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Thermalization at low temperatures via weakly damped multisite baths
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We study the thermalization properties of one-dimensional open quantum systems coupled to baths at their
boundary. The baths are driven to their thermal states via Lindblad operators, while the system undergoes
Hamiltonian dynamics. We specifically consider multisite baths and investigate the extent to which the late-time
steady state resembles a Gibbs state at some controllable temperature set by the baths. We study three models: a
noninteracting fermion model accessible via free-fermion technology, and two interacting models, the XZ model
and the chiral clock model, which are accessible via tensor network methods. We show that, by tuning towards
the weak coupling and slow relaxation limits, one can engineer low temperatures in the bulk of the system
provided the bath size is big enough. We use this capability to study energy transport in the XZ model at lower
temperatures than previously reported. Our work paves the way for future studies of interacting open quantum
systems at low temperatures.
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I. INTRODUCTION

Open many-body quantum systems are fundamentally dif-
ferent from closed systems and their dynamics displays a wide
variety of phenomena not found in equilibrium setups [1].
For instance, current-carrying nonequilibrium steady states
play a major role in deriving the transport properties of the
system [2]. The coupling to an environment can also sig-
nificantly alter existing properties of the system, such as its
phase of matter [3–5]. Despite their rich physics, open systems
remain vastly understudied, due to both computational and
conceptual challenges associated with describing the quan-
tum many-body system and modeling its interaction with the
environment.

Quantum many-body systems are inherently difficult to
study due to the exponential growth of their Hilbert space
with system size. The computational complexity is further
increased for open systems, since we are now dealing with
density matrices, instead of wave functions. Additional care
is necessary to preserve the positivity and hermiticity of the
state. We therefore require methods that are specifically tai-
lored to this setup [6]. Some of the most popular choices
include tensor networks [7–11], quantum trajectories [12], and
neural networks [13–18]. In the context of one-dimensional
systems, matrix product state methods [19–25] have proven
particularly powerful for describing large-scale open systems.
However, even these techniques can suffer from slow conver-
gence to the steady state if the open system dynamics are not
properly designed.

Efficiently modeling the system’s interaction with the
environment remains a major challenge within the field.
One way to approach this problem is by viewing the target
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system together with the infinitely large environment as
a closed system undergoing Hamiltonian evolution. The
evolution of the target system is then recovered by tracing
out the environment degrees of freedom. However, the
resulting master equations are usually nonlocal in time and
involve a complicated memory kernel [1,26,27]. The master
equation simplifies significantly within the Born-Markov
approximation, leading to the Redfield equation [28], which is
unfortunately not guaranteed to preserve the positivity of the
density matrix. A further secular approximation is necessary
to mitigate this problem, resulting in a global Lindblad master
equation [1,29,30]. Nevertheless, identifying the correct
global Lindblad operators leading to the desired dynamics
can be computationally impractical for large systems, since it
usually requires knowledge of the full energy eigenbasis.

Due to these limitations, the majority of studies on open
many-body quantum systems rely on a local Lindblad de-
scription of the dynamics. In this approach, the interaction
with the environment is modeled by Lindblad jump operators
acting locally on the boundary of the system [31–41], such
that the bulk dynamics is still coherent and governed by the
system’s Hamiltonian. In the thermodynamic limit, the bulk
properties should not depend on the details of the boundary
driving, given that the system is sufficiently ergodic. However,
the local Lindblad equation can sometimes fail to describe the
correct steady state, as reported for integrable systems [32,39],
in the weak coupling limit [42–46], and in the presence of
multiple baths [47,48]. Moreover, it is also not clear whether
the boundary driving can thermalize the system to arbitrarily
low temperatures.

The issue of thermalization in open quantum systems has
been previously studied in Ref. [49], in the context of both
interacting and noninteracting fermionic systems with particle
number conservation. Their results, based on a perturbative
expansion in the limit of zero system-bath coupling, suggest
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that both models thermalize if the baths are infinitely large
and weakly damped. In this paper, we extend these results
to strongly interacting spin chains, whose steady states admit
a tensor network representation. Furthermore, we show that
a system coupled to a thermal bath at its boundary typically
reaches a temperature far above the one imposed by the bath.
We then pinpoint the conditions under which the system ther-
malizes to the desired bath temperature.

We consider three different one-dimensional systems in
our analysis. The first one is the complex Sachdev-Ye-Kitaev
(SYK) model describing fermions with random all-to-all two-
body interactions [50–61]. This Hamiltonian is quadratic in
the fermionic operators and its steady state can be computed
exactly [62,63]. We use this model to test the validity of
the previous results and to determine the conditions under
which the system can be cooled to low temperatures by an
external bath. The second system is described by a spin-1/2
XZ Hamiltonian in a transverse field [64]. This model is
interacting and nonintegrable, and we expect its behavior to
be fairly representative of one-dimensional gapped systems.
Finally, the third model is known as the chiral clock model
and can be tuned to a gapless nonintegrable quantum critical
point [65–77]. In the absence of an analytical solution, the
steady states for both of these models are computed via tensor
network methods [19,20,78–80]. The final temperature of the
system is extracted using our previously developed thermom-
etry technique [41].

Our results show that the system thermalizes even at low
temperatures, as long as the bath is extremely large, weakly
coupled to the system, and infinitely damped, in agreement
with previous findings [49,81]. In practice, however, taking
these limits is often unnecessary. We find that convergence
to within 1% of the target bath temperature can already be
achieved with leads that are a fraction of the system size
by lowering the system-bath coupling g and the bath driving
strength γ by an order of magnitude. This observation has
important implications for models whose dynamics is not ex-
actly solvable, where we rely on approximate time-evolution
methods to find the steady state.

As an immediate practical application, we study energy
transport by attaching two boundary baths and imposing a
temperature gradient across the system. The temperature bias
is small, such that the system is only weakly perturbed from
equilibrium. This results in a constant energy gradient and
current across the chain. By adjusting the average bath tem-
perature, we are able to extract the temperature dependence
of the transport coefficients. In particular, we focus on the
low-temperature behavior of the diffusivity in the XZ model
and are now able to reach regimes that were previously inac-
cessible with conventional open system setups [41]. We find
that the energy diffusivity increases exponentially at low tem-
peratures, in agreement with the predictions of a semiclassical
kinetic theory for gapped systems [41,82,83].

The ultimate limiting factor in our study is the minimal
temperature below which the baths can no longer reliably
cool the system on the timescales accessible numerically. We
conjecture that this temperature is set by the smallest energy
scale in the problem—either the model’s gap or its interaction
strength. Other methods beyond the Lindblad master equa-
tion might be able to circumvent this limitation.

FIG. 1. Schematic diagram of our (a) thermalization and
(b) transport setups. The system is connected to baths at its boundary.
The Lindblad operators Ljk drive the baths to their thermal states. In
nonequilibrium, a homogeneous current j flows through the bulk of
the system.

The outline of this paper is as follows. In Sec. II, we present
our open system setup and describe some key properties of
the steady states and the relaxation dynamics towards them. In
Sec. III, we introduce our models and show the thermalization
results for each of them. We also analyze the low-temperature
transport properties of the XZ model. Finally, we comment on
our findings and discuss possible extensions in Sec. IV.

II. SETUP

We begin by presenting the general setting of our ther-
malization studies, which is depicted in Fig. 1(a). The setup
consists of a system S of size N coupled to a bath B of size M
at its boundary. The environment only acts upon the bath. The
full Hamiltonian is given by

H = HS + HB + gHSB, (1)

where HS , HB, and HSB are the Hamiltonians describing the
system, bath, and their interaction, respectively, while g is a
dimensionless parameter controlling the system-bath coupling
strength. The state of the entire open quantum system at time
t is characterized by its density matrix ρ(t ). The evolution of
this density matrix is governed by the local Lindblad equa-
tion [29,30]

dρ

dt
= L(ρ) ≡ −i[H, ρ] +

∑
jk

(
LjkρL†

jk − 1

2
{L†

jkL jk, ρ}
)

,

(2)

where Ljk are jump operators acting only on the bath degrees
of freedom and describing their interaction with the environ-
ment. These operators are chosen such that, when decoupled
from the system (g = 0), the bath is driven to its thermal state
ρB at temperature TB and chemical potential μB. The strength
of this damping introduces a new energy scale γ into the
picture. A generic construction for the Lindblad operators Ljk

that thermalize baths of any size is described in Appendix.
Initially, the system starts in an arbitrary (usually infinite

temperature) state, while the bath is in its thermal state ρB.
Once the coupling g between the two is turned on, the baths
are still continuously driven towards their decoupled thermal
state, but the coupling with the system causes the steady state
of the bath to differ from its target thermal state. The system
also begins to exchange energy and particles with the bath
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while converging to its steady state. The operator L captur-
ing this time evolution in Eq. (2) is called the Liouvillian
superoperator and it acts on the space of density matrices.
For Lindblad equations, this map is completely positive and
trace preserving [29,30]. The steady state ρ∞ is given by the
fixed point of this map Lρ∞ = 0. The relaxation time to this
steady state depends on the gap in the Liouvillian spectrum.
Assuming that the fixed point of the Lindblad equation is
unique, the gap �L is equal to the negative real part of the
second largest eigenvalue of L [31,62,84].

Formally, the solution of the Lindblad equation is given
by the right eigenvector of L with eigenvalue zero. While
closed-form exact solutions exist in the case of noninteracting
systems [62,63] and for certain strongly driven interacting
systems [85–93], one usually has to resort to approximate
methods when dealing with generic interacting systems and
arbitrary driving. This is because the dimensions of the Li-
ouvillian grow exponentially with system size. In practice,
it is more feasible to directly simulate the time evolution
and look for a converged final state ρ∞ = limt→∞ ρ(t ) =
limt→∞ eLtρ(0). To achieve this, we employ a tensor network
representation of the density matrix [19,20] and perform an
approximate time evolution under the Liouvillian superop-
erator using the Time evolving block decimation (TEBD)
algorithm [78–80]. We represent the states and operators in
the vectorized form [1,6,20] and use a second-order Suzuki-
Trotter decomposition [94] of the time-evolution operator eLt .
We should mention that alternative approaches, such as vari-
ational algorithms targeting the ground state of the Hermitian
operator L†L [21–23], could also be used to find steady state
ρ∞ more directly.

The limiting factor in reaching the steady state is the size
of the spectral gap �L. If the gap is finite, the distance be-
tween the time-evolved state ρ(t ) and the steady state ρ∞
will decrease exponentially in time, with a relaxation rate
set by �L. For systems that are only subject to boundary
dissipation, a generic bound on the gap as a function of system
size �L � 1/N is known [84]. In integrable systems, one
typically observes a scaling �L ∼ 1/N3, as is the case for
nearest-neighbor hopping free-fermion models [81,84]. On
the other hand, for nonintegrable models, one usually has a
faster relaxation rate which saturates the bound �L ∼ 1/N .
The gap can also be exponentially small in localized systems
[81,84]. Furthermore, perturbation theory calculations in the
limit of small system-bath coupling (g → 0) or small driving
(γ → 0) reveal the following scaling [84,95,96]:

�L ∼ γ g2 as g, γ → 0. (3)

In practice, this implies that we cannot use traditional time-
evolution methods to study the regime where these parameters
are infinitesimally small, as the convergence to steady state
would be prohibitively slow. It turns out that this limit is
precisely the one required to observe thermalization [49].
Nevertheless, we will show in Sec. III B that even moderate
values of g and γ accessible numerically for small systems
are sufficient to reach states that are close to thermal.

Once we find the steady state, we have to evaluate how
well the system resembles a Gibbs state at some temperature
and whether this temperature is close to the bath’s driving
temperature TB. The state of the system alone is obtained

by tracing out the bath degrees of freedom ρS = TrB(ρ∞).
Assigning a global temperature to this state requires access to
reference Gibbs states of the same size, which is unfeasible for
large systems. Moreover, we expect the system to deviate from
thermal equilibrium near the boundary where it is coupled
to the bath. Therefore it is more suitable to assign a local
temperature for different parts of the system [97–102]. To
accomplish this, we use the thermometry method introduced
in Ref. [41]. The local temperature of a region A is derived
by minimizing the trace distance between the reduced density
matrices of that region in the steady state ρA

S and in a thermal
state ρA(T )

D
(
ρA

S , ρA(T )
) = 1

2 Tr
[√(

ρA
S − ρA(T )

)2]
. (4)

The trace distance between the two states is a meaningful
metric because it places an upper bound on the difference
between the corresponding expectation values of any local ob-
servable [39]. We usually choose the region A to be comprised
of two consecutive sites (i, i + 1) in the system, which is
consistent with our definition of local energy. For the models
we studied, we found good thermalization and a uniform local
temperature away from the boundaries. Therefore we define
the temperature of the system TS in a steady state as the local
temperature at its center

TS = arg minT D
(
ρ

( N
2 , N

2 +1)
S , ρ( N

2 , N
2 +1)(T )

)
. (5)

III. RESULTS

The framework described above can in principle be applied
to any system. In this work, we consider three prototypical
examples of noninteracting and interacting systems in one di-
mension. We start with a noninteracting SYK2 model, since it
has a simple description in terms of single-particle eigenstates
and its steady state is exactly solvable even for large system
sizes. We use this model to find the precise limits in which
the bath thermalizes the system and verify that they agree
with previous predictions [49]. We then extend our analysis
to interacting XZ and chiral clock chains, which do not have
analytical solutions, and find that the same thermalization
behavior persists for these systems. Additionally, we show
how to apply the lessons learned from the equilibrium setup
to study low-temperature energy transport in the XZ model.
Our numerical results focus on the intermediate (TB = 1) and
low (TB = 0.1) temperatures, since we expect thermalization
to be especially challenging in these regimes [41]. However,
we checked that our conclusions hold for a wide range of
temperatures, including the high-temperature limit. Lastly, we
set μB = 0 for the remainder of this paper.

A. Noninteracting SYK2 model

Our first model is a complex SYK2 cluster with ran-
dom all-to-all two-body interactions among spinless fermions
[50–61]. Both the bath and the system are described by similar
Hamiltonians

HB =
∑

1�i, j�M

JB
i jc

†
i c j, (6)
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FIG. 2. Thermalization results for the SYK2 model coupled to a boundary bath at temperatures [(a)–(c)] TB = 1 and [(d)–(f)] 0.1. The
system temperature TS approaches the bath temperature TB in the limit of weak system-bath coupling g and damping γ . The trace distances
shown are for the steady states with the lowest temperature.

HS =
∑

M+1�i, j�M+N

JS
i jc

†
i c j . (7)

The fermions obey the standard anticommutation relations
{c†

i , c j} = δi j . The SYK couplings are complex, independent
Gaussian random variables with zero mean obeying

JB,S
i j = (

JB,S
ji

)∗
, (8)

〈|JB
i j |2〉 = J2

B

M
, 〈|JS

i j |2〉 = J2
S

N
, (9)

where the factors of M and N ensure that the energy is exten-
sive. The SYK2 model describes free fermions, since it can be
diagonalized in the energy eigenbasis

HB,S =
∑

k

εB,S
k c†

kck . (10)

It is also integrable and nonchaotic [56]. The coupling be-
tween the system and the bath is simply given by

HSB = JSB(c†
McM+1 + c†

M+1cM ), (11)

since we wanted to keep the interaction local and restricted
to the boundary of the system. One could also choose an
SYK2 interaction between the two sides and recover the
same results.

In the noninteracting case, the Lindblad equation is
quadratic in the fermionic operators and can be solved ana-
lytically using the third quantization technique [62,63]. This
method allows us to study fairly large systems with extremely
high accuracy. The main idea is to write the Liouvillian L in
terms of adjoint Majorana maps and diagonalize it in the ba-
sis of normal master modes, which represent anticommuting
superoperators acting on the Fock space of density operators.
The steady state is then given by the zero-mode eigenvector of

an antisymmetric matrix of size 4(M + N ). The reduced den-
sity matrix of the system is diagonal in the third quantization
eigenbasis

ρS =
N∏

k=1

(nkc†
kck + (1 − nk )ckc†

k ), (12)

where the occupation numbers nk are sorted in descend-
ing order and modes ck are computed numerically [81].
In the thermal state of the decoupled system, the occu-
pation numbers are expressed in terms of the Fermi-Dirac
distribution

fk = 1

1 + e(εk−μ)/T
. (13)

However, in the limit of weak system-bath coupling, we ex-
pect the occupation numbers nk to be close to the thermal
values fk . Therefore, in order to determine the temperature
TS associated with ρS , we minimize the average trace distance
between the single-particle density matrices in the steady state
and in thermal equilibrium

D(ρS, ρ(T )) = 1

N

N∑
k=1

|nk − fk|. (14)

This metric closely matches the one introduced in Eq. (4).
Our results are shown in Fig. 2. We set JB = JS = JSB = 1,

N = 100, and average over 100 realizations of the interaction
matrices JB,S . We consider three different bath sizes M =
20, 100, and 1000, which are representative of small, large,
and infinite reservoirs, respectively. The absolute deviation of
the system’s temperature from the target bath temperature is
plotted as a function of system-bath coupling g for several
rates γ . We observe that TS monotonically increases with both
of these parameters. At g = 1, the system temperature can be
up to an order of magnitude larger than TB. In the limit of
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FIG. 3. Perturbation theory for the SYK2 system in the limit of g → 0 and at low temperature TB = 0.1. Steady state occupation numbers
nk of the single-particle energy levels εS

k match the Fermi-Dirac distribution in Eq. (13) if γ 	 TB. In this limit, the fit improves substantially
for larger bath sizes M.

zero coupling g, the temperature deviation converges to a finite
value with a substantial γ dependence. In order for the system
to thermalize at the desired temperature, one must additionally
take the limit γ → 0.

The error in approximating the steady state solution with
a Gibbs state is quantified by Eq. (14). Based on this metric
(see Fig. 2), we see that achieving good thermalization at
low temperatures can be challenging. The trace distance is
almost independent of g, but does decrease with γ . Moreover,
larger baths lead to steady states that are much closer in trace
distance to thermal states. For M = 1000, we effectively have
an infinite bath, which provides very little improvement over
the configuration with M = 100. Somewhat surprisingly, the
system does not attain perfect thermalization solely in the
infinite bath limit. The reason for this becomes more clear in
the perturbative expansion discussed below [49]. We should
emphasize that our findings here do not contradict our pre-
vious results showing that SYK2 clusters thermalize when
connected to infinitely large reservoirs with no backreaction
[103–105], which were derived in quite a different setup not
involving Lindblad open system dynamics.

In order to gain an analytical understanding of the interplay
between various parameters in the problem, we seek a pertur-
bative solution for the steady state at small g and γ [84,95,96].
As argued in Ref. [49], it is more natural to take the limit of
g → 0 first. Following their derivation, the system’s reduced
density matrix is of the form introduced in Eq. (12) with
occupations

nk =
∑M

l=1

∣∣JSB
lk

∣∣2
Qlk fl∑M

l=1

∣∣JSB
lk

∣∣2
Qlk

, (15)

where Qlk is a Lorentzian

Qlk = γ(
εB

l − εS
k

)2 + γ 2/4
(16)

and fl is the bath’s thermal occupation of the eigenmode with
energy εB

l at temperature TB. The matrix elements JSB
lk are

defined by rewriting the system-bath interaction in the energy
eigenbasis

HSB =
M∑

l=1

N∑
k=1

JSB
lk c†

l ck + H.c. (17)

Next, we take γ → 0. In this limit, the exchange rate with
the bath simply becomes a delta function Qlk → 2πδ(εB

l −
εS

k ). This in turn collapses the sum in Eq. (15) to a single
term and we recover perfect thermalization nk = fk , as long
as there is an energy mode of the bath that matches each
one in the system εB

l = εS
k . The size of the bath plays a

crucial role here, since a larger bath is more likely to have
a broad enough energy spectrum that contains all the energy
levels in the system [49]. Moreover, it is usually beneficial to
make the bath’s Hamiltonian identical to the one describing
the system, since this guarantees that their spectrums will
have significant overlap. Any finite γ broadens Qlk into a
Lorentzian, which is more forgiving of energy mismatches,
but also introduces a small deviation from thermal occupation
numbers.

We numerically verify our claims in the case of low
temperature TB = 0.1, which is the hardest setup for thermal-
ization. Our results are presented in Fig. 3. First, we see that
for our smallest bath, there are significant deviations in the oc-
cupation numbers even as γ → 0. Second, we notice that the
increase in bath size at large values of γ does almost nothing
for thermalization. This suggests that lowering γ should be a
priority over increasing the bath size in actual simulations. In
fact, having good convergence to TB requires making γ 	 TB.
The same conclusion was reached in Ref. [49].

Unfortunately, taking the limit of both g and γ to zero
can be problematic for models that do not have closed-form
analytic solutions and rely on time-evolution methods to find
the steady state. We verified numerically that the Liouvillian
gap scales according to Eq. (3). Furthermore, the average
spectral gap depends on system size as �L ∼ 1/N2, which
is better than the expected 1/N3 scaling for integrable models
[84]. This is likely due to the nonlocal all-to-all interactions
of SYK2. Therefore the convergence rate to a steady state
solution would be extremely slow for large systems with small
parameters g and γ . However, for most practical purposes,
such as quantum transport, reaching perfect thermalization at
low temperatures is not essential. In fact, it is often sufficient
to cool down the system to a temperature in the ballpark of
TB and then use a thermometry procedure to determine the
exact TS [41]. Moreover, temperatures of interest can be on
the order of JS , which are significantly easier to achieve with
this setup.
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FIG. 4. Thermalization results for the XZ model coupled to a boundary bath at temperatures [(a)–(c)] TB = 1 and [(d)–(f)] 0.1. For
intermediate bath temperatures (top), the system approaches a temperature close to TB in the limit of weak system-bath coupling g and damping
γ . At low bath temperatures (bottom), the system’s final temperature is limited by its gap � = 0.51. The reference trace distances correspond
to the steady states with the lowest temperature.

B. Interacting models

1. Gapped XZ model

Our second model is a uniform XZ spin chain in a trans-
verse magnetic field

HB + HS =
∑
i 
=M

(
Jxσ

x
i σ x

i+1 + Jzσ
z
i σ z

i+1

) + hx

M+N∑
i=1

σ x
i , (18)

HSB = Jxσ
x
Mσ x

M+1 + Jzσ
z
Mσ z

M+1, (19)

where σ x,z
i denote Pauli matrices at site i. We choose

(Jx, Jz, hx ) = (1, 0.75, 0.21), which places the model in a
nonintegrable, quantum chaotic regime [64]. The model is
known to have a small, but finite energy gap equal to � = 0.51
[41]. In order to thoroughly investigate thermalization in this
model, we restrict ourselves to small systems N = 20 and
baths M = 2, 3, and 4, such that we can reliably reach the
steady state without convergence issues.

As mentioned in Sec. II, we simulate the time evolution
of our density matrix using the TEBD algorithm [8,78–80].
During the evolution, we restrict the amount of built-up en-
tanglement by truncating the matrices to a maximum bond
dimension of χ . We start with a larger bond dimension χ =
256 during the early stages, when we have rapid entanglement
growth, and then slowly decrease it to χ = 64 as we approach
the steady state. We choose a time step of δt = 0.05, which is
small enough so as to not dominate over the truncation error,
and evolve up to late times t = 4000 for the smallest values of
g and γ . Additionally, we implement an annealing procedure
which saves a lot of computational time when sweeping these
parameters. We use the steady state results from larger values
of g and γ as the starting point of the time evolution at lower
parameter values.

We present our findings in Fig. 4. Qualitatively, they
are similar to the noninteracting case. The temperature is

uniform throughout the system, away from the boundaries.
At g = γ = 1, the local temperature is much larger than
the driving temperature, which is consistent with previous
studies [32,33,39–41]. Its value decreases continuously with
g and γ . For intermediate bath temperatures TB = 1, the
system’s temperature TS can be within 1% of the target
at the smallest g = γ = 0.1. On the other hand, for low
temperatures TB = 0.1, the final bulk temperature is strictly
limited by the model’s gap TS ≈ �. Notice that this was
not the case for the SYK2 model, where the gap is of order
1/N and still below the bath temperature. Although we only
increase M by a few sites, it has a substantial effect on the
trace distance (see Fig. 4). Larger baths lead to faster and
more robust convergence to the steady state. However, they
are not helpful in lowering the system’s temperature below �.

2. Gapless Z3 chiral clock model

As our third model, we investigate a Z3 chiral clock model
in a one-dimensional chain [76,77] whose Hamiltonian can be
written as

HB + HS = −J
∑
i 
=M

σiσ
†
i+1eiθ − f

M+N∑
i=1

τie
iφ + H.c., (20)

HSB = −JσMσ
†
M+1eiθ + H.c., (21)

where τi and σi are the local three-state “spin” operators at site
i in the following matrix representations:

τ =
⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠, σ =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, and ω = e

2π i
3 .

(22)

These operators satisfy τ 3 = σ 3 = I and στ = ωτσ . Notice
that the local Hilbert space dimension is now d = 3, which
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FIG. 5. Thermalization results for the chiral clock model coupled
to a boundary bath at temperatures [(a) and (b)] TB = 1 and [(c) and
(d)] 0.1. For intermediate bath temperatures (top), the system ap-
proaches a temperature close to TB in the limit of weak system-bath
coupling g and damping γ . At low driving temperatures (bottom),
the system’s final temperature is significantly above TB. The trace
distances indicated in each panel are for the steady states with the
lowest temperature.

significantly increases the computational complexity of the
problem. As a result, we limit our analysis to small systems of
size N = 16 and M = 2, 3. As our Hamiltonian parameters,
we choose (J, f , θ, φ) = (0.5373, 0.4627, π/8, 0) such that
the model is at a quantum phase transition, which has been
revealed by various numerical techniques [74–76]. Conse-
quently, the model becomes gapless and is therefore a good
target for investigating the performance of our multi-site bath
scheme, with possible applications to quantum critical trans-
port near zero temperature.

The general approach to obtaining the steady state for this
model is similar to that of the XZ spin chain. We employ the
same annealing procedure and set the minimal bond dimen-
sion to χ = 81. The convergence is noticeably slower, so we
evolve the initial state up to t = 2 · 104 for the smallest values
of g and γ . The results for the chiral clock model are displayed
in Fig. 5. In terms of final bulk temperature, they resemble our
observations for the XZ model at intermediate temperature
TB = 1. However, in the low temperature TB = 0.1 case, the
final bulk temperature does not improve past TS ≈ 0.5, even
though the system is gapless. Nevertheless, there are slight
improvements in the trace distance when expanding the bath
from M = 2 sites to M = 3 sites. It is quite possible that
cooling a gapless model may require much larger baths and
longer convergence times, beyond what is accessible numeri-
cally with the current setup. Another explanation is that there
may be an emergent energy scale that prohibits the Lindblad
operators from cooling the system below that scale. We elab-
orate more on this in Sec. IV.

C. Application to low-temperature transport

In this section, we put to use the lessons learned about
thermalization in open systems to explore some previously

inaccessible physics of the XZ model. More specifically, we
study its energy transport at low temperatures. The boundary-
driven setup consists of a system coupled to two baths at its
ends [see Fig. 1(b)], which imposes a temperature imbalance
driving the system out of equilibrium. The left and right
baths are maintained at temperatures TL,R = TB ± δT using
the same Lindblad operators as before. The temperature offset
is taken to be small δT = 0.1TB, so that we remain in the
linear-response regime. Under this assumption, we can assign
a local temperature for the system weakly perturbed from
equilibrium. This temperature varies slowly and linearly in the
bulk, as investigated in more detail in our previous work [41],
and hence the system’s temperature TS can still be defined
according to Eq. (5).

The system evolves while coupled to the baths
until it reaches a nonequilibrium steady state (NESS)
characterized by a uniform current flowing through
the chain

j = 2JxJz
〈(
σ x

i−1σ
y
i σ z

i+1 − σ z
i−1σ

y
i σ x

i+1

)〉
− hxJz

〈(
σ z

i−1σ
y
i − σ

y
i σ z

i+1

)〉
. (23)

The XZ model exhibits diffusive energy transport j =
−D∇E , where ∇E is the energy density gradient and D is
the diffusivity. The temperature dependence of this diffusion
constant has been previously studied in the regime of inter-
mediate and high temperatures [41]. At low temperatures, the
semiclassical kinetic theory predicts an exponential increase
in diffusivity for gapped one-dimensional systems

D ∼ e2�/TS

√
TS

. (24)

Unlike spin diffusion, which only relies on two-body colli-
sions [82,83], energy transport requires three-body collisions
to relax the current [41] and therefore doubles the exponent.
Strictly speaking, this scaling is derived for the regime TS 	
�. However, since the gap for our model is so small, we find
that it correctly describes the increase in diffusivity even at
temperatures slightly above the gap.

Our numerical results for a system of size N = 51 and bath
temperatures between TB = 0.4 and 2 are showcased in Fig. 6.
The diffusion constant at low temperatures matches the semi-
classical prediction in Eq. (24) remarkably well, with the only
fitting parameter being the overall prefactor. In our previous
studies, we managed to attain a minimum local temperature of
TS = 2.1 in the bulk [41]. Now we have decreased this value
to TS = 0.8. We should point out that g cannot be too small,
since it would decrease the current and energy gradient to the
point where they can be affected by the numerical precision
of our simulations. We also emphasize that γ should not be
taken to zero, since it may cause the bulk to decouple from
the boundary, resulting in a different scaling of the current
[88]. Therefore we choose g = γ = 0.4, which strikes a good
balance between having well-converged NESS and reaching
low temperatures.

IV. DISCUSSION

In this paper, we studied thermalization in open quantum
systems coupled to a bath at their boundary. We investigated
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FIG. 6. Temperature dependence of the energy diffusion constant
D for the XZ model. Symbols represent numerical values obtained
via our open system setup and the dashed line is fit to Eq. (24). At
low temperatures, the diffusivity grows exponentially with inverse
temperature.

the emergent steady state in these systems and determined
whether its associated temperature matches the driving tem-
perature of the bath. Our analysis was based on three models:
a free-fermion SYK2 cluster, a gapped XZ spin chain, and a
gapless chiral clock model. For all these models, we found
that the system’s temperature in the default parameter regime
was much higher than the target bath temperature. However,
upon increasing the bath size M and lowering the system-bath
coupling g and the bath relaxation rate γ , we saw that the two
temperatures start to agree. In fact, using perturbation theory
for the SYK2 model, we were able to show that the system
reaches perfect thermalization at our desired temperature in
the limit g, γ → 0 and M � N . These results carry over to the
interacting models as well, where we found that even baths
comprised of a few sites can approximately impose the correct
temperature on the system in the limit of weak coupling and
damping.

We demonstrated the applicability of our method by com-
puting the low-temperature energy diffusion constant of the
XZ model in an open system setup. We were able to reach
temperatures much lower than in our previous work [41] and
showed that the diffusivity scales exponentially with inverse
temperature, as predicted by a semiclassical calculation for
gapped one-dimensional systems [41,82,83].

Although our approach can successfully thermalize the
system under the aforementioned conditions, there is still
a minimal temperature below which the system cannot be
cooled with the current setup. For the XZ model, this tem-
perature seems to exactly match its energy gap. However,
this is not true for all models. For example, we have shown
that an Ising model in a mixed field, which has a relatively
large gap, can be cooled far below this energy scale [41].
At present, we do not fully understand what determines this
minimal temperature, but we conjecture that it is on the order
of min(�, J ), where � is the energy gap and J is the typi-
cal interaction strength of the model. Moreover, it is unclear
whether the limiting gap is that of the system or the bath,

since both are represented by the same Hamiltonian in this
case. It is difficult to distinguish between the two scenar-
ios, because changing the bath Hamiltonian usually leads to
significantly less efficient cooling at low temperatures and
hence a larger minimal temperature, even if the gap of the
bath Hamiltonian stays roughly the same. This is in agree-
ment with our findings for the noninteracting model, where
we showed that the energy spectra of the system and bath
must closely match. Surprisingly, we also found a minimal
accessible temperature for the gapless chiral clock model.
A possible explanation involves the emergence of a new
energy scale in the system, defined in terms of Luttinger
liquid parameters [106], which sets its effective tempera-
ture under Lindblad dynamics. A direction of future research
would be to formulate a general framework for construct-
ing efficient baths and dynamics that could circumvent this
limitation.

Our study also highlights some other shortcomings of
the Lindblad approach. One has to take the limit of weak
coupling and damping, in addition to making the baths a sub-
stantial fraction of the system. This can become impractical
for larger and more complex systems. Recently, there has
been a lot of progress towards engineering mesoscopic leads
with better thermalization properties. References [25,107]
described tensor network algorithms for boundary-driven
thermal machines, where mesoscopic baths are systematically
approximated by a finite number of damped fermionic modes.
Concurrently, Refs. [108,109] introduced a mixed spatial-
energy basis for fermionic systems coupled to mesoscopic
leads, which significantly lowers the required bond dimension
in tensor network simulations. Tensor network methods have
also been developed to implement other quantum master equa-
tions, such as the Redfield equation [110], although only for
short evolution times. Given this abundance of new methods,
it would be interesting to apply them to larger scale problems
of interest, such as low-temperature transport, and compare
them to our approach.
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APPENDIX: MULTI-SITE LINDBLAD OPERATORS

Our goal is to construct a superoperator LB from a set of
Lindblad operators {Ljk} such that it drives the M-site bath to
a Gibbs state at temperature TB and chemical potential μB, i.e.,
LB(ρB) = 0, where

ρB = e−(HB−μBNB )/TB

Tr(e−(HB−μBNB )/TB )
(A1)

and NB is the total spin or particle number operator of the
bath. We therefore require that ρB is a unique eigenvector
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of LB with eigenvalue 0. However, this condition does not
fully fix the jump operators, as it only ensures that the steady
state is correct. One can additionally require that all the other
modes decay at the same rate [31], which results in the
fastest convergence to ρB. Alternatively, one could impose the
detailed-balance condition between the energy levels of HB,
which may lead to better thermalization in certain regimes
[111]. For our models, we find that both approaches work
equally well even at low temperatures.

In the case of free fermions, the number of Lindblad op-
erators required to thermalize the bath scales linearly with
its size, while for a generic spin system, this number scales
exponentially with M. This may seem problematic at first,
since it would severely restrict the size of the bath that can
be implemented in practice. However, as we show in the
main text, even a relatively small bath can result in good
thermalization under the right conditions. The real bottleneck
is in designing a compact tensor network representation of
the Liouvillian LB, which can be efficiently applied to the
bath without generating too much entanglement during time
evolution. A potential avenue of research would be to leverage
the product spectrum ansatz [112,113] to design dissipators
that only approximately thermalize larger baths.

1. Noninteracting Hamiltonian

If the bath Hamiltonian is quadratic in the fermion creation
and annihilation operators, the jump operators can be made
linear [49,81,114]. We first write the Hamiltonian (Eq. (6))
in the energy eigenbasis by diagonalizing the interaction ma-
trix JB = V †εBV , where εB = diag(εB

1 , εB
2 , . . . , εB

M ) and V is
unitary. We recover Eq. (10) with ck = ∑M

j=1 Vk jc j . Note that
the new operators also satisfy the canonical anticommutation
relations {c†

k , cl} = δkl . The thermal density matrix can be
written in this basis as well

ρB =
M∏

k=1

( fkc†
kck + (1 − fk )ckc†

k ), (A2)

where fk are the equilibrium occupation numbers defined in
Eq. (13). For each mode k, we introduce two jump operators
that either add a fermion at a rate γ fk or remove a fermion at
a rate γ (1 − fk )

Lin,k =
√

γ fkc†
k , (A3)

Lout,k =
√

γ (1 − fk )ck . (A4)

The rates are chosen to satisfy the detailed-balance condition
fk/(1 − fk ) = e−(εB

k −μB )/TB . We can further check that all the
terms in the Lindblad equation exactly cancel

Lin,kρBL†
in,k = L†

out,kLout,kρB = ρBL†
out,kLout,k

= γ fk (1 − fk )c†
kck

∏
l 
=k

( fl c
†
l cl + (1 − fl )cl c

†
l ),

(A5)

Lout,kρBL†
out,k = L†

in,kLin,kρB = ρBL†
in,kLin,k

= γ fk (1 − fk )ckc†
k

∏
l 
=k

( fl c
†
l cl + (1 − fl )clc

†
l ).

(A6)

Thus we conclude that ρB is indeed a fixed point under the
dynamics generated by these jump operators.

2. Interacting Hamiltonian

For interacting spin systems, we extend the two-site Lind-
blad operators construction in Refs. [31,33,39–41] to systems
of arbitrary size. Consider the general case where each of
the M spins has a local Hilbert space dimension d . We be-
gin by diagonalizing the density matrix ρB = V †WV , where
W = diag(W0,W1, . . . ,WdM−1) and V is unitary. Define a set
of d2M operators L̃ jk ∈ RdM×dM

L̃ jk = √
γWjEjk, 0 � j, k < dM, (A7)

where Eab is the matrix unit with a 1 in row a and column b as
its only nonzero entry. Here γ quantifies the overall strength
of the bath damping. It is easy to verify that

L̃ jkW L̃†
jk = γWjWkEj j, (A8)

L̃†
jk L̃ jkW = W L̃†

jk L̃ jk = γWjWkEkk . (A9)

Therefore we have

L̃B(W ) =
dM−1∑
j,k=0

(
L̃ jkW L̃†

jk − 1

2
L̃†

jk L̃ jkW − 1

2
W L̃†

jk L̃ jk

)

= γ

dM−1∑
j,k=0

WjWk (Ej j − Ekk ) = 0, (A10)

and we can multiply this expression by V † and V on the
left and right sides and use the identity VV † = I to deduce
that

dM−1∑
j,k=0

(
LjkρBL†

jk − 1

2
L†

jkL jkρB − 1

2
ρBL†

jkL jk

)
= 0, (A11)

with Ljk = V †L̃ jkV . Hence we can use these new Lind-
blad operators Ljk to construct a superoperator satisfying
LB(ρB) = 0. Moreover, since V is unitary, the eigenvalues
of LB will be the same as those of L̃B. We can com-
pute the latter using the vectorized representation of the
Liouvillian [1,6,20]

L̃B =
dM−1∑
j,k=0

(
L̃∗

jk ⊗ L̃ jk − 1

2
I ⊗ L̃†

jk L̃ jk − 1

2
L̃T

jkL̃∗
jk ⊗ I

)
,

(A12)

where

L̃∗
jk ⊗ L̃ jk = γWjEj(dM+1),k(dM+1), (A13)

I ⊗ L̃†
jk L̃ jk = γWj

dM−1∑
i=0

Ek+i·dM ,k+i·dM , (A14)

L̃T
jkL̃∗

jk ⊗ I = γWj

dM−1∑
i=0

Ei+k·dM ,i+k·dM , (A15)
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and I denotes the dM × dM identity matrix. It is straight-
forward to check that L̃B has exactly one zero eigen-
value and the remaining eigenvalues are equal to −γ ,
since

∑dM−1
j=0 Wj = Tr(ρB) = 1. Hence our construction

leads to the fastest relaxation to the target density
matrix [31].

A different set of dissipators, satisfying detailed-balance
relations, has also been proposed [111]. Using our notation
above, these operators take the form

L̃ jk =
√

γWj

Wj + Wk
Ejk, 0 � j 
= k < dM . (A16)

We can again verify that they drive the bath to its correct
thermal state

L̃B(W ) = γ

dM−1∑
j,k=0

WjWk

Wj + Wk
(Ej j − Ekk ) = 0, (A17)

since

L̃ jkW L̃†
jk = γ

WjWk

Wj + Wk
Ej j, (A18)

L̃†
jk L̃ jkW = W L̃†

jk L̃ jk = γ
WjWk

Wj + Wk
Ekk . (A19)

The final jump operators are given by Ljk = V †L̃ jkV .
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[37] M. Žnidarič, Phys. Rev. B 88, 205135 (2013).
[38] J. J. Mendoza-Arenas, S. Al-Assam, S. R. Clark, and D.

Jaksch, J. Stat. Mech.: Theory Exp. (2013) P07007.
[39] J. J. Mendoza-Arenas, S. R. Clark, and D. Jaksch, Phys. Rev.

E 91, 042129 (2015).
[40] J. J. Mendoza-Arenas, M. Žnidarič, V. K. Varma, J. Goold,
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[84] M. Žnidarič, Phys. Rev. E 92, 042143 (2015).
[85] S. R. Clark, J. Prior, M. J. Hartmann, D. Jaksch, and M. B.

Plenio, New J. Phys. 12, 025005 (2010).
[86] D. Karevski, V. Popkov, and G. M. Schütz, Phys. Rev. Lett.

110, 047201 (2013).
[87] T. Prosen, Phys. Rev. Lett. 107, 137201 (2011).
[88] T. Prosen, Phys. Rev. Lett. 106, 217206 (2011).
[89] T. Prosen, Phys. Rev. Lett. 112, 030603 (2014).
[90] V. Popkov and T. Prosen, Phys. Rev. Lett. 114, 127201 (2015).
[91] V. Popkov and C. Presilla, Phys. Rev. A 93, 022111 (2016).
[92] V. Popkov, T. Prosen, and L. Zadnik, Phys. Rev. Lett. 124,

160403 (2020).
[93] V. Popkov, T. Prosen, and L. Zadnik, Phys. Rev. E 101, 042122

(2020).
[94] M. Suzuki, Phys. Lett. A 146, 319 (1990).
[95] Z. Cai and T. Barthel, Phys. Rev. Lett. 111, 150403 (2013).
[96] M. V. Medvedyeva, T. Prosen, and M. Žnidarič, Phys. Rev. B
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