a mild decrease with increasing
magnetic field. In the experiment, ωcyτσxx is slightly larger
than σxy at high value of B̃, with σxy showing pronounced SdH
oscillations. Note that the singular behavior around B̃ ≈ 0.08,
that is seen in the experimental data for the highest density,
ρ = 0.7853, is an artifact. We attribute this to an obstacle
configuration close to one voltage probe that may cause im-
perfect coupling of the probe to the Hall bar in this magnetic
field range. The time τ , scaled with the Drude time τDr, and
the reduced conductivity σxx(B̃ = 0)/σ0 at zero magnetic field
as a function of density are shown in Fig. 9 for the experi-
ment and the simulation (see Sec. II for the definition of τDr
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FIG. 9. Reduced diffusive time τ/τDr and reduced conductivity
σxx (B̃ = 0)/σ0 as a function of ρ for (a) the experiment and (b) the
simulation. The insets show � = σxx (B̃ = 0)τDr/(τσ0 ) as a function
of ρ.

and σ0). The figures indicate that τ/τDr and σxx(B̃ = 0)/σ0

have a similar functional behavior on ρ, which is consistent
with the interpretation that τ describes a diffusive time scale.
For the simulation [Fig. 9(b)], both τ/τDr and σxx(B̃ = 0)/σ0

essentially fall onto one curve, as expected. This is also indi-
cated in the inset of Fig. 9(b), showing the ratio � = σxx(B =
0)τDr/(τσ0), which is roughly equal to one in the considered
range of densities. For the experiment [Fig. 9(a)], the values
that we find for τ/τDr and σxx(B̃ = 0)/σ0 are of the same
order of magnitude as those in the simulation. However, the
ratio σxx(B̃ = 0)/σ0 lies significantly below τ/τDr over the
whole density range. We will get back to this deviation in
the discussion of Fig. 13. The ratio �, as extracted from
the experiment, is equal to one in the limit ρ → 0 and it
monotonically decreases to about 0.5 at large density. The
observed relationship between σxx and σxy can be used to
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reveal the B̃ dependence of the magnetoresistance �xx and the
Hall resistance �xy in the range of small magnetic fields B̃.
These quantities can be obtained from a matrix inversion of
the conductivity tensor and are given by

�xx = σxx

σ 2
xx + σ 2

xy

, (14)

�xy = σxy

σ 2
xx + σ 2

xy

. (15)

Using Eq. (12), which, according to our results shown in
Fig. 8, is a good approximation for ωcyτ � 0.5, we can elim-
inate σxy from Eqs. (14) and (15) and express �xx and �xy in
terms of σxx,

�xx = 1

1 + ω2
cyτ

2

1

σxx
, (16)

�xy = ωcyτ

1 + ω2
cyτ

2

1

σxx
. (17)

According to Eq. (17), the leading-order term of �xy in the
limit of small B is given by

�xy ≈ ωcyτ

σxx(B = 0)
= eτB

m�σxx(B = 0)
= RHB (18)

= R̃HB̃ (19)

where we have introduced the Hall coefficients with respect to
the proportionality to B,

RH = eτ

m�σxx(B = 0)
, (20)

and to B̃,

R̃H = RHB0. (21)

If one inserts the result from Drude theory for the conductivity
σxx(B = 0) in Eqs. (20) and (21), one obtains RDH = 1/(nee)
and R̃DH = B0/(nee). Figures 10(a) and 10(b) show �xx at
the different densities, as obtained from the experiment and
simulation, respectively. Also included in these plots is the
approximation (16). Its range of validity obviously depends
on density. While for ρ = 0.1963 it holds for B̃ � 0.2, for the
largest density, ρ = 0.7853, it seems to be a good approxima-
tion up to values above B̃ = 1.0. A fair agreement between
experiment and simulation is found. For small B̃, quite sim-
ilar values for �xx are obtained while significant deviations
between simulation and experiment occur for large B̃ fields,
which are due to the approach of the localization transition in
the simulation, which is strongly rounded in the experiment,
in part due to the presence of quantum effects such as SdH
oscillations (cf. the discussion in Refs. [41,47]). In Figs. 11
and 12, we show the dependence of the Hall resistance �xy

on the magnetic field B̃ at the different obstacle densities
for the experiment and the simulation, respectively. In these
plots, we have also included the Hall resistance, as obtained
from Eq. (17), and the linear approximation, Eq. (21), that
is expected to hold at very low magnetic fields. In all cases,
the approximation (17) works well at least up to magnetic
fields of the order of B̃ ≈ 0.2, while the linear behavior (21)
is asymptotically reached for very small values of B̃ (cf. the
insets in Figs. 11 and 12). Again, the experimental data for the
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FIG. 10. Magnetoresistance �xx (B̃) at different densities, as ob-
tained from (a) the experiment and (b) the simulation. Solid lines
correspond to the data while the dashed lines are calculated via
Eq. (16).

highest density, ρ = 0.7853 [see Fig. 11(d)] are not reliable
over the full parameter range.

In Fig. 13, the Hall coefficient R̃H, as obtained from the
Hall resistance data in Figs. 11 and 12 in the limit B → 0,
is plotted as a function of obstacle density ρ. In the simula-
tion, R̃H decreases by about 15% in the considered range of
densities. Towards ρ → 0, the simulation data are consistent
with the result from Drude theory R̃DH ≈ 427.0 
, assuming
an electron density ne = 2.42 × 1015 m−2, as used above for
the conversion from Di j to σi j . For ρ � 0.1963, the value
ne = 2.58 × 1015 m−2 was used, according to the estimate
from the SdH oscillations in Fig. 4 and the corresponding
evolution of the Drude-Hall coefficient R̃DH with density (blue
curve in Fig. 13). Note that even on a qualitative level the
findings in Figs. 12 and 13 are not in agreement with the
theory of Dmitriev et al. [33,34]. The experimental data also
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FIG. 11. Hall resistance �xy(B̃), as obtained from the experiment,
at the densities (a) ρ = 0.1963, (b) ρ = 0.3927, (c) ρ = 0.5890,
and (d) ρ = 0.7853. The solid lines represent the data, while the
blue dashed lines are calculated via Eq. (17). The black dotted lines
represent the expected behavior at low magnetic fields, �xy = R̃HB̃
with the Hall coefficient R̃H given by Eq. (21). The insets display
�xy/B̃. At sufficiently low magnetic field, this quantity is supposed to
approach Hall coefficient R̃H (the corresponding constant is shown
as a dotted horizontal line in these plots).

approaches the value of the Drude theory in the limit ρ → 0.
However, unlike R̃H from the simulation, the experimentally
determined Hall coefficient increases with increasing density.
The reasons for this deviation are presently not well under-
stood. We note, however, that several well-established effects,
that contribute to the magnetoconductivity close to B = 0,
may remain visible in �xy as well, for example interaction

FIG. 12. Same as Fig. 11 but now for the simulation.
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FIG. 13. Reduced Hall coefficient R̃H as a function of density for
experiment and simulation. Also displayed is the coefficient R̃DH =
B0/(nee), as expected from Drude theory, taking the estimates of ne,
as obtained from the analysis of the SdH oscillations (see inset of
Fig. 4).

corrections [48], nonspecular scattering at the edges of the
Hall bar [49], or smooth background disorder [50].

VI. SUMMARY AND CONCLUSIONS

We have studied the magnetotransport in a two-
dimensional disordered Lorentz gas with circular obstacles,
using a combination of experiment and simulation. The aim
of our study is to elucidate the Hall resistance �xy at obstacle
densities ρ that go beyond the low-density limit where in the
classical limit the DB theory is expected to hold. The central
ansatz, used in our paper, is the relationship σxy = ωcyτσxx,
which is inspired by the Drude model, cf. Eq. (12). For B̃ > B̃c

(with B̃c the critical magnetic field), the Hall conductivity σxy

is expected to be finite [40] with a relatively weak dependence
on the magnetic field ∝ 1/B̃, while the conductivity σxx van-
ishes for B̃ > B̃c. Therefore, Eq. (12) cannot be correct around
and above B̃c. In the experiment, the localization transition at
B̃c is rounded and “masked” by quantum effects, i.e., the onset
of Landau quantization, as well as by residual scattering.

Despite the limitation of the ansatz (12), we have found
a significant range of B̃ values where it holds. Here, the
deviations to the DB theory, in our case associated with
classical memory effects, can be understood in terms of the
diffusive time scale τ . As expected, at B̃ = 0, this time scale
has a similar dependence on density ρ as the conductivity
σxx(B̃ = 0) (see Fig. 9). With increasing B̃, both in simu-
lation and experiment, the time τ tends to decrease. This
is reflected, e.g., in our finding that the approximation (17)
overestimates the “exact” data for �xy (Figs. 11 and 12).
In the simulation, the Hall coefficient R̃H has a relatively
weak dependence on ρ. This can be explained by the fact
that within our framework, R̃H is proportional to τ/σxx(B̃ =
0) and this ratio is only weakly dependent on density
(see Fig. 9).
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In the experiment, unlike the simulation, R̃H increases with
increasing density ρ. This is attributed to additional exper-
imental influences like the finite magnetic field resolution,
residual scattering as well as quantum effects. Nevertheless,
the strong suppression of the Hall slope close to B = 0 is
clearly visible in the experiment as well, indicating that in the
presence of memory effects, the Hall slope is no longer suited
to extract the carrier density. Moreover, our experiments in-
dicate that RH �= (ene)−1 over the full classical magnetic field
range and approaches this value only as the temperature or
the magnetic field is strongly increased. Furthermore, the re-
sults reported here are related to studies of the giant negative
magnetoresistance (GNMR), where a negative longitudinal

magnetoresistivity is observed, the temperature-independent
part of which is usually attributed to scattering on sparse but
strong obstacles, which thus form a Lorentz gas with inhomo-
geneous obstacle shapes and sizes [51–55], originating, for
example, from oval defects [44]. It may be worth studying
whether the type of nonlinearities in �xy(B) can be observed
in such systems. An interesting issue is the Hall effect in
Ehrenfests’ windtree model where the obstacles are equally
oriented squares instead of circles. Here, in the absence of
a magnetic field, the conductivity σxx vanishes at any finite
density [56]. The leads to an anomalous nonlinear behavior
of the Hall resistance at small magnetic field, as shown in a
forthcoming study.
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