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Density of states of tight-binding models in the hyperbolic plane
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We study the energy spectrum of tight-binding Hamiltonians for regular hyperbolic tilings. More specifically,
we compute the density of states using the continued-fraction expansion of the Green’s function on finite-size
systems with more than 10° sites and open boundary conditions. The coefficients of this expansion are found

to quickly converge, so that the thermodynamic limit can be inferred quite accurately. This density of states
is in stark contrast with the prediction stemming from the recently proposed hyperbolic band theory. Thus we
conclude that the fraction of the energy spectrum described by the hyperbolic Bloch-like wave eigenfunctions

vanishes in the thermodynamic limit.
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I. INTRODUCTION

Since the early days of quantum mechanics, the study of
electronic properties of crystalline solids has been an ever-
growing field of research. In particular, the celebrated Bloch’s
theorem [1], anticipated by Floquet [2] in 1883, has given rise
to the band theory which is at the heart of most current elec-
tronic devices. The band theory essentially originates from the
regular arrangement of atoms in solids that are classified, ge-
ometrically, by their symmetry group. In the two-dimensional
(2D) Euclidean plane (flat curvature), all periodic tessellations
can be constructed from five Bravais lattices and 17 wallpaper
groups. Importantly, the translation group associated with the
Bravais lattice is Abelian, and its 1D irreducible representa-
tions (irreps) may be seen as the cornerstone of Bloch waves.

By contrast, in the hyperbolic plane H? (constant negative
curvature), there are infinitely many regular tilings char-
acterized by their Coxeter reflection group [3,4]. Recently,
Maciejko and Rayan proposed to use the translation Fuchsian
group I', which is a subgroup of the Coxeter reflection group,
to build the counterpart of Bloch waves in the hyperbolic
plane [5,6] (see also Ref. [7]). However, since I' is a non-
commutative group, it does not admit only 1D irreps, so that
such an approach, dubbed hyperbolic band theory (HBT), also
requires that higher-dimensional irreps be considered [6,8].

An important open question is therefore to determine the
relative weight of the different irreps of I". In this paper, we
address this issue by considering regular hyperbolic tilings,
for which we compute the density of states (DOS) of a tight-
binding Hamiltonian. We focus on a specific set of hyperbolic
tilings, but our approach, based on the continued-fraction
method, can equally be applied to any regular tiling. In Sec. II,
we briefly recall some basic properties of these tilings, and
we introduce the model. Section III provides a short ped-
agogical introduction to the continued-fraction method and
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explains how a rapid convergence of the coefficients allows
for a precise determination of the DOSs, which are discussed
in Sec. IV.

By comparing the full DOS with the one coming from the
Abelian hyperbolic band theory (AHBT) based on 1D irreps
of I' (see Sec. V), we conclude that the fraction of the full spec-
trum captured by the AHBT vanishes in the thermodynamic
limit. Appendix A gives information about the shell-by-shell
construction of the clusters, and Appendix B gives the list of
coefficients used to compute the DOS.

II. TILINGS AND MODEL

Two-dimensional regular tilings made of p-gons (polygons
with p sides) and g-fold coordinated sites are denoted by the
Schléfli symbol {p, g} [3]. When (p — 2)(g — 2) > 4, these
tilings can be embedded in the negatively curved hyperbolic
plane H?. When (p — 2)(g — 2) = 4, one recovers the usual
square {4, 4}, triangular {3, 6}, and honeycomb {6, 3} lattices
that are the only regular tilings of the flat Euclidean plane.
Finally, when (p — 2)(q — 2) < 4, one gets the five Platonic
solids, namely, the tetrahedron {3, 3}, the cube {4, 3}, the oc-
tahedron {3, 4}, the dodecahedron {5, 3}, and the icosahedron
{3, 5}, which can be embedded in the positively curved sphere
S?. The full symmetry group of a {p, g} tiling is the Coxeter
reflection group [p, g] generated by reflections in the sides of a
fundamental triangular region known as the orthoscheme [4].

Our main goal is to determine the DOS of the standard
tight-binding Hamiltonian defined on a {p, g} tiling:

H =~ 1)l M
(i)

where (i, j) stands for nearest-neighbor sites and where |i) is a
state localized on site (vertex) i of the tiling. In the following,
we set the energy unit t = 1 so that H is simply the oppo-
site of the adjacency matrix. We are interested in analyzing
the spectrum of H in the thermodynamic limit, i.e., for an
infinite tiling.
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FIG. 1. A piece of the {7, 3} hyperbolic tiling with open bound-
ary conditions and radius R = 10. It contains 472 (bulk)+ 270
(boundary) = 742 vertices. Here, we use the standard Poincaré disk
conformal representation of the hyperbolic plane.

A possible approach consists in performing exact diagonal-
izations (EDs) of larger and larger clusters, but for hyperbolic
tilings [(p — 2)(g — 2) > 4] there are several difficulties. In-
deed, if one uses clusters with open boundary conditions, the
ratio between the number of sites on the boundary and the
number of sites in the bulk goes to a finite constant (see
Fig. 1 for an illustration and Appendix A for a quantitative
discussion) in the thermodynamic limit, whereas it vanishes
in the Euclidean plane. This well-known phenomenon is
due to the negative curvature of H> and prevents any reliable
extrapolation of the spectrum due to spurious edge states.

To avoid boundary effects, one may alternatively con-
sider clusters with periodic boundary conditions, but another
difficulty arises in this case. Indeed, the Euler-Poincaré char-
acteristic y for a compact (orientable) surface of genus g reads

X=2—-29=V —-E+F, 2)

where V, E, and F are the number of vertices, edges, and
faces, respectively. For any hyperbolic {p, ¢} tiling, one fur-
ther has pF = 2E = ¢V, so that one immediately gets

rq—2p+q)

—-1=V
8 4p

3)
This relation shows that the genus of the surface is propor-
tional to the number of sites, i.e., g o V. Thus, apart from
the practical difficulty in building large-genus compact sys-
tems for arbitrary {p, g} tiling, the main problem comes from
the so-called systoles defined as the shortest noncontractible
loops of the periodic tiling and whose typical length scales
as logV [9]. As a direct consequence, a finite-size cluster
with V vertices (sites) and periodic boundary conditions only
captures the exact n first moments of the spectrum of the
infinite tiling with n o< log V' (see below for more details). For
comparison, in the Euclidean case (g = 1), n « V. As acon-
clusion, although ED of periodic clusters is an efficient tool
to study the tight-binding Hamiltonian for Euclidean tilings,
it is clearly doomed to failure for hyperbolic tilings due to
important finite-size effects.

III. THE CONTINUED-FRACTION METHOD

Here, we use an alternative approach to compute the DOS
of the infinite-tiling spectrum. This method, known as the
continued-fraction method, consists in expanding the diagonal
matrix elements of the Green’s function G(E) = 1/(E — H)
as follows [10-12]:

1
G(E)ue = , 4
(G e = 55 4)

E—az— b73

where the coefficients (a,, b,) are rational numbers which
depend on the state |«) considered. These coefficients
are directly related to those computed via the recursion
method [10].

The local density of states (LDOS) at energy E associated
with any state |«) is then given by

1
Pa(E) = —— 1i1})1 Im[G(E + i¢)lue> ©)
T ¢—07t
so that
+00
/ pu(E)dE = 1. (6)

Since, for regular tilings, all sites are equivalent, the LDOS
associated with a site i, p;(E), is the same as the total DOS
(up to a normalization factor). Thus the problem amounts
to computing the coefficients (a,, b,) starting from an initial
state located on a site i. These coefficients are directly related
to the moments of the LDOS. More precisely, computing n
coefficients gives access to the first 2z moments of the LDOS,
(i|H™<?"|i), and requires a cluster of radius R = n (here,
“radius” means the shortest discrete graph path going from
the center to the boundary). For instance, the cluster shown
in Fig. 1 allows one to compute the first ten coefficients. For
bipartite tilings, one has a,>; = 0, which is reminiscent of
the fact that (i|H>"*+'|i) = 0 for all m € N. The large-n limit
of (a,, b,) depends on properties of the DOS. Importantly, if
these coefficients converge towards unique values (ds, Do)
then the DOS is gapless. Furthermore, if the DOS contains
Van Hove singularities, oscillations are expected [13]. As an
example, we show in Fig. 2 the first 300 coefficients b, of the
honeycomb tiling. The slow convergence towards the asymp-
totic value by, = 9/4 is due to a vanishing DOS at £ =0,
whereas oscillations originate from the two well-known Van
Hove singularities at £ = +1 (see Fig. 5, left panel). By
contrast, when the DOS is smooth and gapless, one expects a
fast convergence of the coefficients as is the case, for instance,
in the 3-regular Bethe lattice, which corresponds to the {co, 3}
tiling [14] and for which one gets a,>; =0, by =3, and
b,>> = 2 (see Fig. 5, right panel, for the DOS).

These considerations lead us to discuss the termination of
the continued fraction. If the coefficients (a,, b,) converge
for sufficiently large n, one can replace them beyond a given
n, by their extrapolated asymptotic values (deo, bso). This
approximation can be interpreted as embedding the cluster
under consideration into an effective medium, hence sup-
pressing spurious edge states. Then, introducing the fraction
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FIG. 2. The first 300 continued-fraction coefficients b, associ-
ated with a single site of the honeycomb lattice computed on a cluster
with V = 135451 sites. Because of the Van Hove singularities, the
coefficients (slowly) converge with oscillations towards the asymp-
totic value b5, = 9/4. The pink curve is a guide for the eye.

termination

1(E) = (N

E — ao — boot (E)’

ie.,

1
HE) = 2 —[E — o = V(E —ax)? —4bx],  (8)

one can obtain a very good approximation of the DOS
and check its convergence by increasing the value of n be-
yond which we used the asymptotic values. Moreover, using
Egs. (4), (5), and (8), one finds a nonvanishing DOS only
when E € [E_, E. ], where

Es = do £ 2 /b )

For the two cases discussed above, one recovers the well-
known upper and lower bounds of the honeycomb lattice [15]
(Ex = £3), as well as for the 3-regular Bethe lattice [16]
(Ex = +2+/2). For these tilings, we checked explicitly that,
whenever present, all singularities in the Green’s function lie
in the interval [E_, E ], i.e.,

400 E.
/ m@ME:/ p(EYdE=1.  (10)

o0 —

However, let us stress that this would be different if the
spectrum of H would contain isolated flat bands with a finite
spectral weight as, for instance, in the kagome-like hyperbolic
tilings discussed in Refs. [17-20]. In this case, extra poles
would exist in the Green’s function.

TABLE I. For the {p, 3} tilings studied in this paper, this table
gives the radius R of the clusters, the corresponding number of sites V
(see Appendix A), the asymptotic coefficients (a, boo) extrapolated
from the data given in Appendix B, and the corresponding boundaries
of the energy range where the DOS is nonvanishing [see Eq. (9)].

R 1% oo Do E. E,

35 1049 446 747 0 2.1095(4) —2.9048 2.9048
32 1165124974 —0.0808(2) 1.9606(3) —2.8812 2.7196
10 31 1342655086 0 2.0528(3) —2.8656 2.8656
11 30 1279395802 —0.0368(1) 1.9851(2) —2.8547 2.7811
12 30 1675149250 0 2.0266(3) —2.8471 2.8471

p
7 42 1054313137 —0.1795(1) 1.9066(6) —2.9411 2.5821
8
9

IV. DENSITY OF STATES OF {p, 3} TILINGS

In this paper, we focus on hyperbolic {p, 3} tilings, and we
used the continued-fraction method to compute the DOS of
these tilings. Because H? is negatively curved, the number
of sites in a cluster of typical radius R grows much faster
than in the Euclidean case (¢*® instead of R?), as shown in
Appendix A. This constitutes a strong limitation in the calcu-
lations of the continued-fraction coefficients. Furthermore, the
curvature increases with p, so that, for a given radius R which
determines the maximum number of computable coefficients,
the number of sites of the corresponding cluster also increases
with p. Here, we typically used a value of R which leads to
clusters with ~10° sites (see Table I for details). Computing n
continued-fraction coefficients requires the adjacency matrix
of the graph formed by the R = n first shells surrounding a
given site. Therefore we applied the recursion algorithm on
clusters built shell by shell. The only limitation to compute
more coefficients comes from the memory needed to store the
Hamiltonian.

When considering the LDOS of H for a single site, the
coefficients (a,, b,) are rational numbers. These coefficients
are given in Appendix B and plotted in Fig. 3. As can be
seen, for each tiling considered, they do converge towards a
unique value way faster than for the honeycomb lattice (see
Fig. 2 for comparison). As explained above, this indicates the
absence of Van Hove singularities and of gaps in the DOS.
Furthermore, this convergence allows one to extrapolate the
asymptotic values (a0, bo) and to compute £, with a better
precision than with ED results [18,21].

Up to a normalization factor, the DOS in the thermody-
namic limit of hyperbolic {p, ¢} tilings can be defined as the
quantity which has the same moments of order m as the one
of the Hamiltonian computed from the LDOS of a site which
is the center of a cluster of radius R > m, for arbitrary large
m. However, even with very large clusters, the number of ex-
act moments (equivalently of continued-fraction coefficients)
remains rather small. Although it is hard to provide some
accurate error bars, the observed fast convergence of the coef-
ficients indicates that the large-m moments are well captured
by completing the continued fraction with the asymptotic
coefficients (doo, boo)-

Using these coefficients and the fraction termination #(E),
one can compute the DOSs of hyperbolic {p, 3} tilings. As
can be seen in Fig. 4 for p =7, ..., 12, these DOSs display
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FIG. 3. Continued-fraction coefficients associated with a single
site of hyperbolic {p, 3} tilings (see Appendix B for data), plotted
for n > 10. Colored points: red, p = 7; green, p = 8§; blue, p =9;
magenta, p = 10; orange, p = 11; brown, p = 12. Lines are guides
for the eye. Coefficients a,>; = 0 for even p (bipartite lattice).

several interesting features. For even (odd) p, the DOS is
symmetric (not symmetric) with respect to 0. This is simply
due to the fact that {p, 3} tilings are (non)bipartite for even
(odd) p. As anticipated from the behavior of the coefficients
[13], let us stress that the peaks observed in the vicinity of E
for odd p are not Van Hove singularities. We carefully checked
that the DOSs are finite in this energy range.

These DOSs clearly differ from the DOS of the honeycomb

lattice (p = 6) [15]
Z1 11
ZO ’ ( )

for |[E| <1
for 1 <|E| <3

|E| 1

{6,3} E) =
=g
with

E?-1)
7, La+iEp? - £
4IE,

12)

and

7 = Ja+iEy - E
4IE],

for 1 <|E| <3 (13)
for |[E| < 1,
where K is the complete elliptic integral of the first kind.

However, when p increases, these DOSs converge towards the
DOS of the 3-regular Bethe lattice (p = 00), which reads [16]

_ 2
poEy = 28 (14)
2 9 —E?

These two (well-known) limiting cases are reproduced in
Fig. 5. The DOS displayed in Fig. 4 must be considered
as a very good approximation of the exact DOS of the in-
finite {p, 3} tiling, in the sense that it has the same 2R
moments. Although it is difficult to give some error bars
within the continued-fraction framework, the main source of
errors comes from substituting the coefficients (a,, b,) by
their extrapolated asymptotic values (deo, o), for n > R. As
can be checked in the data given in Appendix B, the relative
error is ~10~* (see Table I), so that we obtain a very good
approximation of the exact DOS.

The DOSs of several {p, 3} tilings have recently been com-
puted by ED of clusters with open and periodic boundary
conditions. In Ref. [18], Kollar et al. focused on p=7,8
and used an arbitrary bin width to compute the DOS (see
Figs. 14(a)-14(d) of Ref. [18]). In Ref. [22], Urwyler et al.
performed a similar study for p = 8 but used an additional
filtering procedure to get rid of boundary effects together
with an arbitrary Gaussian smearing function (see Fig. 1(b) of
Ref. [22]). Some results for p = §, 10, 12 can also be found
in Ref. [23], where a classification is proposed. A compari-
son with our results shows that ED of hyperbolic finite-size
clusters with a few thousand sites can hardly reproduce the
main pattern of the asymptotic DOS shown in Fig. 4, and this
comparison sheds light on the importance of boundaries for
hyperbolic tilings.

V. COMPARISON WITH HYPERBOLIC BAND THEORY

In the previous section, we computed the full DOS of
some {p, 3} tilings. As explained above, these DOSs share,
by construction, the same first 2n moments as those of
the corresponding infinite tiling, where n is the number of
continued-fraction coefficients computed. However, at this
stage, it is important to specify what is meant by “infi-
nite tiling.” As for Euclidean tilings, the “infinite” limit of
hyperbolic tilings can be obtained with either open or pe-
riodic boundary conditions by increasing the linear system
size. However, in the hyperbolic case, several compactifica-
tions can be considered giving rise to completely different
DOSs. Hence, to compare our results with the predictions
stemming from the AHBT, we shall discuss first the case of
the infinite {p, g} tiling which is a tessellation of the infi-
nite hyperbolic plane H? and, in a second step, the compact
case.

A. The infinite {p, ¢} tiling

As mentioned in Sec. II, the symmetry group of the infi-
nite {p, g} tiling is the Coxeter reflection group [p, gq]. This
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FIG. 4. Normalized density of states of hyperbolic {7 < p < 12, 3} tilings.

group contains a torsion-free Fuchsian subgroup I', which In the Euclidean plane, the translation group is Abelian,
describes the noncommutative translations of H?. Although and hence all irreps are 1D. Thus the whole spectrum of
non-Abelian, I' has 1D irreps that allow one to compute some  H can be described by the standard Bloch band theory. By
eigenvalues associated with Bloch-like eigenstates [5—7]. The contrast, in the hyperbolic plane, the weight w; of 1D irreps
AHBT aims at describing the band structure associated with at the heart of the AHBT has been the topic of recent studies

these irreps. [5,6,8,19] and, to our knowledge, is still unknown. As we shall
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FIG. 5. Normalized density of states of the honeycomb lattice (left) and the 3-regular Bethe lattice (right).
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FIG. 6. Comparison between the exact AHBT DOS (red) and the
full DOS of the hyperbolic {8, 8} tiling computed with the continued-
fraction method (blue).

now argue, this weight is actually vanishing in the infinite
{p, q} hyperbolic tiling. Although the irrep decomposition of
an infinite discrete Fuchsian group is a complicated subject,
the full DOS can always be formally decomposed as

pME) =) wi 0V (E), (15)
d

where p@ is the normalized DOS obtained from all d-
dimensional irreps of I and where w, is the weight of all these
representations in the decomposition of I' into irreps. Our goal
is to evaluate w; in the thermodynamic limit.

To do so, let us focus on the hyperbolic {8, 8} tiling for
which the AHBT has been developed in Ref. [6], but the same
line of reasoning is straightforwardly adaptable to any {p, g}
tiling. The AHBT theory for the {8, 8} tiling states that the
spectrum originating from the 1D irreps of I is given by

E(k)=—2 ) cosk;, (16)
j=1,4

where k = (ky, ky, k3, k4) is a 4D vector whose components
k; are associated with the four generators y; of I' [6]. This
dispersion relation is actually the same as the one of the 4D
hypercubic lattice. Here, following Ref. [6], we consider the
thermodynamic limit and assume that these momenta can take
any value in the 4D first Brillouin zone, i.e., —7 < k; < 7.
Thus the corresponding DOS is given by

1 o0
o WV(E) = —/ JoQQu)* cos(uE) du, (17)
T Jo
where Jj is the Bessel function of the first kind. This DOS

is plotted in Fig. 6 (red curve) and is nonvanishing for
E e [-8,+8].

To compute the full DOS p™!'(E) of the hyperbolic {8, 8}
tiling, we use the continued-fraction method described in
Sec. I11. For this tiling, the radius of largest cluster considered
here is R = 10, but, as can be inferred from Appendix B,
we observe (again) a quick convergence of the coefficients
b, that allows one to extrapolate the asymptotic value by, =
7.029 12(1). Using this value for the fraction termination, we
can compute the DOS of the hyperbolic {8, 8} tiling which is
nonvanishing for £ € [E_, E.] with E; = —E_ = 24/by, =
5.3025. Note that our estimate of E_ lies within the sharp in-
terval 8 x [0.662772,0.662 816] [24,25]. Furthermore, with
the ten coefficients given in Appendix B, one can straightfor-
wardly compute the first 20 moments of the DOS. We checked
that these moments match with the ones given in Ref. [26],
where the first eight moments have been computed on ad hoc
clusters with periodic boundary conditions (see Appendix B).

As can be seen in Fig. 6, where we plotted p") and p™!,
there is an extended energy region where p(! is finite and
where p™!! is vanishing, [—8, E_] (and its symmetric counter-
part, [E, 8]). Using Eq. (19), one can compute the integrated
DOS in this region

E-
/ pfull(E)dE — 0’ (18)
-8

.
/ pW(E)dE ~ 0.030 186, (19)
-8

which, according to Eq. (15), straightforwardly implies w; =
0. In other words, the spectral weight captured by the AHBT
is vanishing in the thermodynamic limit.

For aregular {p, g} tiling, the normalized DOS is vanishing
for E < E_, where, for hyperbolic {p, ¢} tiling, one has [18]

—q<—qv1-a?<E., (20)

where

q—2 4
o= 1— 1)
q \/ (P—20q—-2)

is an isoperimetric constant given in Ref. [27], analogous to
Cheeger’s constant [28]. Thus we can conclude that, for all
hyperbolic {p, g} tiling, one has

2

—gv/1-a?
/ oMY(E)dE = 0. (22)
—-q

By contrast, the AHBT leads to a nonvanishing DOS in the
vicinity Ey = —q, which is always reached for k = 0. Indeed,
for a d-dimensional Brillouin zone, the DOS is expected
to behave as p(E) ~ E‘S near the band edges (see, e.g.,
Figs. 6 and 7, where d = 4), so that the integrated DOS in
any finite region near E; is nonvanishing. Hence we conclude
that w; = 0.

As a final example, we computed the AHBT DOS for the
{8, 3} tiling (see also Refs. [22,29]) by exactly diagonalizing
the (16 x 16) matrix given in Ref. [30] using a discretization
of the 4D Brillouin zone. As can be seen in Fig. 7 (red curve),
the AHBT DOS displays several well-defined peaks as well
as a nonvanishing weight in the range [—3, E_] (about 0.2%
of the states). This again illustrates that the DOS stemming
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FIG. 7. Comparison between the numerical AHBT DOS (red)
computed with 64* points in the 4D Brillouin zone (bin width =
1073) and the full DOS of the hyperbolic {8, 3} tiling computed with
the continued-fraction method (blue) also shown in Fig. 4. Apart
from the vicinity of the sharpest peaks, we checked the convergence
of the AHBT DOS by varying the number of points in the Brillouin
zone and the bin width (see also Refs. [22,29] for similar results).

from the AHBT does not share any features with the full DOS,
which is in agreement with w; = 0 but in stark contradiction
with the conclusions of Ref. [30].

B. The compact case

Let us now analyze the case of compact hyperbolic {p, g}
tilings, which is discussed in detail in Ref. [6]. As dis-
cussed above, in the hyperbolic plane H? these tilings are
invariant under the Fuchsian group I". With periodic bound-
ary conditions, the situation is different since the tilings are
only invariant under the residual quotient group G = I' /T'ppc,
where I'ppc is a finite-index normal subgroup of I' [6]. In this
case, Eq. (15) involves the irreps of G, and two cases must be
distinguished.

When G is Abelian, the corresponding clusters, dubbed
Abelian clusters in Ref. [6], can be fully described by the
AHBT. For p = g = 8, the full spectrum of these Abelian
clusters is given by Eq. (16) with an appropriate discretization
of the 4D Brillouin zone. For these clusters, one thus has
w1 = 1. However, these Abelian clusters are locally very dif-
ferent from the hyperbolic {8, 8} tiling defined in H? and
correspond to a compactified version of a 4D hypercubic lat-
tice. This is clearly seen by considering the moments (H”>*).
Indeed, for any site i of the infinite {8, 8} tiling, one has
(ilH*|i) = 120, whereas, for the 4D hypercubic lattice, one
gets (i|H*|i) = 168, the difference being due to a large num-
ber of squares (4-gons) in the latter, which do not exist in
the former. We conclude that although the AHBT gives the
full spectrum for these Abelian clusters, it does not describe

the hyperbolic tilings’ DOSs in the thermodynamic limit (see
Fig. 6).

The second case concerns non-Abelian clusters that are as-
sociated with a non-Abelian quotient group G. For sufficiently
large clusters, it is possible to obtain the exact moments up
to a given order, but the bottleneck is then the length [ of
the systole. However, non-Abelian G has some 1D irreps. As
explained after Eq. (16), for the compactified {8, 8} tiling,
these irreps are labeled by four discrete sets of independent
kj in the 4D Brillouin zone. For each direction, the maximum
number of allowed k; values is typically of order /, leading,
at most, to [* eigenvalues (actually there are more constraints
due to the high genus of the surface, which increases with
the system size). As explained in Sec. II, [ grows typically
as logV. Since the Hilbert space dimension equals V, we
conclude that w; decreases with V and vanishes as V — oo.
Notice that having / as an upper bound in each direction is
related to our consideration of clusters having increasingly
correct / first moments.

To conclude this section, let us stress that G also has
(d > 1)-dimensional irreps labeled by a finite-dimensional
discrete sets of parameters [(2d> + 2) for the {8, 8} tiling] [6].
Determining the contribution of these irreps in the full DOS,
i.e., wyg>1, requires a better knowledge of the corresponding
non-Abelian Brillouin zone discretization as well as the con-
straints imposed by the systole.

VI. CONCLUSION

Using the continued-fraction method on large system sizes
(~10° sites), we computed the DOS of regular hyperbolic
{p, 3} tilings for p =7, ..., 12, which is very close to the
infinite-tiling DOS (see discussion about the termination frac-
tion in Sec. III). These DOSs are found to be smooth (no
Van Hove singularities) and gapless. Importantly, we found
that these DOSs vanish in the energy range [—3, E_], where
E_ > —3 satisfies Eq. (20). This indicates that the fraction of
the spectrum described by the AHBT theory for which the
DOS is nonzero in the same energy range vanishes in the
thermodynamic limit. This raises important questions about
the weight of higher-dimensional representations of the trans-
lation Fuchsian group I'. In a recent work, Cheng et al. [8]
considered 2D irreps of I' for the {8, 8} tiling. They show
some cut of the corresponding 10D band structure, which
extends up to the Perron-Frobenius bound —8. Hence, as for
1D irreps, this indicates that the weight of these 2D irreps is
also very likely vanishing. To go beyond, one definitely needs
a better knowledge of the irrep decomposition of I' and of
the associated higher-dimensional Brillouin zone geometries.
Finally, let us mention that our method can equally be applied
to other kinds of Hamiltonians including complex or longer-
range hoppings, multiple orbitals, etc. It can also describe
gapped DOSs, in which case the coefficients split into subsets
that converge towards different values. We hope that such a
promising route could also be probed in experiments using
circuit quantum electrodynamics [17].
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APPENDIX A: SIZE OF THE CLUSTERS
AS A FUNCTION OF THE RADIUS R

In this Appendix, we provide some recursive formulas that
allow one to compute the number of sites of hyperbolic {p, 3}
tilings of radius R used in this paper. Starting from the central
site, it is helpful to introduce the notion of the shell, defined
as the set of sites located at a given (graph) distance. By
definition, the Rth shell corresponds to a radius R. Let us
denote by n; the total number of sites of the jth shell and by
d; the number of sites on the jth shell having two neighbors
in the (j + 1)th shell [the remaining (n; — d;) sites have only
one neighbor on the (j + 1)th shell].

A close inspection of the shell-by-shell growth leads to the
following recursive relations:

di=2d;_ —2d;_, +dj_,_1, (AD)
nj=dj+dj_, (A2)

for even p = 2r, and
di=2d;_y —2d;— +2d;_,_1 —2dj_5 +dj_2—1, (A3)
nj=d;+2d;_, +d;_, (A4)

for odd p =2r+ 1. These relations hold for j > r with
the following initial conditions: d;.o =0, do =3, and
dlgjgr—l =3 x 2/

The total number of sites in a cluster of radius R is finally
given by

R
VR)=1+4) n;.

j=1

(AS5)

Using these relations, it is straightforward to extract that the
asymptotic growth rate of any hyperbolic {p, 3} tilings A, =
limg_, V‘(,R(;)l). It is given here by the largest non-negative

(Pisot-Vijayaraghavan) root of the polynomial equation

X =2 4 2x—1=0, (A6)
for even p = 2r, and
x2r+1 _ 2x2" + 2xr+1 2"+ 2x—-1= 0, (A7)

forodd p =2r + 1.

This gives the exponential growth V(R) ~ )J[f expected
for regular hyperbolic tilings. For the limiting case p =6
(honeycomb lattice), one gets Ag = 1, which is reminiscent
of a drastically different scaling in the Euclidean plane where
V(R) ~ R?. In the large-p limit, one recovers the growth rate,
Aoo =2, of the 3-regular Bethe lattice. Remarkably, for
p=2_8,10, one finds the following simple analytical
expressions:

Ay = L1+ V134213 -2) = 172208,  (A8)
Mo =11+ vV2+4/2v2 1)~ 1.88320.  (A9)

These values are in agreement with the numerical results
given in the Supplemental Material of Ref. [30]. As can be

easily checked, A, is a monotonically increasing function of
p=6.

APPENDIX B: CONTINUED-FRACTION COEFFICIENTS

In Tables II-1V, we give the coefficients (a,, b,) for the
{p, 3} tilings considered in this paper as well as for the {8, 8}
tiling. These coefficients are all rational numbers, but for the
sake of clarity we only give the first ten coefficients in this
form.

TABLE II. List of coefficients a, for all {p, 3} tilings studied in
this paper, for bipartite tilings (even p) and a,>; = 0.

{7, 3} {9, 3} {11, 3}

a, 0 0 0
a 0 0 0
a; 0 0 0
ay —% 0 0
as ~L -1 0
a - s -4

895 2426 1
a T 20869 ~ 28799 ~ 71016

215701 2977042 68596
as " 1448614 T 24348161 T 2032127
22367419 2720237055 1190359 196
a9 T 92514922 T 20071007354 31846454279
13311270229 20055768316 639 21445227755471

a0 7 86595884905 T 259125041818854 T 483141503018 839
an —0.2002967411 —0.0645775422 —0.0357443812
ap —0.1696004570 —0.1058977166 —0.0383582342
a;s —0.1816966879 —0.0657104328 —0.0348093723
ayy —0.1692155243 —0.0795238494 —0.0319445279
ays —0.1890266285 —0.0878232196 —0.0442313413
ae —0.1824985928 —0.0785198490 —0.0346354601
ay; —0.1710620428 —0.0806426945 —0.0361022603
ag —0.1852717728 —0.0801376552 —0.0362444720
ayy —0.1752233562 —0.0817817362 —0.0377254575
72 —0.1832919042 —0.0808816316 —0.0367628802
ary —0.1755484537 —0.0804796200 —0.0370226959
ay —0.1823834605 —0.0805314355 —0.0366759599
a3 —0.1789067207 —0.0813731403 —0.0364735833
[0 —0.1778987384 —0.0809167668 —0.0371592471
as —0.1803519218 —0.0805287669 —0.0369329370
arg —0.1807663195 —0.0808180145 —0.0367983443
ax; —0.1773146456 —0.0810638822 —0.0367319221
ag —0.1804581485 —0.0808744295 —0.0368556230
723 —0.1802893026 —0.0806615422 —0.0368804917
aso —0.1782479737 —0.0808573363 —0.0368682992
as —0.1797527809 —0.0810001089
as —0.1804963609 —0.0807915986
asz —0.1783586603
asy —0.1799096739
ass —0.1798647291
s —0.1790760687
as; —0.1795811934
asg —0.1797409614
asg —0.1792827917
Ay —0.1795777244
ay —0.1795289697
) —0.1794620439
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TABLE III. List of coefficients b, for all {p, 3} tilings studied in this paper. In the large-p limit these tilings converge towards the 3-regular
Bethe lattice, for which one has b; = 3 and b,,>, = 2.

{7.3}) {8, 3} {9. 3} {10, 3} {11, 3} {12, 3}
by 3 3 3 3 3 3
by 2 2 2 2 2 2
bs 2 2 2 2 2 2
by I 2 2 2 2 2
bs 5 i 3 : 2 2
be 3563 192 1858 n 127 ]
1681 95 961 36 64 8
b7 466744 1435 1624958 1298 32002 271
259081 608 863041 639 16129 136
bg 16 546 063 53675 1420353674 93114 505530866 9318
8099716 27552 686911681 46079 256032001 4607
b9 3790751045 5117344 4442005081431 1023678 7768506013282 2549218
2113410098 2432325 2337553556836 479611 3961210497841 1262589
b 10 27441726 460437 996 022 307 56260939420701038 21518893 11925020979 1480311 703998 380
14 192 886 254 450 451765525 28724812358313681 10654902 58927873705910881 349317843
by 19099614142 2.0409742217 1.9901940863 2.0437041571 19696415108 2.0511292014
bi 1.8980216501 2.1147900908 1.9488793608 2.0424319634 1.9825865391 2.0192825585
by 1.9188757385 2.1343590649 1.9603634536 2.0804121861 1.9837731591 2.0266312300
by 1.9076043684 2.0929965018 1.9556323717 2.0428949588 1.9890943205 2.0239897720
bis 1.8984122342 2.1117327570 1.9689855709 2.0489672866 1.9842666406 2.0233232583
bis 1.9014941806 2.1092519737 1.9562792157 2.0493838687 1.9859259226 2.0321707408
by 1.9227626558 2.1128371617 1.9593538591 2.0606714712 1.9842298525 2.0255750100
big 1.8964658469 2.1080093699 1.9622805785 2.0511933622 1.9831821766 2.0267955811
bio 1.9057267568 2.1063772837 1.9608916272 2.0513327471 1.9874982510 2.0257927666
by 1.9153463807 2.1128820963 1.9604032064 2.0514394969 1.9848285336 2.0256152673
by 1.8989460074 2.1101619721 19600571477 2.0545544548 1.9847441368 2.0277187917
by 1.9083032359 2.1063672332 1.9606957617 2.0531377036 1.9846896144 2.0266121387
b3 1.9099285244 2.1106767717 1.9611107232 2.0524104665 1.9853636852 2.0267155107
by 1.9043990627 2.1112849502 1.9604826517 2.0521731483 1.9851526874 2.0263860553
bas 1.9060675304 2.1075971495 1.9600890915 2.0529601604 1.9851660959 2.0262903312
bag 1.9084876568 2.1091525930 1.9609144549 2.0532068120 19850303328 2.0267658961
by 1.9059486122 2.1111627628 1.9608480799 2.0528183119 1.9849405419 2.0266632108
bag 1.9060851409 2.1086943848 1.9603493231 2.0525196876 1.9851286602 2.0266541652
by 1.9075925091 2.1088975541 1.9605057348 2.0526635295 1.9851666383 2.0265531284
b3 1.9061094109 2.1102067643 1.9607455795 2.0529841666 1.9850980048 2.0264998061
b3 1.9070439609 2.1096212693 19606731972 2.0529054816
by 1.9060671213 2.1089557441 1.9605012778
b33 1.9071946002 2.1095759718
b3y 1.9066326631 2.1099008138
bss 1.9062481065 2.1092213222
bsg 1.9068805138
by 1.9070449307
bsg 1.9059497758
bsg 19071011410
bag 1.9067937263
by 1.9063003478
by 1.9068134885
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TABLE IV. List of the first exact coefficients b, for the {8, 8} tiling computed on a cluster of radius R = 10 with V = 369 256 049 sites.
As a bipartite tiling, a,>; = 0. In the rightmost column, we also give the exact even moments of the LDOS (odd moments vanish since the
tiling is bipartite). These moments are computed by considering the LDOS associated with the first site of the chain whose hopping terms are
given by /b, (see Ref. [12]). We also added two more moments (last two rows of the table), provided by Gouézel using a completely different
approach based on word enumerations [25], which confirm the quick convergence of the b,’s. The first eight moments can also be found in

Ref. [26].

n b, ()
1 8 8
2 7 120
3 7 2192
4 s 44264
5 e 950 608
6 355%?87(;9 21288912
3819904499705
7 543448874817 491 515 088
457663 490 414 626 565
8 65109351 624213411 11614244 072
385418 200 444 183 773 404 967
9 54831603 309 520 014 006 895 279 495 834 368
6844 506 818 384 509 461 062 609 435 843
10 973735 600 854 857 922718 228 679945 6 826 071 585 040
854384 354399 029 778 591 853 594 278 622 479 055
11 121 549244 543 021 810945 136 773 063 596 240213 168 755 930 104 880
12 249 887 384 305 886 872 771 075 994 660 075 645 942 846 356 081 4214 946 994 935 248

35550298 162 871632768930 141283 569 631274 191260 129
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