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In conformal field theories, when the conformal symmetry is enhanced by a global Lie group symmetry, the
original Virasoro algebra can be extended to Kac-Moody algebra. In this paper, we extend the lattice construction
of the Kac-Moody generators introduced in Wang et al., [Phys. Rev. B 106, 115111 (2022)] to continuous
systems and apply it to one-dimensional continuous boson systems. We justify this microscopic construction of
Kac-Moody generators in two ways. First, through phenomenological bosonization, we express the microscopic
construction in terms of the boson operators in the bosonization context, which can be related to the Kac-Moody
generators in conformal field theories. Second, we study the behavior of the Kac-Moody generators in the
integrable Lieb-Liniger model and reveal its underlying particle-hole excitation picture through Bethe ansatz
solutions. Finally, we test the computation of the Kac-Moody generator in the continuous matrix product state
simulations, paving the way for more challenging nonintegrable systems.
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I. INTRODUCTION

Universality is a fundamental concept in the physical de-
scription of critical systems. For systems that are approaching
a critical point or are already in a critical state, they exhibit
similar behavior on large length scales, despite having dif-
ferent microscopic details. In (1 + 1) dimensions, conformal
field theory (CFT) serves as a powerful theoretical tool to
compute the universal behavior of critical and near-critical
systems [1,2].

Given a critical system described by a CFT, one paramount
task is to obtain the conformal data that fully determine the
properties of the system at low energies and large length
scales. For example, it was discovered by Cardy and others
[3–7] that the conformal data can be extracted from the low-
energy states of a lattice system. For lattice systems with
periodic boundary conditions, the low-energy states of the
lattice system can be regarded as approximations of the CFT
states. At the operator level, Koo and Saleur [8] demonstrated
that, in some integrable models, a lattice representation for the
generators of the Virasoro algebra of the CFT can be estab-
lished, known as the Koo-Saleur formula. This representation
has recently also been successfully applied to nonintegrable
systems [9]. Combined with periodic matrix product state
techniques [10–12], this formula leads to a series of sys-
tematic methods for extracting conformal data from lattice
systems [9,13–15].

In some CFTs, the conformal symmetries of the theory are
enhanced by the presence of a larger symmetry. An important
example is when the conformal symmetry is enhanced by a
global Lie group symmetry. In this case, the scaling operators
are organized by an extension of the Virasoro algebra—the
Kac-Moody algebra, which allows for a more compact charac-
terization of the CFT [2,16,17]. Recently, Ref. [18] proposed
an approach to construct the generators of the Kac-Moody
algebra as lattice operators in quantum spin chain systems.
Using a similar strategy as the Koo-Saleur formula for

Virasoro generators, the lattice Kac-Moody generators for
U(1) and SU(2) Kac-Moody algebras are constructed, which
exhibit desired properties when acting on the low-energy
states of the spin systems. Furthermore, Ref. [19] presented
a numerical approach to identify emergent symmetries at
quantum critical points, including Kac-Moody symmetries,
enabling the construction of the lattice realization of Kac-
Moody generators to high accuracy.

In this paper, we extend the lattice construction of the
Kac-Moody generator to (nonrelativistic) continuous systems,
which is referred to as the microscopic construction, using
one-dimensional bosonic systems with particle-number con-
servation as a specific example. We justify this microscopic
construction from two aspects. First, we represent it in terms
of boson operators within the framework of phenomenolog-
ical bosonization [20,21], which can be connected to the
Kac-Moody generators in CFT. Second, we study the Kac-
Moody generators in the specific example of the Lieb-Liniger
model [22,23], which is integrable. Through the Bethe ansatz
method [22–27], we compute the form factors of the mi-
croscopic construction of the Kac-Moody generators in the
low-energy sector. Our results demonstrate that the effect
of the Kac-Moody generators on low-energy states can be
regarded as particle-hole excitations in a certain fermionic
picture, and the distribution of the fermion modes in momen-
tum space is identical to the quantum number distribution of
the Bethe ansatz wave functions. Finally, we also demonstrate
the computation of Kac-Moody generators in the context of
numerical simulations, where we employ the continuous ma-
trix product state (cMPS) approach [28,29]. We show that
the cMPS simulations can correctly reproduce the behavior
of form factors of the Kac-Moody generators, even without
imposing the U(1) symmetry explicitly on the cMPS. This
provides a promising avenue for applying the microscopic
construction of the Kac-Moody generators to more challeng-
ing problems where exact solutions are not available.
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The remainder of the paper is organized as follows. In
Sec. II, following Ref. [18], we briefly review the realization
of the U(1) Kac-Moody generators on the lattice. In Sec. III,
we discuss the microscopic construction of the Kac-Moody
generators in the continuous one-dimensional models of in-
teracting bosons and justify it with the phenomenological
bosonization technique. In Sec. IV, we exemplify the Kac-
Moody generator construction by studying the Lieb-Liniger
model through the Bethe ansatz solution. In Sec. V, we discuss
the numerical computation of the Kac-Moody generators in
the context of cMPS simulations. Section VI contains con-
cluding remarks and outlooks.

II. U(1) KAC-MOODY GENERATORS AND ITS
REALIZATION ON THE LATTICE

In this section, following Ref. [18], we briefly review the
U(1) Kac-Moody algebra and its realization on the lattice.

For a critical system described by a CFT with a global U(1)
symmetry, its low-energy spectrum can be classified using
the so-called U(1) Kac-Moody algebra. For a CFT with a
global U(1) symmetry, we can define the U(1) charge QCFT =∫

dx qCFT(x). The U(1) local current qCFT(x) can be sepa-
rated into the holomorphic part JCFT(x) and antiholomorphic
part J̄CFT(x), i.e., qCFT(x) = JCFT(x) + J̄CFT(x). Since both
JCFT(x) and J̄CFT(x) satisfy conservation laws, one can intro-
duce another U(1) current mCFT(x) = v(JCFT(x) − J̄CFT(x))
and another U(1) charge MCFT = ∫

dx mCFT(x), where v is
the velocity of the CFT. Therefore, the global symmetry of
the CFT is actually U(1) × U(1). The two U(1) currents can
be connected with each other by the conservation law

−∂xmCFT(x) = i∂τ qCFT(x) = i[HCFT, qCFT(x)]. (1)

The Fourier modes Jm, J̄n (m, n ∈ Z) of JCFT(x) and
J̄CFT(x) satisfy the U(1) Kac-Moody algebra[

JCFT
m , JCFT

n

] = mδm+n,0, (2)[
J̄CFT

m , J̄CFT
n

] = mδm+n,0, (3)[
JCFT

m , J̄CFT
n

] = 0. (4)

The Virasoro generators can be expressed in terms of the Kac-
Moody generators [16,17]

LCFT
m = 1

2
:

∞∑
n=−∞

JCFT
n+mJCFT

−n :, (5)

L̄CFT
m = 1

2
:

∞∑
n=−∞

J̄CFT
n+mJ̄CFT

−n :, (6)

where : O :≡ O − 〈O〉gs represents the normal ordering of the
operators. We can then express the CFT Hamiltonian as

HCFT = 2πv

L

∞∑
n=1

(
JCFT
−n JCFT

n + J̄CFT
−n J̄CFT

n

)

+ 2πv

L

[
1

2

(
JCFT

0 JCFT
0 + J̄CFT

0 J̄CFT
0

) − c

12

]
. (7)

Here, v is the velocity, c = 1 is the central charge of the CFT,
and we have used HCFT = (2πv/L)(LCFT

0 + L̄CFT
0 − c/12). A

Kac-Moody primary state |α〉 is defined by the following
condition:

JCFT
m |α〉 = 0, J̄CFT

m |α〉 = 0 (∀m > 0). (8)

From a primary state |α〉, one can construct descendant states
by acting with J ′

−ms and J̄ ′
−ms (m > 0) on top of |α〉

Jk1
−1Jk2

−2 . . . J̄ k̄1
−1J̄ k̄2

−2 . . . |α〉, (9)

where k1, k̄1, k2, k̄2 · · · � 0. These descendant states, together
with the primary state |α〉, constitute the so-called Kac-Moody
tower.

On the lattice, for conformal critical systems with a global
U(1) symmetry, one can identify the U(1) charge Q = ∑

j q j

with the U(1) charge QCFT in the CFT, and then q j corre-
sponds to qCFT(x). Similarly, according to Eq. (1), one can
introduce a quantity mj defined on the lattice satisfying

mj+1 − mj = i[H, q j]. (10)

We associate mj to mCFT(x). Along this line, we introduce
the lattice realizations Jn, J̄n of the Kac-Moody generators by
performing the Fourier transformation of qj and mj , i.e.,

Jn =
N∑
j

e−2π i jn/N q j + mj/v

2
, (11)

J̄n =
N∑
j

e2π i jn/N q j − mj/v

2
, (12)

where the velocity v corresponds to the velocity of low-energy
excitations in the lattice system.

Compared to JCFT
n and J̄CFT

n , the operators Jn and J̄n con-
structed in lattice models contain contributions of irrelevant
terms at short length scales, and thus do not satisfy the Kac-
Moody algebra. The expectation is that, when applied on
the low-energy states, the contributions from those irrelevant
terms are negligible, and Jn and J̄n will have the same matrix
elements in low-energy subspace as the Kac-Moody genera-
tors JCFT

n and J̄CFT
n in the CFT.

III. KAC-MOODY GENERATOR IN THE
ONE-DIMENSIONAL BOSONIC SYSTEMS

In this section, we discuss the realization of Kac-Moody
generators in one-dimensional (nonrelativistic) continuous
bosonic systems with particle-number conservation, which
can be described by the following Hamiltonian:

H =
∫ L

0
dx∂xψ

†(x)∂xψ (x)

+
∫ L

0
dx

∫ L

0
dx′u(x − x′)ρ(x)ρ(x′), (13)

where ρ(x) = ψ†(x)ψ (x) is the density operator, u(x − x′) =
u(|x − x′|) is the interaction potential function, and L is the
system size. In condensed matter theories, the Kac-Moody
symmetry in this system is incorporated in the theoretical
framework known as Luttinger liquid theory, and the Kac-
Moody algebra is reformulated in the bosonic nature of the
low-energy excitations [20,30–32]. Hence, in our discus-
sion, we will first give the microscopic construction of the
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Kac-Moody generator in the bosonic system Eq. (13), and
then demonstrate its correctness using the phenomenological
bosonization technique [20,21].

To obtain the microscopic construction of the Kac-Moody
generators, it is straightforward to generalize the lattice con-
struction Eqs. (10)–(12) to continuous systems. The U(1)
symmetry of the system corresponds to the particle-number
conservation and the U(1) charge is thus the total particle
number N = ∫

dx ρ(x). Supposing the particle density of the
ground state is ρ0 = N0/L, we identify the local particle den-
sity fluctuation 	ρ(x) = ρ(x) − ρ0 with qCFT(x) in the CFT,
and note that

i[H,	ρ(x)] = i
[
ψ†(x)∂2

x ψ (x) − ∂2
x ψ†(x)ψ (x)

] = −∂x j(x),

(14)

where we have introduced the density current operator

j(x) = −i[ψ†(x)∂xψ (x) − ∂xψ
†(x)ψ (x)]. (15)

We then identify j(x) with mCFT(x) in the CFT. Therefore,
according to the discussion in Sec. II, in a system of length
L with periodic boundary conditions, we can construct the
microscopic realizations of Kac-Moody generators Jn and J̄n

as

Jn =
∫ L

0
dx e−2πnix/L 	ρ(x) + j(x)/v

2
, (16)

J̄n =
∫ L

0
dx e2πnix/L 	ρ(x) − j(x)/v

2
. (17)

Next, following Refs. [20,21], we introduce the underly-
ing Luttinger liquid description of the model Eq. (13) using
phenomenological bosonization. To start with, we employ the
density-phase representation of the boson operator

ψ†(x) =
√

ρ(x)e−iφ(x), ψ (x) = eiφ(x)
√

ρ(x), (18)

where ρ(x) and φ(x) are Hermitian operators which represent
the boson density and phase, respectively. We introduce an
auxiliary field �(x) and represent the density operator as

ρ(x) = [∂x�(x)]
∞∑

n=−∞
δ(�(x) − nπ ). (19)

Equation (19) is equivalent to the first quantized form of the
density operator ρ(x) = ∑

n δ(x − xn) provided that the parti-
cle positions {xn} satisfy �(xn) = nπ , where we have used the
relation δ[ f (x)] = δ(x − x0)/| f ′(x0)|, f (x0) = 0.

To study the low-energy physics of the system, we hence-
forth take both �(x) and φ(x) as slowly varying fields by
coarse-graining them over a length scale l 	 ρ−1

0 . Moreover,
using the Poisson’s summation formula, we rewrite Eq. (19)
in a more useful form:

ρ(x) = 1

π
[∂x�(x)]

∞∑
m=−∞

e2mi�(x). (20)

Equation (20) separates the density fluctuations of different
length scales. The m = 0 term describes the density fluctua-
tions of length scale l 	 ρ−1

0 , whereas the terms with m 
= 0
describe density fluctuations of length scale (mρ0)−1. There-
fore, at the long-wave-length limit, it suffices to only keep the

m = 0 term in Eq. (20), which yields

ρ(x) ≈ 1

π
∂x�(x). (21)

Combining Eq. (21) and Eqs. (15) and (18), we obtain an
approximation for the density current operator:

j(x) ≈ 2ρ0∂xφ(x). (22)

By substituting Eqs. (18) and (21) into the Hamiltonian
Eq. (13) and keeping only the leading terms, one can obtain
the long-wave-length effective Hamiltonian

Heff = 1

2π

∫ L

0
dx[vJ (∂xφ(x))2 + vN (∂x�(x) − πρ0)2],

(23)
where vJ = 2πρ0 is the phase stiffness and vN is the density
stiffness. It is customary in the bosonization literature to intro-
duce the field θ (x) = �(x) − πρ0x, the Luttinger parameter
K = √

vJ/vN , and the velocity v = √
vNvJ . We then rewrite

Eq. (23) as

Heff = v

2π

∫ L

0
dx

[
K (∂xφ(x))2 + 1

K
(∂xθ (x))2

]
. (24)

Here, the velocity v describes the velocity of the low-energy
excitations and thus is identical to the velocity that appears in
Eqs. (16) and (17). The Luttinger parameter K is related to the
strength of the quantum fluctuations. These two parameters
fully characterize the Luttinger liquid theory.

To properly diagonalize the effective Hamiltonian Eq. (24),
we employ the following mode expansion [20]:

�(x) = θ0 + πNx

L
− i

∑
q 
=0

∣∣∣∣ πK

2qL

∣∣∣∣
1
2

sgn(q)eiqx (b†
q + b−q),

(25)

φ(x) = φ0 + πJx

L
− i

∑
q 
=0

∣∣∣∣ π

2qLK

∣∣∣∣
1
2

eiqx(b†
q − b−q), (26)

where we have assumed that the system obeys the periodic
boundary condition, and q = ±2πn/L, n ∈ N+. The oper-
ators bq and b†

q are boson operators satisfying [bq, b†
q′ ] =

δq,q′ , which describe the low-energy collective excitations.
The operators N and J correspond to the total particle
number and total current, respectively, which, together with
the zero modes θ0, φ0, satisfy the following commutation
relations: [N, e−iφ0 ] = e−iφ0 , [J, e−iθ0 ] = e−iθ0 , and [N, J] =
[θ0, φ0] = 0. These commutation relations will lead to the
correct commutation relation between the field operators
[∂x�(x), φ(x′)] = iπδ(x − x′), which follows from the com-
mutation relations of the boson fields ψ (x) and ψ†(x).

By substituting mode expansions Eqs. (25) and (26) into
the effective Hamiltonian Eq. (24), we get

Heff =
∑
q 
=0

v|q|b†
qbq + πv

2LK
(N − N0)2 + πvK

2L
J2 + const.

(27)

One can easily verify that the spectrum given by Eq. (27)
is identical to the spectrum of the CFT Hamiltonian Eq. (7),

035153-3



WEI TANG AND JUTHO HAEGEMAN PHYSICAL REVIEW B 108, 035153 (2023)

provided that we make the following identifications:

JCFT
n ∼ √

nb2πn/L, JCFT
−n ∼ √

nb†
2πn/L, (28)

J̄CFT
n ∼ √

nb−2πn/L, J̄CFT
−n ∼ √

nb†
−2πn/L, (29)

JCFT
0 + J̄CFT

0 ∼ N − N0√
K

, JCFT
0 − J̄CFT

0 ∼
√

KJ, (30)

where n is a positive integer.
Regarding the Kac-Moody generators, as we only apply

the Kac-Moody generators to states with low energies and
small momenta, it suffices to employ the long-wave-length
approximation. Combining Eqs. (21), (22), (25), and (26), we
get

	ρ(x) ≈ N − N0

L
+

√
K

L

∑
q 
=0

√
|q|L
2π

eiqx(b†
q + b−q ), (31)

j(x) ≈ vKJ

L
+ v

√
K

L

∑
q 
=0

√ |q|L
2π

sgn(q)eiqx (b†
q − b−q), (32)

where in Eq. (32) we have used 2πρ0 = vJ = vK . By substi-
tuting the mode expansion Eqs. (31) and (32) into Eqs. (16)
and (17), and combining Eqs. (28) and (29), it becomes clear
that the microscopic constructions Eqs. (16) and (17) are
identical to the sought Kac-Moody generators in the CFT up
to an overall factor

√
K , i.e.,

JCFT
n = Jn/

√
K, J̄CFT

n = J̄n/
√

K, (33)

for any integer n. In the following contexts, we will absorb the
factor 1/

√
K into Jn and J̄n for the convenience of discussion.

IV. APPLICATION TO THE LIEB-LINIGER MODEL

As a specific example, we examine the microscopic
construction of the Kac-Moody generators in the bosons inter-
acting with a zero-range potential, i.e., the Lieb-Liniger model
[22,23] in this section. The Lieb-Liniger Hamiltonian reads

Ĥ =
∫ L

0
dx[∂xψ

†(x)∂xψ (x) + cψ†(x)ψ†(x)ψ (x)ψ (x)],

(34)
where μ is the chemical potential and c > 0 is the interaction
strength.

As an integrable system, the Lieb-Liniger model is one
of the prototypical models which can be exactly solved by
Bethe ansatz and plays a central role in the early develop-
ment of Bethe ansatz method [22–27]. In the following, using
the Bethe ansatz approach, we will obtain the eigenstates of
the Lieb-Liniger Hamiltonian Eq. (34) represented as Bethe
states, and then study the behavior of Jn and J̄n when acting
with them on the low-energy eigenstates.

A. Bethe wave functions

The Bethe wave function with N bosons is expressed as

ψ{λ j}(x) = 〈x|{λ j}〉 =
∑
P

a(P) exp

⎛
⎝i

N∑
j=1

λP( j)x j

⎞
⎠, (35)

where the parameters {λ j} = {λ1, λ2, . . . , λN } are called the
quasimomenta and P represents a permutation of the quasi-
momenta. For the Lieb-Liniger model, the coefficient a(P) is
given by

a(P) =
∏

j<k,P( j)>P(k)

i(λ j − λk ) − c

i(λ j − λk ) + c
. (36)

Next, we impose the periodic boundary condition, yielding the
following Bethe equations

exp(iλ jL) = (−1)N−1
N∏

k=1

c − i(λ j − λk )

c + i(λ j − λk )
, j = 1, . . . , N.

(37)
For the Lieb-Liniger model, one can show that the possible
quasimomenta can only take real values [24]. The quasimo-
menta {λ j} can be further associated with N quantum numbers
{I j} which satisfy [26]

λ j = 2π I j + ∑N
k=1 θ jk

L
, (38)

where θ jk = −2 arctan[(λ j − λk )/c]. The quantum numbers
I j take integer values when N is odd, and half-integer values
when N is even. The distribution of the quantum numbers
{I j} completely determines the quasimomenta λ j and thus the
eigenstate |{λ j}〉. In practice, one has the freedom to choose
a set of {I j}, and the corresponding quasimomenta {λ j} can
be solved by combining Eqs. (37) and (38). For a given set
of quasimomenta {λ j}, the total momentum and energy of the
state ψ{λ j}(x) are given by

P{λ j} =
N∑

j=1

λ j =
N∑

j=1

2π I j

L
, E{λ j} =

N∑
j=1

λ2
j . (39)

These quantum numbers cannot coincide with each other,
otherwise the wave function vanishes [24]. For the ground
state, the distribution of the quantum numbers {I j} resembles a
Fermi sea, where the modes with the smallest absolute values
are fully occupied [see Fig. 1(a)]. The low-energy excited
states with the same particle number can be generated from
the ground state by introducing particle-hole excitations near
the Fermi surface or by moving one occupied mode from one
branch to another [see Figs. 1(b) and 1(c), respectively]. From
Eq. (39), it becomes clear that scattering between the differ-
ent branches gives rise to low-energy excitations with length
scales (ρ0)−1 or even smaller, which have been excluded by
our previous analysis in Sec. III [cf. Eq. (20)]. In contrast,
the low-energy particle-hole excitations near the Fermi sur-
face all have a length scale much larger than (ρ0)−1. Indeed,
it is well-known in the bosonization literature [31,32] that
the low-energy bosonic excitations (and thus the Kac-Moody
generators) can be interpreted as particle-hole excitations in
a certain fermionic picture. More specifically, for a positive
integer n � N0, we have

J−n ≈
kF +�∑

p=kF −�

f †
p+q fp, J+n ≈

kF +�∑
p=kF −�

f †
p−q fp, (40)

J̄−n ≈
−kF −�∑

p=−kF +�

f †
p−q fp, J̄+n ≈

−kF −�∑
p=−kF +�

f †
p+q fp, (41)
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FIG. 1. Schematic diagrams showing the distributions of the
quantum numbers {Ij} for (a) the ground state, (b) the low-energy
state with particle-hole excitation, and (c) the scattering from one
branch to another.

where fp and f †
p are fermion operators in the fermionic picture

mentioned above, q = 2πn/L, kF = 2πρ0/L, and � is the
momentum cutoff. Along this line, one can infer that the
distribution of the fermion modes in the momentum space
should be identical to the distribution of the quantum numbers
{I j}, which will be confirmed through the calculations of the
form factors in the following.

(a) Form factors of Kac-Moody generators. To check the
behavior of Jn and J̄n defined in Eqs. (16) and (17), we com-
pute the matrix elements for the low-energy states,

Cμ,λ[X ] ≡ 〈{μ j}|X |{λ j}〉√〈{μ j}|{μ j}〉〈{λ j}|{λ j}〉
, (42)

where X is an operator, and |{μ j}〉 and |{λ j}〉 are low-energy
eigenstates of the systems represented as Bethe states. To
compute Cμ,λ[Jn] and Cμ,λ[J̄n], we plug Eqs. (16) and (17) into
Eq. (42), and recall that we have absorbed an additional factor
1/

√
K into Jn and J̄n [cf. Eq. (33)]. Since the momentum of a

Bethe state |{μ j}〉 is given by p{μ j} = ∑N
j μ j [see Eq. (39)],

we can shift the operators ρ(x) and j(x) to position x = 0 by
inserting spatial translation operators in the expression. Along
this line, we get

Cμ,λ[J−n] = L√
K

δ

(
p{μ j} − p{λ j },

2πn

L

)

×
(

Cμ,λ[ρ(0)] + Cμ,λ[ j(0)]

v

)
, (43)

Cμ,λ[J̄−n] = L√
K

δ

(
p{λ j} − p{μ j},

2πn

L

)

×
(

Cμ,λ[ρ(0)] − Cμ,λ[ j(0)]

v

)
, (44)

where δ(p1, p2) = 1 only when p1 = p2, and equals zero oth-
erwise. The velocity v can be obtained from the low-energy
spectrum, and the Luttinger parameter K can be determined
using the relation vK = 2πρ0. The form factors Cμ,λ[ρ(0)]
and Cμ,λ[ j(0)] can be calculated with algebraic Bethe ansatz

FIG. 2. Energy spectrum of the Lieb-Liniger model with c = 1,
L = 64, and particle number N = 64. The states can be mapped from
|ψi〉 (denoted by the gray star) with J ′

ns and J̄ ′
ns marked with different

shapes and colors. The initial states are chosen as (a) the ground state
|ψ0〉 and (b) the first excited state J−1|ψ0〉. The states circled by the
gray ellipse will be further discussed.

methods [33,34]. We list the expressions of these form factors
in Appendix A.

In Fig. 2, we show the energy spectrum of a Lieb-Liniger
model with c = 1, L = 64. The particle number is fixed to
be N = 64. The eigenstates shown in the energy spectrum
all correspond to different particle-hole scattering modes. In
the spectrum, we can choose a low-energy state |ψi〉 as an
initial state. By calculating the form factors, we can find the
states in the low energy spectrum which can be obtained
by acting with the Kac-Moody generator Jn on |ψi〉. Here,
n = ±1,±2, . . ., and different choices of n lead to states with
different momenta. In Fig. 2, we choose |ψi〉 as the ground
state |ψ0〉 and the first excited state J−1|ψ0〉, respectively.
Since the Kac-Moody generators consist of superpositions
of particle-hole excitations [cf. Eqs. (40) and (41)], at high
energy levels, multiple eigenstates have nonzero overlap with
Jn|ψi〉. Moreover, the relative signs of these overlaps, which
are also shown in Fig. 2, can be understood in terms of the
fermionic nature of the particles in the particle-hole scattering
picture.

By looking into the quantum number configuration of
the excited states, we can verify that the fermion modes in
Eqs. (40) and (41) indeed correspond to the quantum numbers
{I j}. As an example, we look into the states circled by the gray
ellipse in Fig. 2 for more details. In Fig. 2(a), we have chosen
the initial state as the ground state |ψ0〉. The three states |φ(1)

3 〉,
|φ(2)

3 〉, and |φ(3)
3 〉 circled by the gray ellipse can all be mapped

from the ground state via the Kac-Moody generator J−3. More
concretely, we have

J−3|ψ0〉 ≈ ∣∣φ(1)
3

〉 − ∣∣φ(2)
3

〉 + ∣∣φ(3)
3

〉
. (45)

The quantum number distributions of states |φ(1)
3 〉, |φ(2)

3 〉, and
|φ(3)

3 〉 are shown in Fig. 3. From Fig. 3, it also becomes clear
that the negative sign in front of |φ(2)

3 〉 comes from the fermion
commutation relation [cf. Eqs. (40) and (41)]. In Fig. 2(b), the
initial state is chosen as J−1|ψ0〉. According to the momentum
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FIG. 3. The quantum number distribution of states |ψ0〉, J−1|ψ0〉,
|φ (1)

3 〉, |φ (2)
3 〉, and |φ (3)

3 〉. The dashed line represent the Fermi surface.

difference, the states in the ellipse can only be reached by
acting with J−2 on J−1|ψ0〉:

J−2J−1|ψ0〉 ≈ ∣∣φ(1)
3

〉 − ∣∣φ(3)
3

〉
. (46)

Here, |φ(2)
3 〉 is excluded since it requires more than one

particle-hole scattering processes to be obtained from J−1|ψ0〉.
Moreover, a negative sign also appears in front of |φ(3)

3 〉 in
Eq. (46), which, again, comes from the fermion commutation
relation. As shown in Fig. 3, the form factor compu-
tations results are indeed consistent with the discussions
here.

Finally, we look at the Kac-Moody tower at the momentum
p = 2πρ0. The primary state in this tower corresponds to the
state with one cross-branch scattering [cf. Fig. 1(c)], which
we will refer to as |ψm=1

0 〉. As previously mentioned, the
state |ψm=1

0 〉 is a low-energy excitation state with a short
length scale ρ−1

0 , which contributes to the |m| = 1 term in
Eq. (20). When we apply the Kac-Moody generators to the
state |ψm=1

0 〉, the short-wavelength characteristics of the state
will remain unchanged, as these generators can only produce
particle-hole excitations that have long length scales. This
fact can be verified by calculating the form factors of the
Kac-Moody generators. In Fig. 4, we show the low-energy
spectrum near |ψm=1

0 〉. By calculating the form factors, we
determine the states that can be obtained by acting with
Kac-Moody generators on top of |ψm=1

0 〉 and J−1|ψm=1
0 〉.

Comparing Figs. 2 and 4, one can see that these two fig-
ures share almost the same feature, except that the spectrum
in Fig. 4 are slightly unbalanced due to the finite-size effect.

The form factors Cμ,λ[Jn] and Cμ,λ[J̄n] in the Lieb-Liniger
model, along with their particle-hole excitation interpretation,
are also discussed in Ref. [35], which focuses on the case of
the thermodynamic limit, in contrast with the finite-size study
in our paper.

FIG. 4. Low energy spectrum near the state |ψm=1
0 〉. The calcu-

lation is carried out in the Lieb-Liniger model with c = 1, L = 64
and particle number N = 64. The states can be mapped from |ψi〉
(denoted by the gray star) with J ′

ns and J̄ ′
ns are marked with different

shapes and colors. The initial states are chosen as (a) |ψm=1
0 〉 and (b)

J−1|ψm=1
0 〉.

V. KAC-MOODY GENERATORS IN CONTINUOUS
MATRIX PRODUCT STATES

For the numerical study of continuous systems, among oth-
ers, the cMPS method [28,29] has become an indispensable
technique. The cMPS method does not require the discretiza-
tion of a continuous space and can therefore be directly
applied to solve various ultracold atomic systems as well as
(1 + 1)-dimensional quantum field theories [36–40]. In addi-
tion to ground-state simulations, cMPS can also be used to
compute excited states [41] and time evolution [42,43]. In ad-
dition, cMPS can be related to continuous measurements [44],
open quantum systems [45], classical stochastic dynamics
[46], and thermodynamics of quantum lattice systems [47,48].
Moreover, there also exist generalizations of the cMPS ansatz,
such as the relativistic cMPS [49], and the continuous pro-
jected entangled-pair states [50,51].

In this section, we will demonstrate that the behavior of
the Kac-Moody generators Eqs. (16) and (17) can be correctly
obtained from a cMPS simulation.

A. Ground state

To describe the ground state of the Lieb-Liniger model,
we use a uniform, bosonic cMPS with periodic boundary
conditions. This circular bosonic cMPS is expressed as

|�(Q, R)〉 = Traux
[
Pe

∫ L
0 dx[Q⊗1+R⊗ψ̂†(x)]

]|�〉, (47)

where P represents the path-ordering operator, Q and R are
matrices of dimension χ × χ acting on the auxiliary space,
|�〉 is the Fock vacuum, and, 1 and ψ̂†(x) are, respectively,
the identity operator and the boson creation operator acting on
the physical space. The dimension χ of the auxiliary space is
called the bond dimension of the cMPS. We obtain the ground
state of a Hamiltonian Ĥ by minimizing the energy function
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variationally [28]:

E (Q, R) = 〈�(Q, R)|Ĥ |�(Q, R)〉
〈�(Q, R)|�(Q, R)〉 . (48)

Unlike the Bethe ansatz solution, in the cMPS simulation, the
particle number cannot be fixed and we need to introduce a
chemical potential μ to regulate the number of particles in the
system.

The details for evaluating the energy function Eq. (48) can
be found in Appendix B 1. The optimization of the cMPS can
be performed using gradient-based optimization methods. It is
worth noting that the optimization of a circular cMPS is evi-
dently more challenging than that of the infinite cMPS. In our
simulation, we employ Riemannian optimization techniques
[52], the details of which are discussed in Appendix C.

B. Excited states

After obtaining the ground state represented as a uni-
form circular cMPS |�(Q, R)〉, we can build low-excited
states by introducing impurity matrices in the uniform cMPS
[11–13,41,53],

|�p(V,W )〉 =
∫ L

0
dx eipxTraux[U (0, x)

× [V ⊗ 1 + W ⊗ ψ̂†(x)]U (x, L)]|�〉, (49)

where p is the momentum of the state and U (x, y) =
P exp(

∫ y
x dz[Q ⊗ 1 + R ⊗ ψ̂†(z)]). The (χ × χ )-

dimensional impurity matrices V and W introduce a
single-particle excitation into the ground state, whose
influence is within a range determined by the bond dimension
of the cMPS. Although this excited-state ansatz is most
suitable for single-particle excitations [41], in principle, one
can still obtain low-energy excited states accurately as long
as the bond dimension χ is large enough [54].

To compute the excited states, we only needs to solve the
following generalized eigenvalue problem [41],

HpV[V,W ] = ENpV[V,W ]. (50)

Here, E is the energy of the excited state and V[V,W ] represents
a 2χ2-dimensional vector composed of the elements of V and
W . Hp and Np represents the effective Hamiltonian and the
effective norm matrix in the space of V[V,W ], which are defined
by

〈�p1 (V1,W1)|Ĥ |�p2 (V2,W2)〉 = L δ(p1, p2)V †
[V1,W1]HpV[V2,W2],

(51)

〈�p1 (V1,W1)|�p2 (V2,W2)〉 = L δ(p1, p2)V †
[V1,W1]NpV[V2,W2].

(52)

The details for computing the matrix elements of Hp and Np

are included in Appendix B 2.
There are χ2 redundant degrees of freedom in the represen-

tation of |�p(V,W )〉, which can be traced back to the gauge
redundancy in |�(Q, R)〉 [41]. These gauge redundancies lead
to zero eigenvalues in Ĥ and N̂ . To fix this, we employ the

following gauge-fixing= condition:

TrV̄[eT L(V ⊗ Ī + W ⊗ R̄)] = 0, (53)

where TrV̄ represents the partial trace over the auxiliary space
V̄ where matrices Ī and R̄ live, and T = I ⊗ Q̄ + Q ⊗ Ī +
R ⊗ R̄ is the cMPS transfer matrix. This gauge condition
also ensures that excited states with momentum zero, i.e.,
|�0(V,W )〉, have an exact zero physical overlap with the
ground state, i.e., 〈�(Q, R)|�0(V,W )〉 = 0. For all other mo-
menta, orthogonality to the ground state is trivially ensured.

C. Form factors of Kac-Moody generators

With the cMPS approximations for the ground state and
the low-energy excited states, it is straightforward to compute
the form factors of the Kac-Moody generators. The formulas
for the computation of these form factors can be found in
Appendix B 3.

Each (approximate) eigenstate obtained by solving the gen-
eralized eigenvalue problem Eq. (50) has an arbitrary phase,
which will affect the phase of the form factors. This freedom
can be used to ensure that the signs (but not the absolute value)
of the form factors between a given initial state |ψi〉, e.g., the
ground state, agree with the predictions of the bosonisation or
Bethe ansatz approach. However, by then selecting a different
initial state, namely, one of the eigenstates whose phase is now
fixed, and computing the form factors between this state and
other eigenstates with a fixed phase, a nontrivial consistency
check is obtained for the accuracy of our cMPS results.

D. Results

Here we present the results of the cMPS calculation. The
calculation is carried out in the Lieb-Liniger model with c =
1, μ = 1.426, and L = 16. According to the Bethe ansatz
solution, the ground state has the particle number N0 =
16 and energy Egs ≈ −12.649511. The cMPS simulation is
performed with bond dimension χ = 20. The ground-state
calculation of the cMPS yields high precision, where the
relative errors for the energy and particle number are εE ≈
2.5 × 10−5 and εN ≈ 1.8 × 10−6, respectively.

Figure 5 shows the low-energy excitation spectrum, which
is obtained from both the Bethe ansatz solution and the cMPS
calculations. The horizontal axis is shifted slightly according
to the number of particles in each state. From Fig. 5, it is clear
that the cMPS calculation can correctly obtain the low-energy
states, giving both energies and the particle numbers correctly,
while it fails at higher energies.

To further demonstrate the effectiveness of the cMPS nu-
merical calculation method, in Fig. 6 we compare the cMPS
results of the form factors with the Bethe ansatz results, where
we choose two initial states, and then compute the form factor
of J−n between the initial state and the other eigenstates.
We only show states with particle number N = N0 in Fig. 6
for the sake of clarity. Note that, for excited states obtained
with cMPS, the selection of states with N = N0 can only be
done approximately, where we choose the states satisfying
|N − N0| < 0.5. In Table I, we show both the norm and the
phase of the form factors obtained by the cMPS method. From
Fig. 6, we can see that the form factors obtained from cMPS

035153-7



WEI TANG AND JUTHO HAEGEMAN PHYSICAL REVIEW B 108, 035153 (2023)

FIG. 5. The low-energy spectrum obtained from both Bethe
ansatz (marked by crosses) and cMPS calculations (marked by cir-
cles). The energies of the states are rescaled. The horizontal axis is
slightly shifted according to the numbers of particles in the states.

calculations are consistent with the Bethe ansatz solutions for
the low-energy excited states, while they fail for eigenstates
at higher energy levels. We also list the detailed data for the
lowest excited states in Table I, which further demonstrates
the quantitative accuracy of the cMPS results for these low-
energy states.

We note that, although the U(1) symmetry is not imple-
mented in the cMPS ansatz, the cMPS is still able to obtain the
correct particle number to a high precision for both the ground

FIG. 6. The low-energy spectrum with fixed particle number
N = N0 and the results for the form factors. In the spectrum, the
Bethe ansatz results are marked as crosses and the cMPS results
are marked as circles. The values of the form factors are indicated
by the colors of the data points, from which one can infer whether
an eigenstate can be mapped from the initial state by mapping the
Kac-Moody generators J−n. The initial states are chosen as (a) the
ground state |ψ0〉 and (b) the excited state J−1|ψ0〉, which are marked
by green stars. For eigenstates under the gray dashed line, both
the energy values and the form factors can be accurately obtained
through the cMPS method.

TABLE I. Detailed data for the lowest seven excited states in
the energy spectrum in Fig. 6. We list the particle numbers, scaled
energies, and form factors of J−n. The form factors shown in both
Figs. 6(a) and 6(b) are listed. The results listed are obtained by Bethe
ansatz (BA) and cMPS calculations, respectively, except that for the
particle numbers we only list the cMPS results, since the particle
number in Bethe ansatz solution is exact. All numbers in the table
are accurate to four decimal places.

N Scaled 	E Form factors (a) Form factors (b)

pL
2π

cMPS BA cMPS BA cMPS BA cMPS

−2 15.8957 1.8686 1.8842 −0.0266 −0.0251 −0.0345 −0.0336
−2 15.9970 2.2296 2.2375 −0.0638 −0.0625 0.0382 0.0406
−1 16.0000 1.0000 1.0004 0.0000 −0.0004 0.0523 0.0509
0 15.9972 1.9938 2.0821 0.0000 0.0000 0.0031 0.0026
1 16.0000 1.0000 1.0004 0.9992 0.9993
2 15.9556 1.8686 1.8844 −0.7832 −0.8009 1.0321 0.9764
2 15.9966 2.2296 2.2378 1.1756 1.1506 0.9790 1.0079

state and the low-energy excited states. Moreover, from the
form factor results, we can also infer that the structure of
the particle hole excitation is also effectively encoded in the
excited states obtained with cMPS method.

On the other hand, due to the lack of U(1) symmetry in
the cMPS ansatz, our cMPS results can only cover a part of
the Kac-Moody tower, since the numbers of particles in most
of the low-energy states are different from that of the ground
state. This also makes it difficult to push the cMPS calculation
to larger systems, where it becomes more difficult to calculate
the excited states accurately.

VI. CONCLUSION AND OUTLOOK

In summary, we have extended the lattice realization of the
Kac-Moody generators to continuous systems and applied it
to one-dimensional continuous bosonic systems. We have jus-
tified this microscopic realization of Kac-Moody generators
in two different ways: by phenomenological bosonization and
by studying the integrable Lieb-Liniger model. We have also
tested the computation of the Kac-Moody generator in the
cMPS simulations, which can be used for more challenging
problems where there are no exact solutions.

The Kac-Moody generator can be interpreted as describ-
ing particle-hole excitations in a particular fermionic picture.
In the integrable Lieb-Liniger model, we have shown that
this fermionic picture corresponds to the distribution of the
quantum numbers in the Bethe wave functions. It would
be interesting to further investigate other integrable sys-
tems to check the generality of this result, such as the
Calogero-Sutherland model [55–57], the Haldane-Shastry
model [58,59], and the XXZ model [25]. Another possible
direction for further study is to analyze the effect of differ-
ent boundary conditions, such as open and twisted boundary
conditions. Furthermore, as the Bethe wave function in the
Lieb-Liniger model has an exact cMPS representation [60], it
would be worthwhile to explore its potential utility in evaluat-
ing the form factors.
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For nonintegrable systems, one usually has to resort to
numerical simulation methods. An efficient numerical method
to compute form factors for Kac-Moody generators can also
complement the form factor techniques in the Bethe ansatz,
since the form factors for many integrable systems are very
difficult to compute analytically. In our paper, we have tested
the Kac-Moody generator realization in the cMPS simulation
of the Lieb-Liniger model. A natural direction for further
study is to simulate nonintegrable systems with cMPS, such
interacting boson systems with long-range interactions [37].
Note that the Kac-Moody generators constructed in our paper
do not depend on the microscopic details in the Hamiltonian
but only on the symmetry of the system. This makes it possible
to construct the Kac-Moody generator for systems where the
Hamiltonian is not available. One example is the cMPS in
the continuous matrix product operator simulation [47,48],
where the cMPS is the dominant eigenvector of the quan-
tum transfer matrix. Another possible research direction is to
consider possible extensions of the cMPS ansatz with a fixed
particle number. This could help us to exclude states with dif-
ferent particle numbers in the low-energy spectrum and thus
study the states in a single Kac-Moody tower more efficiently.
Moreover, this also allows us to examine how this symmetry
would be encoded in the Kac-Moody generator. While such
extensions can be constructed, it is currently unclear whether
they can be efficiently optimized.

Finally, we remark that the techniques developed in our
paper can be generalized and applied to other continuous
systems with SU(2)k and other Kac-Moody algebras, such as
multicomponent boson systems, spin-1/2 fermionic systems,
and multicomponent Sutherland models.

Our code implementations and data are available at
Ref. [61].
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APPENDIX A: FORM FACTORS OF DENSITY AND
CURRENT OPERATOR IN BETHE ANSATZ

In this Appendix, we give the form factors of the density
operator n(0) and the density current operator j(0), which are
calculated using the algebraic Bethe ansatz approach [33,34].
For Bethe states |{μ j}〉 and {λ j}〉, we have

〈{μ j}|n(0)|{λ j}〉 =
⎛
⎝ N∑

j=1

(μ j − λ j )

⎞
⎠ N∏

j=1

(V +
j − V −

j )

×
N∏
j,k

(
λ j − λk + ic

μ j − λk

)
det(δ jk + Ujk )

V +
p − V −

p

,

(A1)

〈{μ j}| j(0)|{λ j}〉 =
⎛
⎝ N∑

j=1

(
μ2

j − λ2
j

)⎞⎠ N∏
j=1

(V +
j − V −

j )

×
N∏
j,k

(
λ j − λk + ic

μ j − λk

)
det(δ jk + Ujk )

V +
p − V −

p

,

(A2)

〈{λ j}|{λ j}〉 = cN
N∏

j 
=k

λ j − λk + ic

λ j − λk
detG, (A3)

where

G jk = δ jk

(
L +

N∑
m=1

K (λ j − λm)

)
− K (λ j − λk ), (A4)

K (λ) = 2c/(λ2 + c2), (A5)

V ±
j =

N∏
k=1

μk − λ j ± ic

λk − λ j ± ic
, (A6)

Ujk = i
μ j − λ j

V +
j − V −

j

N∏
m 
= j

(
μm − λ j

λm − λ j

)
(K (λ j − λk )

− K (λp − λk )). (A7)

APPENDIX B: cMPS COMPUTATION DETAILS

In this Appendix, we include the details for evaluating the
cMPS formulas, which are carried out using the techniques in
Ref. [29].

1. Computation of the energy function with circular cMPS

To compute Eq. (48), we first recall the following relations:

ψ (x)|�(Q, R)〉 = Traux[U (0, x)(R ⊗ 1)U (x, L)], (B1)

ψ (x)ψ (x)|�(Q, R)〉 = Traux[U (0, x)(R2 ⊗ 1)U (x, L)],

(B2)

∂xψ (x)|�(Q, R)〉 = Traux[U (0, x)([Q, R] ⊗ 1)U (x, L)],

(B3)

where U (x, y) = P exp(
∫ y

x dz[Q ⊗ 1 + R ⊗ ψ̂†(z)]). From
these relations, we can obtain

〈ψ†(x)ψ (x)〉 = 1

N
Traux[eT L(R ⊗ R̄)], (B4)

〈ψ†(x)ψ†(x)ψ (x)ψ (x)〉 = 1

N
Traux[eT L(R2 ⊗ R̄2)], (B5)

〈
∂xψ

†(x)∂xψ (x)
〉 = 1

N
Traux[eT L([Q, R] ⊗ [Q̄, R̄])], (B6)

where T = I ⊗ Q̄ + Q ⊗ Ī + R ⊗ R̄ is the cMPS transfer ma-
trix and N = Traux[exp(T L)] is the squared norm of the
cMPS. Using Eqs. (B4)–(B6), one can easily evaluate the
energy function Eq. (48).
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2. Computation of the effective Hamiltonian and the effective norm matrix

To compute the effective Hamiltonian Hp in Eq. (51), we first compute

ψ (x)|�p(V,W )〉 =
∫ x+L

x
dy eipyTraux[(R ⊗ 1)U (x, y)(V ⊗ 1 + W ⊗ ψ†(y))U (y, x + L)] + eipxTraux[U (0, x)(W ⊗ 1)U (x, L)],

(B7)

ψ (x)ψ (x)|�p(V,W )〉 =
∫ x+L

x
dy eipyTraux[(R2 ⊗ 1)U (x, y)(V ⊗ 1 + W ⊗ ψ†(y))U (y, x + L)]

+ eipxTraux[U (0, x)((RW + W R) ⊗ 1)U (x, L)], (B8)

∂xψ (x)|�p(V,W )〉 =
∫ x+L

x
dy eipyTraux[([Q, R] ⊗ 1)U (x, y)(V ⊗ 1 + W ⊗ ψ†(y))U (y, x + L)]

+ eipxTraux[U (0, x)(([V, R] + [Q,W ] + ipW ) ⊗ 1)U (x, L)]. (B9)

Before we proceed to compute the overlaps in Eqs. (48), we first introduce the following notations. Suppose the cMPS transfer
matrix T has the eigendecomposition T = U�U −1. For χ2 × χ2 matrices A, B, and C and momentum pAB and pBC , we define

C2(pAB | A, B) ≡
∫ x+L

x
dy Traux

[
Ae(y−x)(T +ipAB )Be(x−y+L)T ]

(B10)

=
∑

sk

θ2(�s + ipAB,�k )(U −1AU )sk (U −1BU )ks, (B11)

C3(pAB, pBC | A, B,C) ≡
∫ x+L

x
dy′

∫ x+L

y′
dy Traux

[
Ae(y′−x)(T +ipAB )Be(y−y′ )(T +ipBC )Ce(x−y+L)T

]
(B12)

=
∑
skl

θ3(�k + ipAB,�l + ipBC,�s)(U −1AU )sk (U −1BU )kl (U
−1CU )ls, (B13)

where

θ2(a, b) = eLa − eLb

a − b
, θ3(a, b, c) = a(eLb − eLc) + b(eLc − eLa) + c(eLa − eLb)

(a − b)(b − c)(c − a)
. (B14)

Here, we have evaluated the integrals in Eqs. (B10) and (B12) analytically. Alternatively, one can also use the Gaussian
quadrature to evaluate the integrals numerically [62], which allows highly efficient parallelization. A final method, which we
will explore elsewhere, is to exploit that the exponential of an upper block triangular matrix is given by

exp

(
L

[
T + ipAB B

0 T

])
=

[
eL(T +ipAB )

∫ L
0 dy ex(T +ipAB )Be(L−x)T

0 eLT

]
, (B15)

where the matrix exponential can be computed using the Padé approximation. The upper right block on the right-hand side can
then be multiplied with A and traced over to yield C2(pAB | A, B). A similar approach can be used for C3(pAB, pBC | A, B,C) by
using a 3 × 3 block matrix.

Combining the equations above, we proceed to compute the matrix elements of different Hamiltonian terms separately. For
the particle density, we have

∫ L

0
dx〈�p′ (V ′,W ′)|ψ†(x)ψ (x)|�p(V,W )〉 = Lδp,p′ [C3(p − p′, p | R ⊗ R̄, I ⊗ V̄ ′ + R ⊗ W̄ ′,V ⊗ Ī + W ⊗ R̄)

+ C3(p − p′,−p′ | R ⊗ R̄,V ⊗ Ī + W ⊗ R̄, I ⊗ V̄ ′ + R ⊗ W̄ ′)

+ C2(p − p′ | R ⊗ R̄,W ⊗ W̄ ′) + C2(−p′ | W ⊗ R̄, I ⊗ V̄ ′ + R ⊗ W̄ ′)

+ C2(p | R ⊗ W̄ ′,V ⊗ Ī + W ⊗ R̄) + Traux(eLT (W ⊗ W̄ ′))]. (B16)
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For the kinetic energy, we have

∫ L

0
dx〈�p′ (V ′,W ′)|∂xψ

†(x)∂xψ (x)|�p(V,W )〉 = Lδp,p′ [C3(p − p′, p | [Q, R] ⊗ [Q̄, R̄], I ⊗ V̄ ′ + R ⊗ W̄ ′,V ⊗ Ī + W ⊗ R̄)

+ C3(p − p′,−p′ | [Q, R] ⊗ [Q̄, R̄],V ⊗ Ī + W ⊗ R̄, I ⊗ V̄ ′ + R ⊗ W̄ ′)

+ C2(p − p′ | [Q, R] ⊗ [Q̄, R̄],W ⊗ W̄ ′) + C2(−p′ | K ⊗ [Q̄, R̄], I

⊗ V̄ ′ + R ⊗ W̄ ′) + C2(p | [Q, R] ⊗ K̄ ′,V ⊗ Ī + W ⊗ R̄)

+ Traux(eLT (K ⊗ K̄ ′))], (B17)

where K = [V, R] + [Q,W ] + ipW and K ′ = [V ′, R] + [Q,W ′] + ip′W ′. For the interaction term, we have

∫ L

0
dx〈�p′ (V ′,W ′)|ψ†(x)ψ†(x)ψ (x)ψ (x)|�p(V,W )〉 = Lδp,p′ [C3(p − p′, p | R2 ⊗ R̄2, I ⊗ V̄ ′ + R ⊗ W̄ ′,V ⊗ Ī + W ⊗ R̄)

+ C3(p − p′,−p′ | R2 ⊗ R̄2,V ⊗ Ī + W ⊗ R̄, I ⊗ V̄ ′ + R ⊗ W̄ ′)

+ C2(p − p′ | R2 ⊗ R̄2,W ⊗ W̄ ′) + C2(−p′ | (RW + W R) ⊗ R̄2, I

⊗ V̄ ′ + R ⊗ W̄ ′) + C2(p | R2 ⊗ (R̄W̄ ′ + W̄ ′R̄),V ⊗ Ī + W ⊗ R̄)

+ Traux(eLT ((RW + W R) ⊗ (R̄W̄ ′ + W̄ ′R̄)))]. (B18)

Combining Eqs. (B4)–(B6), we can compute the matrix elements for Hp.
To compute the effective norm matrix Np in Eq. (52), we have

〈�p′ (V ′,W ′)|�p(V,W )〉 = δ(p − p′)[Traux[eLT (W ⊗ W̄ ′)] + C2(−p | V ⊗ Ī + W ⊗ R̄, I ⊗ V̄ ′ + R ⊗ W̄ ′)]. (B19)

3. Computation of the form factors of the Kac-Moody generators

In the framework of cMPS, the form factors of the Kac-Moody generators Eqs. (16) and (17) are calculated in two scenarios.
First, to compute the form factor between the ground state and the excited states, we need to calculate

∫ L

0
eiqxdx〈�p(V,W )|ρ(x)|�(Q, R)〉 = Lδp,q[C2(−p | R ⊗ R̄, I ⊗ V̄ + R ⊗ W̄ ) + Traux(eLT (R ⊗ W̄ ))], (B20)∫ L

0
eiqxdx〈�p(V,W )| j(x)|�(Q, R)〉 = iLδp,q[C2(−p | [Q, R] ⊗ R̄ − R ⊗ [Q̄, R̄], I ⊗ V̄ + R ⊗ W̄ )

+ Traux(eLT (R ⊗ K̄ − [Q, R] ⊗ W̄ ))], (B21)

where K = [V, R] + [Q,W ] + ipW . Second, to compute the form factor between excited states, we have

∫ L

0
eiqxdx〈�p′ (V ′,W ′)|ρ(x)|�p(V,W )〉 = Lδp+q,p′ [C3(p − p′, p | R ⊗ R̄, I ⊗ V̄ ′ + R ⊗ W̄ ′,V ⊗ Ī + W ⊗ R̄)

+ C3(p − p′,−p′ | R ⊗ R̄,V ⊗ Ī + W ⊗ R̄, I ⊗ V̄ ′ + R ⊗ W̄ ′)

+ C2(p − p′ | R ⊗ R̄,W ⊗ W̄ ′) + C2(−p′ | W ⊗ R̄, I ⊗ V̄ ′ + R ⊗ W̄ ′)

+ C2(p | R ⊗ W̄ ′,V ⊗ Ī + W ⊗ R̄) + Traux(eLT (W ⊗ W̄ ′))]. (B22)∫ L

0
eiqxdx〈�p′ (V ′,W ′)| j(x)|�p(V,W )〉 = iLδp+q,p′ [C3(p − p′, p | [Q, R] ⊗ R̄ − R ⊗ [Q̄, R̄], I ⊗ V̄ ′ + R ⊗ W̄ ′,V ⊗ Ī

+ W ⊗ R̄) + C3(p − p′,−p′ | [Q, R] ⊗ R̄ − R ⊗ [Q̄, R̄],V ⊗ Ī + W ⊗ R̄, I ⊗ V̄ ′

+ R ⊗ W̄ ′) + C2(p − p′ | [Q, R] ⊗ R̄ − R ⊗ [Q̄, R̄],W ⊗ W̄ ′) + C2(−p′ | K ⊗ R̄

− W ⊗ [Q̄, R̄], I ⊗ V̄ ′ + R ⊗ W̄ ′) + C2(p | [Q, R] ⊗ W̄ ′ − R ⊗ K̄ ′,V ⊗ Ī + W ⊗ R̄)

+ Traux(eLT (K ⊗ W̄ ′ − W ⊗ K̄ ′))], (B23)

where K = [V, R] + [Q,W ] + ipW and K ′ = [V ′, R] + [Q,W ′] + ip′W ′.
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APPENDIX C: RIEMANNIAN OPTIMIZATION OF THE
CIRCULAR cMPS

As mentioned in Sec. V, we represent the ground state as a
circular uniform cMPS |�(Q, R)〉, and then minimize the en-
ergy function E (Q, R) using gradient-based optimization. The
derivative ∂(Q,R)E (Q, R) can be obtained by manually working
out its expression, or by using the automatic differentiation
framework [63].

With the energy function and its derivative, the most
straightforward way to implement the optimization is to
use standard optimization algorithms, such as L-BFGS and
conjugate-gradient descent. However, for the circular uniform
cMPS, the optimization problem is highly nonlinear. A typical
scenario in such standard optimization of the circular cMPS is
that the optimization requires a large number of optimization
steps, which quickly becomes formidable as one increases
the bond dimension. Among others, one major reason for the
difficulty in the optimization comes from the conditioning
of the Hessian, which remains nearly singular even after the
gauge redundancies in the cMPS are eliminated. This nearly
singular Hessian matrix makes the landscape of the energy
function highly irregular and greatly slows down the optimiza-
tion procedure. For example, in quasi-Newton algorithms like
L-BFGS, the algorithm maintains an approximation for the
Hessian and we use it to determine the search direction, and
the nearly singular property of the Hessian severely impedes
this approximation process. Such singular Hessian matrices
are not only seen in cases of circular uniform cMPS optimiza-
tions [64], and one may expect this is a common difficulty
faced by the straightforward gradient optimization of tensor
network wave functions.

In this paper, we employ the Riemannian optimization
method for isometric tensor networks [52]. By restricting
the cMPS to the left-canonical form, we restrict the cMPS
local tensor to the Grassmann manifold (or some particular
limit thereof) and use the Riemannian generalization of the
L-BFGS algorithm to optimize the cMPS. Furthermore, we
construct a preconditioner for the L-BFGS algorithm, which
can largely mitigate the difficulties mentioned above.

1. Grassmann manifold

The cMPS can be obtained as the limit ε → 0 of a MPS in
which the local tensor A takes the particular form

A =
(
1 + εQ√

εR

)
. (C1)

In the left-canonical form, the local tensor A is an isometric
tensor which can be taken to live in the Grassmann manifold
because of the remaining unitary gauge freedom that remains
in the left-canonical MPS format. In the ε → 0 limit, the
isometry condition translates into the requirement that the
matrices Q and R should satisfy:

Q + Q† + R†R = 0. (C2)

In the following discussions, we will perform the optimization
within the manifold formed by the matrices (Q, R) satisfying
Eq. (C2) and refer to it as the Grassmann manifold.

2. Gradient and search direction

In the Grassmann manifold, one can attach a tangent space
at each point (Q, R). In our case, the tangent vector (V,W )
should satisfy

V = iK − R†W, (C3)

where K is a Hermitian matrix, so (Q + αV, R + αW ) still sat-
isfy the condition Eq. (C2) to the first order of α. However, the
parameters in K correspond exactly to the remaining unitary
gauge freedom, and a physically equivalent tangent vector can
be obtained with the simpler parametrization:

V = −R†W. (C4)

Equation (C4) allows us to parametrize the tangent vector
solely by the matrix W and define an inner product between
the tangent vectors as

〈(V1,W1), (V2,W2)〉 = Tr(W †
1 W2). (C5)

One should not confuse this inner product with the physical
overlap 〈�(V1,W1)|�(V2,W2)〉 between tangent vectors. The
latter would give rise to a more complicated inner product in
terms of the W1 and W2 parameters. Within the context of the
Riemannian optimization methods, we prefer to work with the
simpler (but unphysical) Euclidean inner product in Eq. (C5).

At each optimization step, we will first project the deriva-
tive (Q̄, R̄) into the tangent space, the result of which will
henceforth be referred to as the gradient at (Q, R). The search
direction is then determined by the L-BFGS algorithm based
on the gradients in the current and previous optimization steps.
During the optimization, we will always restrict the gradient
and the search direction to the tangent space.

To determine the gradient from the partial derivative
(Q̄, R̄), consider a random tangent vector (−R†W,W ). We
note that the infinitesimal change of the energy function along
this vector should be given by the inner product between
(−R†W,W ) and the gradient (−R†Wg,Wg), i.e.,

Tr(W †
g W ) = Tr[Q̄†(−R†W ) + R̄†W ]. (C6)

We can then infer that the gradient is given by

Wg = R̄ − RQ̄. (C7)

3. Retraction

After the search direction is determined, Riemannian op-
timization algorithm employs the concept of retraction to
travel along the search direction while staying within the
manifold. In our case, the retraction along the search direction
(−R†W,W ) at point (Q, R) is given by

Q → Q − αR†W − 1
2α2W †W, (C8)

R → R + αW. (C9)

Here, α is the step length along the search direction, which is
typically determined through a line search procedure. Note the
additional α2 dependence which is needed to ensure that our
retraction remains in the left-canocial form, and thus satisfies
Eq. (C2), beyond first order.
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4. Vector transport

In the Riemannian optimization, to make use of informa-
tion from the previous steps, we need to employ the concept
of vector transport to transport the tangent vectors (such as
gradients) from previous steps to the current point. The vector
transport should be compactible with the retraction scheme
and the metric in the tangent space. In our case, we choose
the vector transport to be the identity transformation W → W .
Indeed, that this is a valid choice is one of the main benefits
of working with the unphysical inner product in Eq. (C5).
Finding a vector transport that preserves the physical overlap
would be much harder to construct.

5. Preconditioner

In the framework of L-BFGS, it is often beneficial to em-
ploy a preconditioner during the optimization. In particular,
we can use this preconditioner to compensate for the fact that
we have employed an unphysical inner product rather than
the natural inner product obtained from the physical overlap
〈�(−R†W1,W1)|�(−R†W2,W2)〉, as explored in Ref. [52] for
the case of MPS and MERA. Suppose the physical overlap
between tangent vectors have the form

〈�(−R†W1,W1)|�(−R†W2,W2)〉 = Tr[W †
1 W2ρW ], (C10)

where the matrix ρW is a Hermitian, positive-(semi)definite
matrix of size χ × χ , which we will henceforth refer to
as the physical metric. The preconditioner is then chosen
to be a pseudoinverse of ρW . When determining the search
directions, we apply the following mapping to the gradient
(−R†Wg,Wg):

Wg → Wg(ρW + δI )−1. (C11)

Here, I is a χ × χ identity matrix and δ is a small parameter
which is chosen to be the norm of the original gradient.

In the case of uniform circular cMPS, however,
the straightforward application of Eq. (C10) is
difficult. The computation of the physical overlap
〈�(−R†W1,W1)|�(−R†W2,W2)〉 requires high computational
cost and cannot be expressed in the format of Eq. (C10).
Nevertheless, in practice, a reasonable approximation to the
physical metric will suffice to accelerate the optimization
process. We notice that, in the thermodynamic limit, the
computation of the physical overlap is straightforward
[41,52],

lim
L→∞

〈�(−R†W1,W1)|�(−R†W2,W2)〉 = Tr(W †
1 W2ρR),

(C12)

FIG. 7. Comparison of (a) the error in the energy and (b) the
norm of the gradient versus the number of optimization steps for
different optimization strategies. The first 100 optimization steps are
omitted in the figure for the sake of clarity.

where ρR is the dominant right eigenvector of the cMPS trans-
fer matrix. Since we are mainly interested in cases where the
system sizes are large, ρR is a fairly reasonable approximation
to ρW is our computation.

6. Performance benchmark

Here, we present a performance benchmark of the Rie-
mannian optimization method in an example of computing
the ground state for the Lieb-Liniger Hamiltonian with c = 1,
μ = 4, and L = 32. The bond dimension of the cMPS is
χ = 12.

Starting from the same randomized initial state, we com-
pare the performance of the following strategies: the plain
L-BFGS optimization and the Riemannian generalization of
L-BFGS algorithm (with and without the preconditioner). As
shown in Fig. 7, the Riemannian optimization with the pre-
conditioner clearly outperforms the other strategies in which
the preconditioner plays a crucial role.

In practice, instead of directly optimizing the cMPS at the
target bond dimension χ , we usually start from a small bond
dimension and increase the bond dimension gradually.
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