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On the basis of the self-consistent phonon theory and the special displacement method, we develop an
approach for the treatment of anharmonicity in solids. We show that this approach enables the efficient
calculation of temperature-dependent anharmonic phonon dispersions, requiring very few steps to achieve
minimization of the system’s free energy. We demonstrate this methodology in the regime of strongly anharmonic
materials, which exhibit a multiwell potential energy surface, like cubic SrTiO3, CsPbBr3, CsPbI3, CsSnI3,
and Zr. Our results are in good agreement with experiments and previous first-principles studies relying on
stochastic nonperturbative and molecular dynamics simulations. We achieve a very robust workflow by using
harmonic phonons of the polymorphous ground state as the starting point and an iterative mixing scheme of
the dynamical matrix. We also suggest that the phonons of the polymorphous ground state might provide an
excellent starting approximation to explore anharmonicity. Given the simplicity, efficiency, and stability of the
present treatment to anharmonicity, it is especially suitable for use with any electronic structure code and for
investigating electron-phonon couplings in strongly anharmonic systems.
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I. INTRODUCTION

Incorporating anharmonic lattice dynamics in first-
principles calculations of solids has been a central topic of
research over the last fifteen years owing to their importance
in describing accurately vibrational, transport, and optoelec-
tronic properties at finite temperatures [1–9]. Anharmonicity
in solids can broadly be classified by inspecting the poten-
tial energy surface (PES), representing the variation of the
system’s potential energy with respect to the positions of the
nuclei (Fig. 1). When variations in the potential energy can be
fully or nearly described by a parabola [Figs. 1(a) and 1(b)],
the system is classified as harmonic or weakly anharmonic. In
these cases one can exploit the standard harmonic approxima-
tion to efficiently evaluate the vibrational (phonon) spectra by
means of density functional perturbation theory (DFPT) [10]
or the frozen-phonon method (FPM) [11]. If, however, the
PES is distinctly different from a parabola, the system can be
classified as anharmonic [Figs. 1(c) and 1(d)] and the standard
harmonic approximation breaks down, leading to instabilities
(imaginary frequencies) in the phonon spectrum. In this case,
one needs to resort to a higher-level theory.

The self-consistent phonon (SCP) theory [12–14] forms
the basis of current state-of-the-art methodologies employed
for the treatment of lattice anharmonicity. These method-
ologies rely on (i) nonperturbative stochastic approaches
that obtain self-consistency in the phonon spectrum [15–18],
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or minimize directly the system’s free energy [19–22],
(ii) ab initio molecular dynamics [23–25] (aiMD) for the
extraction of an effective matrix of interatomic force con-
stants (IFCs) by least-squares fitting, and (iii) the explicit
computation of higher-order IFCs [4,26–28]. The success of
(i)–(iii) has been demonstrated, among others, in calculations
of temperature-dependent (anharmonic) phonon dispersions,
free energies, phase diagrams, lattice conductivities, specific
heats, and phonon-phonon scattering rates [15–21,23–29].

In parallel with the development of efficient computational
methods to treat anharmonicity in solids, the field of electron-
phonon interactions from first principles [30] is growing
tremendously popular [31–36]. Therefore, interfacing the
rather challenging calculations of electron-phonon properties
[37–39] with practical calculations of anharmonic phonons
is of paramount importance. The increasing importance and
popularity of these calculations call for the development of
simple and efficient approaches to anharmonicity that can be
applied straightforwardly by end users on top of any electronic
structure code.

In this paper we focus towards this perspective and develop
a nonperturbative first-principles approach to anharmonicity
that relies on the combination of the SCP theory and the
special displacement method [40,41]. We demonstrate that
special displacements in small supercells can be employed
to capture very efficiently the anharmonicity in the IFCs via
the computation of an effective PES. In particular, we show
that self-consistency in the phonon spectra can be achieved in
very few steps using a single thermally distorted configuration
at each iteration and taking the polymorphous ground-state
network [42] as the starting point. The overall convergence
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FIG. 1. Schematic illustration of PES representing various levels
of anharmonicity: (a) harmonic, (b) weakly anharmonic, (c) anhar-
monic with a single well, and (d) anharmonic with a double-well
PES. Orange curves represent the true potential and blue curves are
harmonic fits around static equilibrium positions of the nuclei τeq.

performance is enhanced by an iterative mixing scheme. Our
suggested workflow is very simple as it relies on basic first-
principles tools such as the FPM or DFPT. We name our
approach A-SDM, standing for anharmonicity (A) using the
special displacement method (SDM). In order to demonstrate
the A-SDM, we report anharmonic phonons of the cubic
perovskites SrTiO3, CsPbBr3, CsPbI3, and CsSnI3, tetragonal
SrTiO3, as well as body-centered cubic (bcc) Zr. Our results
compare well with experiments and previous calculations
based on stochastic, aiMD, or other variational approaches
that rely on truncated Taylor expansions of the PES.

The paper is organized as follows. In Sec. II we de-
scribe the theoretical framework of lattice dynamics and our
methodology to anharmonicity, putting together the concepts
underpinning SCP and SDM theories. In Sec. III we outline
the main procedure of the A-SDM and show its capability
in computing temperature-dependent phonon spectra of cu-
bic SrTiO3, CsPbBr3, CsPbI3, CsSnI3, and Zr. Section IV
describes improvements related to the self-consistent scheme
and reports all computational details. Our conclusions and
outlook are provided in Sec. V.

II. THEORY

Here we describe the theoretical framework underpinning
the A-SDM to deal with lattice anharmonicity in crystals.
Our approach is conceptually similar to other SCP methods
developed in the past [1,5,7]; the aspect introduced here is
that special displacements can be employed to accelerate con-
siderably the sampling of the nuclei configuration space.

A. Lattice dynamics

To describe lattice dynamics we resort to supercell periodic
boundary conditions and, at first, to the standard harmonic
approximation. Hence we take the Taylor expansion of the
PES up to second order in atomic displacements to write

U {τ } = U0 + 1

2

∑
pκα

p′κ ′α′

∂2U

∂τpκα∂τp′κ ′α′
�τpκα�τp′κ ′α′ . (1)

Here U0 is a local extrema of the PES with the atoms at their
static equilibrium positions τpκα where p, κ , and α indices
represent the unit cell (position vector Rp), the atom (position
vector τκ ), and the Cartesian component, respectively. The
displacements of the atoms away from their static equilibrium
positions are denoted as �τpκα .

To obtain the phonon spectrum one needs to evaluate the
dynamical matrix for lattice vibrations obtained as the Fourier
transform of the IFCs [43],

Dκα,κ ′α′ (q) =
∑

p′

C0κα,p′κ ′α′√
MκMκ ′

eiq·Rp′ eiq·(τκ′−τκ ), (2)

where q is a wavevector of the reciprocal space, the IFCs ma-
trix elements are defined as Cpκα,p′κ ′α′ = ∂2U/∂τpκα∂τp′κ ′α′ ,
and Mκ represents the atomic mass. The subscript 0 is used
to indicate that IFCs are calculated with respect to a ref-
erence unit cell, which is invariant upon translation. For
high-symmetry systems, the IFCs entering Eq. (2) should
remain invariant under the crystal’s symmetry operations
{S|v(S) + Rm}, where S represents a rotation (proper or im-
proper) and v(S) is a fractional translation associated with S.
That is, if the position vectors of two atoms are related by [44]

τPK = S τ pκ + v(S) + Rm, (3)

then the following relationship should hold for the matrix
elements of the IFCs:

CPKα,P′K ′α′ =
∑
ββ ′

SαβSα′β ′Cpκβ,p′κ ′β ′ . (4)

A great advantage of using symmetry operations is that the
computation of the full dynamical matrix can be obtained by
applying finite displacements to a few atoms in the unit cell.

For polar semiconductors, the long-range dipole-dipole
(dd) interactions, induced by collective ionic displacements,
are treated by employing the standard nonanalytical correction
in the limit q → 0. This correction to the dynamical matrix is
given by [45]

Ddd
κα,κ ′α′ (q→0) = 1√

MκMκ ′

4πe2

	

∑
β qβZ∗

κ,βα

∑
β ′ qβ ′Z∗

κ ′,β ′α′∑
ββ ′ qβε∞

ββ ′qβ ′
,

(5)

where e is the electron charge, 	 represents the volume of
the unit cell, Z∗

κ,βα are the matrix elements of the Born-
effective charge tensor, and ε∞

ββ ′ are the matrix elements of
the high-frequency dielectric constant. This term leads to
the splitting between the longitudinal optical (LO) and trans-
verse optical (TO) modes at the zone center. At general q
points, the long-range dipole-dipole effect can be accounted
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FIG. 2. Schematic illustration of a harmonic (a) and a double-
well anharmonic (b) PES. Orange and black curves represent the
true and effective potentials. Green and red curves are harmonic
fits around saddle points of the PES defined by static equilibrium
positions of the nuclei. Black dashed line represents the solution of
the nuclear Schrödinger equation. The local maximum and minima
of the PES in (b) correspond to the monomorphous (high-symmetry)
and polymorphous configurations, respectively.

for using the linear response or mixed space approaches de-
scribed in Refs. [45] and [46], respectively.

Having obtained the components of the dynamical matrix,
the phonon frequencies ωqν and polarization vectors eκα,ν (q)
corresponding to wavevector q and mode ν are determined by
solving the eigenvalue equation∑

κ ′α′
Dκα,κ ′α′ (q)eκ ′α′,ν (q) = ω2

qνeκα,ν (q). (6)

The frequencies ωqν define the phonon dispersion in the fun-
damental Brillouin zone of the crystal’s unit cell.

B. Treatment of anharmonicity via the special
displacement method: A-SDM

When the displacements are small, the atoms remain near
the bottom of the PES well and the harmonic approxima-
tion to lattice dynamics is appropriate for solving the nuclear
Schrödinger equation [Fig. 2(a)]. In the case of a double-well
potential, a harmonic approximation at the local maximum is
still possible but fails completely to describe the free energy
of the system [green curve in Fig. 2(b)]. Instead, one can apply
the harmonic approximation in one of the two PES wells,
corresponding to the system’s ground state, and obtain a rea-
sonable estimate [red curve in Fig. 2(b)]. However, there is no
direct indication how accurate this estimate is, until the actual
solution of the nuclear Schrödinger equation or the system’s
free energy are obtained [47]. The most popular approach to
capture anharmonicity is to find an effective harmonic poten-
tial whose solution matches the one of the true PES [black line
in Fig. 2(b)].

To account for anharmonic effects in the lattice dynam-
ics we base our approach on the SCP theory. The merit of
this theory is that the true potential (e.g., double well) can
be replaced by an effective temperature-dependent harmonic
potential, provided this effective potential minimizes the free
energy. The problem involved is to determine, essentially, the
temperature-dependent matrix of IFCs

Cpκα,p′κ ′α′ (T ) =
〈

∂2U {τ }

∂τpκα∂τp′κ ′α′

〉
T

, (7)

iteratively until self-consistency is reached. The notation 〈.〉T
represents the ensemble thermal average, which acts as the
trace over the complete set of quantum harmonic oscillators
weighted by the standard Boltzmann factor at temperature T
and normalized by the canonical partition function. For com-
pleteness, we provide the proof of Eq. (7) in the Appendix.
The thermal average can be expressed as a multivariate Gaus-
sian integral of the following form [41]:

Cpκα,p′κ ′α′ (T ) =
∏
qν

∫
dzqν

uqν

√
2π

e
− |zqν |2

2u2
qν

∂2U {τ }

∂τpκα∂τp′κ ′α′
. (8)

Here zqν are the normal coordinates and u2
qν is the mode-

resolved mean-square displacement of the nuclei given by

u2
qν (T ) = h̄

2M0ωqν

[2nqν (T ) + 1], (9)

where M0 is the proton mass and nqν (T ) is the Bose-Einstein
occupation of the phonon ωqν .

At each iteration the thermal average can be evaluated
stochastically using Monte Carlo approaches [18–20,48]. In
these approaches, displaced nuclei configurations at each tem-
perature are generated by drawing normal coordinates from
the multivariate normal distribution to evaluate Cpκα,p′κ ′α′ (T )
and, hence, the dynamical matrix. Minimization of the sys-
tem’s free energy is achieved when self-consistency with
respect to IFCs and thus phonon frequencies and eigenvectors
is obtained. This aspect has been demonstrated and discussed
in Ref. [18]. The free energy is defined as F = U − T S, where
U is the total energy and S the vibrational entropy, and can be
expressed as [5,43]

F (T ) = 〈U 〉T − M0

2

∑
qν

ω2
qνu2

qν (T )

+
∑
qν

[
h̄ωqν

2
− kBT ln[1 + nqν (T )]

]
. (10)

Here, 〈U 〉T is the thermal average of the true PES taken with
respect to the eigenstates of the effective harmonic Hamilto-
nian, the term M0/2

∑
qν ω2

qνu2
qν (T ) is the vibrational energy

of the effective harmonic Hamiltonian, and kB is the Boltz-
mann constant.

To evaluate Eq. (7) more efficiently we propose to replace
the cumbersome stochastic sampling for the calculation of
Cpκα,p′κ ′α′ (T ) with SDM [40,41]. For this purpose it suffices
to set the nuclei of the system at coordinates defined by
Zacharias-Giustino (ZG) displacements and calculate

Cpκα,p′κ ′α′ (T ) 	 ∂2U {τZG}

∂τpκα∂τp′κ ′α′
. (11)

Here the coordinates are defined as τZG = τ + �τZG, where
�τZG represent the ZG displacements. These are given
by [41]

�τZG
pκα =

√
M0

NpMκ

2
∑
qν

Sqνuqν Re
[
eiq·Rpeκα,ν (q)

]
, (12)

where the notation Np stands for the number of unit cells com-
prising the supercell. The quantities Sqν represent an optimal
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choice of signs (±1) determined by the EPW/ZG module [39]
so as to ensure that the resulting ZG configuration at tem-
perature T yields the best-possible approximation to Eq. (8).
We note that ZG displacements have been originally designed
for the one-shot evaluation of electron-phonon effects using
supercells. In this paper we expand this idea for the efficient
treatment of anharmonic dynamics. In fact, ZG displacements
are perfectly suited for describing an effective potential since
one of the premises of the SDM theory requires vanishing
IFCs between atoms in distant unit cells (see Eq. (45) of
Ref. [41]).

The straightforward evaluation of Eq. (11) involves per-
forming FPM or DFPT on a thermally displaced configuration
in the same fashion with standard phonon calculations of
harmonic systems. However, the “brute force” computation
of Cpκα,p′κ ′α′ (T ) by DFPT or FPM becomes prohibitively
expensive with the supercell size. Instead, one can calculate
Cpκα,p′κ ′α′ (T ) at each iteration much more efficiently by re-
lying only on the Hellman-Feynman forces Fpκα acting on
the nuclei contained in a ZG supercell through the following
relationship [16,21]:

Cpκα,p′κ ′α′ (T ) 	
∑

p′′κ ′′α′′

√
Mκ ′Mκ ′′

M0
�τZG

p′′κ ′′α′′F {τZG}
pκα

×
∑

ν

eκ ′α′,ν (0)eκ ′′α′′,ν (0)

u2
0ν

. (13)

Here all quantities refer to supercell calculations (q = 0) and
both eκα,ν (0) and u2

0ν are as obtained in the previous itera-
tion. The derivation of Eq. (13) proceeds by (i) starting from
Cpκα,p′κ ′α′ (T ) = 〈∂Fpκα/∂τp′κ ′α′ 〉T , (ii) expressing the deriva-
tive with respect to atomic displacements into its normal
coordinate representation [41], (iii) writing the thermal aver-
age as in Eq. (8), (iv) making use of integration by parts, and
(v) replacing the thermal average with its ZG analog.

C. Applications of the A-SDM beyond
the SCP theory for symmetric phases

It should be pointed out that the SDM can also be ex-
ploited for the efficient calculation of the generalization of
Eq. (7) for higher-order force constants, or in other words,
the computation of the Gaussian integral appearing in Eq. (8)
for derivatives of the potential of any degree. The calculation
of thermal averages of higher-order force constants should be
within reach. If successful, this additional information will
be useful to investigate second-order phase transitions within
Landau’s framework [21] in future work. Furthermore, when
nuclei are not enforced to respect crystal symmetries, or oc-
cupy general Wyckoff positions (i.e., can be treated as free
parameters), it is also desirable to minimize the free energy
with respect to the internal coordinates. This requires〈

∂U

∂τpκα

〉
T

= 0. (14)

The solution of the above equation can be obtained, for ex-
ample, using the Newton-Raphson method [16] so that at
each iteration we update the equilibrium positions through the

relationship

τ new
pκα = τpκα + C−1

pκα,pκα F {τZG}
pκα (15)

where C−1
pκα,pκα is the inverse of IFCs matrix evaluated through

Eq. (11). We note that there exist other approaches for solving
Eq. (14) that rely on the conjugate gradient method [19]. Also
in this case, the SDM can be proven useful. In the present pa-
per, we mostly study high-symmetry systems characterized by
special Wyckoff positions and therefore Eq. (14) is respected
by construction so that τ new

pκα = τpκα at each iteration.

III. MAIN PROCEDURE AND RESULTS

A. Main procedure of the A-SDM

We stress that the present variant of the SCP theory
requires only one thermal supercell configuration at each it-
eration j and avoids encountering instabilities in the phonon
spectra at any intermediate step; this is consistent with the
fact that the SCP theory [Eq. (7)] is designed to work only
with positive definite IFCs. In the following, we outline the
workflow of the proposed technique:

(1) Obtain the ground-state polymorphous configuration
of the system in a supercell by tight optimization of the nu-
clear coordinates, keeping the lattice constants fixed.

(2) Compute the initial matrix of IFCs C0 using the poly-
morphous configuration by means of DFPT or FPM and apply
the crystal’s symmetries [Eq. (4)].

(3) Generate the dynamical matrix [Eq. (2)] and obtain the
phonons by diagonalization [Eq. (6)].

(4) Generate �τZG [Eq. (12)] for temperature T using the
computed phonons and displace the nuclei from their high-
symmetry positions in a supercell. This step is performed with
the ZG.x code of EPW [39].

(5) Compute C j (T ) using the ZG configuration [either
with Eq. (11) or (13)].

(6) Apply the crystal’s symmetries to C j (T ) [Eq. (4)].
(7) Apply linear mixing C j = β C j + (1 − β ) C j−1,

where β is the mixing factor between 0.2 and 0.7, and
compute the phonons as in step 3.

(8) Repeat steps 4–7 until self-consistency in the IFCs
[Eq. (7)], and therefore, in phonon frequencies and eigenvec-
tors is reached.

(9) If convergence with respect to supercell size is sought,
go to step 4 and generate a ZG configuration in a larger
supercell using the self-consistent phonons obtained in step 8.

Let us remark that in the present procedure both phonon
frequencies and eigenvectors are updated iteratively. However,
a complete self-consistent phonon scheme also allows to ex-
plore thermal equilibrium positions [Eq. (15)] at each step,
which play a key role in describing structural phase transitions
at critical temperatures [21]. Here, we limit our calculations to
temperatures away from critical points, and mostly consider
systems for which the nuclei remain at their special Wyckoff
positions.

We note that for materials with a multiwell PES, their
ground-state structures in step 1 are obtained by initially
displacing the atoms in a supercell along the soft modes com-
puted for the high-symmetry structure and then performing
a tight relaxation of the atomic coordinates with the lattice
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(a)

(b) (c)

FIG. 3. (a) Convergence performance of the A-SDM in computing the phonon dispersion of cubic CsPbBr3 at T = 430 K. The calcu-
lations refer to 2×2×2 supercells using the experimental lattice constant [49] of 5.847 Å. IFCs at each iteration were evaluated by finite
differences including corrections due to long-range dipole-dipole interactions. Iteration −1 and 0 correspond to the phonons calculated for
the high-symmetry (monomorphous) and ground-state (polymorphous) structures, respectively. The dispersion of the polymorphous structure
is obtained after applying the crystal’s symmetry (SYM) operations on the IFCs [Eq. (4)]. (b) Differential free energy (�F ) as a function of
the number of iterations. �F is evaluated as the difference between the free energy [Eq. (10)] of the current and the last ZG configuration.
(c) Differential Frobenius norm of the leading IFCs (�||C1,1||) as a function of the number of iterations. �||C1,1|| is evaluated as the difference
between ||C1,1|| [Eq. (16)] of the current and the last IFCs.

constants fixed. More details are provided in Sec. IV B. Fol-
lowing the definitions made in Ref. [42], we refer to the
high-symmetry and ground-state structures as the monomor-
phous and polymorphous networks, respectively.

In Fig. 3(a) we demonstrate the performance of the
A-SDM for calculating the phonon dispersion of cubic
CsPbBr3 at T = 430 K. Iteration −1 refers to the phonons
computed for the monomorphous structure, featuring large
instabilities. Iteration 0 represents the symmetrized phonon
dispersion of the polymorphous structure computed by per-
forming steps 1–3. We indicate this phonon dispersion as
polymorphous-SYM for the rest of the paper. The phonon dis-
persions from iteration 1 to 5 are evaluated by repeating steps
4–7 using a mixing parameter β = 0.5 until self-consistency
is achieved. Impressively, our results show that the A-SDM
exhibits an outstanding efficiency requiring maximum 3–4
configurations for self-consistency in the phonon spectra. This
can also be seen by inspecting the variation of the differential
free energy, using Eq. (10), with respect to the number of
iterations, shown in Fig. 3(b). We emphasize that even the first
iteration (grey line) provides reasonable results, being very
close to the converged dispersion. We also stress that owing to
the linear mixing scheme (step 7), none of the iterations suffer
from phonon spectra with instabilities. This feature of our
technique constitutes an advantage over previous approaches
[16,18]. In Sec. IV A, we illustrate the validity of the iterative
mixing scheme.

As a sanity check, we also calculated the Frobenius norm
of the leading components of the IFCs matrix as

||C1,1|| =
∑

κ

||C1κ,1κ ||, (16)

where we set the unit-cell index p = 1. As shown in Fig. 3(c),
the convergence behavior of ||C1,1|| is similar to that of the
free energy. We propose that computing ||C1κ,1κ || for small

ZG supercells can be advantageous over relying solely on
numerical convergence of the free energy. This is because the
error involved in the evaluation of 〈U 〉T , entering the expres-
sion in Eq. (10), might slow down convergence for small ZG
supercells.

B. SrTiO3

In this section we demonstrate our methodology by taking
as a test case the phonon dispersion of SrTiO3 for which ex-
tensive theoretical and experimental data exist in the literature
[18,26,28,50–56].

Figures 4(a) and 4(b) show the phonon dispersions of
cubic and tetragonal SrTiO3, respectively, calculated for
the monomorphous and polymorphous structures. Those
structures correspond to different extrema in the PES as
shown schematically in Fig. 2(b). The phonon dispersion of
the monomorphous cubic SrTiO3 is dynamically unstable,
exhibiting imaginary frequencies along the R-M-
 path, in-
cluding the antiferrodistortive (AFD) and ferroelectric (FE)
soft modes at R and 
 points (green line). Allowing the system
to reach its disordered ground state [i.e., one of the minima
in Fig. 2(b)], the soft modes are stabilized to real and positive
frequencies with a significant renormalization of up to 30 meV
(red line). Similarly, the harmonic phonon dispersion of the
monomorphous tetragonal SrTiO3 exhibits instabilities, where
the soft AFD mode (responsible for the transition into the
tetragonal phase) is folded onto the zone center. The system
is stabilized when polymorphism is accounted for, demon-
strating that the polymorphous networks can be utilized for
exploring anharmonicity even in low-symmetry phases.

As an intermediate step to account for lattice anharmonic-
ity, we compute temperature-dependent phonon dispersions
of polymorphous cubic SrTiO3 in the quasiharmonic approx-
imation (QHA); i.e., we repeat phonon calculations for the
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(a) (b)

FIG. 4. Harmonic phonon dispersions of (a) cubic SrTiO3 and (b) tetragonal SrTiO3 calculated using the monomorphous (green) and
polymorphous (red) structures. Results were obtained using 2×2×2 supercells (40 atoms for the cubic and 80 for the tetragonal phase), the
PBEsol approximation, and including long-range dipole-dipole interactions.

polymorphous network by varying its volume according to the
measured thermal lattice expansion [57]. Figure 5(a) shows
the QHA phonon dispersions at 0 K, 300 K, and 500 K. The
dispersions match closely each other showing that thermal
lattice expansion induces small phonon frequency renormal-
izations. In the inset, we focus on the effect of thermal lattice
expansion on the zone-center TO modes, with TO1 represent-
ing the FE soft mode. In Fig. 5(b) we present the variation of
the TO1 and TO2 soft modes (diamonds) as a function of tem-
perature calculated within the QHA. Our values are compared
with theoretical data reported in Refs. [26] and [56]. Exper-
imental data are from Refs. [51] and [53]. Theoretical data
correspond to calculations performed by combining the SCP
theory with truncated Taylor expansions of the PES (SCP-
TE) [14,26] (solid lines), using the temperature-dependent
effective potential (TDEP) [23] approach (filled discs) that
relies on aiMD simulations, and using the stochastic self-
consistent harmonic approximation (SSCHA) [22] (squares)
that depends on nonperturbative supercell calculations. It is
evident that the QHA combined with phonons of the polymor-
phous structure fails to explain data obtained with higher-level
approaches to anharmonicity and experiment.

Figure 5(c) shows the temperature-dependent (anhar-
monic) phonon dispersions of cubic SrTiO3 at 0 K, 300 K,
500 K, and 900 K calculated within the A-SDM. We account
for thermal lattice expansion as in the QHA. In the inset, we
focus on the effect of anharmonicity on the TO1 and TO2
modes. The soft nature of these modes is evidenced by their
frequency sensitivity to temperature, with TO1 decreasing
from 20.07 meV at 900 K to 16.58 meV at 300 K and with
TO2 decreasing from 28.10 meV at 900 K to 23.75 meV at
300 K. Notably, at T = 0 K, the AFD mode becomes un-
stable in the cubic phase for a 2×2×2 supercell even when
anharmonicity is accounted for. Instead, using the tetrago-
nal structure and including anharmonicity via the A-SDM
yields stabilized phonon dispersions at T = 0 K [black line
in Fig. 5(d)] and T = 75 K (not shown).

To make contact with existing approaches to lattice an-
harmonicity, in Fig. 5(e) we compare our calculations for
the temperature dependence of the TO1 and TO2 phonon
frequencies at the 
 point (blue diamonds) with data reported

in Refs. [26] and [56]. Our A-SDM values in the temperature
range 0–1000 K are consistent with SCP-TE, aiMD, and SS-
CHA data, validating the treatment of lattice anharmonicity
within our methodology, which includes nonperturbatively
all anharmonic even-order contributions to the phonon self-
energy [58]. In particular, our calculations for the TO2 phonon
frequency as a function of temperature are in excellent agree-
ment with the SCP-TE technique. In the latter approach, the
phonon frequency shifts (i.e., the real part of the phonon self-
energy) are evaluated through the loop diagram (four-phonon
scattering) only, neglecting contributions arising from the
bubble (three-phonon scattering) or higher-order diagrams.
The bubble diagram is presumed to reduce the frequency
renormalization of the TO1 mode [26], and is not captured
in the SCP theory, and hence in the A-SDM, by construction.
Upgrading A-SDM and accounting for the dynamic bubble
self-energy requires the explicit evaluation of third-order force
constants [59], but it is beyond the scope of this paper.
Furthermore, it is evident that our A-SDM theory captures
anharmonicity in the phonon polarization vectors through
off-diagonal self-energy components since crossing between
the TO1 and TO2 frequencies is avoided [26]. Small dis-
crepancies between A-SDM and TDEP phonon frequencies
of the order of 1 meV are attributed to the following possi-
ble reasons: (i) the TDEP calculations of Ref. [26] neglect
thermal expansion of the crystal, (ii) TDEP accounts for the
relaxation of internal coordinates along the aiMD trajectories,
which affects the IFCs, (iii) aiMD simulations generate a
nonsymmetric distribution of nuclei displacements and hence
odd-order terms in the PES are accounted for, and (iv) quan-
tum nuclear effects are absent in the TDEP approach as it
relies on aiMD.

To directly compare the A-SDM with the SSCHA data of
Ref. [56], we evaluate the TO1 anharmonic frequency using
the tetragonal structure at T = 0 K and 75 K, as shown by the
green diamonds in Fig. 5(e). This practically demonstrates the
agreement of the two approaches for two different structural
phases. Deviations between the two data sets can be explained
by the fact that calculations of Ref. [56] are for 4×4×4 super-
cells and include corrections from the, so called, static bubble
diagram [22].
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(a) (b)

(c) (d) (e)(d)

FIG. 5. (a) Temperature-dependent phonon dispersion of polymorphous cubic SrTiO3 calculated using the quasiharmonic approximation
(QHA) for T = 0 K (red), 300 K (blue), and 500 K (black). Thermal lattice expansion was taken into account using experimental data from
Ref. [57]. The phonon dispersions of the polymorphous structures were evaluated after applying the crystal symmetries (SYM) to the IFCs.
(b) Phonon frequency of the zone-center TO modes of cubic SrTiO3 as a function of temperature. Red diamonds correspond to our calculations
in the QHA using the cubic polymorphous structure. Discs and solid lines represent data from Ref. [26] obtained using the TDEP and SCP-
TE methods, respectively. Squares depict the results of Ref. [56] evaluated within the SSCHA. Experimental data, shown as triangles, are
from Refs. [51] and [53]. (c) Temperature-dependent phonon dispersion of cubic SrTiO3 calculated using the A-SDM for T = 0 K (orange),
T = 300 K (blue), 500 K (green), and 900 K (black). The symmetrized phonon dispersion of polymorphous cubic SrTiO3 at 0 K (red) is
shown for comparison. (d) Temperature-dependent phonon dispersion of tetragonal SrTiO3 calculated using the A-SDM for T = 0 K (black).
The symmetrized phonon dispersion of polymorphous tetragonal SrTiO3 at 0 K (red) is shown for comparison. (e) As in (b) but now blue
diamonds represent calculations using the A-SDM. Green diamonds are for the TO1 frequency calculated for the tetragonal structure using the
A-SDM. The vertical dashed line at T = 105 K indicates the phase transition temperature. All calculations refer to 2×2×2 supercells of cubic
or tetragonal SrTiO3 and are performed within the PBEsol approximation. Dispersions in (a), (c), and (d) include long-range corrections.

Figure 5(e) also shows that the TO1 and TO2 phonon
frequencies obtained for the polymorphous cubic structure
(red diamonds) are in excellent agreement with those calcu-
lated using the SCP-TE, A-SDM, and SSCHA approaches
at 0 K. This result together with the phonon dispersions
shown in Figs. 5(c) and 5(d) demonstrate that the poly-
morphous networks constitute a reasonable approximation
for dealing with phonon anharmonicity in SrTiO3 at low
temperatures.

The temperature dependence of the TO1 phonon frequency
calculated with various methods within the PBEsol approx-
imation fails to interpret experimental data from Refs. [51]
and [53], as shown in Fig. 5(e). It should be noted that the
drop in the frequency observed in the TDEP data is a result
of the method’s deficiency in describing quantum nuclear
effects, and any improvement with respect to experimental
results is merely coincidental. In reality, the TO1 phonon fre-
quency undergoes a complex frequency shift around the phase

transition temperature (∼105 K). This behavior can be de-
scribed by evaluating second derivatives of the SCP free
energy [21] and accounting for thermal relaxation of the inter-
nal nuclei coordinates in a quantum mechanical fashion [16].
However, the key factor that alleviates discrepancy between
theory and experiment is the use of higher-accuracy exchange-
correlation functionals [60]. In fact, using the random-phase
approximation for the treatment of electron correlation effects
yields TO1 frequencies in excellent quantitative agreement
with experiment [56].

In Fig. 6, we also report the variation of the AFD soft
mode frequency at the R-point with temperature, yielding
excellent agreement with SCP-TE data obtained for a 2×2×2
supercell of cubic SrTiO3. Employing the tetragonal structure
for temperatures below the phase transition, the AFD mode
at 
 splits into a double degenerate Eg mode and an A1g

mode. Using the experimental lattice constants [61], we found
the frequency of the Eg/A1g mode to be 3.61/10.71 meV
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FIG. 6. Temperature dependence of the squared frequency of
the AFD soft mode at R-point calculated with the A-SDM (blue
diamonds) and SCP-TE (black line) approaches using a 2×2×2
supercell of SrTiO3. SCP-TE data are from Ref. [26]. The lin-
ear fit to the A-SDM data is of the form ω2

R = 1.014 (THz2) +
1.133 (THz2/100 K).

at T = 0 K and 5.51/10.48 meV at T = 75 K in agree-
ment within 1 meV with those reported in Ref. [56]. These
results further validate our A-SDM approach. We remark
that the frequency of the AFD mode is expected to reduce
upon increasing the supercell size [18,26] or changing the
exchange-correlation functional [56].

C. Metal halide perovskites: CsPbBr3, CsPbI3, and CsSnI3

In Figs. 7(a)–7(c), we present the phonon dispersions
(black lines) of cubic CsPbBr3, CsPbI3, and CsSnI3 calcu-
lated using the A-SDM for 2×2×2 supercells. We note that
the A-SDM performance for CsPbI3 and CsSnI3 exhibits a
similar convergence rate with the one illustrated for CsPbBr3

(Fig. 3). We choose temperatures for which the systems re-
main thermodynamically stable at their cubic phases [62–64].
For comparison purposes we also include the phonons of the
monomorphous (green lines) and polymorphous (red lines)
structures. Our results show that IFCs of the monomorphous

TABLE I. Temperature-dependent frequencies of the FE soft
mode at the 
 point (ωFE) and AFD soft mode at the R-point (ωAFD)
of cubic SrTiO3, CsPbBr3, CsPbI3, and CsSnI3. Present calculations
refer to the A-SDM theory; temperatures are indicated below each
compound. In the square brackets we provide the values obtained
for the polymorphous structures at 0 K. Previous papers’ data for
SrTiO3, CsPbBr3, CsPbI3, and CsSnI3 are from Refs. [26], [65], [66],
and [20]. All data refer to 2×2×2 supercells except those reported in
Ref. [66], which are for 4×4×4 supercells.

Present paper Previous papers

ωFE(T ) ωAFD(T ) ωFE(T ) ωAFD(T )
(meV) (meV) (meV) (mev)

SrTiO3 17.32 [13.86] 8.65 [9.32] 17.86 8.56
(300 K)

CsPbBr3 4.34 [4.82] 2.19 [4.55] 4.10 0.95
(430 K)

CsPbI3 3.93 [4.17] 1.96 [3.52] 3.97 2.02
(650 K)

CsSnI3 4.32 [4.44] 2.05 [3.40] 4.26 2.30
(500 K)

structures yield dynamically unstable phonons represented by
the negative frequencies in the phonon dispersions (green
lines). We point out that the high-energy modes computed
with the monomorphous structures of CsPbI3 and CsPbBr3
compare well with those obtained from the A-SDM. Poly-
morphism in metal halide perovskites causes a narrowing of
the phonon dispersion where the majority of the high-energy
phonons decrease in energy, leading to enhanced phonon
bunching. Interestingly, polymorphism induces the hardening
of the low frequency soft modes represented by a nearly
flat band along the entire X-R-M path. Instead, including
anharmonicity via the A-SDM, we capture the soft mode
behavior along the R-M path (black lines), which is consistent
with previous calculations [20,65]. Moreover, narrowing of
the phonon density of states is not present in our A-SDM
calculations. In Table I we provide frequencies of the FE
and AFD soft modes at finite temperatures obtained with the
A-SDM theory and compare them with previous calculations.

(a) (b) (c)

FIG. 7. Phonon dispersions of cubic CsPbBr3 at 430 K (a), CsPbI3 at 650 K (b), and CsSnI3 at 500 K (c) calculated using the A-SDM; all
represented by black lines. Green and red lines represent the harmonic phonon dispersions of the monomorphous and polymorphous networks
at 0 K. All calculations refer to 2×2×2 supercells and include corrections due to long-range dipole-dipole interactions.
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FIG. 8. Phonon dispersions of cubic (430 K) and orthorhombic
(0 K) CsPbBr3 calculated using the A-SDM and FPM, respectively.

Our values are in excellent agreement with SCP and aiMD
data from Refs. [20], [65], and [66] apart from the ωAFD(T )
frequency of CsPbBr3 (2.19 meV compared to 0.95 meV). We
tentatively ascribe this difference to the sensitivity of the soft
mode to the choice of numerical settings, like the pseudopo-
tential and kinetic energy cutoff and to the fact that, unlike
aiMD simulations, our scheme does not allow for thermal
disorder via the relaxation of nuclei coordinates. As explained
in Ref. [65], phonon frequencies along the R-M path are very
sensitive to variations of the interatomic forces acting be-
tween Br atoms, and thereby, to changes in the internal nuclei
coordinates.

In Fig. 8 we compare the A-SDM phonon dispersion of
cubic CsPbBr3 at 430 K (black) with the harmonic one evalu-
ated for orthorhombic CsPbBr3 at 0 K (grey). It can be clearly
seen that the two dispersions have distinct qualitative and
quantitative differences, showing that phonons calculated for
the orthorhombic structures do not provide a good approxima-
tion for describing anharmonicity in metal halide perovskites.
For example, using the orthorhombic structure to investigate
electron-phonon properties, like carrier mobilities or relax-
ation rates, of high-temperature phases would be inaccurate.

Table II reports the average high-frequency dielectric con-
stants (ε∞) and atomic Born effective charges (Z∗

κ ) calculated
for the monomorphous and polymorphous 2×2×2 supercells
of all cubic compounds using DFPT [67]. The averages were
performed over the diagonal elements of the dielectric con-
stant and effective charge tensors. It is evident that the cubic
polymorphs of SrTiO3, CsPbBr3, and CsPbI3 yield a decrease
in the absolute values of ε∞ and Z∗

κ , with the larger renormal-
izations found for CsPbI3, which features the higher degree
of polymorphism [68]. It is worth noting that the monomor-
phous CsSnI3 exhibits an unphysically large high-frequency
dielectric constant due to its metallic-like behavior in density
functional theory calculations. This leads to a negligible LO-
TO splitting at the 
 point as shown by the green dispersion
in Fig. 7(c). On the contrary, accounting for the polymor-
phous cubic CsSnI3 yields a band gap opening and, thus, a

TABLE II. Average high-frequency dielectric constant (ε∞), and
average atomic Born effective charges (Z∗

κ ) of monomorphous (M)
and polymorphous (P) SrTiO3, CsPbBr3, CsPbI3, and CsSnI3. Cal-
culations were performed using 2×2×2 supercells.

ε∞ (e) Z∗
κ

M-SrTiO3 6.31 Sr: 2.56, Ti: 7.32, O: −3.29
P-SrTiO3 6.12 Sr: 2.55, Ti: 7.00, O: −3.18

M-CsPbBr3 5.31 Cs: 1.37, Pb: 4.33, Br: −1.90
P-CsPbBr3 4.61 Cs: 1.31, Pb: 4.06, Br: −1.79

M-CsPbI3 7.12 Cs: 1.44, Pb: 5.00, I: −2.15
P-CsPbI3 5.70 Cs: 1.33, Pb: 4.42, I: −1.92

M-CsSnI3 340.84 Cs: 1.15, Sn: 4.48, I: −1.88
P-CsSnI3 9.91 Cs: 1.36, Sn: 5.31, I: −2.19

reasonable value for the high-frequency dielectric constant of
ε∞ = 9.91. This value leads to an LO-TO splitting similar to
the other metal halide compounds.

D. Zr

In this section, we study bcc Zr as a representative example
of a high-temperature phase, crystallizing above 1135 K [69].
In Fig. 9(a), we present the phonon dispersion (black) of bcc
Zr at 1188 K evaluated using the A-SDM for a 4×4×4 super-
cell. On the same plot we include the symmetrized harmonic
phonon dispersions obtained for the monomorphous (green)
and polymorphous (red) structures. Unlike the phonon spec-
trum of the monomorphous structure, dispersions obtained
with the A-SDM or the polymorphous network do not suffer
from instabilities. Interestingly, the polymorphous structure
constitutes a reasonable approximation for the description of
the vibrational properties of bcc Zr, yielding phonon disper-
sions close to those calculated using the A-SDM.

To demonstrate convergence we performed calculations
using supercells of different size, from 3×3×3 to 5×5×5, as
shown in Fig. 9(b). Increasing the supercell size is important,
not only for the more precise sampling of the effective PES,
but also for approaching the limit where the nonperturbative
calculation with the ZG configuration becomes exact [40]. It
can be readily seen that the phonon dispersion of bcc Zr is well
converged for a 4×4×4 supercell. Notably, self-consistency in
the A-SDM for 3×3×3 and 4×4×4 supercells was achieved
using four iterations. For the A-SDM calculation in a 5×5×5
supercell we used only a single ZG-configuration starting
from the self-consistent phonons obtained for the 4×4×4
supercell (step 9 of the main procedure in Sec. III A). This
component of our approach provides a significant compu-
tational advantage over aiMD, which requires starting from
scratch for each supercell size.

Figure 9(c) compares our calculated phonon dispersion of
bcc Zr at 1188 K for a 5×5×5 supercell (black) with neutron
scattering experiments (circles and discs) [69,70]. Our A-
SDM dispersion is in good agreement with experimental data
points across the entire 
-H-P-
-N high-symmetry path. We
note that our results also compare well with previous theoret-
ical works that rely on stochastic and aiMD approaches [1,2].
The A-SDM calculations overestimate the phonon frequency
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(a)

(b)

(c)

FIG. 9. (a) Phonon dispersion (black) of bcc Zr at 1188 K cal-
culated using the A-SDM. Harmonic phonon dispersions of the
monomorphous (green) and polymorphous (red) structures at 0 K are
shown for comparison. All calculations refer to 4×4×4 supercells.
(b) Convergence of the A-SDM phonon dispersions of bcc Zr at
1188 K as a function of supercell size. Green, red, and black lines
represent calculations performed using 3×3×3, 4×4×4, and 5×5×5
supercells, respectively. (c) Comparison of the phonon dispersion of
bcc Zr at 1188 K calculated using the A-SDM for a 5×5×5 supercell
(black line) with neutron scattering measurements from Refs. [69]
(discs) and [70] (circles). The vertical dashed line cuts the horizontal
axis at the 3

2 (1, 1, 1) point of the reciprocal space.

of the longitudinal mode at 3
2 (1, 1, 1), which is responsible

for a martensitic transition towards the so-called ω phase [70].
This mode is, in fact, strongly overdamped and its frequency
reaches down to zero. Experimental studies [69,70] sug-
gest contrasting conclusions on whether this behavior arises
from a superlattice (elastic) reflection or inelastic scattering.
Clarifying this aspect from first-principles requires updating
the A-SDM to account for the internal relaxation of nuclei
coordinates under external pressure and evaluating second
derivatives of the free energy [16,21].

IV. ADDITIONAL METHODOLOGICAL
CONSIDERATIONS

A. Importance of using an initial polymorphous
structure and iterative mixing in the A-SDM

The main procedure for computing temperature-dependent
anharmonic phonons via the A-SDM has been described in
Sec. III A. Here we discuss some numerical issues if steps 1
and 6 are overlooked. We also demonstrate the iterative linear
mixing scheme used to speed up convergence.

If step 1 in the main procedure is skipped, the initial set
of IFCs Cpκα,p′κ ′α′ might be ill defined, resulting to imaginary
phonon frequencies. This might happen if the static equilib-
rium positions of the nuclei do not define the global minimum
of the potential [e.g., green curve in Fig. 2(b)]. Accounting
for the global minimum [e.g., red curve in Fig. 2(b)] yields
dynamically stable phonons. In systems with a multiwell PES
featuring local saddle points, one needs to release the atoms
away from their high-symmetry positions, usually defining
a local maximum, and perform a tight relaxation of atomic
positions (see also Sec. IV B). This, in turn, leads to a low-
symmetry distorted configuration similar to the strategy used
in Ref. [42] to explore polymorphism in metal halide and ox-
ide perovskites. We propose that the phonons calculated for the
ground-state polymorphous structure constitute the best start-
ing point in the A-SDM. In general, the starting guess of the
A-SDM self-consistent procedure is not necessarily unique,
and one could resort to other choices (e.g., setting an elec-
tronic temperature high enough) that yield positive definite
IFCs; however, we consider the choice of the polymorphous
structure as the most physically relevant one. Furthermore, if
the harmonic approximation gives an initial positive definite
IFCs matrix (see for example Ref. [71]), then the itera-
tive procedure can start without exploring the polymorphous
network.

Starting the iterative procedure from C0 computed for
the polymorphous network guarantees dynamically stable
phonons. However, if iterative mixing in step 7 is not fol-
lowed, then C j (T ) might be ill defined at later iterations,
giving phonon instabilities. To deal with this problem one
can set the imaginary frequencies to real and prepare the
configuration for the next iteration, as usually performed in
stochastic implementations of the SCP theory [18]. However,
this practice might deteriorate the stability of the whole ap-
proach. Another issue is that the solution of C j (T ) might
exhibit an oscillatory behavior, slowing down, or even de-
grading, self-consistency. In this case one can perform mixing
of the oscillatory solutions of C j (T ) and C j−1(T ) and con-
tinue the iterative procedure. We encountered this issue in our
preliminary tests using the Monte Carlo approach discussed
below.

The oscillatory behavior and unstable solutions can be
avoided, a priori, if we employ an iterative mixing of the IFCs
(step 7 of the main procedure). Importantly, this approach is
very beneficial for reducing statistical errors as well as for ac-
celerating the convergence rate considerably. To demonstrate
this point, in Fig. 10 we compare the convergence perfor-
mances of the importance sampling Monte Carlo (ISMC) [48]
approach without considering mixing with the A-SDM using
linear mixing for β = 0.5. We take as an example the phonon
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(a) (b) (c)

FIG. 10. Iterative convergence of the phonon dispersion of cubic SrTiO3 at 700 K calculated by (a) ISMC without mixing and (b) the
A-SDM with linear mixing. In both cases, iteration 0 represents the symmetrized phonon dispersion at 0 K calculated for the polymorphous
structure. (c) Self-consistent phonon dispersion of SrTiO3 as obtained at iteration 9 by ISMC (black) and iteration 1 by the A-SDM (red). All
calculations refer to 2×2×2 supercells.

dispersion of SrTiO3 at T = 700 K. The ISMC framework
refers to obtaining convergence of the IFCs with (i) the num-
ber of thermal configurations generated stochastically at each
iteration [Eq. (8)] and (ii) the number of iterations. We found
that nine iterations (10 configurations each) are enough for
obtaining convergence, as shown in Fig. 10(a). This amounts
to a total of 90 calculations. We note that in iterations 4
and 5 of ISMC the system was trapped between two oscil-
latory solutions. In order to proceed to the next iteration we
performed mixing of the corresponding IFCs. The A-SDM
framework refers to using only one ZG configuration at each
iteration, which is generated by IFCs obtained through step
7 of the main procedure. The convergence performance of
the A-SDM is shown in Fig. 10(b). Apart from requiring a
single configuration at each iteration, the A-SDM outperforms
ISMC to the point that only a single iteration is enough for
self-consistency. Figure 10(c) shows that the A-SDM and
ISMC give almost identical dispersions (and free energies) at
their first and ninth iterations, respectively.

Let us note that linear mixing is the simplest approach
possible to introduce mixing between IFCs of different iter-
ations. Its success for the systems studied here is remarkable,
enabling convergence, essentially, with only two sets of cal-
culations. However, for more challenging or complex cases,
other sophisticated schemes based on quasi-Newton meth-
ods, like the Broyden or Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithms [72,73], could be proved useful.

B. Computational details

All electronic structure calculations were performed within
density functional theory (DFT) using plane waves basis sets
as implemented in Quantum Espresso (QE) [74,75]. We
employed the Perdew-Burke-Ernzerhof exchange-correlation
functional revised for solids (PBEsol) [76] and optimized
norm-conserving Vanderbilt pseudopotentials from the Pseu-
doDojo library [77,78]. For cubic SrTiO3, CsPbBr3, CsPbI3,
and CsSnI3 (space group Pm3̄m) we set the kinetic energy cut-
off to 120 Ry and sampled the Brillouin zone of the unit cells
(5 atoms) and 2×2×2 supercells with 6×6×6 and 3×3×3
uniform k grids. The calculations for the tetragonal phase
of SrTiO3 (space group I4/mcm) were performed with the

same cutoff using 4×4×4 and 2×2×2 uniform k grids for
the unit cell (10 atoms) and 2×2×2 supercells, respectively.
For bcc Zr (space group Im3̄m) we used a cutoff of 80 Ry
and sampled the Brillouin zone of the unit cell, 3×3×3,
4×4×4, and 5×5×5 supercells with 10×10×10, 4×4×4,
3×3×3, and 2×2×2 uniform k grids. The calculations of the
high-symmetry (monomorphous) structures were performed
using the unit cells with the nuclei clamped at their Wyck-
off positions. The relaxed lattice constants of cubic SrTiO3,
CsPbBr3, CsPbI3, CsSnI3, and Zr are found to be 3.889,
5.874, 6.251, 6.141, and 3.517 Å, respectively; for tetragonal
SrTiO3 our calculations yield a = 5.485 and b = 7.806 Å.
These parameters were used for all calculations, unless spec-
ified otherwise. For the orthorhombic CsPbBr3 (space group
Pnma), we employed the unit cell containing 20 atoms and
a 3×3×3 uniform k grid to find relaxed lattice constants of
a = 7.971, b = 8.397, and c = 11.640 Å. The phonons were
computed using a 2×2×2 supercell and a 2×2×2 uniform
k grid.

To obtain DFT ground-state geometries of the cubic and
tetragonal phases (the polymorphous networks), we started
from the monomorphous network and displaced the nuclei
away from their Wyckoff positions using ZG displacements
[Eq. (12)] at T = 0 K and the harmonic phonons. Then, we
allowed the system to relax until the residual force compo-
nent per atom was less than 3×10−4 eV/Å. We found that
displacing the atoms along the soft modes only by switching
their phonon frequencies to the real axis is a much more
efficient strategy to obtain the polymorphous geometry. We
made this choice because (i) ZG displacements generated for
the monomorphous structure are otherwise not defined for the
soft modes and (ii) the system is brought closer to its ground
state. We stress that we tested various initial sets of displace-
ments (random nudges and ZG displacements by changing
signs or temperatures) that led to different polymorphous net-
works; however, all yield the same ground-state energy and
phonons [68].

The IFCs of the monomorphous and polymorphous su-
percell configurations were evaluated using the FPM [11,79].
The phonon eigenmodes and eigenfrequencies at each q point
were obtained by means of Fourier interpolation of the cor-
responding dynamical matrices. Corrections on the phonon
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dispersion due to long-range dipole-dipole interactions were
included via the linear response approach described in Ref.
[45]. High-frequency dielectric constants and atomic Born
effective charges were calculated using DFPT [10] as im-
plemented in QE. ZG displacements in 2×2×2 supercells
were employed for calculating temperature-dependent an-
harmonic phonons. These displacements were generated via
SDM [40,41] as implemented in the EPW/ZG code [39]. For
their construction we (i) used the phonons of a zone-centered
q grid commensurate with the desired supercell size, (ii) took
into account dipole-dipole interaction corrections, and (iii)
apply a Berry connection between the eigenmodes.

The ZG.x code implementing the A-SDM procedure with
the FPM is available at the EPW/ZG module [80]. A-SDM
phonon dispersions were obtained using 2×2×2 supercells
for the perovskite structures and 3×3×3/4×4×4/5×5×5
supercells for bcc Zr. At each iteration, including iteration
0 for the polymorphous structure, we enforced the crystal’s
symmetry operations on the IFCs. Setting the mixing param-
eter β to 0.5, we found that a couple of iterations is enough
to obtain reasonable convergence and a maximum of 3–4 it-
erations to achieve full convergence. To ensure high accuracy
for the temperature dependence of the TO1 and TO2 modes of
SrTiO3, shown in Fig. 5(e), we employed 10 iterations as de-
fault. Long-range corrections in A-SDM phonon dispersions
and ZG displacements were accounted for using the Born
effective charges and dielectric constants of the polymorphous
structures (see Table II).

V. CONCLUSIONS AND OUTLOOK

In this paper, we have developed the A-SDM for the
efficient treatment of anharmonicity. Similarly to previous
nonperturbative methodologies, the A-SDM is based on the
self-consistent phonon theory. The key feature introduced
here is that special displacements can completely replace
the cumbersome stochastic sampling of thermally displaced
configurations, showing that a single ZG configuration is
sufficient to compute temperature-dependent phonon disper-
sions at each iteration. Furthermore, we have demonstrated
that the stability and efficiency of the self-consistent phonon
approach can be considerably improved by means of an it-
erative linear mixing scheme. Another essential ingredient
for accelerating convergence in the A-SDM is the initial-
ization of the iterative procedure with interatomic force
constants calculated for the polymorphous ground-state net-
work. Considered all together, we are suggesting, essentially,
that only a couple of ZG configurations are needed to
describe anharmonicity; one to obtain the polymorphous
structure and one to obtain the phonon dispersion at a given
temperature.

We have benchmarked our methodology for the per-
ovskites SrTiO3, CsPbBr3, CsPbI3, and CsSnI3, which
exhibit strongly anharmonic multiwell potential energy sur-
faces. From the calculated phonon dispersions, we have
extracted temperature-dependent frequencies of soft modes
at high-symmetry points and obtain excellent agreement with
previous first-principles studies. We have also evaluated the
phonon dispersion of the high-temperature bcc phase of
Zr, yielding good agreement with experiments and previous

calculations. Our findings suggest that the phonons calculated
for polymorphous SrTiO3 and Zr at 0 K provide a good ap-
proximation to explore anharmonicity in these systems. We
emphasize that evaluating the phonons of polymorphous net-
works relies on standard techniques that are routinely used for
harmonic systems.

This paper is also considered as the upgrade of SDM to
anharmonic materials. SDM has been originally developed to
automatically incorporate the effect of electron-phonon cou-
pling in supercell calculations of band structures and optical
spectra [40], and extended to other properties like transport
coefficients [81]. The present study addresses the constraint of
the harmonic approximation and opens the way for a unified
treatment to electron-phonon coupling and anharmonicity in
systems exhibiting a complex PES. In fact, here, we have
demonstrated that the A-SDM is very effective for computing
well-defined phonon dispersions of technologically important
materials like the metal halide perovskites CsPbBr3, CsPbI3,
and CsSnI3. Anharmonicity is ubiquitous in this class of
materials [82–85] and interfacing efficient computations of
phonons and electron-phonon couplings can shed light on
their unexplored equilibrium or nonequilibrium properties
[86]. Furthermore, we stress that the feature of computing
thermodynamically stable phonon spectra via the A-SDM can
be straightforwardly exploited by state-of-the-art perturbative
electron-phonon calculations [39].

Finally, it should be possible to extend the A-SDM for
the computation of phonon transport properties dominated
by phonon-phonon interactions. For example, calculations
of phonon relaxation times and thermal conductivity via
the Green-Kubo approach should be within reach [87]. Fur-
thermore, we expect the A-SDM to find applications in
the investigation of ultrafast electron and phonon dynamics
obtained by the solution of the coupled time-dependent Boltz-
mann equations [88,89]. Given the generality and efficiency
of our methodology, we also expect to be perfectly suited for
high-throughput calculations of several electron-phonon and
anharmonic properties of materials at finite temperatures.

Calculations that lead to the results of this study are avail-
able on the NOMAD repository [90].
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APPENDIX: PROOF OF EQ. (7)

In this Appendix we derive Eq. (7) following the work in
Ref. [21].

The expression in Eq. (10) is considered as the trial free
energy, which, according to the Gibbs-Bogoliubov inequality,
provides an upper limit of the system’s free energy. Hence,
the derivation of Eq. (7) relies on the minimization of the free
energy with respect to the matrix of IFCs and, thus, finding
the solution

∂F (T )

∂Cκα,κ ′α′
= 0, (A1)

where for the sake of notation clarity we use a 
-point formal-
ism and drop the unit-cell index p.

We consider first the derivative of 〈U 〉T and use the chain
rule with respect to τκα to obtain

∂ 〈U 〉T

∂Cκα,κ ′α′
=

∏
ν

∫
dzν

uν

√
2π

e
− z2

ν

2u2
ν

∑
k′′α′′

∂U

∂τκ ′′α′′

∂τκ ′′α′′

∂Cκα,κ ′α′
, (A2)

where we express the thermal average in its multivariate Gaus-
sian integral form appearing in Eq. (8). We employ τκα =
(M0/Mκ )1/2 ∑

ν eκα,νzν , representing the normal coordinates
transformation, and apply the change of variables zν = z̃νuν

to rewrite Eq. (A2) as

∂ 〈U 〉T

∂Cκα,κ ′α′
=

∑
k′′α′′

(
M0

Mκ ′′

)1/2 ∑
μ

∂[eκ ′′α′′,μuμ]

∂Cκα,κ ′α′

∏
ν �=μ

∫
dz̃ν√

2π
e− z̃2

ν
2

∫
dz̃μ√

2π
e− z̃2

μ

2 z̃μ

∂U

∂τκ ′′α′′
. (A3)

We perform integration by parts with respect to z̃μ, take the limit lim→∞ e−z2 = 0, and use ∂/∂ z̃μ =∑
κα (M0/Mκ )1/2eκα,μuμ ∂/∂τκα to obtain the following result after some straightforward algebra:

∂ 〈U 〉T

∂Cκα,κ ′α′
= 1

2

∑
κ ′′α′′
κ ′′′α′′′

M0√
Mκ ′′Mκ ′′′

∑
μ

∂
[
eκ ′′α′′,μeκ ′′′α′′′,μ u2

μ

]
∂Cκα,κ ′α′

〈
∂U

∂τκ ′′α′′∂τκ ′′′α′′′

〉
T

. (A4)

Now we consider the derivative of the harmonic vibrational free energy Fvib(T ) [term appearing in the second line of Eq. (10)],
which we rewrite here for convenience,

Fvib(T ) =
∑

ν

[
h̄ων

2
− kBT ln(1 + nν )

]
. (A5)

Employing the chain rule with respect to ω2
μ gives

∂Fvib(T )

∂Cκα,κ ′α′
=

∑
μ

M0

2
u2

μ

∂ω2
μ

∂Cκα,κ ′α′
, (A6)

where we have used ∂nν/∂ω2
ν = −h̄/(2kBT ων ) nν (nν + 1). By combining Eqs. (2) and (6), and using the orthonormality

relations of the phonon eigenvectors [30] we have

ω2
μ =

∑
κα,κ ′α′

Cκα,κ ′α′√
MκMκ ′

eκα,μ eκ ′α′,μ, (A7)

that allows us to express Eq. (A6) as

∂Fvib(T )

∂Cκα,κ ′α′
= 1

2

M0√
MκMκ ′

∑
μ

eκα,μ eκ ′α′,μu2
μ. (A8)

Now we consider the vibrational energy of the effective harmonic Hamiltonian Uh(T ), which we also rewrite here for
convenience,

Uh(T ) = M0

2

∑
μ

ω2
μu2

μ. (A9)

By combining Eqs. (A9) and (A7), and taking the derivative with respect to Cκα,κ ′α′ yields the following result:

∂Uh(T )

∂Cκα,κ ′α′
= 1

2

M0√
MκMκ ′

∑
μ

eκα,μeκ ′α′,μu2
μ +

∑
κ ′′α′′
κ ′′′α′′′

Cκ ′′α′′,κ ′′′α′′′

2

M0√
Mκ ′′Mκ ′′′

∑
μ

∂
[
eκ ′′α′′,μeκ ′′′α′′′,μu2

μ

]
∂Cκα,κ ′α′

. (A10)
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Finally, we combine Eqs. (10), (A9), and (A5) together with the expressions in Eqs. (A4), (A10), and (A8) to obtain

∂F (T )

∂Cκα,κ ′α′
= ∂ 〈U 〉T

∂Cκα,κ ′α′
− ∂Uh(T )

∂Cκα,κ ′α′
+ ∂Fvib(T )

∂Cκα,κ ′α′

= 1

2

∑
κ ′′α′′
κ ′′′α′′′

M0√
Mκ ′′Mκ ′′′

∑
μ

∂
[
eκ ′′α′′,μeκ ′′′α′′′,μ u2

μ

]
∂Cκα,κ ′α′

[〈
∂U

∂τκ ′′α′′∂τκ ′′′α′′′

〉
T

− Cκ ′′α′′,κ ′′′α′′′

]
. (A11)

Hence, in order to satisfy Eq. (A1), the term inside the square brackets of Eq. (A11) must be zero. This, essentially, completes
the proof of Eq. (7), which requires evaluating the matrix of IFCs at each temperature in a self-consistent fashion.
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