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Heating effects in Floquet-engineered systems are detrimental to the control of physical properties. In this
paper, we show that the heating of periodically driven strongly correlated systems can be suppressed by
multicolor driving, i.e., by applying auxiliary excitations which interfere with the absorption processes from
the main drive. We focus on the Mott insulating single-band Hubbard model and study the effects of multicolor
driving with nonequilibrium dynamical mean-field theory. The main excitation is a periodic electric field with
frequency � smaller than the Mott gap, while for the auxiliary excitations, we consider additional electric fields
and/or hopping modulations with a higher harmonic of �. To suppress the three-photon absorption of the main
excitation, which is a parity-odd process, we consider auxiliary electric-field excitations and a combination of
electric-field excitations and hopping modulations. On the other hand, to suppress the two-photon absorption,
which is a parity-even process, we consider hopping modulations. The conditions for an efficient suppression
of heating are well captured by the Floquet effective Hamiltonian derived with the high-frequency expansion
in a rotating frame. As an application, we focus on the exchange couplings of the spins (pseudospins) in the
repulsive (attractive) model and demonstrate that the suppression of heating allows us to realize and clearly
observe a significant Floquet-induced change of the low energy physics.
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I. INTRODUCTION

Floquet engineering, where a system is exposed to strong
periodic excitations, provides a promising pathway to con-
trol the physical properties of a system [1–3]. Theoretical
predictions of Floquet engineering effects range from the
realization of Floquet topological insulators in weakly cor-
related systems [4–7], Floquet topological superconductivity
[8–10], control of band structures [11,12] and electron-
phonon couplings [13–15], to control of magnetisms in
strongly correlated systems [16–19]. Experimentally, driving-
induced band renormalizations [20–22], the creation of
topological band structures [23,24], and the control of ex-
change couplings in strongly correlated systems [25] have
been demonstrated in cold atom systems. In real materials,
the realization of a Floquet-induced anomalous Hall effect has
also been experimentally reported in graphene [26], although
the interpretation of the result is not yet fully settled [27].
More recently, light-induced anomalous Hall effects are also
reported in three-dimensional Dirac systems like Co3SnS2

[28] and bismuth [29]. In addition, giant modifications of the
nonlinear response by Floquet engineering have been reported
in a correlated material [30]. Still, compared with the broad
range of theoretical predictions, experimental realizations of
Floquet engineering are still limited.

*yuta.murakami@riken.jp

One of the major difficulties in implementing Floquet en-
gineering approaches in practice is the heating of the system,
which may hinder the clear emergence of topological prop-
erties and the change in low-energy physics. Heating can
occur at different levels. For example, in real systems, there
always exist bands above the targeted low-lying bands which
most theoretical studies focus on. Strong excitations can ex-
cite particles from the target bands to the high-energy bands,
which may prevent the realization of the intended Floquet
engineering effect. Another possibility is excitations within
the target bands. Due to the nonthermal or hot distribution
caused by such excitations, the control of topological proper-
ties and low-energy physics becomes difficult to observe [7].
A promising way to avoid heating is to use multicolor driving
protocols [31,32], which also provide further controllability
of the system [33–36]. Recently, such a protocol has been
implemented in a cold atom system to suppress the excita-
tion of particles to higher energy bands [31], while optimal
control theory has been used to engineer the band filling
in a free system under periodic driving [32]. However, to
what extent multicolor driving protocols are beneficial for the
Floquet engineering of strongly correlated systems remains
to be understood. Rich low-energy physics and phases re-
sulting from the competition or cooperation between various
degrees of freedoms are characteristic of strongly corre-
lated systems. If heating can be suppressed, such low-energy
physics and phases can be efficiently controlled by Floquet
engineering.
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FIG. 1. (a) Schematic picture of the Hubbard model excited with
multicolor driving protocols. The red wavy line indicates the main
excitation with frequency �, while the green and blue wavy lines
indicate auxiliary excitations with higher harmonics of �. (b) Il-
lustration of the basic idea behind the cancellation of absorption
processes using multicolor excitations. The red arrows indicate the
three-photon excitation from the main drive with frequency �. The
blue and green arrows indicate auxiliary 3� and 2� excitations,
respectively. |i〉 represents the initial state, while | f 〉 represents the
final state.

In this paper, we address this question by analyzing the
half-filled single-band Hubbard model, a standard model for
strongly correlated systems, with the nonequilibrium dynami-
cal mean-field theory (DMFT) [37,38]. Specifically, we focus
on Mott insulators and consider an electric field excitation
with frequency � as the main excitation, which is chosen to
be a subgap driving. Additional electric fields and hopping
modulations with higher harmonics of � are used as auxiliary
excitations, see Fig. 1(a). We discuss and demonstrate how
the three-photon and two-photon absorption can be reduced
by suppressing the doublon-holon (d-h) creation/annihilation
terms in the Floquet effective Hamiltonian. The resulting sup-
pression of heating allows us to directly observe the change of
the exchange couplings due to the virtual excitations induced
by the periodic excitations.

This paper is organized as follows. In Sec. II, we introduce
the Hubbard model and derive the corresponding Floquet
Hamiltonian using the high-frequency expansion in a rotat-
ing frame. Then we discuss how the Floquet Hamiltonian
allows us to determine conditions for the efficient suppression
of heating. In Sec. III, we study the real-time dynamics of
the system with a repulsive or attractive interaction using

nonequilibrium DMFT and demonstrate how the suppression
of heating in the multicolor protocols works. Conclusions are
given in Sec. IV.

II. FORMALISM

A. Model

In this paper, we consider the single-band Hubbard model

Ĥ (t ) = −
∑

〈i, j〉,σ
vi j (t )ĉ†

iσ ĉ jσ + U
∑

j

n̂ j↑n̂ j↓, (1)

where ĉ†
iσ is the creation operator for a fermionic particle

with spin σ at site i, 〈i j〉 indicates a pair of neighboring
sites, and n̂iσ = ĉ†

iσ ĉiσ . Here, U is the on-site interaction, and
vi j (t ) is the time-dependent hopping parameter. We consider
two basic excitation protocols. The first one is an electric
field excitation, which enters the calculation via the Peierls
substitution [38] vi j (t ) = v0 exp[iA(t ) · ri j]. Here, v0 is the
equilibrium hopping parameter, A(t ) is the vector potential,
and ri j is the vector from the j site to the i site. The charge of
the particle and the bond length are set to unity. The electric
field is related to the vector potential by E(t ) = −∂t A(t ).
The second protocol is the hopping modulation, which cor-
responds to vi j (t ) = v0 + δv(t ). Both of these protocols have
been implemented in cold-atom systems [1,22,31]. In real
materials, electric field excitations can be implemented easily,
while hopping modulations may be achieved via the excitation
of coherent phonons [39,40].

In this paper, we consider systems on bipartite lattices,
i.e., the Bethe lattice or hypercubic lattices, at half-filling.
We consider models with strong repulsive or strong attractive
interactions to discuss the effects of multicolor driving for
different types of orders (low-energy physics). When U is
repulsive (U > 0), the system favors singly occupied sites
(singlons) in equilibrium and exhibits an antiferromagnetic
(AFM) phase at low enough temperatures. The absorption of
energy of O(U ) creates doubly occupied sites (doublons) and
empty sites (holons), which can destroy the low-energy spin
order [41,42]. When U is attractive (U < 0), the system favors
doublons and holons in equilibrium and shows s-wave super-
conductivity, charge order, or a coexistence of both at low
enough temperatures. This physics originates from the SU(2)
symmetry which corresponds to the spin SU(2) symmetry of
the repulsive Hubbard model via the Shiba transformation.
The absorption of an energy of O(|U |) in the attractive model
creates singlons.

For simplicity, we apply the electric field along a high-
symmetry direction. In the case of the hypercubic lattices, this
is the body-diagonal direction. More specifically, if we denote
the unit vector along the a axis by ea, we consider a field along
eBD ≡ ∑

a ea. As we will mention below, the Bethe lattice can
also mimic this situation.

In this paper, we consider four types of excitation proto-
cols, see Table I. The most basic one, which we call type 0,
is the conventional single-color electric field excitation. This
corresponds to vi j (t ) = v0 exp[iA(t ) · ri j], with

A(t ) = eBDA0 sin(�t ). (2)
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TABLE I. Summary of excitation protocols.

Name Involved processes Relevant Eq.

Type 0 Single-color electric field Eq. (2)
Type 1 Two-color electric field Eq. (3)
Type 2 Single-color electric field Eq. (4)

+ single-color hopping modulation
Type 3 Two-color electric field Eq. (5)

+ single-color hopping modulation

This electric field excitation with frequency �, which is cho-
sen to be smaller than the Mott gap, represents the primary
excitation, and we try to suppress the associated heating (ab-
sorption) processes with additional weaker excitations. In the
case of type-1 excitations, we consider an additional electric
field excitation with frequency n1�, where n1 is an integer.
Specifically, we set vi j (t ) = v0 exp[iA(t ) · ri j], with

A(t ) = eBD[A0 sin(�t ) + A1 sin(n1�t + φ1)]. (3)

Here, φ1 is the phase shift of the second field relative to the
main drive. In type-2 excitations, we consider an additional
hopping modulation with frequency n2�, i.e., we set vi j (t ) =
v0[1 + δv(t )] exp[iA(t ) · ri j] with

A(t ) = eBDA0 sin(�t ),

δv(t ) = δv cos(n2�t + φ2). (4)

Here, φ2 is the phase shift of the hopping modulation. In
type-3 excitations, we use both an additional electric field
excitation with frequency n1� and a hopping modulation
with frequency n2�. This corresponds to vi j (t ) = v0[1 +
δv(t )] exp[iA(t ) · ri j], with

A(t ) = eBD[A0 sin(�t ) + A1 sin(n1�t + φ1)],

δv(t ) = δv cos(n2�t + φ2). (5)

B. Floquet Hamiltonians in the rotating frame
and suppression of absorption

The idea underlying the suppression of heating with multi-
color excitations is based on cancellations between different
excitation processes. Let us consider an excitation process
from |i〉 to | f 〉 using m photons from the electric field exci-
tation of frequency �, see Fig. 1(b). With additional fields
with higher harmonics of �, it is possible to create other
excitations from |i〉 to | f 〉, which can interfere with the main
excitation process. In the perturbative regime with respect
to the field strength, the amplitude of the m-photon process
of the main field is O(Am

0 ). The amplitude of the interfering
processes produced by the additional fields should be of the
same order. For example, the strength of an additional field
A′ with frequency m�, whose first-order processes interfere
with the m-photon processes of the �-frequency field, should
be A′ � O(Am

0 ). Hence, A′ can be much weaker than the main
field. For this reason, we refer to the additional fields as
auxiliary fields. Although such cancellations can be discussed
in detail within the framework of time-dependent perturbation

theory, an alternative and simpler option is to analyze the
Floquet Hamiltonian, as will be done below.

In the following, we consider subgap excitations where
U = l0� + �U (l0 is an integer) and assume that |U |,� 	
|v0|, |�U |. Following Ref. [43], we can derive the effective
Floquet Hamiltonian, applying the high-frequency expansion
in a rotating frame. This procedure allows us to deal with
the effects of U and � on equal footing, and the resultant
effective Hamiltonian naturally includes the absorption pro-
cesses and the exchange couplings from virtual excitations
due to periodic excitations, as seen below. First, introducing
U0 ≡ l0�, we switch to the rotating frame defined by a unitary
transformation Û (t ) = exp(−iU0t

∑
j n̂ j↑n̂ j↓) by calculating

|ψ rot (t )〉 = Û†(t )|ψ (t )〉. The resultant Hamiltonian in the ro-
tating frame (Ĥ rot (t ) = Û†(t )Ĥ (t )Û (t ) + i(∂t Û†(t ))Û (t )) is

Ĥ rot (t ) = −
∑

〈i, j〉,σ
{vi j (t )ĝi jσ + [vi j (t ) exp(iU0t )ĥ†

i jσ + H.c.]}

+ �U
∑

j

n̂ j↑n̂ j↓. (6)

Here, we introduced ĝi jσ = (1 − n̂iσ̄ )ĉ†
iσ ĉ jσ (1 − n̂ jσ̄ ) +

n̂iσ̄ ĉ†
iσ ĉ jσ n̂ jσ̄ and ĥ†

i jσ = n̂iσ̄ ĉ†
iσ ĉ jσ (1 − n̂ jσ̄ ). The former

operator does not change the number of doublons and
holons, and the latter is the generator of them. Assuming
� 	 |v0|, |�U |, we apply the high-frequency expansion to
the Hamiltonian in Eq. (6) and obtain the effective Floquet
Hamiltonian

Ĥeff = Ĥ rot
0 +

∑
l>0

[
Ĥ rot

l , Ĥ rot
−l

]
l�

+ O

(
1

�2

)
. (7)

Here, Ĥ rot (t ) = ∑
l Ĥ rot

l eil�t . We note that this effective
Hamiltonian can describe the stroboscopic time evolution of
the system [44]. To express Ĥ rot

l , we introduce the Fourier
components A(l ) defined by vi j (t ) = v0

∑
l A

(l )
i j eil�t and set

B(l )
i j ≡ A(l−l0 )

i j , where vi j (t ) exp(iU0t ) = v0
∑

l A
(l )
i j exp[i(l +

l0)�t] = v0
∑

l B
(l )
i j eil�t is full-filled.

The lowest-order Hamiltonian is

Ĥ rot
0 = −v0

∑
〈i j〉σ

{
A(0)

i j ĝi jσ + [
B(0)

i j ĥ†
i jσ + H.c.

]}

+�U
∑

j

n̂ j↑n̂ j↓. (8)

Remember that B(0)
i j = A(−l0 )

i j is a Fourier component of the
time-dependent hopping amplitude of the original Hamilto-
nian in Eq. (1) and corresponds to the amplitude for the
instantaneous absorption of the energy l0�. For l 
= 0, we
have

Ĥ rot
l = −v0

∑
〈i j〉σ

{
A(l )

i j ĝi jσ + [
B(l )

i j ĥ†
i jσ + B(−l )∗

i j ĥi jσ
]}

. (9)

Therefore, as far as the leading-order Hamiltonian is con-
cerned, if B(0) = 0, there is no creation of doublons and
holons.
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FIG. 2. Schematic picture of excitation processes correspond-
ing to the doublon-holon creation/annihilation terms in the Floquet
Hamiltonian.

The second-order term O( v2
0

�
) can be expressed as Ĥ (2)

eff =
Ĥ (2)

eff,1 + Ĥ (2)
eff,2 + Ĥ (2)

eff,3, with

Ĥ (2)
eff,1 =

∑
l>0

v2
0

l�

⎡
⎣∑

〈i j〉σ
A(l )

i j ĝi jσ ,
∑

〈i′ j′〉σ ′
A(−l )

i′ j′ ĝi′ j′σ ′

⎤
⎦, (10a)

Ĥ (2)
eff,2 =

∑
l 
=0

v2
0

l�

[∑
〈i j〉σ

A(l )
i j ĝi jσ ,

∑
〈i′ j′〉σ ′

[
B(−l )

i′ j′ ĥ†
i′ j′σ ′ +B(l )∗

i′ j′ ĥi′ j′σ ′
]]

,

(10b)

Ĥ (2)
eff,3 =

∑
l 
=0

v2
0

l�

⎡
⎣∑

〈i j〉σ
B(l )

i j ĥ†
i jσ ,

∑
〈i′ j′〉σ ′

B(l )∗
i′ j′ ĥi′ j′σ ′

⎤
⎦. (10c)

Here, Ĥ (2)
eff,2 describes the creation and annihilation processes

of doublons and holons and is relevant for absorption (heat-
ing) processes [45]. The remaining terms do not change the
number of doublons and holons and govern the low-energy
physics, which we discuss in detail in the next section. The
full expressions for Ĥ (2)

eff,2 and Ĥ (2)
eff,3 are given in Appendix B.

Note that the expressions in Eqs. (8)–(10) are generic and not
limited to electric field excitations along eBD.

Now let us discuss the meaning of the d-h
creation/annihilation terms in the effective Floquet
Hamiltonian, i.e., Eqs. (8) and (10). Firstly, these terms
only describe the l0� absorption processes, while possible
l ( 
= l0)� absorption processes are not included. To express
the latter processes, one needs to consider the effective
Hamiltonian in the rotating frame of eil�. Secondly, A(l )

corresponds to simultaneous l� excitations, as can be
seen from its definition. Therefore, the leading order d-h
creation/annihilation processes in Eq. (8) correspond to the
simultaneous absorption of l0�, while the next-leading-order
terms in Eq. (10b) correspond to the absorption of l� and
(l0 − l )� at different times, see Fig. 2. Thirdly, A(l ) already
includes the contribution from different excitation processes
since v(t ) depends in a nonlinear manner on A(t ), see
Eqs. (19) and (21) below, for example. This allows us to
suppress some A(l ) by tuning the parameters of the auxiliary
fields. We also emphasize that the effective Hamiltonian can
be applied in the nonperturbative regime with respect to the
field strength.

We note that the effects of the interference between the
main field and the auxiliary fields can appear in the ef-
fective Floquet Hamiltonian at different levels. On the one
hand, it can affect the value of A(l ) and thus can modify the
coefficients of the d-h creation/annihilation terms. On the
other hand, interferences can also occur between different

processes expressed by different terms in the effective Hamil-
tonian. In the following, to find the conditions for the efficient
suppression of heating, we follow the strategy to suppress the
d-h creation/annihilation terms in the Floquet Hamiltonian or-
der by order. This strategy should work in the high-frequency
limit (� 	 |v0|, |�U |), but for moderate values of �, it is
not a priori clear how well this strategy works. For example,
a condition which eliminates the leading-order terms may
enhance contributions from the next order. Furthermore, this
strategy does not consider the potential interferences between
the different processes described by the terms representing
different orders. It aims to suppress the l0� absorption pro-
cesses only, which is reasonable when such processes are
the dominant ones. We also note that the auxiliary field may
enhance or suppress l� (l 
= l0) absorptions. Despite these
potential difficulties, we will show that the Floquet Hamilto-
nian serves as a useful guide to determine conditions for the
efficient suppression of heating in the present system.

For an electric field excitation along eBD, A(l )
i j can take only

two possible values for a given l , namely, A(l )
ea

or A(l )
−ea

. In

the following, we denote them by A(l )
e and A(l )

−e, respectively.
The same notation is used for B(l )

i j . With this, the coefficients

appearing in Ĥ (2)
eff,2 can be classified into the following four

cases and their complex conjugates:

I (dh)
1 =

∑
l 
=0

1

l
A(l )

e B(−l )
e , I (dh)′

1 =
∑
l 
=0

1

l
A(l )

−eB(−l )
−e ,

I (dh)
2 =

∑
l 
=0

1

l
A(l )

e B(−l )
−e , I (dh)′

2 =
∑
l 
=0

1

l
A(l )

−eB(−l )
e . (11)

The relevant question then becomes how to suppress B(0) and
these coefficients.

C. Floquet-engineered exchange couplings

From Ĥ (2)
eff,1 + Ĥ (2)

eff,3, one can obtain the effective model for

the low-energy physics. Here, Ĥ (2)
eff,3 includes the exchange

terms for spins and pseudospins (doublons and holons), which
control the low-energy physics if O(|U |) absorption from the
equilibrium state is absent. These terms yield Heisenberg-type
Hamiltonians both in the repulsive and attractive cases. To
simplify the expression of the Hamiltonian, we focus on the
case where A(l )

e = A(l )
−e(−)l and these coefficients are real.

This condition is fulfilled for the four excitation protocols
mentioned above if φ1 = φ2 = 0, n1 = odd, and n2 = even.
We mainly focus on this situation in the following. We note
that this condition implies I (dh)′

1 ∝ I (dh)
1 , I (dh)′

2 ∝ I (dh)
2 , and

Ĥ (2)
eff,1 = 0.

When U is repulsive, the low-energy physics is described
by the spin degrees of freedom. From Ĥ (2)

eff,3 (see Appendix B),
the low-energy Hamiltonian consisting of the spin exchange
terms can be expressed as

Ĥspin = J (HE)
s

∑
(i j)

ŝi · ŝ j . (12)
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Here, (i j) indicates a pair of neighboring sites, (i j) = ( ji) and

J (HE)
s =

∑
l 
=0

4v2
0

l�

∣∣B(l )
e

∣∣2
. (13)

The spin operators are ŝ = 1
2

∑
α,β=↑,↓ ĉ†

ασαβ ĉβ , with σ de-
noting the Pauli matrices. HE stands for high-frequency

expansion. In equilibrium, J (HE)
s = 4v2

0
U0

> 0 since B(l0 ) = 1.
In a system with strong attractive interactions, the equi-

librium state favors doublons or holons. To express the
low-energy Hamiltonian, we introduce the pseudospins de-
fined in the space of these local states as η̂+

i = (−)iĉ†
i↓ĉ†

i↑,

η̂−
i = (−)iĉi↑ĉi↓ and η̂z

i = 1
2 (n̂i − 1). Here, (−)i = 1 for the

A sublattice, and (−)i = −1 for the B sublattice. The low-
energy Hamiltonian can be expressed as

Ĥdh = J (HE)
η,XY

∑
(i j)

(
η̂x

i η̂
x
j + η̂

y
i η̂

y
j

) + J (HE)
η,Z

∑
(i j)

η̂z
i η̂

z
j, (14)

where

J (HE)
η,XY = −

∑
l 
=0

4v2
0

l�
B(l )

e B(l )
−e, (15a)

J (HE)
η,Z = −

∑
l 
=0

4v2
0

l�
|B(l )

e |2. (15b)

In equilibrium, J (HE)
η,XY = J (HE)

η,Z = − 4v2
0

U0
> 0, which can be con-

nected to the spin SU(2) symmetry in the repulsive Hubbard
model via the Shiba transformation. However, under the elec-
tric field, J (HE)

η,XY 
= J (HE)
η,Z in general [46]. We again note that

these expressions are justified when �, |U | 	 v0, |�U |. For
the following analysis, we introduce I (ex)

1 = ∑
l 
=0

1
l |B(l )

e |2 and

I (ex)
2 = ∑

l 
=0
1
l B(l )

e B(l )
−e.

On the other hand, for �, |U |, |�U | 	 |v0|, we obtain
slightly different expressions for the exchange couplings. In
this case, we consider the Floquet space (extended Hilbert
space with photodressed states) and apply degenerate pertur-
bation theory [16,46]. For example, for U > 0, starting from
states with only singly occupied sites, we consider virtual
excitations to states with a d-h pair dressed with l photons,
where the transition amplitude is proportional to A(−l ). As a
result, we have Ĥspin = J (P)

s

∑
(i j) ŝi · ŝ j , with

J (P)
s =

∑
l

4v2
0

U − l�

∣∣A(−l )
e

∣∣2
. (16)

Similarly, for U < 0, we have Ĥdh = J (P)
η,XY

∑
(i j)(η̂

x
i η̂

x
j +

η̂
y
i η̂

y
j ) + J (P)

η,Z

∑
(i j) η̂

z
i η̂

z
j , with

J (P)
η,XY = −

∑
l

4v2
0

U − l�
A(−l )

e A(−l )
−e , (17a)

J (P)
η,Z = −

∑
l

4v2
0

U − l�

∣∣A(−l )
e

∣∣2
. (17b)

Note that these expressions break down at the resonance con-
dition U = l0�, but without the diverging term l = l0, J (P)

becomes equal to J (HE). The same expression can be obtained
by introducing �0 such that � = k0�0 and U = l0�0, where

k0 and l0 have no common integer factor >1. More specif-
ically, we consider the rotating frame of eiUt and apply the
high-frequency expansion in terms of �0 [43]. For practical
values of |U | and off-resonant conditions, it is not a priori
clear whether Eqs. (13) and (15) or Eqs. (16) and (17) provide
a better description of the low-energy properties.

D. Assessment of the different protocols

In this section, we evaluate A(l )
e (= A(−l )∗

−e ) for each excita-
tion protocol and determine the condition for the suppression
of the d-h creation terms in the Floquet Hamiltonian.

1. Type-1 excitation

In the type-1 protocol, in addition to the basic excitation
by an electric field with frequency �, we consider an electric
field excitation of the form given in Eq. (3). Then we have

A(l )
e = 1

2π

∫ 2π

0
exp{i[A0 sin(τ )+A1 sin(n1τ + φ1)−lτ ]}dτ.

(18)

If φ1 = 0, A(l )
e is real, while without this condition, this is

not guaranteed. Therefore, to set the d-h creation term in the
leading order to zero (B(0) = 0), φ1 = 0 is favorable, and we
will focus on this case in the following. Let us introduce the
function

F (1)[A0, A1, n1, l]

= 1

2π

∫ 2π

0
cos[A0 sin(τ ) + A1 sin(n1τ ) − lτ ]dτ, (19)

with A(l )
e = F (1)[A0, A1, n1, l]. Then B(0)

e =
B(0)

−e = 0 is equivalent to F (1)[A0, A1, n1,−l0] =
F (1)[−A0,−A1, n1,−l0] = 0. To realize this, n1 = odd is
favorable since

F (1)[−A0,−A1, n1, l] = F (1)[A0, A1, n1,−l]

= F (1)[A0, (−)n1+1A1, n1, l](−)l .

(20)

Intuitively, this condition can be associated with a parity ar-
gument. The auxiliary field A1 provides additional excitation
pathways at the energy of n1�. This is a parity-odd process.
On the other hand, the corresponding process using the A0

field requires n1 times the absorption of the �-frequency
electric field excitation. Thus, its parity is (−)n1 . Interference
between these processes can be expected if n1 is odd. Oth-
erwise, the excitations involving these two processes end up
with different final states.

Since we have only one auxiliary field, the condition which
sets B(0) to zero determines the parameter of the auxiliary
field. We call this condition the optimal condition for the
type-1 protocol. Still, we note that it is not guaranteed that
this protocol indeed produces the smallest heating because
of the contributions from other processes mentioned in the
previous section. In Fig. 3, we illustrate how the coefficients
of the effective model scale as a function of A1. Here, we take
A0 = −1, n1 = 3, and l0 = 3, which corresponds to the 3�

absorption process, and we mainly disucss this case in the
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FIG. 3. (a) The coefficient of the doublon-holon
creation/annihilation term in the leading-order Floquet Hamiltonian,
i.e., B(0)

e = F (1)[A0, A1, n1, −l0], as a function of A1 for the type-1
protocol. (b) The coefficients of the next-order terms in the Floquet
Hamiltonian as a function of A1 for the type-1 protocol. Here, we
use A0 = −1, n1 = 3, and l0 = 3.

following sections. One can see that, to minimize |B(0)|, |A1|
much smaller than A0 is sufficient. In the perturbative regime
with respect to the field strength, B(0) scales as O(Al0

0 ) for
the type-0 excitation. To cancel this term with A1, we need
A1 = O(Al0

0 ). Thus, if A0 remains close to the perturbative
regime, we only need small |A1| to minimize |B(0)|.

2. Type-2 excitation

In the type-2 protocol, on top of the basic electric field ex-
citation, we consider an auxiliary hopping modulation of the
form given in Eq. (4). In this case, we have A(l )

e = Jl (A0) +
δv

2 [exp(iφ2)Jl−n2 (A0) + exp(−iφ2)Jl+n2 (A0)]. Here, Jl is the
lth-order Bessel function. If φ2 = 0, A(l )

e is real, while for
other choices, this is not guaranteed. Therefore, to make
B(0)

e = B(0)
−e = 0, φ2 = 0 is favorable, and we focus on this

case in the following. We introduce

F (2)[A0, δv, n2, l] = Jl (A0) + δv

2
[Jl−n2 (A0) + Jl+n2 (A0)].

(21)

Here, B(0) = 0 corresponds to F (2)[A0, δv, n2,−l0] =
F (2)[−A0, δv, n2,−l0] = 0. For this, n2 = even is favorable
since

F (2)[−A0, δv, n2, l] = F (2)[A0, δv, n2,−l]

= F (2)[A0, (−)n2δv, n2, l](−)l . (22)

This condition can be associated with a parity argument, as in
the case of the type-1 excitation. The only difference is that
the hopping process is an even-parity process.

Since we have only one auxiliary field, the condition
B(0) = 0 determines the parameter of this auxiliary field. We
call this condition the optimal condition for the type-2 proto-
col. In Fig. 4, we illustrate how the coefficients of the effective
model scale as a function of A1. Here, we take A0 = −0.6,
n2 = 2, and l0 = 2, which corresponds to the 2� absorption
process discussed in the following sections. Note that, in the
perturbative regime, δv for the optimal condition scales as
O(An2

0 ).

3. Type-3 excitation

In the type-3 protocol, on top of the basic electric field
excitation, we consider an auxiliary electric field excitation

FIG. 4. (a) The coefficient of the doublon-holon
creation/annihilation term in the leading-order Floquet Hamiltonian,
i.e., B(0)

e = F (2)[A0, δv, n2, −l0], as a function of δv for the type-2
protocol. (b) The coefficients of the next-order terms in the Floquet
Hamiltonian as a function of δv for the type-2 protocol. Here, we use
A0 = −0.6, n2 = 2, and l0 = 2.

and an auxiliary hopping modulation as defined in Eq. (5).
In other words, this protocol is the combination of the type-1
and 2 protocols. Here, we set the phase shifts φ1 and φ2 to
zero from the beginning. We introduce

F (3)[A0, A1, δv, n1, n2, l]

= 1

2π

∫ 2π

0
[1 + δv cos(n2τ )]

× exp{i[A0 sin(τ ) + A1 sin(n1τ )]}e−iτ dτ

= F (1)[A0, A1, n1, l] + δv

2
{F (1)[A0, A1, n1, l + n2]

+ F (1)[A0, A1, n1, l − n2]}. (23)

Then we have A(l )
e = F (3)[A0, A1, δv, n1, n2, l]. This function

satisfies

F (3)[−A0,−A1, δv, n1, n2, l]

= F (3)[A0, A1, δv, n1, n2,−l]

= F (3)[A0, (−)n1+1A1, (−)n2δv, n1, n2, l](−)l . (24)

Thus, to set the leading-order terms to zero for all bonds, n1 =
odd and n2 = even are favorable.

In Fig. 5(a), we show B(0) in the plane of A1 and δv .
Here, we use A0 = −1, n1 = 3, n2 = 2, and l0 = 3, which
corresponds to the 3� absorption process mainly discussed in

FIG. 5. (a) The coefficient of the doublon-holon
creation/annihilation term in the leading-order Floquet Hamiltonian,
B(0)

e = F (3)[A0, A1, δv, n1, n2, −l0], as a function of A1 and δv for
the type-3 protocol. The solid blue line indicates the parameters
that correspond to B(0)

e = 0. (b) The coefficients of the next-order
terms in the Floquet Hamiltonian as a function of A1 for the type-3
protocol. We use A0 = −1, n1 = 3, n2 = 2, and l0 = 3.
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the following sections. The solid blue line indicates the con-
dition for B(0) = 0. In Fig. 5(b), we show the coefficients of
the next-order terms in the Floquet Hamiltonian as a function
of A1 along the B(0) = 0 line in Fig. 5(a). As can be seen,
there is a point where both I (dh)

1 and I (dh)
2 are suppressed,

although they are not exactly zero. We choose the condition
that minimizes |I (dh)

1 |2 + |I (dh)
2 |2 as the optimal condition for

the type-3 protocol.

III. RESULTS

A. General remarks

In this section, we analyze how well the suppression of
heating with multicolor excitations works for the one-band
Hubbard model. To this end, we simulate the time evolution
of the system under periodic excitations using nonequilibrium
DMFT [37,38], which becomes reliable in the limit of high
spatial dimensions, using the noncrossing approximation as
the impurity solver [47]. Our implementation is based on the
open-source library NESSi [48]. To reduce the computational
cost of the simulations and enable systematic analyses, we
consider the Bethe lattice in the following. We set the band-
width of the free particle (U = 0) problem to W = 4 and the
interaction |U | = 15. Note that we mainly focus on subgap
excitations, i.e., � is smaller than the gap. The interaction
is chosen such that, near the resonance condition |U | = 3�

(|U | = 2�), there are no other relevant absorption processes
with l� 
= 3� (l� 
= 2�) but that � is reasonably small
under this condition. In the Bethe lattice, the effects of the
electric field can be taken into account by considering two
types of bonds connected to the effective impurity site, which
are parallel and antiparallel to the external field, respectively.
This treatment mimics the electric field applied to the body-
diagonal direction in hypercubic lattices. Since the technical
aspects have been discussed in previous works [49–52], we
skip the details here. In Appendix A, we show the results
for the system on the two-dimensional (2D) square lattice
and confirm that the Bethe lattice and the 2D square lattice
produce the qualitatively same results.

(AFM)
(AFM)

FIG. 6. Local single-particle spectral functions for U = 15 and
U = −15 in equilibrium at T = 0.02. For U = 15, the system is
in an antiferromagnetic (AFM) state with spins aligned along the z
direction. For U = −15, the system is in a superconducting (SC)
state with a real order parameter. The red solid and dashed lines
overlap.

FIG. 7. The difference of the total energy from its equilibrium
value (�Etot) and the value of the order parameter (mz or φre) in the
plane of the excitation frequency � and the field strength E0/� (=
−A0). These physical quantities are averaged over a time interval
2π/� around t = 50, the type-0 excitation is used, and the initial
temperature is T = 0.02. (a) and (b) show results for U = 15, where
the initial state is an antiferromagnetic state with spins aligned along
the z direction. (c) and (d) show results for U = −15, where the
initial state is a superconducting state with real order parameter. The
vertical dashed lines indicate � = |U |/3 and the vertical dot-dashed
lines indicate � = |U |/2.

B. Equilibrium state at t = 0

One of the major goals of Floquet engineering is to control
the low-energy physics. Thus, we choose as initial equilib-
rium states at t = 0 ordered states and see how the order
evolves under external fields at t > 0. In practice, we use
U = 15 or −15 and set the initial temperature low enough
(T = 0.02), so that the corresponding order parameters are
almost saturated. For U = 15, the initial state is in the an-
tiferromagnetic (AFM) phase, with spins ordered along the
z direction. The corresponding order parameter is mz(t ) =
1
2 〈n̂i↑(t ) − n̂i↓(t )〉. For U = −15, we choose the initial state
in the superconducting (SC) phase with real order param-
eter φre(t ) = Re〈ĉ†

i↑(t )ĉ†
i↓(t )〉. In Fig. 6, we show the local

single-particle spectral functions of these states. We plot
Aσ (ω) = − 1

π
ImGR

σ (ω), where GR
σ (ω) is the Fourier transform

of GR
σ (t ) ≡ −iθ (t )〈[ĉi,σ (t ), ĉ†

i,σ (0)]+〉. Here, θ (t ) is the Heav-
iside function, and [, ]+ indicates the anticommutator. In both
cases, the band gap is ∼11, while the separation between the
bottom of the lower band and the top of the upper band is ∼20.
The peak structures in the upper and lower Hubbard bands in
the AFM phase correspond to spin polarons which appear due
to the spin-charge coupling in this system [53–55]. Since the
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FIG. 8. (a,d) Evolution of the difference of the total energy from its equilibrium value �Etot , (b,e) that of the number of doublons
nd , and (c,f) that of the staggered magnetization mz under periodic excitations with � = U/3. Here, we set U = 15 and the initial
temperature to T = 0.02, where the initial state is antiferromagnetically ordered with spins aligned along the z direction. The parameters
of the main electric field excitation are � = 5 and A0 = −1 (E0 = 5). For (a)–(c), we use the type-1 protocol with l0 = 3 and n1 = 3.
These panels share the legend, which indicates the values of the auxiliary electric field. For (d)–(f), we use the type-3 protocol with
l0 = 3, n1 = 3, and n2 = 2, and the strength of the auxiliary electric field and hopping modulation is chosen such that the doublon-holon
creation term vanishes in the leading order. These panels share the legend, and the parameters of the auxiliary fields are (E1, δv ) =
(0.6, −0.157), (1.2, −0.223), (1.49, −0.255), (1.8, 0.289), (2.4,−0.354), but only the values of the auxiliary electric field are shown.
The thick blue lines correspond to the optimal conditions for each protocol, as predicted by the Floquet Hamiltonian.

AFM phase for U > 0 and the SC phase for U < 0 are re-
lated by a particle-hole transformation (Shiba transformation),
there are corresponding structures also in the spectrum of the
SC phase.

C. Suppression of heating

Now we apply the external fields to the abovementioned
initial states. In practice, we multiply the time periodic ex-
pressions for δv(t ) and A(t ), i.e., Eqs. (2)–(5), by an envelope
function F (t ; tr ) to smoothly switch the Hamiltonian from the
equilibrium one to the time-periodic one within a time tr . The
specific form of the ramp function is F (t ; tr ) = θ (tr − t )[ 1

2 −
3
4 cos(πt/tr ) + 1

4 cos(πt/tr )3] + θ (t − tr ), and we set tr = 2.
Note that our choice of tr is short enough that it does not
qualitatively affect the discussion below, which focuses on the
dynamics under periodic excitations.

First, we show how the total energy and the order param-
eters evolve without auxiliary excitations. In Fig. 7, we show
the difference of the total energy from its equilibrium value
and the order parameters averaged around t = 50 in the plane
of the frequency � and the excitation strength E0/� (= −A0).
Without excitations, the values of the order parameters are
∼0.5. In both the repulsive and attractive cases, the total
energy resonantly increases around |U | � 3� and 2�, and
accordingly, the order parameters are reduced substantially.
The strong heating and melting of the order are caused by 3�

and 2� absorption processes. Our goal is to suppress these
absorption processes with auxiliary excitations.

1. Suppression of 3� absorption

We focus first on the 3� absorption and consider the exci-
tation protocols with l0 = ±3, n1 = 3, and n2 = 2. In Fig. 8,

we show the evolution of the difference of the total energy
from its equilibrium value �Etot, that of the number of dou-
blons nd = 〈n̂i↑n̂i↓〉, and that of the staggered magnetization
mz for the type-1 and 3 protocols. Here, we set U = 15,

� = 5, and E0 = 5. In Fig. 9, we plot nd and mz averaged
around t = 50 as a function of the strength of the auxiliary
electric field E1 for the type-1 and 3 protocols. In the case
of the type-1 protocol, the increase of �Etot and nd as well
as the melting of the AFM order become slowest when the
condition for B(0) = 0 is met, i.e., for the optimal condition
for the type-1 protocol. Remember that we set the phase of
the auxiliary field φ1 to zero. We numerically confirmed that
the heating and melting of the order become stronger with
nonzero φ1 (not shown), as we expected in Sec. II D 1.

On the other hand, for the type-3 protocol, we change
the parameters such that B(0) = 0 is always satisfied. The
results show that the increase of �Etot and nd and the melt-
ing of the AFM order become slowest when the next-order
d-h creation terms of the Floquet Hamiltonian are strongly
suppressed, i.e., for the optimal condition for the type-3 pro-
tocol. In both protocols, �Etot and nd behave similarly, which
indicates that, in the present large-U regime, the dominant
heating process is the d-h creation. The renormalization of
the single-particle spectrum caused by the excitations is dis-
cussed in Appendix D. The attractive model also shows the
same behavior as Figs. 8 and 9. Note that, for the present
parameters, the coefficients of the d-h creation terms in the
leading and the next-leading order are comparable, see Fig. 3.
The success of the strategy of suppressing these terms order
by order indicates that there is no significant interference
between the processes described by the different terms in the
effective Hamiltonian. Also, the change in the coefficients of
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FIG. 9. Number of doublons and staggered magnetization aver-
aged over a time interval 2π

�
around t = 50 as a function of the

strength of the auxiliary electric field (E1). We set U = 15 and the
initial temperature to T = 0.02, where the initial state is antiferro-
magnetic. The parameters of the main electric field excitation are
� = 5 and A0 = −1. For (a), we use the type-1 protocol with l0 = 3
and n1 = 3. For (b), we use the type-3 protocol with l0 = 3, n1 = 3,
and n2 = 2, and the strength of the auxiliary electric field and hop-
ping modulation is chosen such that the doublon-holon creation term
vanishes in the leading order. The dashed lines indicate the optimal
conditions for each protocol.

the d-h creation terms of higher orders should be moderate
when we adjust the auxiliary field to suppress the low-order
terms.

Let us note that a similar suppression of heating by multi-
color driving is also observed for even larger U , see Appendix
C. It can be well explained by the Floquet Hamiltonian how
physical quantities for each protocol scale with U . The fact
that the Floquet Hamiltonian provides a good description indi-
cates that the observed heating process can be associated with
the Floquet prethermalization process [45,56]. Higher-order
processes are expected to drive the system toward the infinite
temperature state on longer time scales, where the description
based on the Floquet Hamiltonian is no longer valid [56].

In Figs. 10(a) and 10(b), we compare the evolution of
the order parameters for the type-0 excitation, the optimal
type-1 excitation, and the optimal type-3 excitation. Here,
we also show the results for the optimal type-2 excitation
for completeness. The optimal type-1 and 2 excitations can
be regarded as unoptimized cases for the type-3 excitation.
Although the effect of the auxiliary drive depends on the order,
with the type-3 excitation, melting of the order is strongly
suppressed both in the repulsive and attractive models. We
also note that, for the type-2 excitation, one finds that the

FIG. 10. Time evolution of the order parameters under the type-
0, 1, 2, and 3 protocols with optimal parameters. Here, l0 = ±3,
n1 = 3, and n2 = 2. In panel (a), the system parameters and exci-
tation conditions are the same as in Fig. 8. In panel (b), the excitation
conditions are the same as in (a), but we use U = −15 and choose as
the initial state the superconducting state with real order parameter
at T = 0.02.

optimal condition predicted by the Floquet Hamiltonian (δv =
−0.0889 in the case of Fig. 10) indeed leads to an efficient
suppression of heating both for the AFM and SC phases.
However, for the SC phase, it turns out that heating can be fur-
ther suppressed by decreasing δv from −0.0889 (not shown).
This may be because both I (dh)

1 and I (dh)
2 are further reduced

simultaneously, unlike in the case of the type-1 protocol, see
Fig. 3.

In Fig. 11, we compare the values of order parameters av-
eraged around t = 50 obtained by the type-0 and 3 protocols.
For the type-3 calculations, the optimal parameters are used.
Around � = 5, the melting of the order is strongly suppressed
by the auxiliary drives for both U = 15 and −15, which can
be attributed to the suppression of the 3� absorption, as dis-
cussed above. Around � = 6–8, one can also observe a slower
melting. However, in this regime, 2� absorption can also
happen. To fully discuss the conditions for the suppression of
the 2� absorption, one needs to consider the effective model
in the ±2� rotating frame. Around � = 4, the melting speed
is increased, which may be attributed to the enhancement of
the 4� absorption processes by the auxiliary excitations.

We note that the behavior of the total energy is almost
the same as that of the order parameter (not shown). More
specifically, the suppression of the order parameters is ac-
companied by an increase of the total energy. These results
demonstrate that the Floquet Hamiltonian for a given ro-
tating frame serves as a useful guide for protocols which
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FIG. 11. The value of the order parameters (mz or φre) averaged
around t = 50 for (a,b) U = 15 and (c,d) U = −15 in the plane of
the excitation frequency � and the field strength E0/� (= −A0 ). We
focus on the regime around |U | = 3�. In panels (a) and (c), the type-
0 excitation is used, while in (b) and (d), the type-3 excitation with
the optimal parameters for l0 = ±3, n1 = 3, and n2 = 2 is used. The
vertical dashed lines indicate � = |U |/3. The other conditions and
the color code are the same as in Fig. 7.

suppress the corresponding absorption via multicolor excita-
tions, but auxiliary excitations can both suppress or enhance
other absorptions.

2. Suppression of 2� absorption

Next, we try to suppress the 2� absorption using the type-2
protocol with l0 = ±2 and n2 = 2. In Fig. 12, we show the
evolution of the order parameters and the deviation of the total
energy from its equilibrium value, both for U > 0 and U < 0
and for the indicated values of δv . Here, we use |U | = 15, � =
7.5, and A0 = −0.6. The rate of increase in the total energy
and the speed of melting of the order parameters are slowest
when the leading-order d-h creation terms become zero, i.e.,
when B(0) = 0.

The suppression of heating is more effective for the SC
phase than for the AFM phase. We note that the next leading
d-h creation/annihilation terms remain nonzero in the optimal
condition, see Fig. 4. The difference between AFM and SC
should be attributed to how these terms act on the different or-
dered phases. Remember that we set the phase of the auxiliary
field φ2 to zero. We numerically confirmed that the heating
and melting of the orders becomes stronger with nonzero φ2

(not shown), as we expected in Sec. II D 2.
We summarize the results in Fig. 13, where we compare

the values of order parameters at t = 50 around |U | � 2�

between the type-0 protocol and the type-2 protocol with

(AFM) (AFM)

FIG. 12. (a,c) Time evolution of the deviation of the total energy
from its equilibrium value �Etot and (b,d) that of the order param-
eters for type-2 protocols with l0 = ±2, n2 = 2, and the indicated
values of δv . The parameters of the main drive are � = 7.5 and
A0 = −0.6 (E0 = 4.5). All panels share the legend. In (a) and (b),
we set U = 15 and the initial temperature to T = 0.02, so that the
initial state is antiferromagnetic (AFM) with spins aligned along the
z direction. In (c) and (d), we set U = −15 and the initial temperature
to T = 0.02, where the initial state is a superconducting (SC) state
with real order parameter. The thick blue lines correspond to the
optimal conditions predicted by the Floquet Hamiltonian.

FIG. 13. The values of the order parameters (mz or φre) averaged
around t = 50 for (a,b) U = 15 and (c,d) U = −15 in the plane of
the excitation frequency � and the field strength E0/� (= −A0). We
focus on the regime around |U | = 2�. In panels (a) and (c), the type-
0 excitation is used, while in (b) and (d), the type-2 excitation with
the optimal parameters for l0 = ±2 and n2 = 2 is used. The vertical
dot-dashed lines indicate � = |U |/2. The other conditions and the
color code are the same as in Fig. 7.
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the optimal parameters. For both U = 15 and −15, the 2�

absorption is suppressed. As expected from Fig. 12, the sup-
pression is strong for U < 0 (the SC phase). In addition, we
checked that the behavior of the total energy is almost the
same as that of the order parameter (not shown).

D. Extraction of exchange couplings

In this section, we illustrate how the suppression of heat-
ing helps us to observe the modification of the low-energy
physics due to the virtual excitations induced by the periodic
excitations. In the present systems, this low-energy physics
is characterized by the exchange couplings between the
spins or pseudospins in the repulsive and attractive regimes,
respectively. As discussed in previous works [16,57], one
way to measure the exchange couplings is to compare the
(pseudo-)spin dynamics obtained from DMFT with the mean-
field (MF) dynamics of the Heisenberg (XXZ) spin models,
i.e., the solution of a Landau-Lifshitz (LL) equation.

We first discuss how the measurement of the exchange
coupling works for repulsive U . Note that the periodic excita-
tion does not break the SU(2) symmetry. When the exchange
coupling is modified by the periodic excitations, a spin
precession occurs if we additionally apply a homogeneous
magnetic field. If we assume that the homogeneous magnetic
field is applied along the x direction, the spin model can
be written as Ĥspin(t ) = Jex(t )

∑
(i, j) ŝi ŝ j + Bxex

∑
i ŝi. The

MF Hamiltonian becomes ĤMF
spin = ∑

i Beff
i ŝi, where Beff

i =
Jex(t )

∑
δ si+δ (t ) + Bxex. Here, s(t ) is the expectation value

of ŝ, and δ indicates the neighboring sites. Then the corre-
sponding LL equation becomes ∂t si(t ) = Beff

i (t ) × si(t ). In
the present case, we have the relation sA,y,z = −sB,y,z and
sA,x = sB,x (A and B are sublattice indices). From this, we
obtain

ZJex = − B0

2sx
− ṡy

2sxsz
. (25)

Here, ṡy is the time derivative, Z is the number of neighboring
sites, and we omit the time indices. In the previous works, this
equation has been used to discuss the effects of photodoping
[57] or periodic excitations on the exchange interactions [16].
In this paper, we apply the above formula to the time-averaged
values of s(t ), s̄(t ) ≡ 1

Tp

∫ t+Tp/2
t−Tp/2 s(t )dt , where Tp = 2π

�
, to

eliminate effects related to the micromotion.
In Fig. 14(a), we show the resultant values of Jex(t ) for dif-

ferent excitation protocols for U = 15, � = 5, and A0 = −1.
For this parameter set, the Floquet Hamiltonian produces an
enhanced Jex(t ) compared with the equilibrium value, due to
the virtual excitations associated with the periodic excitations.
For the type-0 protocol, the value initially matches J (HE)

s , but
Jex(t ) gradually decreases with time. For the type-1 protocol,
the tendency is the same, but the deviation from the expected
exchange coupling is less severe. For the type-3 protocol,
Jex(t ) remains close to the expected coupling within the time
range studied here. The deviation from the expected value can
be attributed to the photodoping. In Ref. [57], it was pointed
out that photodoping effectively reduces Jex, like chemical
doping. This behavior can be intuitively understood since the
doping reduces the number of singly occupied sites, so that

FIG. 14. (a) Time evolution of the exchange coupling evalu-
ated from Eq. (25) for U = 15, � = 5, A0 = −1, and Bx = 0.1. The
dashed lines indicate J (HE)

s [Eq. (13)], while the solid black line
indicates the equilibrium value of the exchange coupling. Here, we
set l0 = n1 = 3 and n2 = 2. (b) The estimated exchange couplings as
a function of � at t = 30 for U = 15, A0 = −1, and Bx = 0.1. Here,
the type-3 excitation with the optimal parameters for l0 = n1 = 3 and
n2 = 2 is used. The dashed lines show J (HE)

s [Eq. (13)], while colored
solid curves show J (P)

s [Eq. (16)].

the probability of finding spins on neighboring sites which
develop correlations is reduced [58]. With the type-0 protocol,
as time evolves, more particles are excited across the gap to
reduce Jex, which competes with the effects of the virtual
excitations. The undesired photodoping (absorption) can be
suppressed with the type-1 and 3 protocols.

To summarize, in Fig. 14(b), we show how the estimated
Jex behaves at t = 30 near the U = 3� resonance. Let us
first discuss the behavior of the type-0 protocol. For this
protocol, the prediction from perturbation theory J (P)

ex shows
a divergence at U = 3� due to the virtual fluctuations to
the 3�-dressed states, while the prediction from the high-
frequency expansion J (HE)

ex is regular since the contribution
from such states is not included. However, both fail to explain
the actual behavior of Jex, which is strongly suppressed near
the resonance U = 3�. This can be attributed to the strong
enhancement of the density of photocarriers in this regime,
which is neither considered in J (HE)

ex nor in J (P)
ex . As for the

type-3 protocol, Jex is generally larger than the corresponding
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FIG. 15. Time evolution of the exchange coupling evaluated
from Eq. (26) for U = −15, � = 5, A0 = −1, Bx = 0.02, and Bz =
0.01. Here, the type-3 excitation with the optimal condition for
l0 = −3, n1 = 3, and n2 = 2 is used. The dashed lines indicate J (HE)

η,XY

and J (HE)
η,Z [Eq. (15)].

value for the type-0 protocol. The resonant reduction of Jex

around the resonance is absent, and Jex tends to increase with
increasing �. For the type-3 protocol, J (P)

ex is regular as a
function of � since the diverging term is suppressed due to
the condition B(0) = 0. Here, J (HE)

ex is also regular. Note that
J (HE)

ex becomes equal to J (P)
ex for the type-3 protocol at U = 3�.

Importantly, the behavior of the numerically evaluated Jex is
well explained by J (P)

ex for the type-3 protocol.
Remember that the conditions under which J (P)

ex and
J (HE)

ex are justified are different. Namely, |U |,�, |�U | 	 |v0|
is required for J (P)

ex , while |U |,� 	 |v0|, |�U | is required
for J (HE)

ex . The results show that, under the condition that
heating is well suppressed, J (P)

ex describes the low-energy
physics better than J (HE)

ex in practice. The qualitative difference
between the � dependence of J (HE)

ex and J (P)
ex can be attributed

to additional contributions from the �U term in the denomi-
nator in J (P)

ex , which are absent in J (HE)
ex .

As in the case of the AFM phase for U > 0, one can
measure the modified exchange couplings of the pseudospins
for U < 0 by comparing the DMFT results with the MF dy-
namics of the pseudospins: Ĥη-spin(t ) = Jη,XY (t )

∑
(i j)(η̂

x
i η̂

x
j +

η̂
y
i η̂

y
j ) + Jη,Z (t )

∑
(i j) η̂

z
i η̂

z
j + Bx

∑
i(−)iηx

i + Bz
∑

i(−)iηz
i .

Physically, the Bx term corresponds to a homogeneous pair
potential [remember the (−)i factor in the definition of η̂x

i ],
which favors the development of the real SC order parameter.
The Bz term corresponds to a staggered potential, which
favors the development of charge order. As in the case of
U > 0, one can consider the MF dynamics of this system,
which yields

ZJX = 1

2

[
Bx

ηx
+ η̇x

ηyηz
− η̇y

ηxηz

]
, (26a)

ZJZ = 1

2

[
2Bz

ηz
− Bx

ηx
+ η̇x

ηyηz
+ η̇y

ηxηz

]
. (26b)

In Fig. 15, we show the exchange couplings estimated from
these equations for the type-3 protocol with optimal param-
eters for U = −15, � = 5, and A0 = −1. One can see that
the measured JX and JZ match the predictions for J (HE)

η,X (=

J (P)
η,X) and J (HE)

η,Z (= J (P)
η,Z) well. Still, at some times, strong de-

viations from the predicted values are observed because ηy

becomes small for these times. We note that, with other ex-
citation protocols, the deviations from the expected values
are severe, which can again be attributed to the effect of
photodoping.

IV. CONCLUSIONS

In this paper, we showed that heating, which is a typ-
ically undesired side effect of Floquet engineering, can be
significantly suppressed using multicolor excitation proto-
cols and interference between different excitation pathways
in strongly correlated system. We focused on the one-band
Hubbard model and considered subgap but strong electric
field excitations with frequency � as the main drive. As
auxiliary excitations, we discussed additional electric field
excitations and/or hopping modulations with frequencies cor-
responding to higher harmonics of �. Using nonequilibrium
DMFT, which is reliable for high-dimensional systems, we
studied how the multicolor excitation protocols suppress heat-
ing. We showed that the effective Floquet Hamiltonian in the
rotating frame serves as a useful guide in determining the
conditions for the efficient suppression, focusing on 3�- and
2�-absorption processes. In practice, an efficient suppression
can be realized by suppressing the d-h creation terms in the
Floquet Hamiltonian order by order. We also measured the
evolution of the exchange couplings in the driven systems
and demonstrated that the suppression of heating removes
potentially competing effects associated with photodoping.
Multicolor driving protocols thus allow to more clearly ob-
serve the modifications of the low-energy physics resulting
from virtual excitations and hence the desired Floquet engi-
neered properties.

We expect that the physics discussed in this paper can
be directly observed in cold-atom experiments [22,31]. An
important question is how well the multicolor excitations
suppress heating in real materials. The single-band Hubbard
model with a large Coulomb interaction can be realized,
for example, in alkali-metal-loaded zeolites [59] and alkali-
cluster-loaded sodalites [60], where our results may be
directly applied. For general strongly correlated systems, fur-
ther analyses of models with multiple orbitals and different
lattice structures are required. Other intriguing issues which
may be addressed in the future are the role of the coherence
of the excited states and the dimensionality of the system. In
this paper, we found that the interference between the excita-
tion processes represented by different terms in the effective
Hamiltonian is insignificant in high-dimensional systems de-
scribed by DMFT. Still, one can expect that such interference
effects become important when there are only a few potential
final states and the excitations occur before the coherence
between the ground state and the excited state is lost. In
Mott insulators in dimensions >1, due to the spin-charge
coupling, this coherence time is typically short [52]. On the
other hand, in lower-dimensional systems, particularly in one
dimension, the spin-charge coupling become less important,
and the coherence of the excited states lasts longer [61,62]. In
such a situation, the interference effects originating from the
different terms in the Floquet Hamiltonian can be important.
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FIG. 16. (a,c) Evolution of the density of doublons nd and
(b,d) the staggered magnetization mz under periodic excitations with
� = U/3. Here, we consider the system on the two-dimensional
square lattice and set v0 = 0.5 and U = 15. The initial temperature
is T = 0.02, so that the system is initially in the antiferromagnetic
phase, with the spins pointing along the z direction. The parame-
ters of the main drive are � = 5 and A0 = −1 (E0 = 5). In panels
(a) and (b), which share the labels, we use the type-1 protocol
with n1 = 3 and the indicated values of the auxiliary electric field.
In (c) and (d), which also share the labels, we use the type-3
protocol with n1 = 3 and n2 = 2. The values of the auxiliary elec-
tric field and hopping modulations are chosen such that B(0)

e is
zero, i.e., (E1, δv ) = (0.6, −0.0784), (1.2, −0.112), (1.49,−0.128),
(1.8, −0.145), (2.4, −0.177). In the figure, only the values of the
auxiliary electric field are shown. The thick blue lines correspond to
the optimal parameters for each protocol as predicted by the Floquet
Hamiltonian.
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APPENDIX A: RESULTS FOR THE 2D SQUARE LATTICE

In this section, we show supplementary DMFT results for
the Hubbard model on the 2D square lattice. Compared with
the case of the Bethe lattice, simulations for the 2D square
lattice require more computational resources since one needs
to deal with momentum-dependent Green’s functions. Thus, it
is more difficult to make systematic analyses as we did for the
Bethe lattice in the main text. Still, by comparing some cases,
we confirm that the 2D square lattice and the Bethe lattice
yield qualitatively the same results.

Here, we set the hopping parameter to v0 = 0.5, so that the
bandwidth of the free system (U = 0) is 4 as in the case of the
Bethe lattice. We consider the field applied to the diagonal
of the square lattice. In Fig. 16, we show the evolution of
the double occupation nd (t ) and the AFM order parameter
mz(t ) for U = 15, � = 5, and A0 = −1. These results can be
directly compared with those in Fig. 8 for the Bethe lattice,

and they show the qualitatively same behavior. We observe
the strongest suppression of heating for the optimal condition
predicted by the Floquet Hamiltonian.

APPENDIX B: EXPRESSIONS FOR Ĥ
(2)
eff

In this section, we present the explicit expressions for Ĥ (2)
eff,2

and Ĥ (2)
eff,3. For Ĥ (2)

eff,2, we need to evaluate [ĝi jσ , ĥ†
i′ j′σ ′], which

can be expressed as follows:
(1) i′ = i, j′ = j : 0
(2) i′ = j, j′ = i : 0
(3) i′ = i, j′ 
= j

(a) σ ′ = σ : 0
(b) σ ′ = σ̄ : −c†

iσ c jσ c†
iσ̄ c j′σ̄ n̄ jσ̄ n̄ j′σ

(4) i′ 
= i, j′ = j
(a) σ ′ = σ : 0
(b) σ ′ = σ̄ : −c†

iσ c jσ c†
i′σ̄ c jσ̄ niσ̄ ni′σ

(5) i′ = j, j′ 
= i
(a) σ ′ = σ : c†

iσ c j′σ niσ̄ n jσ̄ n̄ j′σ̄

(b) σ ′ = σ̄ : c†
jσ̄ c j′σ̄ c†

iσ c jσ n̄ j′σ niσ̄

(6) i′ 
= j, j′ = i
(a) σ ′ = σ : −c†

i′σ c jσ n̄iσ̄ n̄ jσ̄ ni′σ̄

(b) σ ′ = σ̄ : c†
i′σ̄ ciσ̄ c†

iσ c jσ ni′σ n̄ jσ̄ .
In the other cases, the commutator becomes zero. Here,

[ĝi jσ , ĥi′ j′σ ′] can be obtained by considering the Hermitian
conjugate.

For Ĥ (2)
eff,3, we need to evaluate [ĥ†

i jσ , ĥi′ j′σ ′], which can be
expressed as follows:

(1) i′ = i, j′ = j
(a) σ ′ = σ : niσ̄ n̄ jσ̄ (niσ − n jσ )
This term corresponds to the exchange couplings of the

Z component in the spin Hamiltonian in Eq. (12) and the
pseudospin Hamiltonian in Eq. (14).

(b) σ ′ = σ̄ : −c†
jσ̄ ciσ̄ c†

iσ c jσ

This term corresponds to the exchange coupling of the
XY component of the spin Hamiltonian in Eq. (12).
(2) i′ = j, j′ = i

(a) σ ′ = σ : 0
(b) σ ′ = σ̄ : c†

iσ c jσ c†
iσ̄ c jσ̄

This term corresponds to the exchange coupling of the
XY component of the pseudospin Hamiltonian in Eq. (14).
(3) i′ = i, j′ 
= j

(a) σ ′ = σ : −c†
j′σ c jσ niσ̄ n̄ jσ̄ n̄ j′σ̄

(b) σ ′ = σ̄ : −c†
j′σ̄ ciσ̄ c†

iσ c jσ n̄ j′σ n̄ jσ̄

(4) i′ 
= i, j′ = j
(a) σ ′ = σ : c†

iσ ci′σ niσ̄ n̄ jσ̄ ni′σ̄

(b) σ ′ = σ̄ : −c†
jσ̄ ci′σ̄ c†

iσ c jσ ni′σ niσ̄

(5) i′ = j, j′ 
= i
(a) σ ′ = σ : 0
(b) σ ′ = σ̄ : c†

iσ c jσ c†
j′σ̄ c jσ̄ niσ̄ n̄ j′σ

(6) i′ 
= j, j′ = i
(a) σ ′ = σ : 0
(b) σ ′ = σ̄ : c†

iσ c jσ c†
iσ̄ ci′σ̄ n̄ jσ̄ ni′σ .

APPENDIX C: SCALING WITH U

Here, we discuss how the behavior of relevant physical
quantities scales with U . In Fig. 17, we compare systems with
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FIG. 17. Comparison of the doublon number and the staggered
magnetization for U = 15 and 30. Both are averaged over a time
interval 2π

�
around t = 50. The initial temperatures are T = 0.02

for U = 15 and T = 0.01 for U = 30. The parameters of the main
electric field excitation are � = U/3 and A0 = −1. We set l0 = 3,

n1 = 3, and n2 = 2. The dashed lines indicate the optimal conditions
for each protocol.

U = 15 and 30 (= 15 × 2) and the type-1 and 3 protocols.
For U = 15, the excitation conditions are the same as those
in Figs. 8 and 9. For U = 30, the excitation frequencies are
rescaled by a factor of 2, keeping the values of A0, A1, and
δv . We note that, as in the case of U = 15, for U = 30, the
heating is efficiently suppressed around the optimal conditions
predicted by the Floquet Hamiltonian. In the type-1 protocol,
the doublon number scales as O(1/U 2) in the optimal con-
dition. On the other hand, away from the optimal condition,
the difference from the optimal case does not change with
U . The reduction of the order parameter from the equilibrium
value scales as O(1/U ) in the optimal condition. Away from
the optimal condition, the difference from the optimal case is
larger for U = 30. In the type-3 protocol, the doublon number
scales as O(1/U 2), while the reduction of the order parameter
scales as O(1/U ).

We can understand the above behavior as follows. First,
the equilibrium doublon number scales as O(1/U 2), and the
energy scale of the AFM order scales as O(1/U ). In the type-1
protocol with the optimal condition, the d-h creation term in
the Floquet Hamiltonian scales as O(1/U ) (= O(1/�)) since
the leading-order terms are canceled. Away from the optimal
condition, the d-h creation term scales as O(1). In the type-3
protocol, the d-h creation term scales as O(1/U ) (= O(1/�)).
Note that, in this protocol, the optimal condition is chosen
to minimize the d-h terms at the order of 1/�, but it never

FIG. 18. Local single-particle spectral functions for U = 15 and
T = 0.02 for the indicated systems. The parameters of the main
electric field excitation are � = 5 and A0 = −1. For the auxiliary
fields, we set n1 = 3 and n2 = 2 and use the optimal conditions
determined from the Floquet Hamiltonian.

makes them zero. If we apply Fermi’s golden rule for the d-h
creation process, the d-h creation rate scales with the square
of the coefficients of the d-h creation terms. The heating rate
should also scale similarly. Moreover, the magnitude of the
order reduction is determined by the ratio between the heating
rate and the energy scale of the order. Thus, for example, in
the type-3 protocol, the doublon number is expected to scale
as O(1/U 2). On the other hand, given that the energy scale of
the AFM order is O(1/U ), the reduction of the magnetization
should behave as O(1/U ). This consistently explains the nu-
merical results. The behavior for the type-1 protocol can be
explained analogously.

APPENDIX D: SPECTRAL FUNCTION
UNDER EXCITATIONS

In Fig. 18, we compare the single-particle spectra
Aloc(ω) evaluated for various cases. Here, the spectrum
is defined as AR

loc(ω) ≡ − 1
π

Im
∫

dt exp[iω(t0 − t )]GR
loc(t0, t ),

where GR
loc(t0, t ) is the retarded part of the local Green’s func-

tion averaged over spins. We set t0 � 60. As we explained in
Sec. III B, in equilibrium, there emerge peaks corresponding
to the formation of spin polarons in the AFM phase. Under the
electric field, the width of the Hubbard bands is reduced due
to the dynamical localization effect [63]. The renormalized
bandwidth is almost the same among the type-0, 1, and 3
protocols, which indicates that the effect of the auxiliary fields
is minor here. In the case of the type-3 protocol, one can
identify the spin polarons in the spectrum, which indicates
that the AFM order is robust under this excitation. On the
other hand, for the other two protocols, the AFM order is
suppressed, and no spin polaron structures can be identified.
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