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Quantum computation by spin-parity measurements with encoded spin qubits
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Joint measurements of two-Pauli observables are powerful tools for both the control and protection of quantum
information. By following a simple recipe for measurement choices, single- and two- qubit rotations using two-
Pauli parity and single qubit measurements are guaranteed to be unitary while requiring only a single ancilla
qubit. This language for measurement based quantum computing is shown to be directly applicable to encoded
double quantum dot singlet-triplet spin qubits, by measuring spin-parity between dots from neighboring qubits.
Along with exchange interaction, a complete, leakage free, measurement based gate set can be shown, up to
a known Pauli correction. Both theoretically exact spin-parity measurements and experimentally demonstrated
asymmetric spin-parity measurements are shown to be viable for achieving the proposed measurement based
scheme, provided some extra leakage mitigating measurement steps. This method of spin qubit control offers
a leakage suppressed, low resource overhead implementation of a measurement-based control that is viable on
current spin qubit processor devices.
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I. INTRODUCTION

Measurement based quantum computing (MBQC) is a pro-
posed method of processing quantum information that seeks
to replace operations given by continuous control fields with
discrete quantum measurements [1–8]. Generally, there are
two routes with which this can be achieved. The first approach
is by generating some large initial entangled states contain-
ing all the qubits of a given processor, i.e., a resource state,
and performing a series of single qubit measurements around
a given measurement axis, until the remaining unmeasured
qubits of the processor are in the desired state [1–5,8,9].
This method is particularly applicable to photonic proces-
sors [9] whereby entanglement generation is experimentally
achievable, but two-qubit gates are challenging. The second
method involves the use of joint measurements, a measure-
ment about an axis of a shared property of two or more qubits,
to achieve nonunitary entanglement by measurement [6–8,10–
13]. This method has been proposed as a method of braiding
neighboring topological Majorana qubits via measurement of
charge parity between the qubits and a shared quantum dot
[6,7]. Additionally, it has also been shown to be applicable
by measuring joint properties of solid state spin qubits [8,10–
12]. Both approaches can be shown to provide a universal
set of single and two-qubit gates, at the cost of an at worse
polynomial [14] number of ancilla qubits.

Recent work has demonstrated the power of multiple qubit
joint-Pauli parity measurements in designing quantum error
correcting (QEC) codes [15,16]. Generally such measure-
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ments on an N-qubit processor can be written as

P (ν, s) = �

(
I⊗N + (−1)s

N⊗
i=1

σ i
νi

)
, (1)

where ν is a vector of length N with elements νi ∈ {0, x, y, z}
that describe a particular joint measurement, σμ are the Pauli
matrices with σ0 = I, I is the identity matrix, � is a normaliz-
ing constant, and s ∈ {0, 1} is given by the either measurement
of the positive (s = 0) or negative (s = 1) eigenstates of the
desired observable. For example, in the case N = 2 a joint-
Pauli measurement of ν = {z, z} is equivalent to either the
|�+〉 〈�+| = (|00〉 〈00| + |11〉 〈11|)/2 Bell state projection
if s = 0 or |�+〉 〈�+| = (|01〉 〈01| + |10〉 〈10|)/2 Bell state
projection if s = 1. Note that in this notation when νi = 0
this corresponds to performing no measurement on qubit i.
A shorthand notation for Eq. (1) will be used whereby a
measurement of the type ν = {0, x, y, z} is described as a
IXY Z parity check. Application of rounds of such measure-
ments provide robust quantum memories without the need for
fixed logical qubit space with only two-qubit joint-Pauli mea-
surements [15], i.e., joint-measurements are only performed
between two neighboring qubits. While some work on using
such a measurement toolset for qubit control in Majorana [6,7]
and spin qubits [10,11] systems has been done, demonstration
of how to use measurements of this type for arbitrary qubit
control has not been fully characterized. Additionally, these
previous studies tend to focus on just a single entangling
measurement sequence, without consideration for universal
control.

In this work we demonstrate that both single and two-qubit
operations can be achieved by rounds of two-qubit joint-Pauli
measurements and a single ancilla qubit. Then, by employ-
ing the physical observable of spin parity of spins in two
neighboring quantim dots (QDs), we demonstrate how to
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achieve such control scheme in double quantum dot (DQD)
spin qubits with only measurement and nearest-neighbor ex-
change interaction. Spin qubits offer fast and precise spin-spin
operations via the exchange interaction [17–20] as well as
long coherence times [21,22]. They are, however, vulnerable
to noise from control voltage fluctuations, known as charge
noise [23–25]. Charge noise may be neutralized somewhat
by encoding of logical qubits in two or more spins across
multiple dots [20,26–31]. Unfortunately, this also allows for
a new form of error where the constituent spins of a qubit
couple to states outside of the logical spin subspace, known as
leakage [20,27,32,33]. The proposed joint-Pauli parity mea-
surement control scheme offers leakage-suppressed operation
of singlet-triplet encoded qubits at their charge noise resistant
symmetric operating point [34], without reliance on both ex-
ternal magnetic fields or magnetic field gradients for control.

In this paper, first in Sec. II a general condition on how
to perform MBQC with joint-Pauli parity measurements is
given. Then in Sec. III the case of a MBQC with a physical
parity observable is discussed, spin-parity measurements be-
tween encoded DQD spin qubits. This is explored with both
an ideal case of an exact spin-parity measurement, and the
laboratory case of an asymmetric spin-parity measurement. A
proposed entangling gate is simulated in Sec. IV, investigating
the effect of infidelity of exchange pulses and measurements.
Finally the results are summarized in Sec. V.

II. JOINT-PAULI MBQC

Projective measurements of quantum states are non-unitary
processes in nature. Therefore, when designing an MBQC
scheme, a balance between the choice of measurements and
ancillae must be found to ensure that the overall imparted
rotations on the data qubits are unitary. For consistency, we
will treat the initialization of the ancilla qubits as another
measurement step, i.e., if an ancilla is required to be initial-
ized to the |0〉 state we will treat this as if that qubit has
been measured in the Pauli-z basis with a fixed outcome.
For single and two-qubit unitaries using arbitrary joint-Pauli
measurements, the requirements of measurement choices and
number of ancilla are the same: only a single ancilla qubit is
needed and each measurement step must be selected such that
the chosen observables’ multiqubit Pauli operator does not
commute with the observable of the previous measurement
step. To clarify the requisite restrictions on the measurement
choices, consider a two-qubit system. If the second qubit is
an ancilla initialized to the |+〉 state, this is written as an IX
measurement. Then if a ZX joint-measurement is performed
between the two qubits, any data in the data qubit will be lost
and the overall process cannot be made to be unitary since
[IX, ZX ] = 0. However, if the joint-measurement of ZZ is
chosen instead, then the overall process can be made to be
unitary as [IX, ZZ] �= 0.

This rule of measurement selection is shown here explicitly
with single qubit unitaries. To perform a single qubit rotation
with joint-Pauli measurements, the recipe is: two-qubit sys-
tem, the first in some data state |ψ〉, the second qubit reserved
as the ancilla. The ancilla is initialized, then a joint measure-
ment on the two qubits creates an entangled pair, the ancilla is
measured along a chosen single qubit basis to disentangle the

pair such that some rotation U is performed on the data qubit.
Explicitly this sequence of measurements can be written as
follows:

�1−q = �(I⊗2 + I ⊗ σζ )(I⊗2 + σν ⊗ σξ )(I⊗2 + I ⊗ σμ),

(2)

assuming the outcomes of all measurements are of the positive
eigenstate (s = 0). So, reading (2) from right to left the mea-
surements are ancilla initialization, entanglement, and ancilla
disentangling with chosen nonidentity Pauli observables μ,
ν − ξ and ζ , respectively. To see the effect of the measurement
sequence on the data qubit, we must trace over the ancilla
qubit. Since the process should completely disentangle the
ancilla qubit, Eq. (2) can be written as

�1−q =
∑

i={0,x,y,z}
γiU ⊗ σi, (3)

where γi are constants. From expanding Eq. (2) and assuming
the form of (3), U is given as

U = �[(1 + δζ ,μ)I + iεζ ,ξ (δζ ,ξ + iεζ ,ξ⊕μδζ ,ξ⊕μ)σν], (4)

where δi, j is the Kronecker delta, εi, j is the Levi-Civita sym-
bol and the notation i ⊕ j is given from the product of the
two Pauli matrices σiσ j = iεi, j σi⊕ j . Defining 1 + δζ ,μ = α and
iεζ ,ξ (δζ ,ξ + iεζ ,ξ⊕μδζ ,ξ⊕μ) = β, then the unitary condition for
the rotation U given by

UU † = I = |�|2[(|α|2 + |β|2)I + (αβ∗ + α∗β )σν] (5)

is only satisfied when

αβ∗ = −α∗β. (6)

Since α is always real this implies that β = 0 or ±i. These
conditions are satisfied only when μ �= ξ and ξ �= ζ , and
therefore the joint-Pauli MBQC scheme only returns unitary
rotations if and only if each measurement is selected such that
it does not commute with the previous measurement chosen.
For example, if the measurement choices in Eq. (4) are μ = y,
ν = z, ξ = z and ζ = 1, then α = 1 and β = −i, resulting in
an S gate on the target qubit. From Eq. (4) it is apparent that
the scope of what single qubit unitaries that can be achieved in
this scheme is limited to {I, S, S†, XH, HX, HSH, HS†H}, up
to a local Pauli correction depending on the outcomes of each
of the measurements. Unfortunately, while this does form a
Clifford set, this does not make a universal set of single qubit
gates, and so will need to be complemented by a T gate, or
some tunable non-Pauli observable such as

PW (θ, s) = 1
2 (I + (−1)seIθσz/2σxe−Iθσz/2) (7)

for completeness. Equally, this can also be achieved by initial-
izing the ancilla in a state that is not an eigenstate of one of
the Pauli matrices.

The same constraints on implementing single qubit gates
apply to two-qubit gates. For two-qubit unitaries one needs
only three physical qubits, the first a data qubit |ψ1〉, the sec-
ond an ancilla, and the third another data qubit |ψ2〉. After the
ancilla qubit is initialized, a two-qubit joint measurement is
done between one of the data qubits, say |ψ1〉, and the ancilla,
followed by joint-measurement between the other data qubit
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|ψ2〉 and the ancilla, before finally the ancilla qubit is disen-
tangled by a chosen measurement. Again, all measurements,
including the initialization, must obey the measurement selec-
tion rule outlined prior, such that the resulting gate on the data
qubits is unitary. Two-qubit gates performed in this scheme
can be both entangling or a product of two single qubit gates,
depending on the choice of measurements, and will vary up
to local Pauli corrections depending of the outcomes of each
of the measurement steps. An example of an implementa-
tion of an entangling gate of this type has been previously
discussed with respect to Majorana qubits [6,7]. There, the
sequence that was discussed, as limited by what is possible
with the proposed architecture, IZI → ZXI → IZX → IX I ,
which evidently obeys the measurement selection rule and is
equivalent to a CNOT gate on the data qubits [6].

III. SPIN-PARITY MBQC

Spin qubits are a natural fit for control by joint-Pauli
measurement. Spin qubits generally consist of QDs, isolated
regions of semiconductor in which a single spin carrier,
electron or hole, is isolated acting like an effective zero-
dimensional quantum object [17–25]. The QDs are confined
in one dimension by either being on surface [21] of the crystal
or within a semiconductor heterostructure [24], with the re-
maining dimensions confined by electrostatic gate voltages.
This enables fast spin-spin exchange interaction between
neighboring QDs by varying the voltages that couple them.
Measurement of the parity of two spins, being either aligned
or anti-aligned, is a ZZ joint measurement that has previously
been discussed as a means of controlling single QD spin-1/2
qubits [10,11]. The spin-parity measurement can be written as
follows:

Psp(s) = (1 − s)(|↑↑〉 〈↑↑| + |↓↓〉 〈↓↓|)
+ s(|↑↓〉 〈↑↓| + |↓↑〉 〈↓↑|), (8)

where s ∈ {0, 1} such that s = 0 measures the spins as aligned,
while s = 1 measures the spins as antialigned. Assuming ac-
cess to single spin Hadamard gates, an entangling CZ gate can
be implemented by a IZI → ZXI → IZZ → IX I measure-
ment sequence [11]. This sequence, similar to the Majorana
sequence, follows the outlined measurement selection rule.
However, this scheme abstracts the spin-parity measurement
such that in a physical implementation of the scheme, two
non-measurement-based CNOT gates and an additional qubit
is needed for each parity measurement. Additionally, as this
sequence requires single spin-1/2 qubit gates by electron-
spin-resonance-driven pulses, the system is susceptible to
charge noise.

A. Exact spin-parity measurements

Here instead we will consider DQD single-triplet qubits.
The logical qubit states are a subset of the full spin space of a
DQD whereby the singlet |S〉 = (|↑↓〉 − |↓↑〉)/

√
2 = |0〉 and

the triplet-0 |T0〉 = (|↑↓〉 + |↓↑〉)/
√

2 = |1〉. These encoded
qubits can be tuned to be resistant to first-order charge noise
as well as offer accurate and fast single qubit phase gates
by varying the exchange interaction between the two spins.
However, universal control of such qubits requires additional

on-chip engineering such as magnetic field gradients by either
variable g factors or micromagnets. Previous work on parity-
measurement-based gates in such encoded spin qubits have
relied on gate based full single qubit control [12], specifically
H gates, which demand such considerations in chip design.
These requirements can potentially limit future scalability.

Suppose instead there are two of such qubits in a linear
array, consisting of four identical neighboring QDs. The first
two dots encoded some state in the singlet-triplet subspace
|ψ1〉 = α1 |S〉 + β1 |T0〉 and the last two encode some state
|ψ2〉 = α2 |S〉 + β2 |T0〉. If a spin-parity measurement is done
between the second and third dot, i.e., one dot from each
constituent DQD qubit, the effect of the measurement in the
qubit space, is an XX joint-Pauli measurement. Assuming
there was no leakage in the preparation of the two qubit states,
the spin-parity measurement will not couple to states outside
singlet-triplet subspace.

Along with the native exchange based phase gates, the
XX parity measurement from the spin-parity measurement of
neighboring dots is sufficient to design a complete Clifford
+ T gate set or single and entangling gates. Application
of phase ±π/2 gates before and after the joint measure-
ment gives access to the following set of joint measurements
{XX, XY,Y X,YY }. Therefore, measurement sequences that
give unitary rotations may be implemented by following the
previous outline measurement selection rule. The remain-
ing ingredients needed are choice of initialization of ancilla
qubits and the final disentangling single qubit measurements.
Initialization of ancillae is flexible, as both z initialization
|0〉 = |S〉 and x initialization |+〉 = (|S〉 + |T0〉)

√
2 = |↑↓〉

are achieved by either nonadiabatic tunneling from a (2, 0)
to a (1, 1) charge regime, or adiabatic tunneling, respec-
tively [35]. Consequently, with exchange based phase gates
y initialization |+i〉 = (|S〉 + i |T0〉)

√
2 = (|↑↓〉 + i |↓↑〉)

√
2

is also achievable. Equally, this technique can be used to
initialize an ancilla state for a non- Clifford gate by selecting
a phase that is not an eigenstate of either Pauli-x or y, but
rather somewhere in between. The choice of final disentan-
gling measurements is limited by experiment to measurement
along the Pauli-z axis, i.e., a measurement of the singlet-triplet
spin state of the qubit

MST(s) = |s − 1| |S〉 〈S| + s
∑

i=0,±
|Ti〉 〈Ti|, (9)

where measurement outcome s = 0 projects on the singlet
state, and outcome s = 1 projects onto the triplet spin space.
This can be achieved by either conventional Pauli spin
blockade [27,36] or by coupling to a superconducting res-
onator [37]. As the entangling spin-parity measurements prior
to the disentangling measurement do not couple to leaked
|T±〉 = |↑↑〉 (|↓↓〉) spin states, measurement of the triplet
spin space only projects onto |T0〉 state making the disentan-
glement step an exact Pauli-z measurement.

An example of how to perform a Hadamard single qubit
gate by spin-parity measurement and exchange alone is given
in Fig. 1. This sequence is effectively an IY → Y X → IZ
measurement sequence. Assuming a spin-parity measurement
of the form (8), at no point in this sequence do either of
the two qubits couple to leaked spin states outside the qubit
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FIG. 1. Circuit diagram of the exchange gates and measurement
sequence needed to achieve a single qubit Hadamard up to a local
Pauli-x correction. All single qubit gates here are exchange phase
gates of angles indicated.

subspace, and so this scheme can be considered leakage-free.
Note, however, that after the sequence, there is a measurement
outcome dependent Pauli-x correction. This is a common
consequence of MBQC and can either be remedied by as-
suming non-measurement-based single qubit gates, which in
this case will require the reintroduction of a magnetic field
gradient, or by considered postprocessing of the final state
tomography data. An example of one such possible entangling
gate with the proposed scheme is given in Fig. 2(a) with the
corresponding equivalent gate based circuit given in Fig. 2(c).
This measurement sequence is effectively equivalent to an
IZI → Y XI → IY X → IZI sequence, as shown in Fig. 2(b),
optimized however to require a minimum number of phase
gates. Although the resulting gate is an unusual entangling
primitive to operate a quantum computer with, it is a maxi-
mally entangling gate, and generating Bell pairs from classical
inputs in the following sequence |00〉 → |�−〉, |01〉 → |�−〉,
|10〉 → |�+〉, and |11〉 → |�+〉. Note that this is not the
only example of an entangling two qubit unitary that can
be achieved with this architecture, as other rotations can be
achieved by selecting different patterns of phase gates.

For measurement-based control schemes with encoded
singlet-triplet spin qubits, the benefits of the presented parity
based method are apparent when compared to similar schemes
employing singlet-triplet (9) entangling measurements [8].
Firstly, particularly when comparing entangling gates, the
parity method offers reduced overhead of exchange gates,
measurements, and ancilla qubits, so is more efficient in
nearly every aspect. Secondly, the language of designing gates
with spin-parity measurements and encoded qubits, aligns
with the language of arbitrary Pauli-parity measurements dis-
cussed in Sec. II, making the design of different gates than the

explicit examples discussed here much easier than in previous
examples.

B. Asymmetric spin-parity measurements

Entangling parity measurement-based gates in encoded
spin qubits similar to those given so far have previously
been discussed assuming exact spin-parity measurements and
single qubit Hadamard gates [12]. Experimentally, however,
spin-parity measurements are achieved by tuning the energy
levels of the two neighboring QDs such that the |S〉 and |T0〉
states quickly decays to the (2,0)/(0,2) charge configuration
singlet state |SL/R〉 in the left/right dot. This, therefore, only
leaves the spin-aligned triplet states |T±〉 in the (1,1) charge
configuration [35,38]. While this does measure if the two
spins are aligned or antialigned, this method lacks the sym-
metry of an exact spin-parity measurement. This asymmetric
spin-parity measurement may be written as

PST(s) = |s − 1|(|T+〉 〈T+| + |T−〉 〈T−|) + s |S〉 〈S| . (10)

It is, however, worth noting that, although decay from the
|T0〉 to |SL/R〉 is inherent, without some finite Zeeman energy
splitting between the |T0〉 and |S〉 the decay is relatively slow,
and its rate uncontrollable. By re-introducing such a splitting,
the rate of decay has been shown to be increased by four
orders of magnitude [38].

Assuming access to a measurement of this form, some
considerations must be made. Firstly, let it be assumed that for
ease of experimental implementation and consequently pro-
cess efficiency, all measurement types used in this protocol are
identical, i.e., they all asymmetric spin-parity measurements
as in Eq. (10), including the final disentangling measurement.
Secondly, when entangling two neighboring qubits by mea-
surement, leakage may occur if a spin antialigned (|S〉) state
is detected. To address this issue, some additional ingredients
are needed to ensure that the final rotation of a given mea-
surement sequence is unitary. If an entangling measurement
detects a singlet state, causing leakage, this can be remedied
by employing repeat measurements. By applying a π -phase
gate to a select qubit, the same qubits can then be measured
again until they are found to be spin aligned. This, natu-
rally, increases the measurement and exchange gate overhead
of the overall rotation in an uncontrolled and probabilistic

(a)

(b)

FIG. 2. (a) Circuit diagram of the phase gates and spin-parity measurement sequence needed to achieve a two qubit entangling unitary.
(b) Equivalent circuit diagram as in (a) written with joint-Pauli parity measurements. (c) Standard Clifford gate circuit diagram of the two qubit
unitary performed by the measurement and phase sequence given in (a) with Pauli-x corrections.
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(a)

(b)

(c)

FIG. 3. (a) Circuit diagram of the phase gates, asymmetric spin-parity measurements and repeat measurement sequence needed to achieve
an equivalent two qubit entangling unitary as in Fig. 2(c). (b) Circuit diagram of the repeat entangling measurement sequence. (b) Circuit
diagram of the repeat disentangling measurement sequence. Note that in (a) and (b) each wire denotes a qubit, comprised of 2 QDs, while in
(c) each wire denotes a single QD, as to show the exchange π -pulse (swap gate) needed to enable repeat measurements.

manner. However, such repeated measurements are not always
needed. In the case of a two qubit gate, as in the Fig. 3,
repeat measurements are required if, the first entangling mea-
surement projects onto a singlet state, or if the disentangling
measurement of the ancilla projects onto triplet space. In the
first case, when the first entangling measurement projects
onto the leaked state, the measurement can be repeated after
application of a π -phase gate to the |ψ1〉 data qubit until
a triplet state is observed. Measurement of the triplet after
a repeat measure recovers the desired unitary, up to a local
π -phase (Pauli-z) correction on the |ψ1〉 data qubit, which
is accounted for later in the protocol. This type of repeat
measurement is shown in Fig. 3(b). The second case, when
the disentangling measurement projects onto a triplet state,
requires a repetition of the disentangling measurement on the
ancilla qubit to regain the desired unitary. Here, however, a
π -phase gate between one of ancilla qubits QDs and one of
the |ψ2〉 data qubit QDs is employed. This is a gate acting
outside of the qubit subspace, and is equivalent to a SWAP-
gate between the QDs in a spin-1/2 qubit picture. This type
of repeat measurement is shown in Fig. 3(c). Note that if both
entangling measurements project onto the spin aligned triplet
states, even after repeat measurements, then no leakage states
are populated at the point of the disentangling step and the
probability of measuring the spin aligned outcome is 0. The
necessity repeat of measurements is given in Table I.

Although the outcome of quantum measurements are prob-
abilistic, they can be weighted for efficiency. Due to the choice
of the ancilla qubits initial state in the gate outline in Fig. 3,
the probability of the first parity measurement projecting onto
the leakage inducing spin anti-aligned (|S〉) state, is 1/3, re-
gardless of the input state |ψ1〉. Therefore, the requirement for

repeating this measurement converges as (1/3)n where n is the
number of times the measurement has already been repeated.
The disentangling measurement is also weighted regardless
of input states, in such a way that only a maximum of one
repetition is ever needed. This is due to the choice of disentan-
gling by the asymmetric spin-parity measurement as opposed
to a singlet-triplet qubit subspace measurement. Assuming the
outcomes of the previous measurements allow for some leak-
age, and regardless of input state the probability of initially
projecting to the spin aligned (|T±〉) state is 2/3. While this
is weighted such that a repeat measurement is likely, after a
single implementation of the repeat measurement scheme, the

TABLE I. Table of the eight possible measurement outcomes
(s1, s2, s3) of the MBQC sequence proposed in Fig. 3(a) with the
corresponding required repeat measurement types, RPST the repeat
entangling measurement and RST the repeat disentangling measure-
ment, to achieve a leakage free entangling two-qubit unitary. Note
that entries of ‘-’ have measurement probability of 0, and are there-
fore not considered.

Measurement Outcome (s1, s2, s3) RPST RST

(0,0,0) No –
(0,0,1) No No
(0,1,0) No No
(0,1,1) No Yes
(1,0,0) Yes –
(1,0,1) Yes Yes
(1,1,0) Yes No
(1,1,1) Yes Yes
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Algorithm 1. Two-qubit gate with repeat measurements.

Define: (D1, D2) → Q1, (D3, D4) → A, (D5, D6) → Q2

Input: Data qubits Q1 → |ψ1〉 and Q2 → |ψ2〉
Initialise: Ancilla A → |0〉

Exchange Pulse: π

2 → Q1

Parity Measurement: Q1 ↔ A (D2, D3), output s1

if s1 = 1 then

sRepeats = 1

While sRepeats > 0 do

Exchange Pulse: π → Q1

Parity Measurement: A ↔ Q1 (D1, D2), update output sRepeats

end while

end if

Exchange Pulse: (−1)s1 π

2 → A

Parity Measurement: A ↔ Q2 (D4, D5), output s2

Exchange Pulse: (−1)s1+s2 π

2 → Q1

Disentangling Parity Measurement: A (D3, D4), output s3

if s3 = 0 then

Exchange Pulse: π → (D4, D5)

Disentangling Parity Measurement: A (D3, D4)

end if
Output: Q1 ⊗ Q2 = |�〉

probability of projecting to the spin antialigned (|S〉) state, and
thus completing the two qubit unitary, is always 1. Algorithm
1 details how both of the repeat measurement cycles are to be
used.

Some further improvement to the gate protocol in Fig. 3
may be achieved by replacing the second entangling parity
measurement and final disentangling parity measurements
with initializing to the singlet state. This can be done by
tuning the dots of that given measurement such that within
a reasonable time [] the two electrons will decay into a singlet
state with (0, 2)/(2, 0) charge configuration. Locking these
measurement outcomes by this reinitialization step improves
the gate in two ways. Firstly, this eliminates the need for Pauli
corrections to the final qubit state after the protocol as the
gate in Fig. 2(c) is locked such that s2 = s3 = 1. Secondly,
the need to ever repeat the final disentangling measurement
is eliminated as decay to the singlet state will correct for any
leakage accumulated. This will on average decrease the aver-
age exchange gate and measurement overhead and therefore
the average gate time.

In a recent work [35], this asymmetric spin-parity measure-
ment technique has been combined with adiabatic reinitial-
ization of the (1,1) from the (2,0)/(0,2) charge configuration
|SL/R〉 → |↑↓〉. While this allows for perfect spin-parity mea-
surements within the qubit space of a DQD encoded qubit,
when employing an asymmetric measurement to entangle two
of such qubits together, the adiabatic initialization step can
effectively be treated as a second measurement in spin space
that leads to loss of encoded information. This is a direct
consequence of the violation of the commutation rule outlined
prior. As such, the protocols described require that the |S〉 in
the (1,1) charge configuration is initialized after a |SL/R〉 state
is measured.

(a) (c)

(b) (d)

FIG. 4. Histogram data of simulations of the proposed two qubit
parity measurement based entangling gate with exchange pulse er-
rors. Each data set is derived from 104 iterations of the simulation
and a random 1% error in the exchange pulses (εmax

J = 0.01). (a) Per-
centage distribution of number of measurements needed to complete
the entangling gate for the input state |ψ1ψ2〉 = |SS〉 for when all
measurement steps are employed as measurements (red), and when
the final measurement step is replaced by the discussed initialization
by decay (blue). (b) The infidelity distribution of the entangling gate
for the input state |ψ1ψ2〉 = |SS〉 compared to the infidelity distri-
bution of a single exchange pulse with the same simulated errors.
(c) Percentage distribution of number of measurements needed to
complete the entangling gate for random the input states. (d) The
infidelity distribution of the entangling gate for random the input
states.

IV. ENTANGLING GATE FIDELITY AND LEAKAGE

The proposed two qubit gate given in Fig. 3(a) can been
simulated to show expected average number of measure-
ments, overall gate fidelity and possible leakage, accounting
for infidelity in exchange gate and spin-parity measurements.
Measurements in the simulation are projective, and treated
as having random outcomes with the correct weighting. Ini-
tially, only exchange gate errors were considered, the results
of these simulations are given in Fig. 4. The simulation is
run with a number of variants to the protocol and input
states. Firstly, a simulation of the simplest experimental im-
plementation is given in Fig. 4(a), starting from an initial
input state of |ψ1ψ2〉 = |SS〉 and ending in the state |�−〉 =
(|SS〉 − |T0T0〉)/

√
2 after the implemented unitary. This possi-

ble experiment is discussed in greater detail in the Appendix.
Here the distribution of the number of measurements needed
when the final step to disentangle the ancilla is implemented
as a measurement, is compared to when the disentangling is
done by initialization, so discussed in Sec. III B. As expected,
this shifts the distribution favorably toward fewer measure-
ments and therefore a shorter overall gate time. Then the
overall gate fidelity is probed by assuming some artificial
small deflection of each exchange gate by a randomly selected
εJ ∈ [−εmax

J , εmax
J ]. In Fig. 4(b) the fidelity of the parity based

gate with the final measurement and final reinitialization are
compared, along with a comparative fidelity distribution of
a single phase gate of a random rotation angle acting on
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a random input state under an identically selected random
error. Here, interestingly, the measurement based two qubit
gates employing three or more error-prone exchange gates
demonstrate a favorable fidelity distribution than a single
phase gate. This is due to the gates’ reliance on interleaved
projective measurement steps mitigating the accumulation of
errors from the noisy exchange pulses. Lastly, the measure-
ment based protocol is simulated with random input states
in Figs. 4(c) and 4(d) for a fuller characterization of the
average number of measurements and fidelity of the gate
protocol.

From Figs. 4(a) and 4(c), it is shown that the average
number of measurements and exchange gates is equivalently
between 3 and 5 per execution of the proposed gate. Assuming
parity readout times between 1−10 µs [35,38], entangling two
qubit gate times of 5−50 µs can be achieved. While this is long
compared to exchange gate times, ∼10s − 100s ns for two
qubit gates [39], this is still shorter than the T1 � 100 µs [35]
for single dot spin-1/2 qubits. While this may not seem like an
obvious point of comparison, as the qubits manipulated here
are encoded here S − T0 qubits, the interstitial measurements
of the dots serve to effectively reset the spins in the processor
such that a straightforward comparison of the gate time to the
decoherence times of S − T0 qubits is not a complete measure
of quality. Instead, as the two outer dots of the 6-dot device
needed to perform such a gate are never measured, it is the
decoherence times of these single spin-1/2 dots that limit
the lifetime of a processor employing this control scheme.
Thus the comparison of the proposed measurement based
gate time with the T1 � 100 µs for single spin-1/2 qubits is
apt.

There is no leakage induced in the proposed gate from sim-
ulated errors in the exchange pulses. To investigate possible
leakage errors in the process, imperfect readout fidelities are
included. These are modeled the same as errors in exchange
pulses with some random small error εM ∈ [−εmax

M , εmax
M ]

applied to each measurement, projecting onto the opposite
outcome as is read out. The results of these simulations
are given in Fig. 5, assuming all measurement steps are
treated as measurements (no singlet re-initialization). In all
the simulated values of εmax

M , there are two clear peaks in
the distribution of leakage. The peaks lower in the distri-
bution of leakage (10−8 − 10−10) probability correspond on
average to iterations of the simulated experiment where no
repeat measurements are needed, while the second higher
peak (10−3 − 10−6) correspond to iterations of the simula-
tion where measurements repetitions are needed. Decreasing
the readout fidelity (increasing εmax

M ) pushes these two peaks
closer together. In Fig. 5(d) errors in both measurements and
the exchange pulses are compared to when perfect exchange
gates are assumed with imperfect measurements. Here it is
clear that the overall infidelity of the final state is perturbed
most by the addition of the exchange pulse error from the
large jump in the peak of the distribution of the infidelity.
Overall the effect of leakage in the measurement based uni-
tary is small, and is totally dependent on the fidelity of
measurements used. Provided reported parity measurement
fidelity of 99.98% [35], the effect of leakage is effectively
negligible.

(a) (c)

(b) (d)

FIG. 5. Histogram data of simulations of the proposed two qubit
parity measurement based entangling gate with measurement fidelity
errors, treating all measurement steps are measurements. Each data
set is derived from 104 iterations of the simulation and given values
of maximum measurement fidelity εmax

M and exchange pulse εmax
J er-

rors. (a) Order of magnitude distribution infidelity (red) and leakage
(blue) of simulated errors εmax

M = 1% and εmax
J = 0%. (b) Order of

magnitude distribution of infidelity and leakage of simulated errors
εmax

M = 2.5% and εmax
J = 0%. (c) Order of magnitude distribution of

infidelity and leakage of simulated errors εmax
M = 5% and εmax

J = 0%.
(d) Order of magnitude distribution of infidelity and leakage of
simulated errors εmax

M = 1% and εmax
J = 1%, including the infidelity

of the simulation with εmax
J = 0% (green) for comparison.

V. DISCUSSION

In this work, measurements of joint-Pauli observables were
discussed as a method of MBQC, demonstrating a straight-
forward recipe for designing single- and two- qubit gates.
Combined with only one ancilla qubit, initialized to an eigen-
state of a chosen Pauli observable, and a disentangling single
qubit measurement, a unitary rotation on the data qubits are
guaranteed by considered choice of measurements. Specifi-
cally, so long as each measurement steps’ observable does not
commute with that of the previous step, including the ancilla
initialization, the rotation will be unitary. Then, a physical
parity observable in the form of spin-parity between two
adjacent QDs was considered as a means to control DQD
|S〉 − |T0〉 encoded qubits. Provided that single-qubit phase
gates by the natural spin-spin exchange interaction, then a
spin-parity measurement between spins from two neighboring
qubits is equivalent to an XX parity measurement that can be
tuned to a YY parity measurement. The protocol is completely
leakage-free with low overheads in terms of physical qubits,
measurements, and exchange gates. Then, a form of asymmet-
ric spin-parity measurement shown in recent experiments was
considered. Here, due to the projection of antisymmetric spin
states onto the maximally entangled |SL/R〉 state, probabilistic
coupling to leaked spin state is to be expected, but can be
accounted for by the use of repeated measurements. Lastly,
a two qubit parity-MBQC entangling gate is simulated with
errors in the applied exchange pulses and measurements. The
simulations show that the overall gate fidelity is robust against
exchange infidelity, due to the projective measurements,
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and that leakage from measurement infidelity is effectively
negligible.

Parity measurements of the form discussed also form a
complete tool-set for QEC codes. These include proposals for
robust quantum memories via measurement-based QEC color
codes, as well as dynamically generated codes without a fixed
logical basis. Our proposal for parity-MBQC with encoded
spin qubits is compatible with such methods of QEC, and so
is arguably scalable. Finally, it is believed that such gates are
viable on current experimental spin qubit processors which
offer spin-parity measurements and high fidelity control of the
exchange interaction [35].
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APPENDIX: EXPERIMENTAL IMPLEMENTATION

Here, details on how to perform a two qubit entangling gate
by parity measurements on a linear six quantum dot device
like the one in Ref. [35] is given. Ideally, in a device tailored
as a small MBQC processor, sensing dots acting as quantum
point contacts to read out changes in occupation of adjacent
qubit dots would be positioned such that all the measurements
needed to perform the desired gate set would be done so
directly. In the case of a linear six dot device, encoding three
DQD qubits whereby the outer two are data qubits and the
middle is the ancilla, a minimum of four sensing dots is
needed to directly access all necessary measurements. These
include two at each end of the array to read out the occupation
of the first and last dot, as well as two in parallel to the array
above/below each one of the middle two dots to measure the
occupation of both of the ancilla qubit dots. The outer sensing
dots are used only to initialize and perform the final state read-
out on the two data qubits. This is done by Pauli spin-blockade
style readout [36], tilting the detuning of the potentials to-
ward the outer two dots to detect possible occupation change
(a spin singlet state). The middle two sensing dots are assumed
to be used for both initialization and readout of the ancilla
DQD qubit state as well as parity measurements between each
dot of the ancilla qubit, and their neighboring data dot. The
choice of measuring either the qubit basis (singlet-triplet) or
spin parity, in this case the perviously experimentally achieved
asymmetric spin-parity measurement, depends on the choice
of wait time at the measurement detuning [38]. Such an ideal
device is shown in Fig. 6.

The experiment described here is arguably the simplest
proof-of-principal experiment of the two-qubit measurement-
based unitary described in Fig. 3. This version of the protocol
takes the input states |ψ1ψ2〉 = |SS〉 = |00〉 and performs a
unitary rotation such that the output state is a maximally
entangled Bell state |�−〉 = (|00〉 − |11〉)/

√
2. Such an ex-

periment simplifies the initialization step of the protocol, and
allows for some of the exchange pulses from the full arbitrary
input implementation of the gate given in Fig. 3(a) to be omit-
ted. However, if instead the two-qubit entangling gate is to be
performed on arbitrary input states, these may be initialized
in such a device by a combination of either starting with an

FIG. 6. Example of a six dot device with which the proposed
MBQC experiment could ideally be performed. The data dots in red,
each charged with an electron in blue, are labeled Di, and are grouped
in pairs by the blue boxes labeling if they DQD pairs encode one of
the two data qubits Qi or the ancilla A. The purple dots represent
sensing (measurement) dots labeled Mi. In the case of a non ideal
device that could still perform the proposed experiment (Ref. [35]),
M3 and M4 and do not exist, and so layers of additional exchange
SWAP gates are needed to achieve the same protocol with just M1

and M2.

initialized |S〉 or |+〉 depending on the how the (0, 2) → (1, 1)
tunneling is handled [35], exchange pulses, and applications
of the measurement based single qubit gates shown in Fig. 1.

The proof of concept experiment is as follows. Assuming a
linear six dot array D1, D2, . . . D6 with an ideal measurement
setup of four sensing dots M1, M2, M3 and M4, an example
two qubit entangling gate by measurement would be achieved
as follows. Firstly, the three DQD encoded qubit states are
prepared, in the case of the two data qubits, Q1 → {D1, D2}
and Q2 → {D5, D6}, into two identical spin singlet states by
tunneling from a (0, 2) → (1, 1) charge configuration, as de-
tected by the two sensing dots M1 and M2 coupled to qubit
dots D1 and D6, respectively. This initializes a |ψinit〉 = |00〉
in the two qubit logical space. Equally, the ancilla DQD
qubit A → {D3, D4} is prepared into a spin singlet state by
monitoring the charge transition from either the intermediary
sensing dots M3 or M4 coupled to D3 or D4, respectively.
Once all the qubits are prepared then a π/2 pulse is applied
between D1 and D2 and the first entangling measurement can
be performed. In this case, the spin-parity between Q1 and
A is checked. This is done by tilting the detuning potentials
between D2 and D3 for the appropriate period of time such the
sensing dot M3 coupled to D3 detects the desired parity. If the
parity is detected to be antialigned (|S〉) then the measurement
must be repeated after a π exchange pulse is applied to Q1.
This is repeated until the spin aligned (|T±〉) state is detected.
Next, if the initial measurement of the parity of Q1 and A was
spin aligned (|T±〉) that a π/2 pulse is applied to A, else if any
repeat measurements were needed, a −π/2 or 3π/2 pulse is
applied instead. Then the parity of dots D4 and D5 must be
measured in the same manner as that of D2 and D3 with the
sensing dot M4 coupled to D4. If the outcome of this second
parity measurement matches that of the initial outcome of the
first parity measurement, then a π/2 exchange pulse must be
applied to Q1, else if the outcomes are not equivalent a −π/2
or 3π/2 exchange pulse is needed. Finally, the disentangling
measurement can be done with either the sensor dots M3 or
M4 coupled to D3 of D4, respectively, and must also probe the
parity of the neighboring dots. Here as well, the application of
up to one repeat measurements may be needed (see Table I). If
the antialigned (|S〉) state is detected, the sequence is complete
and no repetition is needed. Otherwise, if the outcome of
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the disentangling measurement is the spin antialigned (|T±〉)
state, then the measurement must be repeated by applying
a π exchange pulse between dots D4 and D5, as shown in
Fig. 3(c), then measuring again. This should result in measur-
ing the spin antialigned (|S〉) state, after which the sequence is
complete. This measurement based gate sequence will leave
the two qubits Q1 and Q2 in the maximally entangled Bell
state |�−〉 = (|SS〉 − |T0T0〉)/

√
2, up to a known Pauli cor-

rection [see Fig. 2(c)]. The outcome can be verified by state
tomography [40], which can account for the Pauli correction.
As previously discussed in Sec. III B, if the final measurement
of the ancilla qubit is replaced with a initialization by decay
to the charge (0, 2)/(2, 0) state, then the need for repetitions
of the final measurement is eliminated, improving the average
gate time of the protocol. Here, however, nothing is changed
by initializing instead of measuring the second parity mea-
surement (between D4 and D5), as the final state is equivalent
up to the Pauli corrections determined by this outcome.

Finally, if, as in the case of Ref. [35], the six dot device is
purely linear, with no parallel sensing dots M3 or M4 coupled
to D3 and D4, respectively, only those coupled to dots D1

and D6, then the same experiment can be achieved, only with
sequences of SWAP gates such the correct information is
measured by the sensing dots. These swap gates are given by
π exchange pulses between neighboring dots. In the case of
the first entangling measurement between qubit Q1 and the
ancilla A, a SWAP gate sequence exchanging D1 ←→ D3 is
needed such that the parity can be measured with the sensing
dot coupled to D1. Equally the second entangling measure-
ment between qubit Q2 and ancilla A must employ a SWAP
sequence D4 ←→ D6 such that the sensing dot coupled to
D6 can probe the necessary parity. Then finally, a SWAP
sequence D1 ←→ D3, D3 ←→ D5 and D3 ←→ D4 is needed
to effectively SWAP qubit Q2 with the ancilla A. Now the final
disentangling measurement of the ancilla can be achieved with
the sensing dot coupled to D6.
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