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Quantum entanglement is a particularly useful characterization of topological orders which lack conventional
order parameters. In this work, we study the entanglement in topologically ordered states between two arbitrary
spatial regions, using two distinct mixed-state entanglement measures: the so-called computable cross-norm or
realignment (CCNR) negativity, and the more well-known partial-transpose (PT) negativity. We first generally
compute the entanglement measures: We obtain general expressions both in (2 + 1)D Chern-Simons field
theories under certain simplifying conditions, and in the Pauli stabilizer formalism that applies to lattice models
in all dimensions. While the field-theoretic results are expected to be topological and universal, the lattice results
contain nontopological/nonuniversal terms as well. This raises the important problem of continuum-lattice
comparison which is crucial for practical applications. When the two spatial regions and the remaining subsystem
do not have triple intersection, we solve the problem by proposing a general strategy for extracting the topological
and universal terms in both entanglement measures. Examples in the (2 + 1)D Z2 toric code model are also
presented. In the presence of trisection points, however, our result suggests that the subleading piece in the PT
negativity is not topological and depends on the local geometry of the trisections, which is in harmonics with a
technical subtlety in the field-theoretic calculation.
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I. INTRODUCTION

Gapped phases of matter with topological order have
gained recent experimental advances [1–5], and are useful
for many quantum information tasks due to the long-range
entanglement in the quantum many-body state [6]. It is then
crucial to quantify such entanglement in topologically ordered
states. As a breakthrough discovery, in 2D the subleading
term in the entanglement entropy (EE) of a subregion contains
universal information [7–13]. This so-called topological EE
can be used to diagnose the underlying topological phase
that lacks conventional order parameters, especially in recent
quantum simulation experiments [1,4]. Moreover, entangle-
ment properties can even be used for classifying topological
orders [14,15].

As natural generalizations of EE, two spatial regions in a
tripartite pure state share entanglement that is often quantified
by the partial transpose (PT) negativity EPT [16,17]. Such
mixed state entanglement measure is also studied in topologi-
cal orders [18–24]. However, these case-by-case studies work
with either specific lattice models, or a continuum field theory
that is applied to specific tripartitions and quantum states. A
general prescription for comparing the continuum and lattice
results is also lacking. Moreover, the continuum approach
becomes tricky if the tripartition contains a trisection point
[23], i.e., a point where the three parties meet. There, the
subleading term of EPT may depend on the local trisection
geometry, as computed for integer quantum Hall states [24]
following the studies of corner contributions to EE [25,26].
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In this work, we tackle these problems for EPT, together
with another entanglement measure called the computable
cross norm or realignment (CCNR) negativity ECCNR [27–29].
These two measures quantify different kinds of mixed-state
entanglement in general, and are easy to compute from the
reduced density matrices, unlike many other entanglement
measures [30]. Although EPT is widely used in literature,
the CCNR negativity has gained recent interest in quantum
many-body systems [31–35] due to its nice properties. For ex-
ample, ECCNR is related to entanglement quantities with a nice
holographic dual [36], and has a simpler topological structure
[33] than EPT in (1 + 1)D. Intriguingly, we will also find a
difference between the two measures in topological orders,
namely, ECCNR is “more topological” than EPT in certain cases.

To calculate the entanglement measures, we take both a
continuum approach using (2 + 1)D Chern-Simons (CS) the-
ories [37] and a lattice approach using the stabilizer formalism
[38]. These two methods are complementary to each other:
the former can deal with much more general topologically
ordered states in (2 + 1)D, while the latter applies to all sta-
bilizer states beyond 2D topological orders and to trisection
points.

In the continuum, after presenting several concrete exam-
ples, we give general formulas for the two negativities for a
large class of tripartitions and Wilson line (WL) configura-
tions, including most of the cases in Refs. [20,21] as specific
examples. Our derivation utilizes the locality properties of
the surgery method [37], and reproduces expressions of EE
as well. On lattices, we derive general formulas for the two
entanglement measures in the stabilizer formalism, and apply
them to the Z2 toric code (TC) model. Although the field-
theoretic results are expected to be topological and universal,
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the lattice results contain nonuniversal terms, so we proceed
to investigate the crucial problem of continuum-lattice com-
parison. In the absence of trisection points, we explain how to
extract the topological and universal terms in both negativities
on lattices. For trisection points, the subleading piece in the
lattice PT negativity seems to be not topological and depends
on the local geometry of trisection. This is in harmonics with
a technical problem encountered in the continuum approach.
The CCNR negativity, however, is topological at least in the
lattice example we consider and computable in CS theories.

The rest of this paper is organized as follows. We re-
view some preliminaries in Sec. II, including the various
entanglement/correlation measures, and the CS theory. In
Secs. III and IV, we compute the mixed-state entanglement
measures in CS theories and in stabilizer states, respectively.
In Sec. V, we explain how to compare lattice and continuum
results, and examine a few examples in the TC model. We con-
clude and comment on possible future directions in Sec. VI.
Some technical calculations in CS theories are elaborated in
Appendix.

II. PRELIMINARIES

A. Entanglement and correlation measures

Given a pure state |ψ〉 shared by two parties A and B, we
define the reduced density matrix ρA = TrB(|ψ〉 〈ψ |), and the
Renyi EE

S(n)
A = (1 − n)−1 log Tr

(
ρn

A

)
, (1)

which characterizes the entanglement between the two parties.
The base of the logarithm is an arbitrary positive number and
is fixed once for all. n can be any nonnegative real number,
and typically one calculates for integer n and then analytic
continue to generic n. Setting n → 1 yields the von Neumann
entanglement entropy SA = −Tr(ρA log ρA).

We further divide A into A1 and A2, and question about the
entanglement between them. Let {|c〉} and {|d〉} be orthonor-
mal bases of A1 and A2, respectively. We define the partial
transposed density matrix ρ

T2
A , and a realignment matrix Rρ

according to the following equation.

(2)

The PT and CCNR negativity are then defined as

EPT = log
∥∥ρT2

A

∥∥
1, (3a)

ECCNR = log ‖Rρ‖1, (3b)

respectively, where the 1-norm is given by ‖Rρ‖1 :=
Tr
√

R†
ρRρ . When ρA is separable/unentangled, EPT = 0 and

ECCNR � 0. Therefore, either EPT > 0 or ECCNR > 0 implies
ρA to be entangled, and these two quantities can be regarded as
mixed state entanglement measures. For example, EPT upper
bounds how many Bell pairs can be distilled from the state
[17]. It is known that these two separability criteria are not
comparable [28,29]—neither one is stronger than the other.

More precisely, there are entangled states with EPT > 0 but
ECCNR � 0, and vice versa.

Both EPT and ECCNR can be computed from replica tricks:

EPT = lim
even n→1

log Tr
[(

ρ
T2
A

)n]
, (4a)

ECCNR = lim
even n→1

log Tr[(R†
ρRρ )n/2], (4b)

where one analytically continues from even integer n. Note
that the two equations are consistent because (ρT2

A )† = ρ
T2
A .

The Renyi mutual information I (n)(A1, A2) = S(n)
A1

+ S(n)
A2

−
S(n)

A is another useful characterization of bipartite correlations.
It contains both classical and quantum correlations and hence
does not lead to a separability criterion. Nevertheless, the
mutual information can be easily computed using EE results,
which we will also derive as byproducts.

B. Chern-Simons theory and surgery method

Here we briefly review Chern-Simons theory, which is the
most important class of topological quantum field theory that
describes topological orders. We refer to the classic paper [37]
for details. A CS theory living in a 3D manifold M, is given
by a partition function Z (M ) = ∫

[DA]eiS with action

S = k

4π

∫
M

Tr

(
A ∧ dA + 2

3
A ∧ A ∧ A

)
, (5)

where A is a gauge field of some gauge group G, k is an integer
called level. This theory is topological because the action does
not depend on the metric. As a gauge theory, operators that are
gauge invariant are defined by Wilson lines (WLs)

W C
R (A) = TrR

(
P exp

∫
C

A

)
, (6)

where C is an oriented closed curve in M, P stands for path
ordering, and R is an irreducible representation of group G.
Inserting WLs in the path integral yields the physically inter-
esting correlation function of them

Z
(
M;W C1

R1
,W C2

R2
, · · · ) =

∫
[DA]eiSW C1

R1
W C2

R2
· · · . (7)

Different WLs do not intersect, but can form links and knots.
The 2D boundary ∂M of M hosts a Hilbert space, where

each quantum state is defined by the path integral in the
interior of M with a particular WL configuration. For exam-
ple, consider M = D3 is a solid ball, with a sphere boundary
∂M = S2. If there are no WLs inside M, the corresponding
2D state is the vacuum of the theory. If there is one WL of
representation Ra that punctures the boundary at two points, as
shown in Fig. 1(a), the sphere is in the unique quantum state
consisting a pair of anyons a, ā that are dual to each other.
Setting a to be the trivial representation (which we denote
by 0) corresponds to the previous vacuum case of no anyons.
Inserting more WLs create more anyons, which can fuse and
braid with each other.

Partition function (7) for any manifold with complicated
WL insertions is in principle calculable by the surgery
method. The idea is basically to cut the manifold into smaller
and simpler pieces. For the simplest case, a single closed WL
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FIG. 1. Wave function |ψ〉 on a sphere with different partition
and WL configurations.

in 3D sphere M = S3 yields

Za := Z (S3; Ra) = S0a, (8)

where Sab is the modular S matrix of the theory, a unitary
matrix indexed by anyon types {0, a, b, . . . }.1 If M has a cross
section S2 traversed by a single pair of WLs (on the left of
Fig. 2), it can be cut by surgery as shown in Fig. 2. More
precisely, the process introduces three additional manifolds:
an S3 with a WL of representation Ra given by (8), and
ML, MR that are the two manifolds after cutting the S2 cross
section (and reconnecting the cutted WL in each manifold).
The corresponding partition functions satisfy

Z (M ) · Za = Z (ML ) · Z (MR). (9)

ML and MR are potentially simpler manifolds than M and can
be further simplified by surgery (9) on each of them. This
process may ultimately reduce the original M problem to a
bunch of S3s with known partition function (8).

The intuition behind (9) is as follows. The partition func-
tion can be viewed as an inner product

Z (M ) = 〈ψL|ψR〉 , (10)

where |ψL〉 , |ψR〉 are the left/right states on the cut interface
S2. Since the Hilbert space of S2 with one pair of anyons is
one-dimensional, the two states |ψL〉 , |ψR〉 simply differ by
a complex number prefactor (not just a phase because they
are not normalized). On the other hand, a S3 with a Wilson
loop a is also an inner product Za = 〈ψa|ψa〉, where the state
|ψa〉 lives in the same Hilbert space as |ψL〉 , |ψR〉. Using this
reference state, (9) simply comes from the identity

〈ψL|ψR〉 〈ψa|ψa〉 = 〈ψL|ψa〉 〈ψa|ψR〉 , (11)

for any three states in an one-dimensional Hilbert space.
We will calculate entanglement measures in CS theory

using this surgery method. The results will be expressed by
the quantum dimensions da of anyon type a defined by

da = S0a/S00, (12)

1S matrix is defined both in the theory of anyons [52,53] and in
rational conformal field theories [54]. CS theories connect these two
contexts together.

FIG. 2. In the surgery method, the manifold M = M1 ∪ M2 can
be cut along an S2 cross section traversed by two WLs of represen-
tation a, using a S3 with a Wilson loop of the same representation
a in it. The result is two disconnected manifolds ML = M1 ∪ D3

and MR = D3 ∪ M2 with WLs reconnected. The case where no WL
traverses the cross section is just setting a = 0.

and the total quantum dimension

D =
√∑

a

d2
a , (13)

which equals (S00)−1 due to unitarity of Sab. Intuitively,
da � 1 may be understood as the Hilbert space dimension
shared by each anyon in the limit of many anyons. In the
presence of M � 1 number of type-a anyons, the dimension
of the low-lying degenerate subspace scales as dM

a [39]. A
topological order is called Abelian if da = 1 for all a and is
called non-Abelian if da > 1 for some a.

III. ENTANGLEMENT MEASURES
IN CHERN-SIMONS THEORIES

In this section, we compute the negativities using the
surgery method in (2 + 1)D CS theories. As discussed in
Sec. II B, the quantum state lives on the surface of a 3D
manifold, and is defined by path integral in the interior. The
surface is tripartitioned to three parties A1, A2, B, and we
compute the PT and CCNR negativities E top

PT , E top
CCNR between

A1 and A2. Here we use superscript “top” because CS theory
is topological, and to differentiate with latter results that also
contain nontopological contributions.

A. Results for simple cases

We first present results for several examples, before sketch-
ing the derivation and general formulas. Let us first consider
the state on a sphere S2 consisting of a pair of dual anyons
a, ā. The state is uniquely given by the partition function in
the solid ball D3 with a WL of representation a puncturing
the surface. Setting a to be trivial corresponds to the case of
no anyons. We consider several different partition scenarios
as shown in Fig. 1, and the negativities between A1 and A2 are
given in Table I, where the PT negativity results are mostly
directly from Ref. [21]. We observe that the CCNR negativity
depends on all boundary sections of A1 and A2, not just their
interface, as opposed to the PT negativity. For example, cases
b1 and b2 have the same interface between A1 and A2 (one
D2 traversed by one WL a), while the interface between B
and A1 is different: b1 is traversed by WL a while b2 is
not. As a result, the two cases have the same PT negativity,
but different CCNR negativity. The PT negativity result for
the trisection scenario in Fig. 1(d) is absent due to a subtle
technical problem: with the replica approach, one encounters
topological spaces that are not manifolds—suspensions of tori
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TABLE I. Topological CCNR and PT negativities between A1

and A2 for the sphere states in Fig. 1, computed by the surgery
method of CS theory. Most PT negativity results are directly from
Ref. [21].

Case E top
CCNR E top

PT

a log da − logD log da − logD
b1 (log da − logD)/2 log da − logD
b2 log da − (1/2) logD log da − logD
c logD − log da 0
d log da ∗

with many handles. Thus the surgery method does not apply
here. This casts doubt on the topological nature of EPT, which
we will return to in later sections using lattice methods.

We analogously compute the negativities for torus states,
where topological ground state degeneracy exists: The Hilbert
space on a torus T 2 = S1 × S1 without anyon excitations is
multidimensional. An orthonormal basis of this Hilbert space,
denoted as {|Ra〉}, corresponds to a finite set of irreducible rep-
resentations of the gauge group. The state |Ra〉 can be prepared
by performing path integral on the solid torus (bagel) D2 × S1

inserted by a noncontractible Wilson loop carrying the corre-
sponding representation Ra; see Fig. 3. It is an eigenstate of
Wilson loop operators along the perpendicular direction [12].
We consider a general state |ψ〉 = ∑

a ψa |Ra〉 with the nor-
malization condition 〈ψ |ψ〉 = ∑

a |ψa|2 = 1. In Table II, we
present results on both the CCNR and PT negativities for the
tripartitions shown in Figs. 3(a)–3(d). The ψa dependence is
proposed to distinguish Abelian and non-Abelian topological
orders [20,21].

B. Surgery calculation: An example

We calculate one example above in full detail, and the
other cases follow similarly. Moreover, this calculation will
motivate more general results. The first step is to deform the
3D manifold to a bunch of balls D3 connected by tubes, see
examples Figs. 1(c) and 3(a), such that each edge between
different parties are only supported on the balls, and each
ball hosts at most one edge. A ball is called an edge ball if
it contains one edge, and a party ball if it contains no edge
and belongs to one party. Each tube connecting the balls has
cross section D2 (so we will call them D2-tubes), and belongs
to a single party.

FIG. 3. [(a)–(d)] Wave function |ψ〉 = ∑
a ψa |Ra〉 on a torus

with different partitions. (s) Effect of the S transformation.

TABLE II. Topological CCNR and PT negativities between A1

and A2 for the torus states in Fig. 3, computed by the surgery method
of CS theory. The PT negativity results are directly from Ref. [21].

Case E top
CCNR E top

PT

a 2 log(
∑

a |ψa|da) − 2 logD 2 log(
∑

a |ψa|da) − 2 logD
b 0 log(

∑
a |ψa|2da ) − logD

c log(
∑

a |ψa|2da) − logD log(
∑

a |ψa|2d2
a ) − 2 logD

d log(
∑

a |ψa|2/d2
a ) + 2 logD 0

Now focus on calculating CCNR for Fig. 3(b) with fixed
WL representation |ψ〉 = |Ra〉. The torus under tripartition is
deformed into the ball-tube system symbolized in Fig. 4(a),
where three edge balls are connected by D2-tubes in a circle.
To trace over B and get ρA, we take the torus with its con-
jugated replica (with orientation and WL direction reversed),
and glue the B regions together in Fig. 4(b). In the ball-tube
representation for |ψ〉, this can be done separately for each
ball: the A1A2 ball just doubles with another A′

1A′
2, while the

A1B (A2B similar) ball glues with a BA′
1 to produce a A1A′

1
ball. After gluing the balls, it remains to glue the two D2-tubes
belonging to B: the result is one tube with cross section S2

(two D2s glued together) that connects the interiors of ball
A1A′

1 and A2A′
2.

Next, we need to take n (even) copies of ρA and glue them
such that the partition function yields Tr[(R†

ρRρ )n/2] in the
replica trick. In this case, it is convenient to align the n copies
in a horizontal row (with periodic boundaries due to the trace),
with the odd ones rotated in the paper by 180 degree. Then
we just glue each copy to the part of its two neighbors that
face towards it, as shown in Fig. 4(c). Still, we glue balls
first before tubes. For all p = 1, . . . , n/2, the A1A′

1 (A2A′
2)

ball of the (2p)th copy glues with that of the (2p + 1)th

(a)

(c)

(b)

(d)

FIG. 4. Calculation of CCNR negativity for Fig. 3(b). (a) The
ball-tube representation of |ψ〉. Here a circle represents a ball D3,
with an equator if it is an edge ball. A D2-tube is shown by a single
black straight line. (b) The path integral representation of ρA, where
two parallel black straight lines represent a S2-tube, which comes
from gluing two D2-tubes. (c) The way to glue n copies of ρA together
to get Tr[(R†

ρRρ )n/2], with the result in (d), where the middle row
contains n S3s. Here a double-line circle represents a S3 that comes
from gluing two balls D3.
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[(2p − 1)th] copy, which produces a S3. The n balls shared
by the two parties (either A1A2 or A′

1A′
2), however, are glued

in two disconnected groups where each group produces a S3.
Finally, D2-tubes are glued in pairs to S2-tubes, while the
S2-tubes connecting A1A′

1 with A2A′
2 remain, and we arrive at

a complicated topology Fig. 4(d) with WLs threading inside.
We then cut each S2-tube using surgery (9), and the price is

just invoking an extra factor Z−1
a . Furthermore, after the cut,

there is one Wilson loop of representation a left in each S3.
Since there are 3n S2-tubes and n + 2 S3s, and the partition
function of disconnected manifolds factorize, we have

Tr[(R†
ρRρ )n/2] = Z−3n

a Zn+2
a = Z2−2n

a → 1, (14)

in the limit n → 1, yielding E top
CCNR = 0 as given in Table II.

We make two observations in the calculation above. First,
each ball in |ψ〉 is glued with its replicas in a local way
independent of the other balls/tubes. Second, we merely count
the number of S2-tubes and S3s in the end, and it does not
matter which S3 is connected to which in the global topology
of Fig. 4(d). These properties also hold when the WL repre-
sentation is not fixed, and lead to the general result below.

C. General result

The above observations enable calculation for a general
tripartite state |ψ〉 satisfying the following assumptions.

(i) The space-time manifold M has the form of solid balls
connected by solid tubes (D2 × [0, 1]), with at most one cir-
cular interface on each ball, and no interface on any tube.

(ii) The WLs can be deformed, without any touching
among themselves or between WL endpoints and the inter-
face, to a configuration that all WLs are contained in the 2D
surface ∂M, and each tube is traversed by the WLs at most
once.

The second assumption avoids braiding of WLs during
surgery. The first assumption implies that the tripartition in-
terface is a disjoint union of circles that are contractible in
the 3D space-time, and thus there is no trisection points as in
Fig. 1(d). All other examples above [Figs. 1(a)–1(c) and 3(a)–
3(d)] satisfy the two assumptions; in particular, we illustrate
the ball-tube systems in Figs. 1(c) and 3(a). Note that it is
also possible to consider interfaces made of noncontractible
loops, by applying a diffeomorphism on the torus surface,
which acts on the Hilbert space as a linear transformation [37].
More concretely, we illustrate in Fig. 3(s) a case where the
assumptions are satisfied after the modular S transformation.
We establish the following result.

Theorem 1. Consider a CS theory under the above two
assumptions with WLs (either closed or open) labeled by w. If
each WL carries a definite representation, then the topological
entanglement measures satisfy (superscripts “top” omitted)

S(n)
P = −EP logD + ∑

wKP(w) log da(w), (15)

ECCNR(A1, A2) = (
S(n)

A1
+ S(n)

A2

)
/2 − S(n)

A , (16)

EPT(A1, A2) = I (n)(A1, A2)/2, (17)

for arbitrary n. Here in the first line, P ∈ {A1, A2, B} is the
party, EP is the number of interfaces shared by P, KP(w) is

the number of interfaces shared by P that WL w traverses,
and a(w) is the representation of w.

See Appendix for more general results of indefinite rep-
resentations and the proof. The underlying idea, already
illustrated in the previous example, is that gluing replicas
and cutting tubes in surgery are both local operations: in
the ball-tube system, each ball (with its connected tubes) is
operated separately to yield a local factor, and the partition
function of the replicated manifold is just the product of all
local factors, independent of the global topology on which
ball is connected to which.2 We expect that our method can be
further generalized, for example, to calculate CCNR negativ-
ity of tripartitions (which does not satisfy the aforementioned
assumptions), since we observe that Eq. (16) is also satisfied
for the tripartition in Fig. 1(d).

D. In what sense are the negativities topological?

In a generic (2 + 1)D field theory, similar to EE, we expect
either negativity E for a smooth partition contains “area-law”
terms proportional to the lengths of different interface sec-
tions [9,10,20], together with a subleading piece E top that is
topological (insensitive to deformations of the partition inter-
face) and universal (insensitive to deformations of the action).
More precisely, we propose

E =
∑

i

βili + E top + · · · , (18)

where the index i labels different interface sections, βi are
nonuniversal coefficients, li is the length of the ith section, and
“· · · ” contains terms of higher order in li. When the partition
interface is not smooth, e.g., containing corners, there may
be additional nontopological subleading terms in the above
summation.

As shown above, negativities in CS theories are either
not calculable by surgery for certain nonsmooth partitions
[e.g., PT negativity for the trisection Fig. 1(d)], or given by
some pure topological result E top without the area-law terms.
The latter is reasonable because as topological field theories,
CS theories have no dependence on metrics. We conjecture
that the first case (failure of surgery calculation) implies the
presence of nontopological terms, while the second case cor-
responds to the absence of such terms, justifying our notation
E top for results computed in CS theory. In this work, we
will not compute the negativities for generic field theories,
but we will verify this conjecture by comparing to certain
lattice models. We will later explain how to define E top on
lattice systems, and comment on a caveat about the so-called
spurious long-range entanglement.

IV. ENTANGLEMENT MEASURES FOR
STABILIZER STATES

As a complementary approach, we also compute the CCNR
and PT negativities in a general Pauli stabilizer state. The

2Strictly speaking, one needs to deal with an extra summation over
representations in the general case; see Appendix A 4.
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results are useful for studying stabilizer lattice models, es-
pecially with trisection points. The base of logarithm will be
set to 2 for convenience. We consider a state |ψ〉 uniquely
determined by a stabilizer group G. Here, G is an Abelian
group of (multisite) Pauli operators with ± signs such that
−1 /∈ G, and |ψ〉 is the unique simultaneous eigenstate with
eigenvalue +1 for all g ∈ G. Let N be the total number of
qubits in the Hilbert space. We necessarily have |G| = 2N , and
we say the rank, or the number of generators, of G is N .

The EE in a stabilizer state can be conveniently computed
[40]. Let A be a subsystem consisting NA number of qubits,
and GA ⊂ G be the subgroup of stabilizers inside A. The full
and reduced density matrices ρ and ρA are respectively given
by

ρ := |ψ〉〈ψ | = 1

2N

∑
g∈G

g, ρA = 1

2NA

∑
g∈GA

g. (19)

Let GA have k generators, or equivalently |GA| = 2k , then the
entropy of subsystem A for any Renyi index is given by S(n)

A =
NA − k [40].

Now we divide subsystem A further into A1 and A2. We find
the following result about the CCNR negativity that agrees
with Eq. (16).

Theorem 2. For a stabilizer state, ECCNR(A1, A2) = (S(m)
A1

+
S(m)

A2
)/2 − S(m)

A for any m.
Proof. For each g ∈ GA, we can write g = OA1 ⊗ OA2 such

that OAi acts on subsystem Ai and is a Pauli operator up to a
sign. We then have

Tr[(R†
ρRρ )

n
2 ] = 1

2nNA

∑
g1,...,gn∈GA

n/2∏
i=1

Tr
(
OA1

2i−1OA1
2i

)
× Tr

(
OA2

2i OA2
2i+1

)
, (20)

where gi = OA1
i ⊗ OA2

i . The summand above is nonzero if and
only if OA1

2i−1 ∝ OA1
2i and OA2

2i ∝ OA2
2i+1 for all i (identifying

n + 1 and 1). We then only need to consider the case where
y2i−1,2i := g2i−1g2i ∈ GA2 and x2i,2i+1 := g2ig2i+1 ∈ GA1 . The
summation over g1, . . . , gn in Eq. (20) can then be replaced
with a summation over g1, x2i,2i+1, and y2i−1,2i. Note that the
x’s and y’s are not all independent. Since g2 = g1y12, g3 =
g2x23, . . . , we have g1 = g1y12x23y34 . . . yn−1,nxn,1, and thus

y12y34 · · · yn−1,n = 1, x23x45 · · · xn,1 = 1. (21)

Let
∑′ be the sum over the independent variables g1 ∈

GA, x23, . . . , xn−2,n−1 ∈ GA1 , and y12, . . . , yn−3,n−2 ∈ GA2 . We
have

Tr[(R†
ρRρ )

n
2 ] = 1

2nNA

∑′
TrA1 (1)

n
2 TrA2 (1)

n
2

= 2k+( n
2 −1)(k1+k2 )− n

2 NA, (22)

where k1 and k2 are the number of generators of GA1 and GA2 ,
respectively. Taking the limit n → 1, we obtain the CCNR
negativity:

ECCNR = k − 1
2 (k1 + k2) − 1

2 NA

= 1
2

(
S(m)

A1
+ S(m)

A2

) − S(m)
A . (23)

�

To compute the PT negativity, we need more structural
knowledge about the stabilizer group. Let ki be the rank of
GAi . We divide GA into a product GA = GA1 GA2 G12, where
G12 has k − k1 − k2 number of generators independent from
those of GA1 and GA2 .3 Denote by pA2 (·) the restriction of a
stabilizer to subsystem A2, which is well defined up to a sign
if we require the corresponding restriction to be Hermitian.
The following result about G12 has been proved in Ref. [40]
(in particular their lemma 2), and we also spell out the proof
for completeness.

Lemma 1. We have the following canonical choice of the
generators of G12:

G12 = 〈z1, . . . , zr,w1, . . . ,ws, w̄1, . . . , w̄s〉, (24)

such that pA2 (zi ) commutes with all generators of G12 (there-
fore commutes with GA), and pA2 (wi) commutes with all
generators of G12 except for w̄i (therefore the same holds if
wi and w̄i are exchanged).

Proof. Let C be a maximal subgroup of G12 such that
elements of pA2 (C) all commute. C will eventually be iden-
tified with the subgroup generated by zi’s and w j’s. Denote
by {c j} a set of generators of C. We can write G12 = CC̄ for
another subgroup C̄ generated by {c̄k} which are independent
from {c j}. Each pA2 (c̄k ) must anticommute with some c j ,
otherwise c̄k can be added to C, violating the assumption that
C is maximal. Moreover, pA2 (c̄k1 ) and pA2 (c̄k2 ) with k1 �= k2

cannot anticommute with the same c j , otherwise c̄k1 c̄k2 can be
added to C. As a consequence, the rank of C is no less than
that of C̄. We will denote rank(C̄) = s and rank(C) = s + r.
Now, we can reorganize the generators of C, by multiplying
several c j together or reordering them, such that pA2 (c̄k ) an-
ticommutes only with ck and commutes with all other c j �=k .
To satisfy the claim in Eq. (24), we also want elements of
pA2 (C̄) to all commute. This can be achieved by recursively
redefine the generators c̄k as follows. Suppose pA2 (c̄k ) for
k = 1, 2, . . . , κ all commute with each other, but pA2 (c̄κ+1)
anticommutes with c̄k1 , . . . , c̄kl with k1, . . . , kl � κ . We can
redefine c̄κ+1 by multiplying it with ck1 ck2 · · · ckl . The new
c̄κ+1 then satisfies the property that pA2 (c̄κ+1) commutes with
all c̄k with k � κ . The commuting/anticommuting properties
between pA2 (c̄κ+1) and c j are unaltered by this redefinition
because pA2 (c j ) all commute. Therefore, we can repeat this
process until elements of pA2 (C̄) all commute. We have proved
the claim, with the identifications zi = cs+i, w j = c j , and
w̄k = c̄k .

With Eq. (24) in mind, the PT negativity of a stabilizer state
can be computed.

Theorem 1. For a stabilizer state, EPT(A1, A2) = s =
[I (m)(A1, A2) − r]/2 for any m.

Proof. We can write the reduced density matrix ρA as

ρA = 1

2NA

∑
g∈GA1

∑
g′∈GA2

∑
h∈G12

gg′h. (25)

Let U and V be two stabilizers, we generally have (UV )T2 =
±U T2V T2 when pA2 (U ) and pA2 (V ) commute (anticommute).

3The choice of G12 is in general not unique.
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We therefore have

Tr
[(

ρ
T2
A

)n] = 1

2nNA

∑
{gi,g′

i,hi}

× Tr
[
(g1 · · · gn)(g′

1 · · · g′
n)T2

(
hT2

1 · · · hT2
n

)]
,

(26)

where gi ∈ GA1 , g′
i ∈ GA2 , and hi ∈ G12. The sums over g

and g′ can now be performed with the constraints g1 · · · gn =
g′

1 · · · g′
n = 1, and we obtain

Tr
[(

ρ
T2
A

)n] = 2(n−1)(k1+k2 )

2nNA

∑
{hi}

Tr
(
hT2

1 · · · hT2
n

)
. (27)

Since the effect of partial transpose on a stabilizer is
just a ± sign, for the trace on the right-hand side to
be nonzero, we must have hn = h1 · · · hn−1. The difficult
part is to figure out the sign of this trace. Each hi ∈
G12 can be expanded as a product of the canonical gen-
erators, and is thus represented by a collection of Z2

indices (λi
1, . . . , λ

i
r, μ

i
1, . . . , μ

i
s, ν

i
1, . . . , ν

i
s), corresponding to

the powers of zi, wi, and w̄i, respectively. We define an
operator h̃i, by replacing each canonical generator in the
expansion of hi by its partial transpose. For example, if
hi = zawbw̄c, then h̃i = zT2

a w
T2
b w̄T2

c . Notice that h1h2 · · · hn = 1
implies h̃1h̃2 · · · h̃n = 1 as well. One can see that hT2

i =
h̃i exp(iπ

∑
l μi

lν
i
l ). The sign of Tr(hT2

1 · · · hT2
n ) is then given

by

s∏
l=1

exp

⎧⎨⎩iπ

⎡⎣−
n−1∑
i=1

μi
lν

i
l +

(
n−1∑
i=1

μi
l

)⎛⎝n−1∑
j=1

ν
j
l

⎞⎠⎤⎦⎫⎬⎭. (28)

The summation over ν i
l gives nonzero result only if any (n −

2) elements of {μ1
l , . . . , μ

n−1
l } sum up to an even integer. For

the case of even n, this implies that μ1
l , . . . , μ

n−1
l are either

all even or all odd. The independent variables to sum over are
therefore μ1

l for all l , and ν i
l for i = 1, . . . , n − 1 and all l .

Also remembering that TrA(1) = 2NA , we finally arrive at the
result ∑

{hi}
Tr
(
hT2

1 · · · hT2
n

) = 2ns+NA (n even). (29)

Taking the limit n → 1, we obtain

EPT = s = 1
2 (k − k1 − k2 − r) (30)

= 1
2 I (m)(A1, A2) − 1

2 r, (31)

where I (m)(A1, A2) is the Renyi mutual information, and r is
defined in Eq. (24). �

As we will see, with trisection points, the dependence of
r on local geometry is exactly the reason why the subleading
term in EPT is nontopological.

V. LATTICE EXAMPLES

A. Lattice-continuum comparison protocol

In this section, we would like to demonstrate our results
in lattice examples. In order to compare with the continuum
results, we need to first precisely define the subleading term

FIG. 5. Nontopological/nonuniversal terms within the five terms
in the expression for 
—a concrete example. The two colors rep-
resent nontopological/nonuniversal terms in E (A1, A2) localized at
A1A2 interfaces (red) and AiB interfaces (blue). For example, the
second row for E (P, P̄) do not have blue interfaces because there is
no third party (or the corresponding B = ∅).

E top of each negativity E on lattices. We wish the term E top

to be topological (insensitive to smooth deformations of the
subregions) and universal (insensitive to perturbations to the
Hamiltonian).

Recall that the negativity E (A1, A2) contains area-law
terms and other nontopological terms due to sharp features
like corners. We need to find a way to cancel them all. To this
end, consider the following linear combination:


 := E (A1, A2) − E (A, ∅)

− [E (A1, Ā1) + E (A2, Ā2) − E (A, B)]/2, (32)

where ·̄ means complement. Suppose all nontopological/
nonuniversal terms in E are made of local contributions (in-
sensitive to changes far away) near the interfaces. We claim
that in the absence of trisection points, all these terms have
been canceled out in 
. In other words, the quantity 
 is
topological and universal. To see why this is true, let us exam-
ine a concrete example shown in the top left panel of Fig. 5.
In this particular partition of the space, A1 has the topology
of an annulus, and A2 has the topology of two disjoint disks.
We have illustrated the nontopological/nonuniversal terms by
colors. Two colors are used because A1A2 interfaces and AiB
interfaces can contribute in different ways to E (A1, A2). Thick
lines represent area-law terms, while big dots represent corner
contributions. The nonuniversal terms of the five terms in
Eq. (32) have all been illustrated in this figure, and one can see
that they do cancel with each other. Such cancellation happens
in general for any tripartition without trisections. However,
in the presence of trisection points, the interfaces between
different pairs of subregions meet together, and there may be
uncanceled local contributions near the trisections. We need
to study concrete examples to see whether 
 is robust in this
situation, and the result turns out to be negative.

We note that the above argument relies on the locality
assumption about nontopological/nonuniversal terms. This
assumption does not hold in certain systems with the so-called
spurious long-range entanglement [41–44]. We assume there
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are meaningful classes of systems without spurious entangle-
ment, and in this work we only focus on such nice systems,
and talk about, e.g., universality in the corresponding possibly
constrained phase space.

When the quantity 
 is robust, it can be used to give a
definition of E top on lattices. We note that on the right-hand
side of Eq. (32), all terms except for the first one are actually
EEs: ECCNR(A, ∅) = −S(2)

A /2, EPT(A, ∅) = 0, and E (P, P̄) =
S(1/2)

P . Hence, given the lattice result of 
 and the (continuum
or lattice) results of topological EEs, we can add a superscript
“top” to each term on the right-hand side of Eq. (32), and then
solve E top(A1, A2). More explicitly, we define E top on lattices
by

E top
CCNR(A1, A2) := 
CCNR

+ 1
2

{[
S(1/2)

A1
+ S(1/2)

A2
− S(1/2)

A

] − S(2)
A

}top
,

(33)

E top
PT (A1, A2) := 
PT

+ 1
2

[
S(1/2)

A1
+ S(1/2)

A2
− S(1/2)

A

]top
, (34)

where 
 should be computed on lattices according to Eq. (32).
In this work, for simplicity, we will just use the continuum
results of Stop in the above equations. This means we are
effectively comparing the continuum and lattice results for 
.
The readers may instead wish to use lattice definitions of topo-
logical EEs. For this purpose, we note that there already exist
lattice definitions of topological EEs for disk and annulus re-
gions [9,10,45], and then it should not be hard to find working
definitions for more complicated regions, because each region
with a complicated topology can always be decomposed into
simpler ones. We will not go into more details in this direction.

B. A sphere example without trisection

Let us consider the Z2 TC model [46], the simplest lattice
model with a topological order. The model can be defined on
an arbitrary 2D closed space manifold discretized into a lattice
with qubits living on links. The Hamiltonian takes the form

HTC = −
∑

s

Zs −
∑

p

Xp, (35)

where Zs is the product of Pauli Z operators on all links con-
taining the site s, and Xp is the product of Pauli X operators
on all links surrounding the plaquette p; see Fig. 6(a) for
the example of a square lattice. For concreteness, we put the
model on a cube surface (topologically a sphere) as shown in
Fig. 6(b), and focus on its unique ground state.

As the first example, consider the tripartition in Fig. 1(b).
We can prove r = 0 in this case: If r > 0, pA2 (z1) commutes
with GA. Since pA2 (z1) lies in A2 and is far away from the AB
interface, it should then commute with all star and plaquette
terms. Now suppose we combine B and A1 into a single region
and call it the new A1, the old z1 still satisfies z1 /∈ GA1 GA2

and pA2 (z1) commuting with GA, thus r > 0 still holds as
one can prove by contradiction using Eq. (24), but this is not
possible because EPT(A1, A2) = I (1/2)(A1, A2)/2 for a bipartite
pure state. Hence, by comparing theorems 1–3, we see that

FIG. 6. (a) Star and plaquette terms of the toric code model in
the case of square lattice. (b) Toric code on a cube surface which
is topologically a sphere. (c) Subsystems A1 (green, left) and A2

(purple, right). (d) Canonical generators of G12. (e) A deformation
of the tripartition in (c).

E top
PT and E top

CCNR computed on the lattice indeed match with the
continuum results.

C. Trisection points

Next, we still consider the ground state on the cube sur-
face, but take A1 and A2 to be adjacent rectangular regions
as shown in Fig. 6(c); this corresponds to the tricky sce-
nario in Fig. 1(d). Any stabilizer of the system, to commute
with the star and plaquette terms, must consists of X loops
along links, and Z loops along dual lattice links. One can
then check that a set of independent generators for GA is
simply all star and plaquette terms inside, similarly for GA1

and GA2 . Let LA1 , LA2 , and LA be the lattice perimeters of
A1, A2, and A, respectively. A simple counting gives S(n)

A =
NA − k = LA − 1, similarly for A1 and A2. Note that the −1
is nothing but the topological EE of a contractible region with
a smooth boundary for the TC model [9,10]. The rank of G12

is given by k − k1 − k2 = 2L12 − 1 = I (n)(A1, A2), where L12

is the lattice length of the interface between A1 and A2. We
can choose the generators of G12 to be the star and plaque-
tte terms crossing the interface, but they do not satisfy the
property of canonical generators introduced previously. We
show in Fig. 6(d) how these generators can be reorganized
into a canonical set, from which we see r = 1. According
to theorem 3, EPT(A1, A2) = [I (n)(A1, A2) − 1]/2 = L12 − 1.
The CCNR negativity is found to be ECCNR(A1, A2) = L12 −
LA/2. From our previous lattice definition of E top, we obtain
E top

PT = −1 and E top
CCNR = 0, where the latter is consistent with

the field-theoretic calculation.
In view of theorem 2, the above result of E top

CCNR should
at least be topological for this particular model, but E top

PT is
more subtle. Consider the deformed tripartition in Fig. 6(e).
With one more star term included in G12, we see r = 0,
and therefore EPT = I (n)(A1, A2)/2. It follows that E top

PT now
becomes −1/2, different from the previous −1 result. Hence,
E top

PT defined according to Eq. (32) is actually not topological.

035152-8



MIXED-STATE ENTANGLEMENT MEASURES IN … PHYSICAL REVIEW B 108, 035152 (2023)

D. A torus example

Finally, let us consider the Z2 TC model on a torus—square
lattice with periodic boundary condition, and the tripartition
in Fig. 3(b): A1 and A2 are adjacent, and all interface circles
are vertical. The TC Hamiltonian has four degenerate ground
states, so we need to specify two more stabilizers besides the
star and plaquette terms. The TC model has two independent
types of string operators: the e string consisting of Pauli X
operators along links, and the m string consisting of Pauli Z
operators along dual lattice links. We consider the interesting
situation where the additional stabilizers are horizontal e and
m loops that wind around the torus. Each circular interface is
crossed by the e or m loop once.

In a general CS theory, the state |R0〉, defined by path
integral inside the torus with no WL insertion, is an eigenstate
with eigenvalue da of the vertical string/WL operator in the
representation Ra, as one can verify using surgery. Hence, in
the TC model, |R0〉 is the eigenstate with eigenvalue +1 for
both the vertical e and m loops. The state |ψ〉 we consider
is then related to |R0〉 by a modular S transformation, or
more precisely |ψ〉 = ∑

j ψ j |Rj〉, with ψ j = S0 j = 1/2 ( j =
0, 1, 2, 3), where we used S0 j = d j/D and d j = 1, D = 2.
From our continuum results,

(continuum) E top
CCNR = 0, E top

PT = −1, (36)

where the base of logarithm has been set to 2. The topological
EE of A1, A2, or A is simply zero; this is the maximally
entangled state.

Now let us get onto the lattice. From theorems 2 and 3
and Eq. (32), we have 
CCNR = 0 and 
PT = −r/2. Since all
topological EEs are zero for the state being considered, we see
that the lattice result of E top

CCNR matches with the continuum
one. The lattice result of E top

PT is −r/2. It is not hard to see
r = 2 in this case: we can take z1 (z2) to be the product of two
vertical e (m) loops inside A1 and A2, respectively. A pair of
vertical e (m) loops can be generated by the plaquette (star)
terms in between and is indeed a valid stabilizer, but a single
vertical e (m) loop anticommutes with the horizontal m (e)
loop and does not belong to the stabilizer group. We have thus
also verified E top

PT = −1 on the lattice.

VI. DISCUSSIONS

In this work, we have studied bipartite mixed-state quan-
tum entanglement in topologically ordered states, quantified
by PT and CCNR negativities. General results are obtained
both in the continuum (CS theory) and in lattice models. On
lattices, We have examined whether the negativities are topo-
logical and universal. In particular, for the tricky scenario with
trisection points, the subleading piece of the PT negativity is
not topological, in contrast to CCNR.

There are a number of possible future directions: (1) it
remains to be checked whether our result of E top

CCNR with tri-
section points has any universal meaning on lattices. (2) Our
general approaches both in continuum and on lattices may be
extended to study other interesting entanglement quantities,
such as the reflected entropy [23,36,47,48]. (3) The negativity
formulas in the stabilizer formalism can be readily applied to
higher-dimensional topological orders and to other quantum

systems, such as random quantum circuits. (4) It is also inter-
esting to consider more general string-net models.

Note added. Recently, we became aware of a few re-
lated works. The use of PT negativity for diagnosing
error-corrupted topological orders is discussed in Ref. [49].
References [50] and [51] both have continuum computations
of PT negativity with trisection points. The former takes
an anyon diagram approach with a particular regularization
of the trisection points (wormholes), and the latter takes a
boundary/vertex state approach.

ACKNOWLEDGMENTS

We are grateful to Yuhan Liu for a stimulating discus-
sion, and to Jonah Kudler-Flam, Shinsei Ryu, and Ashvin
Vishwanath for valuable feedbacks on our manuscript. S.L. is
supported by the Gordon and Betty Moore Foundation under
Grant No. GBMF8690 and the National Science Foundation
under Grant No. NSF PHY-1748958.

APPENDIX: ENTANGLEMENT MEASURES
IN CHERN-SIMONS THEORY

1. Overview

Let M be an orientable closed 2D manifold with genus
g � 0. Consider a Chern-Simons (CS) theory on M and its
specific state |ψ〉, defined by the path integral in the 3D inte-
rior M3 ⊃ M of M with Wilson lines (WLs) inserted. The
goal of this Appendix is to calculate entanglement measures
of |ψ〉 with respect to a partition of M under fairly general
assumptions. Comparing to the main text, this Appendix con-
tains a few different notations, and can be read independently.
In this overview section, we set up the problem, present our
main results, and finally review the surgery method that we
will use.

a. Tripartition: Ball-tube system

Consider a tripartition M = A1 ∪ A2 ∪ B that separates M
into regions {r j : j = 1, . . . , N}, where each region r j belongs
to either party A1, A2, or B. This reduces to a bipartition M =
A ∪ B when combining A = A1 ∪ A2. We make an assumption
on the tripartition.

Assumption 1. The edges of the regions {r j} are disjoint
circles that are contractable in M3.

In particular, this implies that no three different regions
i, j, k share common points:

ri ∩ r j ∩ rk = ∅. (A1)

Any pair of regions (ri, r j ) either is not connected, or shares
� 1 disconnected edges. All edges do not touch each other
according to (A1). Beyond (A1), assumption 1 also requires
contractability of edges in the bulk. For example, Fig. 7(a)
and any tripartition on the sphere that satisfies (A1) fulfill
assumption 1, while Fig. 7(b) does not: the edge circles be-
tween B and A1 are noncontractable. Note that tripartitions
like Fig. 7(b) can be transformed using modular transforma-
tion to a “good” tripartition satisfying assumption 1, with
suitable Wilson loops inserted [20,37]. However, we leave
as an open question whether any tripartition satisfying (A1)
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FIG. 7. (a) A tripartition of a genus-2 surface M that
satisfies assumption 1, which is deformed to the right
ball-tube system. The relevant quantities are E = 5, EB =
4, K (1) = 3, KB(1) = 2, K12(1) = K1B(1) = K2B(1) = 1, K (2) =
K2B(2) = 2, and K12(2) = 0. (b) A tripartition that violates
assumption 1, which cannot be deformed to a ball-tube system.
(c) The 3D version of an example element in the sketched ball-tube
system (a). In particular, a black line represents a tube with cross
section D2 and a red line is a WL.

can be transformed in this way, and just impose assumption 1
throughout.

Based on assumption 1, M3 can be deformed to a ball-tube
system, with Fig. 7(a) as an example. In the ball-tube system,
each region r j on the surface corresponds to an interior 3D
region R j , composed of several balls and half-balls connected
by D2-tubes. Here a (half-)ball is topologically D3 while a D2-
tube is D2 × [0, 1]. To connect regions, for each edge between
ri and r j , the corresponding half-ball of Ri combines with its
counterpart half-ball of R j to make a ball. We refer to this as
an edge ball to differentiate with the party balls that belong to
only one party, and we call the joint surface between the two
half-balls an interface. The boundary of the interface is then
an edge that connects ri and r j . In this way, M3 is deformed
to a set B of balls connected by tubes.

We provide further justification on why the above deforma-
tion is possible. Namely, one can start from the unpartitioned
M3 and add the edges one by one. The initial M3 is naturally
a ball-tube system, where a central ball is connected to g
surrounding balls by two D2-tubes each. When adding the first
edge that is contractable in M3, one of the balls will be cut by
an interface to become an edge ball. We do not need to make
the cut on tubes because it can always deform to one ball on its
end. Then adding the second edge, there are two possibilities:
if the cut is on a party ball then it becomes an edge ball just
as step one; otherwise if the cut is on an edge ball, we deform
the ball to two edge balls connected by one new tube. The
manifold thus remains to be a ball-tube system, so that edges
can be added one by one.

There is some freedom in the above procedure, namely, for
each R j , which pairs of (half)balls are connected by tubes?
The entanglement quantities we study should not depend on
the choice. Therefore, to express our results, we need to use
quantities that do not depend on the connection. Define E to
be the total number of edges, which is just the number of
edge balls independent of the connection. Moreover, define
EP (P = A1, A2, B) to be the number of edges with party P on

one side. We will define similar quantities for WL in the next
section.

b. Assumption on WL

Let W WLs be embedded in M3. A WL can either be
a loop in the interior, or puncture the surface M with two
anyons. To avoid braiding and knot, we consider the following
WL configuration in the ball-tube system M3.

Assumption 2. The WLs can be simultaneously deformed,
without touching among themselves or between WL end-
points and edges on the surface M, to a configuration that
all WLs are contained in the surface M and do not touch each
other. Moreover, each D2-tube contains at most one WL which
goes through the tube once.

The deformation does not change topology, and thus does
not change the quantities that we will compute. Moreover,
contractable (in M3) Wilson loops with no flux of other
WLs can be annihilated freely, as one can check explicitly
using surgery introduced in Sec. A 1 e. Note that even if a
tube contains more than one WLs in one ball-tube system
representation of M3, one may adjust the connection of balls
to get another ball-tube system that satisfies assumption 2.
From now on we assume such a ball-tube system is cho-
sen. Similar to E , the number of interfaces traversed by the
WL w, K (w), is well-defined. Note that an interface can
contribute more than one to K (w), if it is traversed by w

back and forth. Similarly, KP(w) (KPP′ (w)) counts the num-
ber of interfaces shared by party P (and party P′) that w

traverses.
Each WL is assigned a representation a, and we consider

the superposition

|ψ〉 =
∑

a(1)···a(W )

ψa(1)(1) × ψa(2)(2) × · · ·

× ψa(W )(W ) |a(1) · · · a(W )〉 . (A2)

Here |a(1) · · · a(W )〉 is the normalized state with each WL
w ∈ {1, . . . ,W } in the fixed representation a(w). As we will
check in Sec. A 3, these states are orthogonal to each other.
Thus (A2) can be viewed as a direct product among WLs, and
we assume

∑
a |ψa(w)|2 = 1 for any w such that 〈ψ |ψ〉 = 1.

c. Entanglement measures and the replica method

We study three entanglement measures. First, |ψ〉 is a
bipartite pure state shared by A and B, so there is entanglement
entropy (EE) from the reduced density matrix ρA on A

SA = SB = −Tr(ρA log ρA) = lim
n→1

S(n)
A , where

§(n)
A = (1 − n)−1 log Tr

(
ρn

A

)
. (A3)

Here S(n)
A is the nth Rényi EE. In the replica method, we will

compute S(n)
A first, and then take the replica limit n → 1 to get

the von Neumann EE. The same method is also applied for the
following two entanglement measures.

ρA is a bipartite mixed state shard by A1 and A2, and we
study two quantities that measure the quantum correlation
between the two parties: the partial transpose negativity (PT)
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EPT, and the computable cross norm negativity (CCNR) ECCNR

[27,28]. They are defined by
EPT = log

∥∥ρT2
A

∥∥
1 = lim

even n→1
E (n)

PT , (A4a)

ECCNR = log ‖Rρ‖1 = lim
even n→1

E (n)
CCNR, (A4b)

where
E (n)

PT = log Tr
(
ρ

T2
A

)n
, (A5a)

E (n)
CCNR = log Tr(R†

ρRρ )n/2. (A5b)

Here T2 means partial transpose on A2, and Rρ is related to ρ

by

〈e1| 〈e′
1| Rρ |e2〉 |e′

2〉 = 〈e1| 〈e2| ρ |e′
1〉 |e′

2〉 , (A6)

where {|e1〉}, {|e2〉} are basis for subsystem A1 and A2, respec-
tively.

d. Main result

For any state (A2) with assumptions 1 and 2, we have

SA = −EB logD +
∑
w

∑
a

|ψa(w)|2(KB(w) log da − I[KB(w) > 0] log |ψa(w)|2), (A7a)

EPT = −(E − EB) logD +
∑
w

{
log

(∑
a |ψa(w)|2dK (w)−KB (w)

a

)
, if KB(w) > 0

2 log
(∑

a |ψa(w)|dK (w)/2
a

)
, if K (w) > KB(w) = 0

, (A7b)

ECCNR = −
(

E − 3

2
EB

)
logD

+
∑
w

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log

(∑
a |ψa(w)|2d

K (w)− 3
2 KB (w)

a

)
, if at least two in {K12(w), K1B(w), K2B(w)} are nonzero

1
2 log

(∑
a |ψa(w)|4d−K (w)

a

)
, if only one in {K1B(w), K2B(w)} is nonzero and K12(w) = 0

2 log
(∑

a |ψa(w)|dK (w)/2
a

)
, if K (w) > KB(w) = 0

, (A7c)

where D = 1/S00 with Sab being the modular S matrix of the Chern-Simons theory, and

da = S0a/S00, (A8)

is the quantum dimension.
When all representations are fixed ψa(w) = δa,a(w) by some function a(w), we have simplified expressions for all Rényi

quantities

S(n)
P = SP = −EP logD +

∑
w

KP(w) log da(w), (A9a)

E (n)
PT = −[E − EB + E (1 − n)] logD +

∑
w

[K (w) − KB(w) + K (w)(1 − n)] log da(w), (A9b)

E (n)
CCNR = −

[
E − 3

2
EB +

(
E − 1

2
EB

)
(1 − n)

]
logD

+
∑
w

[
K (w) − 3

2
KB(w) +

(
K (w) − 1

2
KB(w)

)
(1 − n)

]
log da(w), (A9c)

which reduces to

2 E (n)
PT = S1 + S2 − S12 + (1 − n)(S1 + S2 + S12) = I12 + (1 − n)(S1 + S2 + S12), (A10a)

2 E (n)
CCNR = S1 + S2 − 2S12 + (1 − n)(S1 + S2) = 2 E (n)

PT − (2 − n)S12, (A10b)

where S12 = SA = SB, and I12 is the mutual information
shared between A1 and A2.

e. Overview of surgery method

Surgery is introduced in Ref. [37] to calculate partition
functions of Chern-Simons theories in general settings (with
braiding among WLs, etc.). For our purpose, we only need
two gadgets.

(1) The partition function of a S3 with a single Wilson loop
of representation a in it is

Za = S0a. (A11)

(2) As shown in Fig. 8, an S2-tube traversed by two WLs
of representation a can be cut by a S3 with a Wilson loop of
the same representation a in it. Formally, let M be the original
manifold with the S2-tube connected, and let ML, MR be the
two manifolds after cutting the tube (and reconnecting the
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FIG. 8. In the surgery method, an S2-tube traversed by two WLs
of representation a is cut by a S3 with a Wilson loop of the same
representation a in it. In comparison to Fig. 7, two black concentric
circles represent a S3, while two black parallel straight lines represent
a S2-tube. The black solid circle means the structure of WLs inside
does not matter. L, R means the number of tubes going out of the
left/right S3, while only two of the tubes are explicitly shown. This
is the ball-tube version of Fig. 2 in the main text.

cutted WL in each manifold), then

Z (M ) · Za = Z (ML ) · Z (MR). (A12)

As an exercise of these two rules, we have the factorization
of a S3 with more than one Wilson loops that do not link with
each other, see (A29) as the two-loop case. The reason is that
empty S2-tubes can be cut to separate the loops into different
S3s. We encourage the reader to revisit the main text for the
intuition behind (A12), and an example calculation of ECCNR

using the two rules.

2. No Wilson line

In this section, we consider the case without WLs, and
derive the first terms in (A7) and (A9). Treating WLs will
be tedious, but shares the same basic idea in this section:
each entanglement quantity in the replica method is (roughly)
product of local contributions from individual balls.

Thanks to the symmetry A1 ↔ A2 in the problem, we
classify the balls in B to four types: BA,BB,B12,BAB where
the subscript indicates what parties the ball belongs to. For
example, BA belongs to either A1 or A2, while B12 is an
edge ball shared by A1 and A2. Slightly abusing notation,
we use (for example) BA to represent two precise items: 1.
any ball of type BA, and 2. the set of all such balls. These
four types are sketched in the first column of Table III, where
L, R � 0 means the number of tubes going out of the left/right
half-ball, although for BA,BB only their sum L + R is mean-
ingful. We label the balls by β, so L, R are actually functions
L(β ), R(β ).

a. Trace over B

For the entanglement measures we consider, the first ma-
nipulation on the state is always tracing B to get the density
matrix ρA. Although it is sophisticated to plot the global
geometry of the path-integral representation of ρA, it is clear

TABLE III. Local contribution of the four types of balls to various quantities, if there is no WL. We refer to the element in the second row,
third column as (2,3) for example. The third column represents both EE and PT in the following way: we only show the PT value Tr(ρT2

A )n with
n even for B12, because for EE it is the same as BA. For the other three types, EE and PT are literarily the same, so one plot represents both. For
the fourth column n is even. The symbols are defined by Fig. 7(c) together with the following: L, R means the number of tubes going out of
the left/right half-ball, while only two of the tubes are explicitly shown. A double-line means a tube of cross section S2, while a double-lined
circle means S3. αn is defined in (A14), and the (4,2) element shows that the normalization factor for n copies of ρA is αn

1 .
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what happens locally to each ball (together with its attached
tubes), as shown in the second column of Table III. A BA or
B12 ball is just duplicated. A BAB becomes a ball composed of
A and A′ half-balls, and the tubes connecting B becomes tubes
with cross section S2. A BB becomes a S3, with all its tubes
becoming S2-tubes.

This last case actually yields the normalization of the state,
where each ball is traced over as a whole to become S3. For
one ball, it has L + R S2-tubes. So in the surgery method, we
should use L + R balls to cut them, which yields a factor of
Z−L−R from (A12). Here Z = S00 is the partition function for
a S3 without WLs (A11). Since each tube is shared by two
balls, each ball contributes Z1−(L+R)/2 as a whole, where the
Z1 factor comes from the ball itself and the rest comes from
the tubes attached to it. Then the normalization is

〈ψ |ψ〉 =
∏
β∈B

α1(β ) = Z1−g, (A13)

where we have defined

αn(β ) := Z1−[L(β )+R(β )]n/2, (A14)

for each ball β in the representation of |ψ〉. Observe that this
result is determined locally by looking at the balls individu-
ally. It does not depend on which ball is connected to which.
This is the key feature that enables all our calculations. Note
that in this section |ψ〉 (and ρA, etc.), is the unnormalized state
represented by path integral with no prefactors, unlike (A2).

b. Replica method for EE and PT

Focusing on EE first, in the replica method n copies of
ρA should connect cyclically. This can be done locally for
each ball in ρA. In Table III(1,2), ρA of BAB consists A, A′
as its half-balls, so the cyclic connection of n balls yields
a single S3. The R S2-tubes for each copy of ρA are just
replicated n times. Among the 2L D2-tubes of the pth copy,
the L of them connected to A′ combine with those connected
to A of the (p + 1)th copy, making L S2-tubes. Thus there are
totally n(L + R) S2-tubes going out of the S3, as shown in
Table III(1,3), which contributes a factor αn (A14) to Tr(ρn

A).
B12 is the same as BA for calculating EE, where the A′ ball
of the pth copy of ρA combines with A of the (p + 1)th copy
to yield a S3. Their tubes combine to S2-tubes accordingly.
Thus there will be n S3s, each has L + R S2-tubes, as shown
in Table III (3,3). Moreover, the contribution of BA is the same
as its contribution αn

1 to normalization. BB is not involved in
the contraction process, so it is just replicated n times, giving
an identical result to BA. This is expected because of the
symmetry SA = SB. In conclusion, the unnormalized Tr(ρn

A)
is

Tr(ρn
A) =

⎛⎝ ∏
β∈BAB

αn(β )

⎞⎠⎛⎝ ∏
β∈B−BAB

αn
1 (β )

⎞⎠, (A15)

and when canceling with the normalization (A13),

Tr(ρn
A)

〈ψ |ψ〉n =
∏

β∈BAB

αn(β )

αn
1 (β )

=
∏

β∈BAB

Z1−n = ZEB (1−n). (A16)

This leads to the first term in (A7a) by taking the replica limit.

PT is almost the same as EE, because the only difference
is that A1 and A2 contract in opposite directions in the cycle.
Thus BAB,BA,BB contributes exactly the same local factor as
for EE, since they locally cannot tell the relative direction of
contraction. That is why we put EE and PT in one column in
Table III, where the EE for B12 contributes the same amount as
BA, and the (2,3) element is for PT only. To get Table III(2,3),
the A1A2 ball of the pth copy contracts with the A′

1A′
2 balls

of the (p − 1)th and the (p + 1)th. Since n is even for PT,
the A1A2 ball of the odd copies combine with the A′

1A′
2 ball

of the even copies to get one S3, while the A1A2 ball of the
even copies combine with the A′

1A′
2 ball of the odd copies to

get another S3. Each of the two S3s contributes a factor αn/2

because there are (L + R)n/2 S2-tubes. Summing up all balls,
we have

Tr
(
ρ

T2
A

)n

〈ψ |ψ〉n =
⎛⎝ ∏

β∈BAB

αn(β )

αn
1 (β )

⎞⎠⎛⎝ ∏
β∈B12

α2
n/2(β )

αn
1 (β )

⎞⎠
=

⎛⎝ ∏
β∈BAB

Z1−n

⎞⎠⎛⎝ ∏
β∈B12

Z2−n

⎞⎠
= ZEB (1−n)+(E−EB )(2−n), (A17)

which leads to the first term in (A7b) by taking n → 1.

c. Replica method for CCNR

Consider contracting n copies of ρA for CCNR. For the
(2p + 1)th copy, A1 (A′

1) regions connect to A′
1 (A1) of the

(2p)th copy, while A2 (A′
2) regions connect to A′

2 (A2) of the
(2p + 2)th copy. This can be done for the four types of balls
in the similar way above, so here we just report the results in
the fourth column of Table III. Summing up all balls, we have

Tr(R†
ρRρ )n/2

〈ψ |ψ〉n =
⎛⎝ ∏

β∈BAB

α
n/2
2 (β )

αn
1 (β )

⎞⎠⎛⎝ ∏
β∈B12

α2
n/2(β )

αn
1 (β )

⎞⎠
=

⎛⎝ ∏
β∈BAB

Z−n/2

⎞⎠⎛⎝ ∏
β∈B12

Z2−n

⎞⎠
= ZEB (−n/2)+(E−EB )(2−n), (A18)

which leads to the first term in (A7c) by taking n → 1.

3. Normalization with Wilson line: extra factor for party balls

In the previous section, we omitted WLs (or in other words,
setting ψa(w) = δa0). With WL, the local nature still holds,
so we only need to recalculate the balls that the WLs traverse,
gather all local extra factors (LEFs) from the WL contribution,
and multiply them together with the no-WL result. Then after
a careful sum over representations, the final result is in the
form of a global extra factor (GEF) multiplied by the no-WL
result.

Since there are four types of balls and many ways for a WL
to traverse a ball, we separate the discussion into two sections:
this and the next. In this section we warm up by focusing
on the normalization of the state, where all regions r j can be
viewed as one party. The balls in M3 are then all party balls
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TABLE IV. LEF of a party ball traversed by one WL. Only the tubes containing the WL are shown.

which can be viewed as BB. We will check the orthogonality
of the basis in (A2), and derive results that will be useful in
Sec. A 4.

a. Only one WL, which traverses each ball at most once

We first consider only W = 1 WL for now. The state is then

|ψ〉 =
∑

a

ψa |a〉 =
∑

a

ψ̃a |̃a〉 , where ψ̃a = 1√〈̃a|̃a〉ψa.

(A19)

Here, unlike |a〉, |̃a〉 is the un-normalized state defined by the
path integral with the a-independent prefactor Z (g−1)/2 [see
(A13)] that normalizes the no-WL state |0〉 = |̃0〉.

If w punctures M, it can shrink along its trajectory to be
contained in one ball; otherwise w is a loop, which we assume
traverses each ball at most once for now. Thus we have two
possibilities B′

1,B′
2 for a ball that contains WL, as shown in

the first column of Table IV. Note that only tubes containing
the WL are shown explicitly, since other tubes without WL
do not contribute to LEF. For normalization 〈ψ |ψ〉, each ball
combines with its replica to produce a S3, and the D2-tubes
become S2-tubes. The representation is denoted by a and a′
for the two replicas, and there is a global summation over
them: 〈ψ |ψ〉 = ∑

aa′ ψ̃aψ̃
∗
a′ 〈ã′|ã〉, where 〈ã′|ã〉 is 〈0|0〉 times

the product of all LEFs.
For B′

1, each S2-tube traversed by the WL is cut by a S3

with a Wilson loop in it, leaving another loop in the original
S3. Since one loop can only have one representation, the
surgery yields nonzero result only when a = a′, thus a factor
δaa′ should be included. Physically this is because the S2 cross
section of the tube hosts a Hilbert space, where excitation can
only be created in anyon-antianyon pairs. Since there are two
tubes containing the WL together with the ball, the LEF is

QN(B′
1) = Z1−2/2

a

Z1−2/2
δaa′ = δaa′ , (A20)

where Za = S0a is the partition function for a S3 with an a-
loop (A11), and Z = Z0 is the a = 0 result. The superscript N
refers to normalization.

For B′
2 in the second row of Table IV, the two WLs of the

two replicas connect to form a loop in S3, which also requires
a = a′. After cutting the tubes that all have no WL, the LEF is
then

QN(B′
2) = Za

Z
δaa′ = daδaa′ , (A21)

where da is defined in (A8).
To sum up, the GEF of normalization due to WL is

〈ψ |ψ〉
〈0|0〉 =

∑
aa′

ψ̃aψ̃
∗
a′δaa′νa =

∑
a

∣∣ψ̃a

∣∣2νa, where (A22)

νa :=
{

1, if w is a loop
da, if w is not a loop . (A23)

Here “not a loop” means w punctures M at two points. Thus
in order for |ψ〉 to be normalized, we have

ψ̃a = ψaν
−1/2
a . (A24)

b. Multiple WLs, where each WL can traverse a ball multiple times

Now we consider the general case with W > 1 WLs, and
each WL can traverse a ball more than once. If for each ball
there is still at most one WL that passes it, then all balls’
contribution to normalization is multiplied so that the total
WL contribution factorizes to each individual WL. Formally,
the GEF Q is

Q =
∑

a(1)a′(1)a(2)···a′(W )

(
W∏

w=1

ψ̃a(w)ψ̃
∗
a′(w)

) ∏
β∈B

Qβ

=
W∏

w=1

⎛⎝ ∑
a(w)a′(w)

ψ̃a(w)ψ̃
∗
a′(w)

∏
β∈B

Qβ (w)

⎞⎠, (A25)

as long as the LEF for each ball factorizes

Qβ =
W∏

w=1

Qβ (w), (A26)

where Qβ (w) is the LEF if WLs other than w are all removed.
(A26) is trivial if only one WL w passes β, because then Qβ =
Qβ (w) and Qβ (w′) = 1 for w′ �= w. Moreover, if w traverses
β M(w, β ) times, then the ball contains M(w, β ) segments of
WL w. Intuitively, a ball locally cannot distinguish whether
two WL segments in it belong to one WL or not, so we expect
a further factorization similar to (A26):

Qβ (w) =
M(w,m)∏

m=1

Qβ (w, m), (A27)

where Qβ (w, m) is the LEF when only the mth segment of w

is present.
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FIG. 9. (a) Example of two WLs traversing one ball. The WLs
lie on the surface and do not intersect due to Assumption 2. As a
consequence, the Wilson loops in the final S3 do not link. (b) A WL
in an edge ball that does not traverse the interface, is equivalent to
the WL traversing a new party ball, i.e., B′

1 in Table IV.

Before proving (A26) and (A27), we first discuss their
implication for normalization. A loop w may traverse a ball
multiple times, but since Qβ (w, m) is always δaa′ (A20) whose
power equals itself, the LEF Qβ (w) is still δaa′ as long as
w traverses β. On the other hand, if w is not a loop, it is
contained in one ball and we do not need (A27). As a result,
the GEF is just the product of (A22) using (A26):

〈ψ |ψ〉
〈0|0〉 =

W∏
w=1

∑
a

|ψ̃a(w)|2νa =
W∏

w=1

∑
a

|ψa(w)|2. (A28)

This verifies that the basis in (A2) is orthogonal.
It remains to show (A26) and (A27), which combine to

just one claim: the LEF for each ball factorizes to the WL
segments contained in it. We prove this for two WL segments,
since the general case follows similarly.

Suppose WL segments s1 and s2 traverse β as shown in
Fig. 9(a), with representation a1 and a2. They can belong to
either one or two WLs globally. For the former case, there is
a global prefactor δa1a2 , but that is irrelevant for LEF here.
According to Assumption 2, the two WL segments live on
the surface of the ball, and each D2-tube contains at most one
WL segment. On the ball, the two “arcs”


s1 and


s2 do not

touch each other. Then it is clear that after gluing replicas and
cutting the S2-tubes, the remaining Wilson loops for s1 and
s2 in the S3 do not link with each other. Its partition function
Za1a2 is then factorized due to the surgery operation in Fig. 8
with WL in the tube

Za1a2 · Z = Za1 Za2 , �⇒ Za1a2

Z
= Za1

Z

Za2

Z
. (A29)

On the other hand, LEF due to cutting tubes (which includes
factors like δa1a′

1
) also factorizes because each S2-tube belongs

to either s1 or s2, or neither. This establishes the factorization
properties (A26) and (A27).

4. Wilson line contribution to entanglement

In this section, we derive the GEF for the three entangle-
ment measures at any replica number n, which reduces to our

main results (A7) and (A9) by combining with the results in
Sec. A 2 and taking special limits. Again, we first consider
a state (A19) with W = 1 WL, which is assumed to traverse
each ball at most once. We use the factorization property to
handle the general case in the final section.

a. WL in an edge ball that traverses the interface

There are totally seven possibilities for the WL to traverse
the interface of an edge ball, as shown by B̃1, . . . , B̃7 in the
first column of Table V. Recall that only tubes containing the
WL are shown explicitly. As in Sec. A 2, we first trace over B
to get ρA, as shown in the second column.

We move on to EE and PT. As discussed in Sec. A 2, for
these two quantities the local contraction structure is the same
for BAB, while for B12 we only need to consider PT. Thus we
report the results in the single third column in Table V. Taking
B̃1, for example, n copies of ρA contract to one S3 with n S2-
tubes on both sides. Each of the n tubes on the left comes from
the S2-tube of one copy. For the right, the D2-tube with a′

p-line
of the pth copy combine with the D2-tube with ap+1-line of
the (p + 1)th copy to yield one S2-tube, where p = 1, . . . , n.
In this process, all representations are identified to a, which
yields a factor

[11′ · · · nn′] := δa1a′
1
δa′

1a2δa2a′
2
· · · δana′

n
. (A30)

Hereafter we use such shorthand notations to identify all
representations in the square brakets. Furthermore, along the
WLs one can traverse all of the 2n S2-tubes if hopping be-
tween the two lines in one tube is allowed. This means when
cutting all the tubes in surgery, there is only one loop of
representation a1 ≡ a left in the S3. Since each S2-tube is cut
by a S3 with an a-loop, the LEF is then

QEE(B̃1) = QPT(B̃1) = Z1−2n/2
a

Z1−2n/2
[11′ · · · nn′]

= d1−n
a [11′ · · · nn′]. (A31)

The other cases are worked out similarly, for example,

QPT(B̃5) = d
1− n

2
a1 d

1− n
2

a2 × [12′ · · · (n − 1)n′]

× [1′2 · · · (n − 1)′n]. (A32)

CCNR is similar, for which we report the result for all
types of balls in the fourth column of Table V. There are three
possibilities locally for which representations are equal: B12

has (A32), while B1B and B2B yield

[11′22′] × [33′44′] × · · · × [(n − 1)(n − 1)′nn′] (A33)

and

[22′33′] × [44′55′] × · · · × [nn′11′], (A34)
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TABLE V. LEF for various quantities for the seven types of balls B̃1, . . . , B̃7. See Table III on how EE and PT are combined. The LEF
depends on both the topology of the final object (the fourth and fifth column), and the way representations are identified, which yields a factor
[defined by, e.g., (A30)] shown in the third and last column. The symbols are the same as Fig. 7(c) and Table III, and the crossing structure of
WLs indicates that each S3 contains exactly one Wilson loop after cutting the S2-tubes.

respectively. For example,

QCCNR(B̃1) =
n/2∏
p=1

d−1
a2p−1

× [either (A33) or (A34)], (A35)

depending on whether the left half-ball is A1 or A2. Note that
PT and CCNR are identical for B12, which is also manifest in
Table III.

b. WL in a party ball

For a party ball, it can be traversed by the WL in two ways
B′

1,B′
2 as shown in Table IV. There is no WL segment that

goes through one tube and punctures the ball surface once,
because it can shrink to disappear in this ball. For each of
the two cases at a given replica number n, the final topology

is the same regardless of the entanglement measure and the
party (A1, A2, or B) of the ball, which is already manifest in
Table III. As shown in the third column of Table IV, it is just n
disconnected copies of the n = 1 topology for normalization.
The identification of representations, however, depends on the
party. We first focus on B. Using (A20) and (A21), the LEFs
are

Q(B′
1) = [11′] × [22′] × · · · × [nn′], for BB, (A36)

and

Q(B′
2) =

n∏
p=1

dap × [11′] × [22′] × · · · × [nn′], for BB.

(A37)
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Since B′
2 contains the whole WL, the GEF for any entangle-

ment measure is then

∑
a1a′

1···a′
n

ψ̃a1ψ̃
∗
a′

1
· · · ψ̃anψ̃

∗
a′

n
Q(B′

2) =
(∑

a

|ψ̃a|2da

)n

= 1,

(A38)

using (A24). This result is intuitive: the WL is created locally
in the single region, so it does not affect the entanglement
among regions. (A38) actually holds for all parties, because
the representations are always identified in prime and no-
prime pairs.

On the other hand, the party also does not matter for B′
1,

because we can always set Q(B′
1) = 1 without changing the

product of all LEFs (which yields GEF after summing over
representations). The reason is that for a WL in B′

1, it must
traverse the interface of another edge ball, whose LEF already
includes the representation-identification factor of the party
ball. For example, if the party ball is BB, then the WL must
traverse the interface of another BAB: otherwise it can shrink to

be contained in the party ball. Then the LEF for BAB includes
a factor either (A30), (A33), or (A34), which all has (A36) as
a factor.

c. WL in an edge ball that does not traverse the interface

The only case missing in the previous analysis is that the
WL traverses an edge ball, but not through its interface: it goes
in and out of the same half-ball. As shown in Fig. 9(b), this
case actually reduces to B′

1 when separating the ball into two
balls: an edge ball with no WL and a party ball that the WL
traverses. Thus according to the previous section, the LEF can
be set to 1.

d. GEF for only one WL, which traverses each ball at most once

The previous three sections discuss all cases assuming
there is only one WL, and it traverses each ball at most
once. We see that as long as the WL is not contained in a
single region where the GEF is trivial (A38), we only need to
consider the cases in Table. V by setting all other LEFs to 1.

Summing up the BAB cases in the third line of Table V, we
get the GEF for EE

Tr(ρn
A)

Tr
(
ρn

A

)
0

=
∑

a1a′
1···ana′

n

ψ̃a1ψ̃
∗
a′

1
· · · ψ̃anψ̃

∗
a′

n
[11′ · · · nn′]

∏
β∈B̃1

d1−n
a

∏
β∈B̃2∪B̃3

d1−n/2
a

∏
β∈B̃4

da

=
∑

a

|ψa|2nν−n
a

∏
β∈B̃1

d1−n
a

∏
β∈B̃2∪B̃3

d1−n/2
a

∏
β∈B̃4

da =
∑

a

|ψa|2nd (1−n)KB
a , (A39)

regardless of whether w is a loop or not. Here the subscript 0 means the normalized no-WL result, and we have used
[11′ · · · nn′]2 = [11′ · · · nn′] together with (A24). The difference among B̃1, . . . , B̃4 turns out to cancel exactly with the nor-
malization difference, which also holds for B̃5, B̃6, B̃7 and for PT and CCNR as we will see. Equation (A39) leads to the second
term in (A7a) by taking the limit

lim
n→1

1

1 − n
log

(∑
a

xn
ay1−n

a

)
=

∑
a

xa(log ya − log xa), (A40)

where
∑

a xa = 1.
For PT, we have two possibilities on whether w traverses a BAB or not. If KB > 0, all representations a1, a′

1, . . . , an, a′
n are

equal due to the factor (A30) from one of the BAB; otherwise they are equal in two disjoint groups with prefactor (A32) due to
B12. The GEF for PT is then

Tr
(
ρ

T2
A

)n

Tr
(
ρ

T2
A

)n

0

=
{∑

a |ψa|2nd (1−n)KB
a d (2−n)(K−KB )

a , KB > 0(∑
a |ψa|nd (1−n/2)(K−KB )

a

)2
, KB = 0

. (A41)

For CCNR, since any two of (A32), (A33), and (A34) multiply to (A30), there are also three possibilities for the global
prefactor: among the three quantities K12, K1B, K2B, if at least two are nonzero then the prefactor is (A30); if only K1B or K2B is
nonzero the prefactor is (A33) [which is equivalent to (A34)]; finally if only K12 > 0 the prefactor is (A32). To summarize, the
GEF for CCNR is

Tr
(
R†

ρRρ

)n/2

Tr
(
R†

ρRρ

)n/2

0

=

⎧⎪⎪⎨⎪⎪⎩
∑

a |ψa|2nd−nKB/2
a d (2−n)(K−KB )

a , if at least two in {K12, K1B, K2B} are nonzero(∑
a |ψa|4d−KB

a

)n/2
, if only one in {K1B, K2B} is nonzero and K12 = 0(∑

a |ψa|nd (1−n/2)(K−KB )
a

)2
, KB = 0

. (A42)

e. General case: Factorization property

Although Sec. A 3 only focuses on normalization, the fac-
torization property of LEF in (A26) and (A27) generally holds

for all three entanglement measures, at any replica number
n. The LEFs by cutting S2-tubes are factorized simply due
to Assumption 2 where at most one WL is contained in each
D2-tube. One the other hand, the LEF of Wilson loops in an S3
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generated by gluing ñ balls is also factorized (Sec. A 3 being
the ñ = 2 case), because the loops do not link so that (A29)
follows. The absence of linking is guaranteed because WLs do
not touch on the surface of the ball, so they are in “different
continents” in the S3.

Thanks to such factorization, the GEFs (A39), (A41), and
(A42) hold even if the WL traverses a ball more than once.
This is justified by the following two observations. First, the
different situations (lines) in (A41) and (A42) only depend
on whether each K quantity (K, KP or KPP′) is zero or not.

Thus traversing a ball more than once does not change the
zeroness of the Ks, so the situation (line) is unchanged.
Second, the exponents of the power of da in (A39), (A41),
and (A42) are all proportional to Ks. This agrees with the fac-
torization property, because traversing an interface one more
time just adds one to the corresponding K . Finally, multiple
WLs also factorize due to (A26), so each WL contributes
by (A39), (A41), and (A42), while all WLs are summed
over in the end. This completes our derivation for (A7)
and (A9).
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