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Compatibility of braiding and fusion on wire networks
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Exchanging particles on graphs, or more concretely on networks of quantum wires, has been proposed as a
means to perform fault-tolerant quantum computation. This was inspired by braiding of anyons in planar systems.
However, exchanges on a graph are not governed by the usual braid group but instead by a graph braid group.
By imposing compatibility of graph braiding with fusion of topological charges, we obtain generalized hexagon
equations. We find the usual planar anyon solutions but also more general braid actions. We illustrate this with
Abelian, Fibonacci, and Ising fusion rules.
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I. INTRODUCTION

Two decades ago, it was realized that an inherently fault-
tolerant quantum computation scheme could be implemented
using the exchange statistics of anyons, quasiparticles in
planar systems. This gave birth to the field of topological
quantum computation (TQC) [1–3]. Physical systems that can
host anyons include fractional quantum Hall (FQH) states
[4]. In fact, the Aharonov-Bohm signature of Abelian anyon
exchange statistics in FQH states was recently directly ob-
served [5,6]. Much of the effort in TQC has recently focused
on one-dimensional systems since it was proposed [7] that
the braiding of anyonlike excitations could be performed at
junctions in networks of semiconductor wires. The possibility
of transporting Majorana modes around networks has been
extensively investigated [8–18]. There have also been similar
proposals for parafermionic excitations [19,20]. Exchanging
particles on networks, or graphs, rather than in the plane, mer-
its closer investigation. The exchange statistics of N identical
particles are governed by the representations of the funda-
mental group of the configuration space of the system. This
is the space of unordered collections of N distinct particle
positions in the relevant geometry [21–23]. For particles on
the plane this fundamental group is the braid group BN , while
in three-dimensional space we obtain the permutation group
SN , leading to bosons and fermions. For particles moving on
graphs, we can obtain a variety of exchange groups, dubbed
graph braid groups. These have recently been analyzed in
some detail in [24–26] and appear to be the natural tool to
study the exchange statistics of particles on wire networks,
without reference to a two-dimensional medium. Given that
anyons can be braided while restricting their motion to planar
graphs, the corresponding representations of BN must appear
also as a representation of a planar graph braid group. For
sufficiently connected planar graphs, graph braids satisfy the
same relations as braids on the plane or surface.
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However, for less connected graphs, such as a trijunction,
graph braiding affords more freedom and it has been con-
jectured [25,27] that there may be braid statistics on a graph
which do not exist in the plane. In fact, for simple junctions,
graph braid groups are free groups, allowing for arbitrary
braid actions on the Hilbert space. This strongly suggests that
more physical input is needed to pick specific graph braid
representations. An important piece of information we can
add is the fusion of the particles’ topological charges. For
anyons, this leads to the framework of anyon models, or more
precisely unitary braided tensor categories. The braiding is
constrained through the hexagon equations, which enforce
compatibility of braiding and fusion. We now develop the
basics of an analogous framework for particles on graphs.

II. QUANTUM EXCHANGE STATISTICS
AND GRAPH BRAID GROUPS

The N-strand graph braid group BN (�) of a graph � is
defined [24–26] by BN (�) = π1(CN (�)). Here CN (�) is the
space of configurations of N identical particles in distinct
positions on �. For convenience we take the base point so that
all particles are located on a single edge of the graph. A graph
braid is then represented by the space-time history where the
particles start at their positions on this initial edge, are then
transported to other edges, and finally returned to the initial
edge, possibly with the order of some of the particles changed.
An example of a two-particle exchange at a trijunction can
be seen in Fig. 1. Clearly, each junction in the graph offers
an opportunity to exchange particles in this way. An intuitive
presentation of BN (�) based on two-particle exchanges is
given in [26]. This presentation has generators denoted by
σ

(a1,a2,...,a j ,a j+1 )
j , where ai denotes the edge that the ith particle

away from the junction point is moved to during the graph
braid. For general graphs one makes this unambiguous by first
choosing a unique path out to each edge. This is provided
by the spanning tree of the graph. The subscript j denotes
that after the action of σ j the particles return to the initial
edge in the same ordering except that particle j + 1 returns
before particle j, so that these particles end up on the initial
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FIG. 1. Diagrams for a simple two-particle exchange on the
plane τ1 (left) and on a trijunction σ

(1,2)
1 (right).

edge in reverse order. Note that in exchanging particle j with
particle j + 1, it is necessary to move all particles ahead of
particle j in order to get particle j to a vertex, where it can
then be exchanged. The inverse of a σ j generator is given
by switching a j and a j+1. We can contrast these generators
with the well-known presentation of the planar braid group
BN generated by τi, which exchanges two neighboring strands
labeled i and i + 1, subject to the following relations:

τiτ j = τ jτi | j − i| � 2 and τi+1τiτi+1 = τiτi+1τi. (1)

We may call these relations the local commutativity (left) and
Yang-Baxter relations (right). All the σ

(a1,a2,...,a j ,a j+1 )
j opera-

tors would correspond either to τ j or to τ−1
j if the particles

were free to move in the plane, but when motion is restricted to
the graph, it is necessary to keep track of the edges where the
rest of the particles that are moved out of the way go to during
the motion and as a result graph braid groups have multiple
counterpart generators for τ j with j > 1.

In general, graph braid groups have fewer relations than
the planar braid group in the following sense [25,26]. For
some, but not all, pairs of σi, σ j generators (depending on
the upper indices) there are relations similar to local com-
mutativity (these are called pseudocommutative relations) and
similarly for some σ j generators there are relations analogous
to the braid relation (called pseudobraid relations). The overall
structure of graph braid groups is often quite simple. For
example, if the graph has one vertex and d edges, the graph
braid group is isomorphic to a free group. Some of the σ j

generators can be eliminated, depending on d , but a number
remain and those have no further relations. This means these
generators can be represented by any unitary operators on the
Hilbert space and more physical information will be needed to
actually determine the effect of particle exchanges. We shall
focus on N = 3 particles on a trijunction. This is one of the
most familiar setups for TQC, [7,16,18,19]. The graph braid
group is generated by

B3(�3) = 〈
σ

(1,2)
1 , σ

(2,1,2)
2 , σ

(1,1,2)
2

〉
. (2)

In this case there are no pseudocommutative relations and
it can be verified graphically that there are no pseudobraid
relations either because the required path deformation would
require two particles to occupy the vertex simultaneously,
which is forbidden. Hence, B3(�3) is a free group on three
generators and we need more physical input to constrain the
unitary operators which implement exchanges. To this end we
introduce topological charges and fusion into the picture.

FIG. 2. Here we show an example of sliding a fusion vertex
e = a × b through a graph braid.

III. GRAPH ANYON MODELS

We now construct the elements of graph anyon models,
analogous to the planar braiding of anyons (see, e.g., [2,28]).
A more complete presentation will be given in [29]. Particles
in a graph anyon model carry one of a finite set of topological
charges a, b, c, . . . , there is fusion of charges

a × b =
∑

c

Nab
c c. (3)

The coefficient Nab
c ∈ Z�0 is the dimension of the fusion

space V ab
c of ground states on a single edge, with two particles

of charges a and b and with overall charge c. Here, we will
consider only multiplicity free models, so Nab

c ∈ {0, 1}. There
is a unique vacuum charge 1, such that a × 1 = 1 × a = a for
all a. Also, each charge a has a unique conjugate a × ā =
1 + · · · . We choose an orthonormal basis for each nontrivial
fusion space V ab

c . This choice introduces a gauge freedom
uab

c , a unitary matrix of dimension Nab
c which changes the

basis and leaves the physics unchanged. In the multiplicity
free case, uab

c ∈ U(1). We can form multiparticle states from
tensor products of fusion spaces. This leads to two alternative
bases for the three-particle space of charges a, b, c with total
topological charge d , related by a change of basis whose
matrix elements [F abc

d ]e, f are called the F symbols:

The F symbols are required to satisfy the pentagon equation,
which ensures that the order of fusion can be consistently
rearranged locally for systems with any number of particles
[2,28]. The description of braiding in planar anyon models
is implemented by a unitary operation R. Its effect on V ab

c
is given by the R symbols Rab

c which are U(1) matrices. The
compatibility of fusion and braiding is often phrased by saying
that fusion commutes with braiding. In space-time diagrams it
means that we can slide a particle world line under or over
a fusion or splitting vertex. To make this consistent, the R
symbols must satisfy the hexagon equations. For braiding on
a graph, the usual hexagon equations are not valid, in fact,
fusion and braiding do not always commute. However, there
are still particular processes where a continuous deformation
of the particles’ history leads to an exchange of a fusion
with a braiding in time (see Fig. 2 for an example). We now
define appropriate symbols satisfying graph hexagon equa-
tions which express this remaining consistency of fusion and
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FIG. 3. Here we show a hexagonal commutative diagram enforcing compatibility of fusion and graph braiding. In the bottom left state we
have used the premise that fusion commutes with graph braiding, which we display in Fig. 2.

braiding on a trijunction:

ρ
(
σ

(1,2)
1

)
:= R, ρ

(
σ

(2,1,2)
2

)
:= Q, ρ

(
σ

(1,1,2)
2

)
:= P. (4)

The action of R on V ab
c is given by R symbols

Note these R symbols are not necessarily solutions of the
planar hexagon equations. Similarly, the graphical represen-
tations of P and Q, which exchange the second and third
particles away from the vertex, are

Note that these braiding processes necessarily involve all three
particles labeled a, b, c and so we have introduced additional
labels characterizing the full three-particle state to label ma-
trix elements of the graph braid matrices. If we made P and Q
only depend on a, b and their fusion outcome, we would have
P = Q, despite the fact they represent different generators in
the graph braid group. As in the planar case, the P, Q, R
symbols are U(1) matrices acting on the states of V ab

c . Gauge
transformations, as discussed in [2], have a similar effect on
P, Q, and R, and we have

Rab′
c = uba

c

uab
c

Rab
c , W abc′

ed = uba
e

uab
e

W abc
ed , W ∈ {P, Q}. (5)

We now consider compatibility of graph braiding and fu-
sion. If a particle braids over two other particles with a given
total charge (fusion channel), the process must involve two
individual exchanges (see Fig. 2). Here, the two exchanges
are such that we can slide a fusion vertex through a graph
braid. This implies in particular that the two particles with the

joint charge e must go to the same edge during the braid pro-
cess. Otherwise, the move pushing the splitting vertex upward
would be blocked at the graph’s vertex and it would not pass
under the world line of charge c.

Adapting the notation from the σ presentation, we can
write an equation for the diagram identity in Fig. 2 as follows:

σ
(1b,1a,2c )
2 ◦ σ

(1b,2c )
1 = σ

(1b×a,2c )
1 = σ

(1e,2c )
1 . (6)

We can now construct our consistency equations for graph
braiding and fusion: the graph hexagon equations. We note
that we can connect the two sides of the identity in Fig. 2
by a series of F moves and exchanges and we then require
this combination of moves to be the identity. This leads to the
hexagonal commutative diagram in Fig. 3. We can similarly
obtain another such equation in a situation where the joined
particles move to the other plane. This leads to the equations

Pcab
gd

[
F acb

d

]
gf Rcb

f =
∑

e

[
F cab

d

]
ge Rce

d

[
F abc

d

]
e f ,

(
Qacb

gd

)∗ [
F acb

d

]
gf

(
Rbc

f

)∗ =
∑

e

[
F cab

d

]
ge

(
Rec

d

)∗ [
F abc

d

]
e f

. (7)

Of course, similar equations can also be derived starting from
the inverse braids. These are equivalent to the ones given and
involve P−1 and Q. We can also check that the equations are
consistent with simple physical requirements such as P1ab

ac =
Pa1b

ac = 1 and Pab1
cc = Rab

c , and similarly for Q.

IV. SOLUTIONS OF THE GRAPH HEXAGON EQUATIONS

First of all, we note that, when Pabc
ed = Qabc

ed = Rab
e , for all

a, b, c, d, e, the graph hexagons reduce to the usual hexagon
equations for planar systems, and the corresponding graph
braid group representations are necessarily representations of
BN . Hence, any planar anyon model immediately provides
solutions to these equations, although often further solutions
exist. We now consider some simple fusion models to illus-
trate what else is possible. Since the graph braid matrices and
F matrices are invertible, we can immediately use the hexagon
equations (7) to express the P and Q symbols in terms of the
R symbols. This means we only need to supply the F symbols
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and find the Rab
c to fix all symbols. Notice that we usually

get multiple expressions for the same P or Q symbol, as the
index f varies. This will restrict the possible values for the
Rab

c . However, in Abelian fusion models, given F , the Rab
c

are not restricted and can be freely chosen. In such models,
the charges a, b, . . . are elements of a finite Abelian group
G and the fusion corresponds to group multiplication, giving
a unique outcome for each fusion. In this case the label f
in Eq. (7) is fixed as the unique fusion of b and c. Hence a
choice of Rab

a×b just fixes the P and Q symbols. There are no
requirements on R, apart from Rab

c ∈ U(1) and Ra1
a = R1a

a = 1.
This already gives us many examples which do not satisfy
the planar hexagon equations. For example, when G = ZM ,
the F symbols satisfying the pentagon equations are given by
3-cocycle ω in the group cohomology of G [28]. The solutions
Rab

c to the planar hexagons for Zω
M with trivial ω are required

to form a nondegenerate symmetric bicharacter χ (a, b), but
no such requirement is needed on a graph. Perhaps more
interestingly, there is often no nontrivial solution to the planar
hexagon. This occurs, e.g., for bosonic topological order when
M is odd and ω(a, b, c) is cohomologically nontrivial [30].
Nevertheless, there is a solution for any choice of the Ra,b

a×b
on the trijunction and so we can graph braid particles that
do not permit planar braiding. Overall, for any group G we
obtain a (|G| − 1)2 parameter family of solutions for any fixed
choice of F symbols. Some of these will be related through the
gauge freedom (5). However, since the symbols Raa

a×a and the
products Rab

a×bRba
b×a are independent and gauge invariant for

all a, b �= 1, we always have at least |G|(|G| − 1)/2 physical
parameters. For theories with non-Abelian braiding we must
equate the expressions for P and Q which come from different
choices of f in Eq. (7). This then yields equations purely
for Rab

c . For example, for the Fibonacci model, which has a
single nontrivial charge τ with τ × τ = 1 + τ , we recover the
known planar values for the R symbols as the only solutions,
and Pabc

ed = Qabc
ed = Rab

e . Another important example is the
Ising theory: this model is directly relevant for topological
memories based on quantum wires that host Majorana modes
[7,12], although it is not universal for quantum computation
by braiding alone [31,32]. The Ising theory is an example
of a larger family known as the Tambara-Yamagami models
[33]. We have charges gi forming a finite Abelian group G
and a single additional charge σ such that σ × σ = ∑

i gi

and gi × σ = σ . The case G = Z2 is the Ising model with
(1, σ, ψ ) ≡ (g0, σ, g1) being the more usual notation. All
these fusion rules have known F symbols, but in the plane they
allow no solutions to the hexagon equations unless G = (Z2)n

for some n [34]. We find there is similarly no solution to the
graph hexagon equations unless G = Zn

2 [29]. However, when
G = Zn

2 graph braid solutions without a counterpart in the
plane exist. We state some results for the Ising model. There
are two possible solutions of the pentagon equations, but it
turns out that these lead to the same set of R symbols for the
graph hexagon equations, namely,

Rσσ
ψ = ∓iRσσ

1 , Rσψ
σ = Rψσ

σ = ±i, Rψψ

1 , Rσσ
1 ∈ U(1).

(8)

These solutions are inequivalent under gauge transformations
which fix the F symbols. The free parameters Rψψ

1 and Rσσ
1

are gauge invariant. The planar Ising solutions appear for
Rψψ

1 = −1 and Rσσ
1 = e±i(2k+1)π/8, where k ∈ {0, 1, 2, 3}.1

The P and Q symbols are now easily obtained, and given in
Appendix B. They depend on the chosen pentagon solution.

V. DISCUSSION AND OUTLOOK

We have presented only the basic features of braiding and
fusion on graphs here, stressing the differences with planar
systems. In [29], we consider general networks with more
and higher valence vertices and loops, and with more particles
braiding, as well as further implications for TQC. As a taster,
we work out the case of three particles on a 4-valent junction
in Appendix A, focusing on the effect of the pseudobraid re-
lation which first appears there. Many features presented here
persist generally, for example, using compatibility of braiding
and fusion we can always express generators σ j for exchanges
of particles further from the vertex in terms of exchanges σ j′< j

of those closer to the vertex (though details depend on the
valence). An interesting question is to find a generating set
for all compatibility constraints for braiding and fusion for
any number of particles on any graph. This may be most
elegantly addressed in a categorical setting where it would
lead to an analog of the MacLane coherence theorem [35].
Another natural question is under what circumstances the
coherence is strong enough to yield Ocneanu rigidity [2,36],
meaning that the set of solutions modulo gauge is finite. This
clearly does not hold for the trijunction, but this property
returns for networks with loops. Finally, in Appendix C, to
provide an additional insight into graph braiding of topolog-
ical excitations, in Appendix C, we introduce a local model
of quasiparticles exchanging at a trijunction. We show that it
recovers non-planar solutions of the graph braiding hexagon
equations.

ACKNOWLEDGMENTS

The authors would like to extend special gratitude
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APPENDIX A: TETRAJUNCTION

The tetrajunction �4 is one of the simplest graphs for
which the graph braid group contains a pseudobraid relation.
Additionally, we can observe that B3(�4) contains three sub-
trijunctions, coming from assigning the particles to an initial

1Note that on the plane, the cases k = 0 and k = 3 occur for one
set of F symbols while the remaining cases occur for the other set.
Here, all options occur for either choice of F symbols.
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edge and then choosing one of the three choices of pairs of
the remaining three edges to exchange them. The graph braid
group B3(�4) is a free group of rank 11, but there are 12
elements in the σ presentation. One of these can be elimi-
nated by means of the pseudobraid relation [26]. The matrices
representing the generators of B3(�4) can be written as

ρ
(
σ

(1,2)
1

)
:= X, ρ

(
σ

(a1,1,2)
2

) = Xa1 ,

ρ
(
σ

(2,3)
1

)
:= Y, ρ

(
σ

(a1,2,3)
2

) = Ya1 ,

ρ
(
σ

(1,3)
1

)
:= Z, ρ

(
σ

(a1,1,3)
2

) = Za1 . (A1)

Here, a1 ∈ {1, 2, 3} labels the edge that the particle closest to
the junction point goes to during the graph braid. This notation
highlights the trijunction subgroups. Referring to the notation
used for the trijunction in Eq. (4) in the main text, we see
that the R matrices (given by exchanging the two particles
closest to the junction point) for each subtrijunction occur
in the first column above and are now labeled X , Y , and Z
for the three trijunctions. The P and Q graph braid matrices
appear in the second column and, for example, the trijunction
which utilizes edges 1 and 2 has R ≡ X, P ≡ X1, and Q ≡ X2.
Similarly, (Y,Y2,Y3) and (Z, Z1, Z3) also generate trijunction
subgroups. The generators X3, Y1, and Z2 utilize all edges and
have no counterpart on a trijunction. Consistency of braiding
and fusion now comes down to graph hexagon equations sim-
ilar to Eq. (7) in the main text on each subtrijunction, yielding
six independent sets of equations. No hexagon equations exist
for the generators that involve all three edges. If one tries to
commute a fusion vertex through a graph braid involving one
of these generators, the fusion vertex will get blocked on the
junction point.

Since we just have three independent copies of the graph
hexagons for the trijunction, they can be solved as before.
However, one can make independent choices of solutions for
each set of trijunction hexagon equations. For example, in the
case of the Ising fusion rules, one could have, say, X σψ

σ = +i
and Y σψ

σ = Zσψ
σ = −i. Similarly, for the Fibonacci model,

which only allows the usual planar solutions on the trijunc-
tion, we can now choose solutions of different chirality on the
subjunctions, which yields nonplanar solutions for this model
on the tetrajunction. The generators X3, Y1, and Z2, which use
all edges, occur in the pseudobraid relation

σ
(1,2,3)
2 σ

(1,3)
1 σ

(3,1,2)
2 = σ

(1,2)
1 σ

(2,1,3)
2 σ

(2,3)
1 . (A2)

This is a graph braiding analog of a Yang-Baxter equation.
One may write six such relations for different permutations
of (1,2,3), but only one is independent. We can write the
pseudobraid relation in terms of the X , Y , and Z symbols
by introducing fusion trees at the bottom of the diagrams in
Fig. 4. The equality then induces a dodecagonal commutative
diagram of F moves and exchanges, similarly to how the
equality expressing the compatibility of fusion and braiding
induced the graph braiding hexagon equations in Fig. 3 in the
main text. This finally gives the following equation:

Y1
cba
f d

∑
e,g

[
F bca

d

]
f gZca

g

[(
F bac

d

)−1]
geX3

bac
ed

[
F abc

d

]
e f

= Y cb
f

∑
e,g

[
F cba

d

]
f eX ba

e

[(
F cab

d

)−1]
egZ2

cab
gd

[
F acb

d

]
gf . (A3)

(1)
(2)

(3)

(1)
(2)

(3)

FIG. 4. Graphical representation of the pseudobraid relation on
the tetrajunction. The left diagram corresponds to the left-hand side
of Eq. (A2), with composition in the equation going vertically in the
diagram. The edge assignment for the particles stays fixed throughout
the composition on both sides of the equality.

This equation simply allows us to fix the Y1 symbols in terms
of the other symbols. There is never a conflict with the graph
hexagons for the trijunctions, as they never involve Y1. Of
course, by choosing a different pseudobraid relation, we could
choose to eliminate the X3 or Z2 symbols if we prefer. Note
that, although we can always eliminate one of the families of
symbols that involve all three edges, the other two families
are free parameters, as they are not constrained by any further
equations. This means that, for example, for Abelian fusion
rules governed by a group G, we end up having an extra
2(|G − 1)3 free parameters in addition to the 3(|G| − 1)2 pa-
rameters coming from the trijunctions. The situation is similar
for non-Abelian models: we have free parameters for all of
these, although the actual parameter counting is a little more
complicated. For example, the Fibonacci model has three free
X3 symbols and three free Z2 symbols, even though it allows
no free parameters at all on the trijunction. Equation (A3) sim-
plifies for Abelian fusion rules. For these, [F abc

a×b×c]a×b,b×c =
ω(a, b, c), where ω is a U(1) valued group 3-cocycle. We find

Y1
cba
f d ca(b, c) X3

bac
ed Zca

g = Y cb
f ca(c, b) X ba

e Z2
cab
gd , (A4)

where ca(b, c) is the Slant product

ca(b, c) := (iaω)(b, c) = ω(a, b, c)ω(b, c, a)

ω(b, a, c)
. (A5)

Often, we can take ca(b, c) = ca(c, b); this happens, e.g., for
all Zω

M anyon models. In that case, the Abelian pseudobraid
equation does not depend on the F symbols.

Finally we note that we also have new types of gauge-
invariant parameters on a tetrajunction: for example, the
gauge-invariant quantities W ab(W ′)ba, where W = {X,Y, Z}
and W �= W ′, appear in addition to the parameters W aa and
W abW ba which come from the subtrijunctions.

APPENDIX B: ISING SOLUTION ON A TRIJUNCTION

In this Appendix we will solve the graph hexagon equa-
tions for the Ising fusion rules on a trijunction. The planar
solutions to the pentagon equations and hexagon equations for
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these fusion rules can be found in [2]. There are two nonequiv-
alent sets of F symbols, distinguished by the value of the
Frobenius-Schur indicator ν = ±1. Most F symbols equal 1.
The nontrivial F symbols are [F σψσ

ψ ] = [Fψσψ
σ ] = −1 and

[
F σσσ

σ

]
e f

= ν√
2

F (e, f ) = ν√
2

(
1 1

1 −1

)
, (B1)

where e, f ∈ {1, ψ}. We first consider the graph hexagon
equations in Eq. (7) in the main text with a = b = c = d = σ .
Focusing on the equation for Pσσσ

1σ and substituting the F
symbols we find that

Pσσσ
1σ = ν√

2

(
Rσσ

f

)∗
F ∗(1, f )

∑
e

F (1, e) Rσe
σ F (e, f ). (B2)

We equate the expression for Pσσσ
1σ with f = 1 to that with

f = ψ to get

Pσσσ
1σ = ν√

2

(
Rσσ

1

)∗(
Rσ1

σ + Rσψ
σ

)
= ν√

2

(
Rσσ

ψ

)∗(
Rσ1

σ − Rσψ
σ

)
. (B3)

Equating the two expressions we get(
Rσσ

1

)∗(
1 + Rσψ

σ

) = (
Rσσ

ψ

)∗(
1 − Rσψ

σ

)
, (B4)

which gives us an expression constraining the R symbols
directly. Notice that this does not depend on ν, and neither do
other equations for the R symbols, so the solutions for R will
not detect the dependence on the Frobenius Schur indicator.

Additionally, we can take the Hermitian adjoint of Eq. (B3)
to get an expression for (Pσσσ

1σ )−1 and then imposing Pσσσ
1σ ×

(Pσσσ
1σ )−1 = 1 with f = 1 we get

1 = ν2

2

(
Rσσ

1

)∗(
1 + Rσψ

σ

)
Rσσ

1

[
1 + (

Rσψ
σ

)∗]
= 1 + 1

2

[
Rσψ

σ + (
Rσψ

σ

)∗]
(B5)

and hence (Rσψ
σ )∗ = −Rσψ

σ , which yields Rσψ
σ = ±i.

Substituting this back into Eq. (B4), we find that

Rσσ
1 = Rσψ

σ Rσσ
ψ = ±iRσσ

ψ . (B6)

By equating the expressions for Qσσσ
1σ with f = 1 and f = ψ

we find (
Rσσ

1

)∗(
1 + Rψσ

σ

) = (
Rσσ

ψ

)∗(
1 − Rψσ

σ

)
. (B7)

Comparing Eq. (B7) with (B4) implies Rσψ
σ = Rψσ

σ , as for the
planar solution to the Ising model.

We can tabulate the resulting values for P and Q. The value
for a = b = c = d = ψ

Pψψψ

1ψ = Qψψψ

1ψ = (
Rψψ

1

)∗
. (B8)

Two particles are ψ and one particle is σ :

Pσψψ
σσ = Qψσψ

σσ = ±i,

Pψσψ
σσ = −Qσψψ

σσ = ±i
(
Rψψ

1

)∗
,

Pψψσ

1σ = Qψψσ

1σ = −1. (B9)

FIG. 5. Here we display a graphical representation for our hop-
ping model. Each circular dot represents a region in the wire which
may contain a quasiparticle excitation. We use the blue arrow to
denote the ancillary degree of freedom. We also display the lattice
sites where our unitary operators act.

Two particles are σ , one particle is ψ , and the total topological
charge d = ψ :

Pψσσ

σψ = Qψσσ

σψ = ±i,

Pσσψ

1ψ = Qσσψ

1ψ = Rσσ
1 ,

Pσψσ

σψ = Qσψσ

σψ = ±i. (B10)

Two particles are σ , one particle is ψ , and the total topological
charge d = 1:

Pψσσ

σ1 = Qσψσ

σ1 = ∓iRψψ

1 ,

Pσψσ

σ1 = Qψσσ

σ1 = ±i,

Pσσψ

ψ1 = Qσσψ

ψ1 = ∓iRσσ
1 . (B11)

The final configuration has a = b = c = d = σ :

Pσσσ
1σ = Qσσσ

1σ = ν e
±π i

4
(
Rσσ

1

)∗
,

Pσσσ
ψσ = Qσσσ

ψσ = ν e
∓π i

4
(
Rσσ

1

)∗
. (B12)

The corresponding values for Q−1 and P−1 are given by Her-
mitian adjoint. One may check by direct verification that all
braid hexagon equations are now satisfied for any choice of
Rσσ

1 and Rψψ

1 in U(1) and for both choices of ν and of the
signs. It is interesting to observe that we have P �= Q when-
ever Rψψ

1 �= −1. In other words, P �= Q unless ψ is a fermion.
Nevertheless, even if Rψψ

1 = −1, the solution is usually not
planar, as Rσσ

1 is still a free parameter. The possibility of a
phase freedom in the exchange of Majorana bound states,
given here by Rσσ

1 on a network of quantum wires, has already
been discussed in the literature (see, for example, [7,18]).

APPENDIX C: HOPPING MODEL FOR GRAPH
BRAIDING ON A TRIJUNCTION

We now introduce a local model of quasiparticles exchang-
ing at a trijunction and we show that it recovers nonplanar
solutions of the graph braiding hexagon equations introduced
in Eq. (7) the main text.

We will work with quasiparticles labeled by Z2 charges
on a lattice representing a trijunction of wires (see Fig. 5).
The presence of a quasiparticle (or an odd number of
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quasiparticles) is identified with 1, the nontrivial element of
Z2. The trivial Z2 charge is denoted 0 and the fusion rules are
1 × 1 = 0. At the end of this Appendix we explain how the
results are also relevant to Ising-type quasiparticles.

In addition to the presence or absence of a quasiparti-
cle at each lattice position, we also introduce an ancillary
pseudospin- 1

2 degree of freedom (or qubit), displayed as a blue
arrow in Fig. 5. A basis for the Hilbert space is then labeled by
the possible configurations of quasiparticles on the lattice and
one of the two basis states of the ancilla (denoted by arrows
pointing up and down below).

We will construct unitary operators hopping the quasipar-
ticles along the wires to implement the exchanges. The idea
is that these hopping operators implement adiabatic transport
of the quasiparticles as a consequence of some time-varying
local perturbation to the Hamiltonian of a lattice model. Graph
braiding can be achieved as a composition of a sequence of
these hopping operators and we show that this can realize any
solution to the graph hexagon equations for Z2 fusion rules
and trivial F symbols.

First, we briefly recall the solutions of the graph hexagon
equations for this case. For ZM fusion rules with trivial group
cocycle (F symbols), these can be written as

Pcab
gd Rcb

f = Rce
d , Rca

g Qbac
ed = R f a

d . (C1)

These equations follow from the graph braiding hexagon
equations in Eq. (7) in the main text, with all nonzero F
symbols which appear set equal to 1. While it is possible to
generalize the entire construction in this section to general M,
we now restrict ourselves to the simplest and most important
case of M = 2. In this case, there is only one nontrivial con-
straint and it is given by

P111
01 = Q111

01 = (
R11

0

)∗
. (C2)

We see that we have a graph hexagon solution for any choice
of the nontrivial R symbol, R11

0 ∈ U(1). (Note that R10
1 =

R01
1 = R00

0 = 1.) In contrast, there are only two solutions to
the planar hexagon equations with trivial cocycle, given by
R̃11

0 = 1 or R̃11
0 = −1, as planarity requires simultaneously

that P111
01 = Q111

01 = R11
0 .

We now construct the unitary hopping operators. The pur-
pose of the ancilla here is to keep track of how many particles
have passed through the junction; as a particle passes the junc-
tion, the spin flips 180◦. Hence, two particles passing through
the junction bring the ancillary back to its initial configuration.
In effect, the junction thus keeps track of the Z2 topological
charge passing by.

The actions of the operators A and B, hopping a particle
across the junction onto the upper and lower diagonal edges
(and back), can now be written

(C3)

Here θu/d and ψu/d are phase factors picked up by the state
as the particle passes through the junction from left to right.
The phase accumulated from hopping a particle onto a diag-
onal edge is dependent on the configuration of the junction

point and the subscript label on the phases keeps track of the
orientation of the ancilla.

Since A and B are unitary, the phases for passing a particle
back from right to left using A−1 = A† and B−1 = B† are also
fixed. For example, passing a particle from the upper right
branch to the left branch of the junction using A−1 will make
the state of the system acquire the phase θ−1

d , if the ancilla was
in the up state before the exchange.

To make exchanges, we also need to be able to move
particles to and from the junctions, on all three wires. For
example, directly to the left of the junction, we can now define
the action of a unitary operator T , which shuttles particles to
and from the junction point by

(C4)

Notice that we have not included any phases here. In principle,
there can of course be nontrivial phases, but in graph braiding
processes, since we always return to the initial configuration,
these phases will cancel. We have therefore chosen this simple
action to emphasize the effect of exchanging the particles at
the junction rather than the dynamical effects of shuttling par-
ticles along a quantum wire. Similar T operators will be used
to move particles between any pair of neighboring sites on
the same wire as needed. Rather than mentioning the relevant
sites everywhere below (when it is hopefully clear which sites
are meant), we will simply write T for the application of any
such operator.

We assume that the action of A, B, and the T operators
does not depend on the occupation of any of the other sites,
aside from the ones they hop between. We did not need to
specify the action A, B, T on states which have the particle
already on the right, as we do not need it (A−1, B−1, and T −1

are used for moving in the opposite direction). We also did not
need to specify how A, B, T act when both sites are filled or
empty as we avoid this situation.

To begin an exchange, we first place all particles on the
left-hand wire. We denote this state by |�〉, i.e.,

(C5)

Although we display the particles on neighboring sites, in
reality they would normally be kept well separated to avoid
any nontopological interaction effects during the adiabatic
time evolution, implementing this would simply require the
use of more of the uninteresting T operators below.

The action of R11
0 is now given by the following sequence

of hopping operations:

R|�〉 = B−1T −1A−1BTA|�〉. (C6)

We have decomposed the R symbol into a sequence of hop-
ping moves. This sequence of operators hops a particle onto
the upper edge, then brings a particle along the horizontal edge
to the junction point and onto the lower edge, and then brings
the particle from the upper edge back to the left and away from
the junction, followed by the particle from the lower edge.
We can see this action is equivalent to the σ

(1,2)
1 graph braid

generator depicted in Fig. 1 in the main text. The total phase
accumulated by this sequence of hopping moves is

R|�〉 = θuψdθ
−1
d ψ−1

u |�〉. (C7)
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The sequence of hopping operators and phase corresponding
to the graph braid generator P111

01 is similarly given by

P111
01 |�〉 = A−1T −1T −1B−1T −1T −1A−1BTAT T TA|�〉

= θdψuθ
−1
u ψ−1

d |�〉 (C8)

and, similarly,

Q111
01 |�〉 = B−1T −1T −1B−1T −1T −1A−1BTAT T T B|�〉

= θdψuθ
−1
u ψ−1

d |�〉. (C9)

If we compare the phases accumulated from the P111
01 and the

Q111
01 exchanges with the R11

0 exchange, we can observe this
exactly agrees with Eq. (C2). We can recover the two types of
planar exchange statistics with trivial F symbols (bosonic and
fermionic) as special cases of this, when θuψdθ

−1
d ψ−1

u = ±1,
i.e., θuψd = ±θdψu. In these cases we recover P = Q = R.
We can observe that since we come back to the initial state in
the Hilbert space, this sequence of unitary operators is tracing
out a closed path in the configuration space. As a result of
this, the total phase accumulated during the exchanges can not
be gauged away. In essence one can interpret this process as
a discrete analog of a Berry phase calculation. It is clearly
not trivial to come up with physically interesting microscopic
models which host localized quasiparticles with Z2 charges
and with protocols for adiabatically transporting these, but

nevertheless plausible that braiding in such models can in the
end be described using discrete unitary step operators, like the
ones we introduced here. Programs for realizing braiding uni-
taries by adiabatic transport starting from microsopic models
have been carried out in detail in the 2D context of the Kitaev
honeycomb model [37,38], and also in 1D for Majorana bound
states exchanging at a trijunction [7,18].

In the case of the Majorana bound states, there is a Z2

grading in the Ising-type fusion rules of the model. In effect
the σ -type particles have Z2 charge 1 and both the ψ and
vacuum charges have Z2 charge 0 and this is consistent with
the fusion. One may imagine introducing an ancilla qubit at a
junction of Majorana wires that is sensitive to this Z2 charge
(i.e., flips when a Majorana mode passes by) and this would
allow for a continuous phase degree of freedom to be inserted
into the planar braiding solutions that are usually given for
the Majorana model. We then notice that this free phase
corresponds precisely to the free phase Rσσ

1 which occurs in
our graph hexagon solutions, giving an interpretation of this
phase as due to a memory effect at the junction. We note
that while we modeled our ancilla as a spin at the junction,
it does not necessarily have to be an extra degree of freedom,
but could be emergent, modeling some characteristic of the
underlying system. For example, for Majorana edge modes,
the ancilla could keep track of whether the junction point is in
the topological or trivial phase of the wire.
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