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We study the linear, second-order nonlinear (NL) current and voltage responses of a two-dimensional gapped
semi-Dirac system with merging Dirac nodes along the x direction under the influence of a weak magnetic
field (B), using the semiclassical Boltzmann formalism. We investigate the effect of band geometric quantities
such as Berry curvature and orbital magnetic moment in the responses up to linear order in B. We derive exact
analytical expressions of the linear magnetoconductivities, second-harmonic NL anomalous Hall (NAH), and
NL anomalous velocity and Lorentz force induced (NAL) conductivities, unveiling their dependence on Fermi
energy and a gap parameter δ0. For δ0 > 0, the Fermi surface topology changes at a particular Fermi energy,
which is reflected in the nature of conductivities through a kink. The ratio of NAL and NAH conductivities
is found to be independent of δ0 and inversely related to Fermi energy. The NL dc current exhibits distinct
orientations depending on the Fermi energy, magnetic field, and polarization of the electromagnetic wave. In
the presence of magnetic field, the NL dc current vector can be rotated through large angles upon variation of
Fermi energy. For high Fermi energies, the NL dc current is directed nearly along the y-axis for x-polarized
and low-frequency circularly polarized light, whereas it aligns close to the x-axis for high-frequency circularly
polarized light. These orientations of the NL dc current are predominantly governed by the mirror symmetry
of the system along the x direction. Additionally, we also study the NL voltage responses of the system by
applying current along the x and y directions. The system exhibits asymmetry in the B-dependencies of the NL
resistivities for the two current directions, which may serve as an experimentally relevant signature for band
geometric quantities and merging Dirac nodes in such systems.
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I. INTRODUCTION

The exfoliation of graphene in 2004 marked an impor-
tant epoch in the history of two-dimensional (2D) materials
due to its unique linear-Dirac spectrum and exotic transport
properties [1,2]. The two subbands of graphene touch at
two inequivalent points in the reciprocal space named Dirac
points, effectively describing the low-energy properties. These
Dirac points can be manipulated by varying band parameters
such as interaction strength and hopping amplitudes, result-
ing in the motion of Dirac points. Other two-dimensional
physical systems with such a spectrum have been observed
in organic conductor α-(BEDT-TTF)2I3 under pressure [3–6],
8-Pmmn borophene [7–9], artificially fabricated nanostruc-
tures [10–14], and ultracold atoms [15,16].

Several studies discovered the merging of Dirac points in
the electronic spectrum of two-dimensional systems [17,18].
The merging of a pair of Dirac points into a single one
shows the existence of a topological Lifshitz transition, which
marks the separation between the semimetallic phase with two
disconnected Fermi surfaces and an insulating gapped phase.
This also leads to special semi-Dirac dispersion hosting mas-
sive fermion behavior along one direction and massless Dirac
characteristics in the orthogonal direction [19,20]. It has been
predicted that materials like TiO2/VO2 nanostructures under
quantum confinement [21] and dielectric photonic crystals
[22] can exhibit such low-energy dispersions. The merging
of Dirac points has been observed experimentally in optical

lattices [23], microwave cavities [13], and recently in
potassium deposited few-layer black phosphorus [24]. Trans-
port properties such as diffusion [25], optical conductivity
[26–29], the formation of Landau level spectra under mag-
netic field [30,31], magneto-optical conductivity [32], dy-
namic polarization, and plasmons [33] have been studied
extensively for semi-Dirac systems. The Landau levels and
transport properties for a semi-Dirac nanoribbon were dis-
cussed in recent work [34]. Very recent studies probed the
topological phases of a Chern insulator in such systems by
tuning the strength of a circularly polarized light [35] and in
the presence of extended range hopping [36].

The topological behavior of the bands is manifested in the
Berry curvature and orbital magnetic moment (OMM) of the
electrons, which can significantly affect the linear and the
NL transport properties [37,38]. Some well-known examples
in the linear-response regime are the anomalous Hall effect
[39–41], the anomalous thermal Hall effect [42,43], the planar
Hall effect [44,45], and magnetoresistance [46,47]. The dis-
covery of the NL anomalous Hall effect induced by the Berry
curvature dipole [48] in the time-reversal symmetric (TRS)
system accelerated the investigation of other NL transport
phenomena [49–57]. Moreover, it has been realized that such
NL transport responses in 2D Dirac systems survive either in
the presence of spin-orbit coupling, which results in tilting of
the Dirac cone, or higher-order warping of the Fermi surface
[48,58]. Recent studies reveal that the low-energy Hamilto-
nian that features a pair of Dirac points separated by a saddle
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point or the merging of two Dirac points can give rise to
Berry curvature dipole induced NL transport properties [59].
However, the linear and NL current responses of such systems
in the presence of a magnetic field are not explored.

In this work, we calculate the contribution of Berry cur-
vature and OMM to the linear and NL conductivities in the
presence of a weak magnetic field using the Boltzmann ap-
proach. We also study the second-order NL magnetoresistivity
of the system for two different orientations of the applied
current. The anisotropy in the nature of B-dependencies of the
NL resistivities may act as an experimental probe for band
geometric quantities as well as merging Dirac nodes in these
systems.

This paper is structured as follows: In Sec. II, we present
the general formulas to calculate the second-order NL cur-
rent responses in the presence of a weak magnetic field. In
particular, we discuss the contribution of Berry curvature and
OMM to the NL magnetoconductivities. In Sec. III, we pro-
vide a discussion on the 2D gapped semi-Dirac model with
merging Dirac nodes. In Sec. IV, we present the results of
linear and NL magnetoconductivities. We further analyze our
results and discuss the dependence of all the contributions on
Fermi energy and other system parameters in its subsequent
subsections. We also discuss the orientations of NL dc cur-
rent in response to the linearly and circularly polarized light.
Section V is dedicated to a discussion of the second-order NL
voltage responses. Finally, we summarize our main results in
Sec. VI.

II. THEORETICAL FORMULATION

In this section, we provide the general formalism to cal-
culate the second-order NL current responses in the presence
of the electric field, which oscillates in time but is uniform
in space, E(t ) = Re[Ee−iωt ] = (1/2)[Ee−iωt + E∗eiωt ] with
E = Exx̂ + Eyŷ, where Ex, Ey ∈ C and a static magnetic field
B. Theoretically, for an applied electric field E(t ), the linear
current of fundamental frequency jωa = σabEb and the NL cur-
rent jNL

a = Re[ j (0)
a + j (2ω)

a e−2iωt ] are measured. Here, j (0)
a =

χ
(0)
abcEbE∗

c describes the NL dc current and j (2ω)
a = χ

(2ω)
abc EbEc

describes the second-harmonic (SH) current, and the sub-
scripts a, b, and c are the coordinate indices.

The charge current is defined as j(t ) = −e
∫

[dk]Dkṙ f (t ),
where [dk] = d2k/(2π )2, f (t ) denotes the nonequilibrium
distribution function (NDF), and Dk = [1 + (e/h̄)(B · �)] is
the phase-space modifying factor [37], with � denoting the
Berry curvature. For simplicity, hereafter we will denote Dk
by D, omitting the implied k dependence. The modified semi-
classical equations of motion (including Berry curvature and
OMM) for the configuration (E ⊥ B) are given by [37,60,61]

ṙ = 1

D

[
ṽk + e

h̄
(E(t ) × �)

]
, (1)

h̄k̇ = 1

D
[−eE(t ) − e(ṽk × B)]. (2)

The semiclassical band velocity is defined as h̄ṽk = ∇kε̃k,
where ε̃k = εk − εm

k is the modified band energy due to
Zeeman-like coupling of OMM with the external magnetic
field. The OMM modified velocity can be expressed as
ṽk = vk − vm

k with h̄vm
k = ∇k(m · B). The Berry curvature

for the nth band can be computed using �n = −Im[〈∇kun
k| ×

|∇kun
k〉], where |un

k〉 is the unperturbed eigenstate [37,62].
The OMM, generated by the semiclassical self-rotation
of the Bloch wave packet, can be evaluated using mn =
−(e/2h̄)Im[〈∇kun

k| × (H − εn
k )|∇kun

k〉] [63]. The Boltzmann
transport equation within the relaxation-time approximation
to obtain the nonequilibrium distribution function (NDF) f (t )
is given by [64]

∂ f (t )

∂t
+ k̇ · ∇k f (t ) = − f (t ) − f̃eq

τ
. (3)

Here, f̃eq = [1 + eβ(ε̃k−μ)]
−1

is the Fermi-Dirac distribution
function and τ is the relaxation time, which is considered
constant (energy-independent) in our case. The NDF can be
expressed as f (t ) = f̃eq +∑∞

n=1 fn(t ), where the nonequilib-
rium part of the NDF can be understood as a power series of
the electric field, i.e., fn ∝ En. The recursive equation of fn

can be obtained from Eq. (3) to get the NDF up to quadratic
order in an electric field. The general expressions of the linear-
response current are discussed in detail in Appendix A, and
the corresponding nonzero linear conductivities are given by
Eqs. (A3), (A6), and (A7). These linear conductivities do not
have an explicit role in the NL conductivities, but they are
used to calculate the NL resistivities, which will be discussed
in a later section.

Second-order nonlinear current responses

To calculate the second-order NL current responses
quadratic in E and up to linear order in B, we consider the
ansatz for NDF quadratic in E ,

f2(t ) = f 0
2 + f 0∗

2 + f 2ω
2 e−i2ωt + f 2ω∗

2 ei2ωt , (4)

where f 0
2 denotes the rectification (dc) part, and f 2ω

2 denotes
the SH part of the NDF. Substituting it in Eq. (3) and ap-
plying the Zener-Jones method [65], we can express f 2ω

2 in
terms of the infinite series of Lorentz force operator L̂B =
(e/h̄)[(ṽk×B) · ∇k] as [66]

f 2ω
2 = 1

2

∞∑
η=0

(
τ2ωL̂B

D

)η(eτ2ω

h̄D
E · ∇k f ω

1

)
, (5)

where τ2ω = τ/(1 − 2iωτ ) and f 0
2 = f 2ω

2 (E→E∗, τ2ω→τ ).
Here, f ω

1 is the first-order correction to the distribution func-
tion, which is presented in Appendix A. Taking into account
the weak B-field strength, we can express Eq. (5) as a power
series of the magnetic field [61]. The equilibrium part of NDF
f̃eq consists of a B-dependence through OMM-modified en-
ergy, thus it can be expanded via Taylor expansion in terms of
B as f̃eq = feq − εm f ′

eq, where f ′
eq ≡ ∂ feq/∂εk with feq defined

at B = 0.

1. Second-harmonic current

For an external electric field oscillating at frequency ω,
we study the SH current generated at twice the excitation
frequency, j2ω

a = χ
(2ω)
abc EbEc. The SH current can be written

as j2(t ) = j20(t ) + j21(t ), where the first and second subscript
represents the order of E and B, respectively. The magnetic-
field-independent SH current can be further expressed as
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j20(t ) = j2ω
20 e−2iωt + j2ω∗

20 e2iωt , where we obtain

j2ω
20 = −e3τω

4h̄

∫
[dk][(E × �) + τ2ωvk(E · ∇k )](E · vk ) f ′

eq.

(6)
The corresponding nonzero SH conductivity is given by

χ
(NAH)
abc = −e3τω

4h̄
εabd

∫
[dk]�dvc f ′

eq. (7)

Here, εabd is the Levi-Civita symbol, and abd ∈ xyz.
The above equation denotes the SH anomalous Hall con-
ductivity χ

(NAH)
abc , which is proportional to the dipole

moment of Berry curvature over occupied states, defined as
ζbd = − ∫ [dk](∇kbεk )�d f ′

eq. It is evident from the expres-
sion that the Berry curvature dipole moment survives in
a time-reversal symmetric and inversion symmetry broken
system, unlike the linear anomalous Hall conductivity. The
second term in Eq. (6) corresponds to SH Drude conduc-
tivity (originating from band velocity) calculated as χ

(D)
abc =

−(e3τωτ2ω/4h̄)
∫

[dk]va∂kbvc f ′
eq. The SH Drude conductivity

vanishes if either of the symmetries between TRS and space
inversion symmetry is present in contrast to linear Drude
conductivity, which is always nonzero.

The SH current linearly dependent on the magnetic field
can be written as j21(t ) = j2ω

21 e−2iωt + j2ω∗
21 e2iωt , where

j2ω
21 = e3

4h̄

∫
[dk]

{
(E × �)

[−τ 2
ωL̂(E · vk ) f ′

eq

]+ τωτ2ωvkE ·
[

e

h̄
(� · B)∇k(E · vk f ′

eq) + ∇k

(
e

h̄
(� · B)(E · vk ) f ′

eq

)]

+ τωτ2ω

[
vkE · ∇k

(
E · (vm

k f ′
eq + εmvk f ′′

eq

))+ vm
k E · ∇k(E · vk f ′

eq)
]}

. (8)

The finite contribution for the SH current linear in B is pro-
portional to τ 2, since terms ∝ τ and τ 3 vanish due to TRS.
It should be noted that in the presence of SIS but broken
TRS, all these contributions vanish. Therefore, breaking of
SIS elicits these nonzero SH responses. The SH conductivity
in the presence of a magnetic field encompasses three distinct
contributions: the combined effects of anomalous velocity and
Lorentz force, the OMM, and the Berry curvature correction
to the phase-space factor. The SH Hall conductivity emerging
from the combined effects of anomalous velocity and Lorentz
force χ

(NAL)
abc can be obtained as

χ
(NAL)
abc = e4τ 2

ωB

4h̄2 εabd

∫
[dk]�d (vk × ∇k )z(vc f ′

eq). (9)

The SH conductivity incited by OMM is given by

χ
(OMM)
abc = e3τωτ2ω

4h̄

∫
[dk][vma∂kb (vc f ′

eq)

+ va∂kb (vmc f ′
eq + εmvc f ′′

eq)]. (10)

Here, f ′′
eq is the double derivative of feq with respect to energy.

The contribution to the SH conductivity generated by the
phase-space factor is obtained as

χ
(B)
abc = e4τωτ2ω

4h̄2

∫
[dk]va[(� · B)∂kb + ∂kb (� · B)]vc f ′

eq.

(11)

We emphasize that all three of the above contributions to the
SH conductivities in the presence of a magnetic field depend
on intrinsic band geometric quantities, namely Berry curva-
ture and OMM.

2. Nonlinear dc current

The second-order response also includes a zero-frequency
current known as the photogalvanic effect (PGE). The NL dc
current can be expressed as j (0)

a = χ
(0)
abcEbE∗

c .

The NL dc current arising from the anomalous velocity
of Bloch electrons (without magnetic field) can be obtained
as [38]

j(0)
NAH = 1

1 + ω2τ 2

[
2
(
χ

(NAH)
xyy,0 |Ey|2x̂ + χ

(NAH)
yxx,0 |Ex|2ŷ

)
+ (

χ
(NAH)
xyx,0 [EyE∗

x ]+x̂ + χ
(NAH)
yxy,0 [EyE∗

x ]+ŷ
)

− iωτ
(
χ

(NAH)
xyx,0 [EyE∗

x ]−x̂ − χ
(NAH)
yxy,0 [EyE∗

x ]−ŷ
)]

, (12)

where [EbE∗
c ]± = EbE∗

c ± EcE∗
b , and χ

(NAH)
abc,0 = χ

(NAH)
abc (ω = 0)

represents the SH anomalous Hall conductivity given by
Eq. (7) at ω = 0. In Eq. (12), the terms in the first parentheses
denote the typical photovoltaic effect, and the terms in the
second (third) parentheses describe the linear (circular) PGE.
On the variation of the polarization, the linear PGE (LPGE)
is maximum for linearly polarized light, whereas the circular
PGE (CPGE) is maximum for circularly polarized light. The
CPGE current reverses sign when the polarization state of
the electric field changes from left to right circular. Note that
the LPGE vanishes for circularly polarized light, whereas the
CPGE vanishes for linearly polarized light. In Appendix B, we
present the general formulas for various contributions arising
from the geometric quantities to the NL dc current in the pres-
ence of a magnetic field. These contributions are expressed in
terms of the polarization of the electromagnetic wave.

In the upcoming sections, we will apply this formalism to
the semi-Dirac model with the merging Dirac nodes, and we
investigate its linear and second-order NL transport properties
in the presence of a low B-field.

III. GAPPED SEMI-DIRAC SYSTEM

The low-energy Hamiltonian that describes the merging of
two Dirac nodes has the following form [20,25,59]:

H (k) = (
αk2

x − δ0
)
σx + h̄βkyσy + m0σz, (13)
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FIG. 1. The top panel (a)–(c) represents the energy spectrum of the model given by Eq. (13) for different values of gap parameter δ0. Plot
(a) shows the case of δ0 > 0 describing the phase with two Dirac nodes separated by a distance 2

√
δ0/α along the kx direction, (b) δ0 = 0

corresponds to the semi-Dirac form where two Dirac nodes merge, and (c) represents the gapped phase. The bottom panel (d)–(h) illustrates
the constant Fermi energy contours corresponding to different values of δ0 and Fermi energy. Parts (d)–(f) describe the energy contours existing
for three scenarios when δ0 > 0. Part (d) represents the two disconnected Fermi surfaces in accordance with the two distinct Dirac nodes until
δ0 >

√
μ2 − m2

0, (e) the two Fermi surfaces get connected by a saddle point at δ0 = √
μ2 − m2

0, and (f) the single connected Fermi surface
exists as long as δ0 <

√
μ2 − m2

0. Parts (g) and (h) describe the constant Fermi energy contours for δ0 = 0 and δ0 < 0, respectively. Here, we
have used β = 105 m/s, m0 = 0.1 eV, α = 2.7 meV nm2 with m∗ = 13.6me for (TiO2)5/(VO2)3, where me is the free-electron mass.

where σ = (σx, σy, σz ) are the 2×2 Pauli matrices in pseu-
dospin space, k is the crystal momentum having magnitude,
k =

√
k2

x + k2
y , δ0 and m0 are the gap parameter, α = h̄2/2m∗

with m∗ as effective mass related to the x-direction, and β is
the Dirac velocity along the y-direction. In the Hamiltonian
given by Eq. (13), the mirror symmetry is preserved along
the x-direction and broken along the y-direction. The energy
spectrum is given by

ελ(k) = λ

√(
αk2

x − δ0
)2 + h̄2β2k2

y + m2
0, (14)

where λ = ± denotes the conduction and valence band, re-
spectively. The corresponding band dispersion is shown in
Fig. 1. The x-component of semiclassical band velocity is
calculated as h̄vx = 2αkx(αk2

x − δ0)/εk and its y-component
is vy = h̄β2ky/εk. Equation (13) has been termed the “Uni-
versal Hamiltonian” as different types of the spectrum can be
obtained by tuning the gap parameter δ0 [20]. The Hamilto-
nian with δ0 > 0 describes the phase that consists of two Dirac
nodes separated by a distance 2

√
δ0/α along the kx axis. In the

limit of δ0 = 0, the two Dirac nodes merge and the resulting
dispersion exhibits semi-Dirac behavior, which is quadratic
in the x-direction and linear in the y-direction. For δ0 < 0,
a trivial insulating phase is obtained with a nonzero energy
gap. Thus the variation of parameter δ0 from negative to
positive values drives the transition from an insulating phase
to a semimetallic phase. The mass term m0σz is added in the
Hamiltonian to introduce an energy gap at the Dirac nodes.

We employ the method of parametrization to the constant
energy contours ε(k) in Eq. (14) considering the sign of kx

(kx ≶ 0) in each half-plane. The change of coordinates goes

as αk2
x − δ0 = r cos φ, h̄βky = r sin φ, and ςk = sgn(kx ) = ±

[25]. The energy spectrum now acquires the simplified form
εk = ±

√
r2 + m2

0, and φ represents the coordinate along the
constant energy contour. The limit of φ varies according to
the topology of the constant energy contours obtained for
different energies. The eigenstates are given by

ψ±
k (r) = eik·r

⎛
⎜⎜⎜⎜⎝

±r√
r2+
(√

r2+m2
0∓m0

)2

(√
r2+m2

0∓m0

)
eiφ√

r2+
(√

r2+m2
0∓m0

)2

⎞
⎟⎟⎟⎟⎠. (15)

Next, we discuss the constant Fermi energy contours corre-
sponding to different values of δ0 and Fermi energy. For a
given Fermi energy in the conduction band, the band contains
only one minima at δ0 = 0. Hence, we get a single Fermi
surface as a result of one nodal point (semi-Dirac node). When
δ0 starts to increase, the single minima splits into two minima
giving rise to two allowed wave vectors that correspond to
two distinct Dirac nodes with linear dispersion. A single con-
nected Fermi surface continues to exist until δ0 <

√
μ2 − m2

0
and the area of the Fermi surface gets enhanced due to the
presence of extra curvature emerging from the splitting of
a single minima. These two Dirac points are connected by
a saddle point, which, upon a further increase of δ0, yields
two connected Fermi surfaces at δ0 =

√
μ2 − m2

0. The two
disconnected Fermi surfaces are formed for δ0 >

√
μ2 − m2

0,
which marks the onset of a decrease in the Fermi surface
area since the bands get narrower with the increase of δ0. The
Fermi surface topology nearly remains uninterrupted with δ0
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FIG. 2. Variation of the density of states as a function of Fermi
energy: (a) at fixed m0 = 0.1 eV for different values of δ0 (in eV) and
(b) at fixed δ0 = 0.1 eV for given values of m0 (in eV). The normal-
ization parameters for the density of states and the Fermi energy are
G0 = 1/α and μ0 = h̄2β2/α, respectively. The parameters used are
the same as in Fig. 1.

for high Fermi energy. Thus the range of φ ∈ [−φ0, φ0] can
be separated into two regions for the case of δ0 > 0,

φ0 =

⎧⎪⎨
⎪⎩

arccos

[
−δ0√
μ2−m2

0

]
, δ0 <

√
μ2 − m2

0,

π, δ0 �
√

μ2 − m2
0.

(16)

The Jacobian for the transformation of coordinates from
(kx, ky) to (r, φ) is given by

J (r, φ) = r

2h̄β
√

α(r cos φ + δ0)
. (17)

We obtain the density of states (DOS) given as

G(μ) = 2
G0

π2
√

8

√
δ̃2

0 + m̃2
0γ

2

γ δ̃0

{
K (k), γ < 1,

k′[K (k′)], γ � 1,
(18)

where K (k) and E (k) are the complete elliptic integrals of
the first and second kind, respectively, with k = √

(1 + γ )/2
and k′ = 1/k = √

2/(1 + γ ) known as the modulus of Ja-
cobian elliptic function and integrals. We introduce γ =
δ0/

√
μ2 − m2

0 as a reduced parameter and G0 = 1/α. Note
that an overall factor of 2 is multiplied to consider the
sign of kx. Here, we define the scaled system parameters as
δ̃0 = δ0/μ0 and m̃0 = m0/μ0 with μ0 = h̄2β2/α. We choose
μ > m0 such that the Fermi energy lies above the bulk gap.
Expanding the above expression of the DOS for γ � 1 up to
leading order in k′ gives

G(μ) � G0

32π

√
δ̃2

0 + m̃2
0γ

2

γ δ̃0

(
33 + 40γ + 16γ 2

(1 + γ )5/2

)
. (19)

Near the band edge in the limit of γ → ∞, G(μ) ∝ 1/
√

δ0.
For very low doping the DOS decreases with δ0, whereas for
high doping the DOS increases with δ0 and matches with the
semi-Dirac result in the large μ limit, as shown in Fig. 2(a).
Note that divergence occurs exactly at the saddle point (γ=1).
Equation (18) at m0 = 0 reduces to the known results [20].
We also plotted the variation of the DOS with Fermi energy at
fixed δ0 = 0.1 eV for different values of energy gap parameter
m0 in Fig. 2(b). We find that as we increase the value of m0

from 0.0 to 0.1 eV, the peak of divergence also gets shifted
since the allowed range of μ will also change from μ = 0.0
to 0.1 eV such that μ > m0 to get the physical results.

FIG. 3. Density-contour plot of (a) Berry curvature (in units of
10−1 nm2), (b) OMM (in units of 4 αe/h̄), and (c), (d) derivative
of Berry curvature with respect to kx and ky, respectively, for the
conduction band of the system. Here, kx and ky are plotted in units of√

δ0/α. The parameters used are the same as in Fig. 1.

The Berry curvature and OMM of the given Hamiltonian
can be calculated as

�z = ∓ h̄αβm0kx

ε3
k

, mz = −eαβm0kx

ε2
k

. (20)

It should be noted that Berry curvature and OMM are zero for
the gapless system (m0 = 0), whereas, in the limit of δ0 = 0,
it remains nonzero. The OMM is the same for both bands.
The density-contour plot of the Berry curvature and OMM for
the conduction band are shown in Fig. 3. The magnitude of
Berry curvature decays rapidly as compared to OMM when
the Fermi energy shifts away from the band edge.

IV. RESULTS AND DISCUSSIONS

In this section, we calculate the linear, SH, and NL dc
current responses of the gapped semi-Dirac system in the pres-
ence of a static magnetic field applied along the z direction.
In experimental setups [50,67], the ac frequency lies in the
range of 10–1000 Hz and relaxation time τ ∼ 10−12 s, which
explains the transport limit, i.e., ωτ � 1. In this limit, τω → τ

and τ2ω → τ . In our work, we utilize this limit to determine
the linear and SH conductivities of the system by substituting
τω and τ2ω with τ . In this limit, it is noteworthy that the SH
and the NL dc conductivities are nearly equal.

A. Linear conductivities

We first evaluate the linear conductivities of the system
using the general form of Eqs. (A3), (A6), and (A7) along
with modified coordinates that account for the dispersion
anisotropy. In the limit of zero temperature, a derivative of the
Fermi-Dirac distribution function is substituted by the Dirac δ

function, which allows us to perform the integral over energy
analytically. Next, we can evaluate the angular integration by
considering the appropriate limits of φ in accordance with
the two regimes discussed in Eq. (16) for δ0 > 0. Such an-
gular integrals can be expressed in terms of complete elliptic
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FIG. 4. Variation of linear conductivities (up to linear order in B) with the Fermi energy for different values of δ0 (in eV). (a),(b) Drude
conductivity along the x- and y-direction, respectively, (c) Lorentz force induced linear Hall conductivity, and (d) OMM induced linear Hall
conductivity. The normalization parameter for linear conductivities is σ0 = τe2β2/α. Here, the solid color curves represent the results of
analytical calculations at zero temperature whereas the corresponding colored plot markers are the representatives of the results of numerical
calculations performed at temperature T = 34 K. The inset is a blow-up of the region around μ = √

δ2
0 + m2

0 for δ0 = 0.1 eV. The parameters
used are β = 105 m/s, α = 2.7 meV nm2 with m∗ = 13.6me, τ = 10−12 s, B = 2 T, and m0 = 0.1 eV.

integrals of the first and second kinds. The xx-component of Drude conductivity can be calculated using Eq. (A3) as

σ (D)
xx =

√
2σ0

15π2

δ̃
5/2
0√

γ 3
(
δ̃2

0 + m̃2
0γ

2
)
{

[(2γ 2 + 7γ − 9)K (k) + 2(9 − 2γ 2)E (k)], γ < 1,

2k[(9 − 2γ 2)E (k′) + 2γ (γ − 1)K (k′)], γ � 1,
(21)

where σ0 = τe2β2/α. In view of anisotropic dispersion, σ (D)
xx �= σ (D)

yy . Following the details of calculation similar to the xx-term,
the yy-component of Drude conductivity is calculated to be

σ (D)
yy =

√
2σ0

6π2

δ̃
3/2
0√

γ
(
δ̃2

0 + m̃2
0γ

2
)
{

[2γ E (k) + (1 − γ )K (k)], γ < 1,

2k[γ E (k′) − (γ − 1)K (k′)], γ � 1.
(22)

We have plotted the Drude conductivities σ (D)
xx and σ (D)

yy as a
function of Fermi energy at the given values of δ0 in Figs. 4(a)
and 4(b). The behavior of conductivities is expectedly dif-
ferent for γ < 1 (high Fermi energy with single-connected
Fermi surface) and γ � 1 (low Fermi energy with two Fermi
surfaces) due to the particular Fermi surface topology in the
two regimes. For the case of γ � 1, expanding the exact
analytic expressions given by Eqs. (21) and (22) up to leading
order in k′, we get

σ (D)
xx � σ0

16π

δ̃
5/2
0√

γ 3
(
δ̃2

0 + m̃2
0γ

2
)
[

(1 + 2γ )(3 + 4γ )

(γ + 1)3/2

]
,

σ (D)
yy � σ0

32π

δ̃
3/2
0√

γ
(
δ̃2

0 + m̃2
0γ

2
)
[

(11 + 4γ )

(γ + 1)3/2

]
. (23)

In the limit of γ → ∞ (near the band-edge approxima-
tion, i.e., μ → m0), we find that σ (D)

xx ∝ μ2
√

δ0 and σ (D)
yy ∝

μ2/
√

δ0. Hence, for low doping, σ (D)
xx increases with both μ

and δ0, whereas σ (D)
yy increases with the Fermi energy but

decreases with δ0. We noticed a small kink in both the Drude
conductivities as a consequence of a change in Fermi surface
topology exactly at the saddle point (γ = 1) for the fixed
positive values of δ0. For high doping, σ (D)

xx and σ (D)
yy continue

to increase with the Fermi energy. The increasing nature of
Drude conductivities with the Fermi energy can be explained

by the monotonous increase of Fermi surface area and ve-
locities with μ for given δ0. It should be noted that for high
Fermi energy, the Fermi surface topology remains relatively
the same with δ0.

We also note the variation for the geometric mean of Drude
conductivities defined as σP =

√
σ (D)

xx σ (D)
yy and their ratio σR ≡

σ (D)
xx /σ (D)

yy with μ and δ0. We are interested in probing the
variations of the experimentally relevant quantity σR, which is
independent of scattering time since the calculation of scat-
tering time may not be straightforward. We find that σP is
independent of α and β. Similar to Drude conductivities, σP

also shows an increase with the Fermi energy. However, the
ratio σR decreases with Fermi energy for low doping, while
for high doping it shows an increase with the Fermi energy
for a given δ0. Note that for low doping, the semi-Dirac curve
(δ0 = 0) for σR deviates significantly from the finite δ0 case.
For δ0 = 0, σR increases with the Fermi energy whereas it
decreases for finite δ0. For high doping, the resulting ratio
curve matches perfectly well with the semi-Dirac case. Next,
we discuss the variation of these quantities as a function of
δ0 for a given Fermi energy. We find that for low doping, σP

is nearly constant, which is consistent with our results of the
γ → ∞ limit, while for high doping, σP shows an increase
with δ0. The ratio σR increases with δ0. This variation for
the geometric mean and the ratio of Drude conductivities are
illustrated in Figs. 5(a) and 5(b), respectively.

Now we move to compute the magnetic-field-dependent
linear conductivities of the system. The Lorentz force-induced
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Hall conductivity can be calculated using Eq. (A6) as

σ (L)
xy = −

√
2σ0B̃1

15π2

δ̃
5/2
0√

γ
(
δ̃2

0 + m̃2
0γ

2
)
{

[(2γ 2 + 7γ − 9)K (k) + 2(9 − 2γ 2)E (k)], γ < 1,

2k[(9 − 2γ 2)E (k′) + 2γ (γ − 1)K (k′)], γ � 1.
(24)

Here, σ (L)
xy = −σ (L)

yx and B̃1 = B/B1 with B1 = h̄2/(eτα). Ex-
panding the low-energy expression up to the leading order in
k′, we find

σ (L)
xy � −σ0B̃1

16π

δ̃
5/2
0√

γ
(
δ̃2

0 + m̃2
0γ

2
)[ (1 + 2γ )(3 + 4γ )

(γ + 1)3/2

]
. (25)

In the limit of γ → ∞, it turns out that σ (L)
xy ∝ (μ2)

√
δ0. The

variation of σ (L)
xy with the Fermi energy is shown in Fig. 4(c).

Below the saddle point for γ > 1, σ (L)
xy increases with the

increase in Fermi energy and δ0. In other words, σ (L)
xy decreases

as Dirac nodes move closer to each other (δ0 → 0). As ex-
pected, a little kink is observed at the saddle point. Past the
saddle point, σ (L)

xy continues to increase monotonically with
μ. For high Fermi energy, σ (L)

xy increases with δ0. The OMM
induced Hall conductivity can be evaluated using Eq. (A7) as

σ (OMM)
xy = −σ (OMM)

yx = −σ0m̃2
0B̃2

2
√

2π2

√
γ 7δ̃0(

δ̃2
0 + m̃2

0γ
2
)2

×
{

[2E (k) − (1 − γ )K (k)], γ < 1,

2k[E (k′)], γ � 1,
(26)

where B̃2 = B/B2 with B2 = τ h̄4β4/(eα3). Expanding the
above expression for γ � 1, we find

σ (OMM)
xy � σ0m̃2

0B̃2

64π

√
γ 7δ̃0(

δ̃2
0 + m̃2

0γ
2
)2

[
(1 + 4γ )(5 + 4γ )

(γ + 1)3/2

]
.

(27)

We find that the σ (OMM)
xy varies as

√
δ0 in γ → ∞ limit. For

low doping, σ (OMM)
xy decreases with the Fermi energy whereas

it increases with δ0. Above the saddle point, it continues to de-
crease with μ while it increases with δ0. Note that this energy
dependence of σ (OMM)

xy is related to the fact that the magnitude
of Berry curvature and OMM decreases as the Fermi energy
shifts away from the band edge. It is evident from Fig. 4(d)

FIG. 5. (a), (b) Plots of variation of σP ≡
√

σ
(D)
xx σ

(D)
yy and σR ≡

σ (D)
xx /σ (D)

yy with the Fermi energy for different values of δ0 (in eV).
The solid color curves represent the analytical results calculated at
zero temperature. All parameters used are the same as in Fig. 4.

that the magnitude of OMM induced Hall conductivity is
considerably smaller than the other linear contributions.

We would like to point out that the linear conductivities
σ (D)

xx , σ (L)
xy , and σ (OMM)

xy are predicted to be large for materials
with small effective mass, whereas σ (D)

yy appears small for low
effective mass. The effective mass of some proposed semi-
Dirac materials is m∗ = 13.6me for (TiO2)5/(VO2)3, m∗ =
3.1me [α-(BEDT-TTF)2I3], and m∗ = 1.2×10−3me (photonic
crystals) [59]. We have used m∗ = 13.6me, β = 105 m/s,
m0 = 0.1 eV, α = 2.7 meV nm2, B = 2 T, and τ = 10−12 s in
this work. We also find that the linear conductivities decrease
with the increase of gap parameter m0 at a given value of μ

and δ0. It should be noted that only the Hall components of
the above B-linear contribution to the conductivity survive due
to the Onsager relation, which implies σi j (B) = σ ji(−B). We
have also calculated these contributions to the linear conduc-
tivities numerically at T = 34 K, and the obtained results at
T = 34 K match well with the analytical results evaluated at
zero temperature.

B. Nonlinear conductivities

1. Second-harmonic conductivities

Next, we calculate the different contributions (arising from
Berry curvature and OMM) to the SH conductivities of the
system. Following the details of the calculation similar to the
linear case related to the integration over energy and φ in two
regimes, the SH anomalous Hall conductivity can be evaluated
using Eq. (7) as

χ (NAH)
xyx = − χ0m̃0

6
√

2π2

(γ δ̃0)3/2(
δ̃2

0 + m̃2
0γ

2
)3/2

×
{

[(1 − γ )K (k) + 2γ E (k)], γ < 1,

2k[(1 − γ )K (k′) + γ E (k′)], γ � 1,
(28)

where χ0 = e3τα/h̄3β. The other nonvanishing components
of SH anomalous conductivity go as χ (NAH)

yxx = −χ (NAH)
xyx .

These off-diagonal terms are proportional to the x-component
of the Berry curvature dipole, which is nonzero due to the
mirror symmetry along the x-axis [59].

We obtained the SH Hall conductivity arising due to the ef-
fective combination of Lorentz force and anomalous velocity
for the system using Eq. (9), and we find that it is related to
SH anomalous Hall conductivity as

χ (NAL)
yxy = B̃1

μ/μ0
χ (NAH)

xyx . (29)

The other nonzero Hall component is χ (NAL)
xyy = −χ (NAL)

yxy . It is
evident from the above equation that the ratio χ (NAL)

yxy /χ (NAH)
xyx

is independent of δ0. For the parameters used in our calcu-
lation and μ = 0.2 eV, we get B̃1μ0/μ = 0.1. Hence, χ (NAL)

yxy

is about an order of magnitude less than χ (NAH)
xyx . Thus, the
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FIG. 6. (a) Depicts the behavior of SH anomalous Hall conduc-
tivity with the Fermi energy. (b) The anomalous velocity and Lorentz
force induced SH conductivity as a function of Fermi energy. Both of
these plots are plotted for different values of δ0 in eV. The solid color
curves are the results of analytical calculations at zero temperature
which matches perfectly well with the numerical results obtained
at T = 34 K (color plot markers). The above SH conductivities are
normalized by χ0 = e3τα/h̄3β. The parameters used are the same as
in Fig. 4.

intrinsic anomalous response dominates over the Lorentz
force contribution. Expanding the exact analytical results
given by Eqs. (28) and (29) for γ � 1, we obtain

χ (NAH)
xyx � −χ0m̃0

64π

(γ δ̃0)3/2(
δ̃2

0 + m̃2
0γ

2
)3/2

[
4γ + 11

(1 + γ )3/2

]
,

χ (NAL)
yxy � B̃1γ√

δ̃2
0 + m̃2

0γ
2
χ (NAH)

xyx . (30)

Near the band edge at γ → ∞, we find that χ (NAH)
xyx and

χ (NAL)
yxy ∝ μ2/

√
δ0. For low doping, both the SH conductivities

increase with μ but decrease with δ0. As the Fermi energy
is further increased, both χ (NAH)

xyx and χ (NAL)
yxy start decreasing

with μ, although a substantial change is not observed with δ0

in the region of high Fermi energy. A small kink is observed
at the saddle point, which reflects the change in Fermi surface
topology. The Fermi energy dependence of χ (NAH)

xyx and χ (NAL)
yxy

for different values of δ0 is depicted in Figs. 6(a) and 6(b), re-
spectively. The peaks in χ (NAL)

yxy appear to be more pronounced
than the peaks seen in χ (NAH)

xyx .
We next turn to evaluate the OMM contribution to the SH

conductivity using Eq. (10). We start by performing the inte-
gral over energy analytically using the approximation f ′

eq =
−δ(εk − μ) in the limit of T → 0, where we find that the

FIG. 7. (a), (b) OMM induced SH conductivity as a function
of Fermi energy for different values of δ0 in eV. The dashed color
curves denote the results calculated numerically at T = 34 K. The
parameters used are the same as in Fig. 4.

resulting expression encounters divergence, unlike the previ-
ous cases. Thus the zero-temperature approximation of the
Dirac δ function does not capture the proper results here.
Therefore, we proceed to calculate the OMM contribution by
computing the results numerically at finite temperature T =
34 K to overcome the issue of divergence. Figure 7 represents
the variation of OMM induced SH conductivities (χ (OMM)

xxx and
χ (OMM)

yxy = χ (OMM)
xyy = χ (OMM)

yyx ) with the Fermi energy.
The phase-space contribution to the SH conductivity can be

calculated using Eq. (11). Its expression after integration over
energy (at zero temperature) is cumbersome and therefore
not presented here. The nonzero components of phase-space
induced conductivity include the diagonal term χ (B)

xxx and off-
diagonal components χ (B)

yyx , χ (B)
yxy , and σ (B)

xyy . We have plotted the
Fermi energy dependence of these terms for different values
of δ0 in Fig. 8. Similar to the linear case, we have plotted the
above three contributions to the SH conductivity by perform-
ing numerical calculations at temperature T = 34 K, and we
observed that they agree closely with our analytical results ob-
tained at zero temperature. Both the SH conductivities χ

(OMM)
abc

and χ
(B)
abc initially show an increase with the Fermi energy but

then start decreasing.
We emphasize that all the above SH conductivities have

a peak near the band edge which is related to the fact that
these SH contributions arise from the Berry curvature and
OMM and their magnitude decreases as the Fermi energy
shifts from the band edge. The peaks are not observed exactly
at the band edge because the SH contributions arise from
the effective contribution of geometric quantities and band
dispersion anisotropy. The nonzero components of these
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FIG. 8. (a)–(d) Variation of different components of phase-space factor induced SH conductivity (measured in units of χ0) with the Fermi
energy for different values of δ0 in eV. The solid color curves are the results calculated at zero temperature, while color plot markers represent
the numerical results obtained at T = 34 K. The parameters used are the same as in Fig. 4.

different contributions are highlighted in Table I. It is worth
pointing out that all four contributions to the SH conductiv-
ities increase with the decrease in the effective band mass of
semi-Dirac materials. Interestingly, these SH conductivities in
a given semi-Dirac material are found to be comparable to
or smaller than the SH conductivities of a 2D system hosting
massive tilted Dirac fermions [68]. We also noticed the varia-
tion of SH conductivities with the gap parameter m0, and we
find that their peak is shifted with the increase of m0.

2. Nonlinear dc current

We next proceed to calculate the NL dc current arising
from these different contributions in the gapped semi-Dirac
system using Eqs. (12) and (B1)–(B3),

j(0)
NAH = χ

(NAH)
xyx,0

1 + ω2τ 2
[−2|Ex|2ŷ + [EyE∗

x ]+x̂ − iωτ [EyE∗
x ]−x̂],

(31)

j(0)
NAL = χ

(NAL)
yxy,0

(1 + ω2τ 2)2 [(1 − ω2τ 2)(−2|Ey|2x̂ + [EyE∗
x ]+ŷ)

+ 2iωτ [EyE∗
x ]−ŷ], (32)

j(0)
OMM = 2

1 + ω2τ 2

[
χ

(OMM)
xxx,0 |Ex|2x̂ + χ

(OMM)
yyx,0 (|Ey|2x̂

+ [EyE∗
x ]+ŷ)

]
, (33)

j(0)
B = 1

1 + ω2τ 2

[
2
(
χ

(B)
xxx,0|Ex|2 + χ

(B)
xyy,0|Ey|2

)
x̂

+ (
χ

(B)
yyx,0 + χ

(B)
yxy,0

)
[EyE∗

x ]+ŷ − iωτ
(
χ

(B)
yyx,0 − χ

(B)
yxy,0

)
× [EyE∗

x ]−ŷ
]
. (34)

It is evident that the obtained NL dc current is dependent on
the polarization of the incident electromagnetic wave. Here,
we define the total NL dc current as j(0)

net = j (0)
x x̂ + j (0)

y ŷ =
j(0)
NAH + j(0)

NAL + j(0)
OMM + j(0)

B and we discuss their contributions
in response to the linearly and circularly polarized light.

Case I: For linearly polarized light in the x direction, i.e.,
E = (E0, 0, 0), the total NL dc current along the x- and y-
directions can be calculated as

j (0)
x = 2

1 + ω2τ 2

(
χ

(OMM)
xxx,0 + χ

(B)
xxx,0

)|E0|2,

j (0)
y = − 2

1 + ω2τ 2
χ

(NAH)
xyx,0 |E0|2. (35)

In the low-frequency limit ωτ � 1, the above equa-
tion reduces to j (0)

x ≈ 2(χ (OMM)
xxx,0 + χ

(B)
xxx,0)|E0|2 and j (0)

y ≈
−2χ

(NAH)
xyx,0 |E0|2. We have plotted the variation of j (0)

x and j (0)
y

with the Fermi energy for δ0 = 0.1 eV in inset of Fig. 9(a).
For very low Fermi energy below the saddle point, j (0)

x and
j (0)
y are comparable and thus the angle that the total dc current

j(0)
net makes with the x axis (say, θ ) increases monotonically

with the Fermi energy. For high Fermi energy above the saddle
point, j (0)

x becomes vanishingly small and nearly constant as
compared to j (0)

y . Thus j (0)
y dominates and the angle between

the j(0)
net and x axis saturates, θ → 90◦, implying that the total

dc current is nearly perpendicular to the applied electric field
as shown in Fig. 9(a). This can be attributed to the fact that
j (0)
y ∝ χ

(NAH)
xyx,0 , which is finite due to the x-component of the

Berry curvature dipole. This Berry curvature dipole contri-
bution arises from the mirror symmetry along the x-axis in

TABLE I. Highlighting the nonzero components of different contributions induced by the Berry curvature and the OMM to the linear and
SH conductivities (up to linear order in a magnetic field).

B �= 0

B = 0 Lorentz force and Phase-space factor Orbital Magnetic

j ∝ En Drude Anomalous Hall anomalous velocity (B) moment (OMM)

n = 1
linear current responses σ (D)

xx �= σ (D)
yy 0 σ (L)

xy = −σ (L)
yx 0 σ (OMM)

xy = −σ (OMM)
yx

n = 2 χ (B)
xxx , χ (B)

xyy , χ (OMM)
xxx , χ (OMM)

yxy =
SH current responses 0 χ (NAH)

yxx = −χ (NAH)
xyx χ (NAL)

xyy = −χ (NAL)
yxy

χ (B)
yyx , χ

(B)
yxy χ (OMM)

xyy = χ (OMM)
yyx
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FIG. 9. Variation of angle between the total NL dc current j(0)
net and the x-axis (defined as θ ) with the Fermi energy at δ0 = 0.1 eV for

(a) linearly polarized light along the x-direction; (b) left and right circularly polarized light in the limit of ωτ � 1; (c),(d) left and right
circularly polarized light in the ωτ � 1 limit. The corresponding insets represent the Fermi energy dependence of the total NL dc current
in the x- and y-directions denoted by j (0)

x and j (0)
y , respectively. We have defined the scaled dc current as j̃ (0)

x = j (0)
x /(2χ0|E0|2) and j̃ (0)

y =
j (0)
y /(2χ0|E0|2). The other parameters used are the same as in Fig. 4.

the system. However, in the absence of B, the NL dc current
is purely along the y-direction for any Fermi energy. In the
high-frequency limit ωτ � 1, j (0)

x and j (0)
y are simply reduced

by a factor of ω2τ 2.
Case II: For linearly polarized light in the y-direction, i.e.,

E = (0, E0, 0), the NL dc current contribution in the x- and
y-directions can be obtained as

j (0)
x = 2

1 + ω2τ 2

[
−
(

1 − ω2τ 2

1 + ω2τ 2

)
χ

(NAL)
yxy,0 + χ

(OMM)
yyx,0 + χ

(B)
xyy,0

]

× |E0|2,
j (0)
y = 0. (36)

In the ωτ � 1 limit, we obtain j (0)
x ≈ 2(−χ

(NAL)
yxy,0 + χ

(OMM)
yyx,0 +

χ
(B)
xyy,0)|E0|2 and j (0)

y = 0, which indicates the direction of j(0)
net

is directed along the positive x-direction, i.e., θ = 0. When
ωτ � 1, the current in the x-direction is given by j (0)

x ≈
(2/ω2τ 2)(χ (NAL)

yxy,0 + χ
(OMM)
yyx,0 + χ

(B)
xyy,0)|E0|2. The values of j (0)

x

become negative due to which j(0)
net is oriented antiparallel to

the x-axis, i.e., θ = 180◦. These currents vanish in the absence
of a magnetic field.

Case III: For circularly polarized light, the electric field is
given by E = (E0,�iE0, 0), where the index � = ± indicates
left and right circularly polarized light, respectively. The total
NL dc current in the x- and y-directions can be obtained as

j (0)
x = 2

1 + ω2τ 2

[
�ωτχ

(NAH)
xyx,0 −

(
1 − ω2τ 2

1 + ω2τ 2

)
χ

(NAL)
yxy,0 + χ

(OMM)
xxx,0 + χ

(OMM)
yyx,0 + χ

(B)
xxx,0 + χ

(B)
xyy,0

]
|E0|2,

j (0)
y = 2

1 + ω2τ 2

[
−χ

(NAH)
xyx,0 − �

(
2ωτ

1 + ω2τ 2

)
χ

(NAL)
yxy,0 + �ωτ

(
χ

(B)
yyx,0 − χ

(B)
yxy,0

)]|E0|2. (37)

a. In the ωτ � 1 limit: The terms in the above equa-
tion with the coefficient ωτ correspond to the CPGE. Note
that the CPGE vanishes in this limit, which implies that
there is no difference between the effects of left and right
circularly polarized light. For low Fermi energy, j (0)

x and j (0)
y

are comparable, meaning that the angle between j(0)
net and the

x-axis increases with the Fermi energy. In the high Fermi
energy region, both j (0)

x and j (0)
y decrease with the Fermi

energy. However, the major contribution to j(0)
net comes from

j (0)
y ∝ χ

(NAH)
xyx,0 . Hence, θ shows a gradual increase with the

Fermi energy, approaching a value close to 90◦ (pointing in
the direction close to the y-axis) as shown in Fig. 9(b). In the
absence of B, the NL dc current is purely along the y-direction
for any Fermi energy.

b. In the ωτ � 1 limit: The NL dc current in the x-
and y-directions yields the form j (0)

x ∝ (1/ωτ )χ (NAH)
xyx,0 and

j (0)
y ∝ (1/ωτ )(χ (B)

yyx,0 − χ
(B)
yxy,0), respectively. Interestingly, we

find that the current j (0)
x approaches the intrinsic value, i.e.,

independent of scattering time τ . The dominant contribution

comes from j (0)
x ∝ χ

(NAH)
xyx,0 . For left circularly polarized light,

the current j(0)
net flows nearly antiparallel to the x-axis, θ →

−180◦ [Fig. 9(c)]. The NL dc current points exactly along the
negative x-direction in the absence of B, while for right cir-
cularly polarized light, j(0)

net flows in a direction almost parallel
to the x-axis with θ → 0 [Fig. 9(d)]. The NL dc current is
directed purely along the positive x-direction without B for
any Fermi energy.

Therefore, we conclude that the direction of the NL dc
current depends on the Fermi energy, magnetic field, and the
polarization of the electromagnetic wave. It is predominantly
governed by the underlying mirror symmetry of the system.

V. SECOND-ORDER NONLINEAR VOLTAGE RESPONSES

In the previous section, we have studied the linear, SH, and
NL dc current responses of the semi-Dirac system (through
the conductivity tensors) on application of an oscillating elec-
tric field and a weak magnetic field. In this section, we look
at the inverse process, i.e., the induction of linear, SH, and
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NL dc voltage/electric fields on passing an ac current through
the system [50,68–70]. Here, “NL” would imply the order of
applied current. These induced electric fields are related to
the applied ac current jω by introducing resistivity into the
picture. The linear resistivity ρab is defined as Eω

a = ρab jωb ,
whereas the SH resistivity ρ

(2ω)
abc is given by E2ω

a = ρ
(2ω)
abc jωb jωc

and the NL dc resistivity goes as Enl-dc
a = ρnl-dc

abc jωb jωc .

A. Linear resistivity

The linear resistivity matrix can be simply obtained
by inverting the linear conductivity matrix. Keeping the
lowest-order magnetic field dependence, the linear resistiv-
ities can be calculated using ρxx = 1/σ (D)

xx , ρxy = −ρyx =
−σ (L)

xy /(σ (D)
xx σ (D)

yy ), and ρyy = 1/σ (D)
yy . Note that we have ig-

nored the OMM induced Hall conductivity contribution as
its magnitude is quite small as compared to Lorentz force
induced Hall conductivity, σ (OMM)

xy � σ (L)
xy . We find that the

linear longitudinal resistivity ρxx ∝ B0, and the linear Hall
resistivity ρxy ∝ B. These linear resistivities show a decrease
with Fermi energy.

B. Nonlinear resistivity

Unlike the linear resistivity case, the NL resistivity matrix
cannot be obtained directly by inverting the NL conductivity
matrix. Instead, the second-order NL resistivity is defined in
terms of second-order NL conductivities and linear resistivi-
ties [68] as

ρ
(2)
abc = −ρaiχi jkρ jbρkc. (38)

Note that Eq. (38) remains valid for both the SH resistivity and
the NL dc resistivity, depending on which NL conductivity is
employed on the right-hand side. Here, we present the results
for the SH resistivity in the transport limit, ωτ � 1, obtained
by applying the current along the x- and y-directions. It is
worth pointing out that, in this limit, the SH resistivities are
nearly equal to the NL dc resistivities.

Case I. Current applied along the x-direction: We consider
that the current is flowing only along the x-direction, and then
the components of the SH resistivity matrix for 2D systems
can be written as

(
ρ (2)

xxx

ρ (2)
yxx

)
= −[ρ]

(
χxxx χxxy χxyx χxyy

χyxx χyxy χyyx χyyy

)⎛⎜⎜⎜⎝
ρ2

xx
ρxxρyx

ρxxρyx

ρ2
yx

⎞
⎟⎟⎟⎠. (39)

Here, ρ (2)
xxx and ρ (2)

yxx denote the SH longitudinal and SH Hall
resistivities, respectively, and [ρ] is the 2×2 linear resistivity
matrix. We further simplify the above equation by keeping
the lowest-order magnetic field dependence, and ignoring the
quadratic and higher B-field dependent terms leads to

ρ (2)
xxx = −ρ2

xx(χxxxρxx + χxyxρyx + χyxxρxy),

ρ (2)
yxx = −ρ2

xxχyxxρyy. (40)

We find that the lowest-order magnetic field dependence of
these SH resistivities goes as ρ (2)

xxx ∝ B and ρ (2)
yxx ∝ B0, which

is distinct from the linear resistivities. It is evident from
Eq. (40) that ρ (2)

xxx depends on SH conductivities and linear

Hall resistivities. Note that longitudinal resistivity ρ (2)
xxx in the

absence of magnetic field becomes zero as χxxx(B = 0) = 0.
Thus we emphasize that the predicted B-linear dependence of
ρ (2)

xxx arises mainly from the diagonal component of SH con-
ductivity (χxxx = χ (OMM)

xxx + χ (B)
xxx ), which remains finite due

to the surviving mirror symmetry along the x-direction. The
NL resistivities originate from Berry curvature and OMM and
therefore they have a quantum-mechanical origin. The SH
resistivities ρ (2)

xxx and ρ (2)
yxx show a relatively significant decrease

with the Fermi energy for low doping as compared to high
doping, which is illustrated in Figs. 10(a) and 10(b). Further-
more, the scattering time dependence of SH resistivities is
found to be ρ (2)

xxx ∝ 1/τ and ρ (2)
yxx ∝ 1/τ 2. Thus, the experimen-

tally connected scattering time independent ratios are defined
for SH resistivities as ρ (2)

xxx/ρxx and ρ (2)
yxx/ρ

2
xx. We find that

ρ (2)
xxx/ρxx (∼ ratio of SH longitudinal voltage to the product

of linear voltage and current) decreases with the Fermi energy
and δ0, whereas ρ (2)

yxx/ρ
2
xx (∼ ratio of SH Hall voltage to the

square of linear voltage) decreases with Fermi energy but is
independent of δ0. Unlike the linear and SH conductivities,
the change in Fermi surface topology is not reflected in the
SH resistivities through the kink.

Case II. Current applied along the y-direction: In the wake
of anisotropic energy dispersion, the current is also applied
along the y-direction, and the corresponding SH resistivity
matrix turns out to be

(
ρ (2)

xyy

ρ (2)
yyy

)
= −[ρ]

(
χxxx χxxy χxyx χxyy

χyxx χyxy χyyx χyyy

)⎛⎜⎜⎜⎝
ρ2

xy
ρxyρyy

ρxyρyy

ρ2
yy

⎞
⎟⎟⎟⎠. (41)

Focusing on the lowest-order magnetic field dependence
terms, we get

ρ (2)
yyy = 0,

ρ (2)
xyy = −ρxxρyy(χxyxρxy + χxyyρyy). (42)

Here, the SH longitudinal resistivity ρ (2)
yyy vanishes and the SH

Hall resistivity ρ (2)
xyy ∝ B. The SH Hall resistivity ρ (2)

xyy in the
absence of magnetic field becomes zero as χxyy(B = 0) = 0.
Hence this B-linear dependence of ρ (2)

xyy originally arises from
the SH Hall conductivity (χxyy = χ (NAL)

xyy + χ (OMM)
xyy + χ (B)

xyy ),
which elucidates that ρ (2)

xyy also depends on intrinsic band geo-
metric quantities. The SH Hall resistivity ρ (2)

xyy decreases with
the Fermi energy as shown in Fig. 10(c). The scattering time
dependence goes as ρ (2)

xyy ∝ 1/τ and the ratio ρ (2)
xyy/ρyy ∝ τ 0.

We notice that the ratio ρ (2)
xyy/ρyy decreases with the Fermi

energy and δ0. The nonzero components of resistivities are
summarized in Table II.

Some key observations about the SH resistivities of this
system are as follows: A SH Hall resistivity can be observed
even in the absence of B, when a current is applied along
the x-direction. A SH longitudinal resistivity can be induced
along the x-direction upon the application of B. This can
also be seen as the induction of second-order longitudinal
magnetoresistance in a system due to the effect of geomet-
ric quantities. On the other hand, for a current along the
y-direction, a SH Hall resistivity can be brought about upon
the application of B. The SH longitudinal resistivity along the
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FIG. 10. (a) SH resistivity ρ (2)
xxx and (b) SH Hall resistivity ρ (2)

yxx as a function of Fermi energy for different values of δ0 (when current is
applied along the x-direction). (c) The variation of SH Hall resistivity ρ (2)

xyy with the Fermi energy (when current is applied along the y-direction).
The insets represent the blow-up of the region where Fermi energy μ ranges from 0.2 to 0.4 eV. The normalization parameter for SH resistivity
is defined as ρ0 = α4/(e3 h̄3τ 2β7). The dashed color curves represent the numerical results obtained at T = 34 K. The parameters used are the
same as in Fig. 4.

y-direction is zero, irrespective of the presence or absence of
B (up to linear order in B). These observations highlight the
intriguing asymmetry in the dependence on the magnetic field
between the two directions. It is clear that the SH resistivities
of this system are influenced by both geometric quantities and
the underlying mirror symmetry, contributing to the distinct
responses observed along the x- and y-directions.

VI. CONCLUSIONS

In this study, we investigated the linear and second-order
NL current and voltage responses of a 2D gapped semi-
Dirac system with merging Dirac nodes. We analyzed the
system’s response to a weak magnetic field using the semi-
classical Boltzmann formalism. Notably, the system possesses
an intrinsic NL anomalous Hall conductivity, which can
be attributed to the underlying mirror symmetry [59]. The
application of a magnetic field introduces three distinct con-
tributions to the SH conductivity tensor, originating from
geometric quantities: the combined effects of anomalous ve-
locity and Lorentz force, the OMM, and the Berry curvature
correction to the phase-space factor.

We have obtained exact analytical expressions for the lin-
ear and SH conductivities of the system, expressed in terms of
complete elliptic integrals of the first and second kind, within
the transport limit. Our findings have facilitated a comprehen-
sive analysis of the conductivities and their dependence on
Fermi energy and δ0. For δ0 > 0, the change in Fermi surface

TABLE II. Highlighting the nonzero components of linear and
SH resistivities up to linear order in a magnetic field.

E ∝ jn B = 0 B �= 0

n = 1
linear voltage responses ρxx , ρyy ρxy = −ρyx

Eω
a = ρab jωb

n = 2
SH voltage responses ρ (2)

yxx ρ (2)
xxx , ρ (2)

xyy

E 2ω
a = ρ

(2ω)
abb ( jωb )2

topology (from a single-connected Fermi surface for high
Fermi energy to two Fermi surfaces for low Fermi energy)
is also manifested in the behavior of both the obtained linear
and SH conductivities. A small kink is observed at the saddle
point γ = 1 for the fixed positive values of δ0, which marks
the transition between two different types of Fermi surfaces.
We obtained approximate expressions for conductivities at
low Fermi energy and explicitly showed their dependence on
Fermi energy and δ0 near the band edge. We found that the
geometric mean (ratio) of Drude conductivities in the x- and
y-directions is independent of δ0 for low (high) doping. We
showed that the ratio of the anomalous velocity and Lorentz
force-induced SH Hall conductivity to the SH anomalous
Hall conductivity is independent of δ0 and inversely related
to Fermi energy. It should be noted that in a time-reversal
symmetric system, SH Drude conductivity vanishes, which
implies that the SH longitudinal magnetoconductivity arises
solely due to geometric quantities.

We have also examined the zero-frequency current re-
sponse generated at the second order in the electric field.
We have observed that the orientation of the NL dc current
depends on the Fermi energy, magnetic field, and polarization
of an electromagnetic wave. In the absence of magnetic field,
the NL dc currents are oriented purely along the y-direction
for x-polarized and low-frequency circularly polarized light
(ωτ � 1), whereas they align along the x-direction for high-
frequency circularly polarized light (ωτ � 1). It is worth
noting that the NL dc current vanishes entirely for y-polarized
light in the absence of B. These orientations are predominantly
governed by the underlying mirror symmetry of the system.
In the presence of a magnetic field, the Fermi energy of the
system serves as a control parameter for rotating the net NL dc
current vector. Substantial rotations can be achieved by apply-
ing x-polarized and low-frequency circularly polarized light
(ωτ � 1) compared to high-frequency circular polarization
(ωτ � 1). However, no rotation is observed for y-polarized
light. For y-polarized light, the NL dc current is consistently
parallel or antiparallel to the x-axis. However, for x-polarized
light, the NL dc current is nearly y-directed at high Fermi
energies. In the high-frequency limit, for circular polarization,
the NL dc current aligns in a direction close to the x-axis.
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Conversely, at low frequencies, the CPGE current vanishes
and the NL dc current is directed close to the y-axis for high
Fermi energies. This conversion of applied ac electric field
into dc current (rectification) in proposed semi-Dirac mate-
rials may hold applications for a wide range of technologies
[71].

We further study the SH magnetoresistivities of the sys-
tem for two different orientations of current flow: (i) along
the x-direction and (ii) along the y-direction. For the current
applied along the x-direction, the SH longitudinal resistivity
scales linearly with the magnetic field, while SH Hall resis-
tivity is independent of B in the lowest B-order. However, for
the current applied along the y-direction, the SH longitudi-
nal resistivity vanishes in both zeroth and linear order of B,
and SH Hall resistivity varies linearly with B in the lowest
order. The predicted B-linear dependence of SH resistivities
mainly arises from SH conductivities, which stem from band
geometric quantities and underlying mirror symmetry of the
system. Our results provide the platform for understanding
the second-order NL magnetotransport induced by geometric
quantities in an anisotropic 2D system undergoing a topolog-
ical transition with merging of two Dirac points.
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APPENDIX A: LINEAR CURRENT RESPONSES

In this Appendix, we calculate the current responses linear
in E and up to linear order in B. To obtain the NDF linear in
E , we use the ansatz f1(t ) = f ω

1 e−iωt + f ω∗
1 eiωt in Eq. (3) and

obtain

f ω
1 = 1

2

∞∑
η=0

(
τωL̂B

D

)η(eτω

h̄D
E · ∇k f̃eq

)
, (A1)

where τω = τ/(1 − iωτ ). The current responses linear in E
can be expressed as j1(t ) = j10(t ) + j11(t ). The magnetic field
independent current of fundamental frequency can be ex-
pressed as j10(t ) = jω10e−iωt + jω∗

10 eiωt , where we obtain

jω10 = − e2

2h̄

∫
[dk][τωvk(E · ∇k ) feq + (E × �) feq]. (A2)

The magnetic field independent conductivities take the fol-
lowing form:

σ
(D)
ab = −e2τω

2

∫
[dk]vavb f ′

eq, (A3)

σ
(AHC)
ab = − e2

2h̄
εabd

∫
[dk]�d feq. (A4)

Equation (A3) refers to the Drude conductivity, while
Eq. (A4) describes the intrinsic anomalous Hall conductivity,
which is independent of scattering time and vanishes for the
TRS preserved system.

The magnetic-field-dependent current of fundamental fre-
quency can be written as j11(t ) = jω11e−iωt + jω∗

11 eiωt , and we
obtain

jω11 = e2

2h̄

∫
[dk]

[
(E × �)εm f ′

eq + τωvk

{
e

h̄
(� · B)(E · ∇k ) feq

+ (E · ∇k )εm f ′
eq

}
− τ 2

ωvkL̂(E · ∇k ) feq

]
, (A5)

where L̂ = (e/h̄)[(vk × B) · ∇k]. In the above expression, the
terms proportional to τ vanish since �k , vk , and εm are odd in
the presence of TRS. The magnetic-field-dependent conduc-
tivities that survive under TRS are given by

σ
(L)
ab = −e3τ 2

ωB

2h̄

∫
[dk]va(vy∂kx − vx∂ky )vb f ′

eq, (A6)

σ
(OMM)
ab = e2

2h̄
εabd

∫
[dk]�dεm f ′

eq. (A7)

Equation (A6) represents the Lorentz force contribution (clas-
sical Hall effect), while Eq. (A7) describes the OMM induced
Hall effect.

APPENDIX B: NONLINEAR DC CURRENT

In this Appendix, we provide the general expressions for
the various contributions induced by Berry curvature and
OMM to the NL dc current in the presence of magnetic
field. These expressions are valid for all 2D systems and are
presented in terms of the polarization of the electromagnetic
wave.

The NL dc current emerging from the interplay of anoma-
lous velocity and Lorentz force can be obtained as

j(0)
NAL = 1

(1 + ω2τ 2)2

[
(1 − ω2τ 2)

{
2
(
χ

(NAL)
xyy,0 |Ey|2x̂ + χ

(NAL)
yxx,0 |Ex|2ŷ

)+ (
χ

(NAL)
xyx,0 [EyE∗

x ]+x̂ + χ
(NAL)
yxy,0 [EyE∗

x ]+ŷ
)}

− 2iωτ
(
χ

(NAL)
xyx,0 [EyE∗

x ]−x̂ − χ
(NAL)
yxy,0 [EyE∗

x ]−ŷ
)]

. (B1)

The OMM contribution to the NL dc current can be calculated as

j(0)
OMM = 1

1 + ω2τ 2

[
2
(
χ

(OMM)
xxx,0 |Ex|2 + χ

(OMM)
xyy,0 |Ey|2

)
x̂ + 2

(
χ

(OMM)
yxx,0 |Ex|2 + χ

(OMM)
yyy,0 |Ey|2

)
ŷ + (

χ
(OMM)
xxy,0 + χ

(OMM)
xyx,0

)
[EyE∗

x ]+x̂

+ (
χ

(OMM)
yxy,0 + χ

(OMM)
yyx,0

)
[EyE∗

x ]+ŷ − iωτ
{(

χ
(OMM)
xyx,0 − χ

(OMM)
xxy,0

)
[EyE∗

x ]−x̂ + (
χ

(OMM)
yyx,0 − χ

(OMM)
yxy,0

)
[EyE∗

x ]−ŷ
}]

, (B2)

The NL dc current induced by the phase-space factor can be obtained as

j(0)
B = j(0)

OMM

(
χ

(OMM)
abc,0 → χ

(B)
abc,0

)
, (B3)

where χ
(NAL)
abc,0 = χ

(NAL)
abc (ω = 0), χ

(OMM)
abc,0 = χ

(OMM)
abc (ω = 0), and χ

(B)
abc,0 = χ

(B)
abc (ω = 0) are the corresponding SH conductivities

given by Eqs. (9)–(11), respectively, for ω = 0.
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