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Renormalization of Ising cage-net model and generalized foliation
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A large class of type-I fracton models, including the X-cube model, have been found to be fixed points of
the foliated renormalization group (RG). The system size of such foliated models can be changed by adding
or removing decoupled layers of 2D topological states and continuous deformation of the Hamiltonian. In
this paper, we study a closely related model—the Ising cage-net model—and find that this model is not
foliated in the same sense. In fact, we point out certain unnatural restrictions in the foliated RG, and find
that removing these restrictions leads to a generalized foliated RG under which the Ising cage-net model is
a fixed point, and which includes the original foliated RG as a special case. The Ising cage-net model thus
gives a prototypical example of the generalized foliated RG, and its system size can be changed either by
condensing/uncondensing bosonic planon excitations near a 2D plane or through a linear-depth quantum circuit
in the same plane. We show that these two apparently different RG procedures are closely related, as they lead
to the same gapped boundary when implemented in part of a plane. Finally, we briefly discuss the implications
for foliated fracton phases, whose universal properties will need to be reexamined in light of the generalized
foliated RG.

DOI: 10.1103/PhysRevB.108.035148

I. INTRODUCTION

The renormalization group (RG) plays a fundamental role
in the characterization and classification of quantum phases
of matter [1–3]. It is a piece of conventional wisdom that each
phase—defined as a deformation class of quantum systems—
is characterized by a unique RG fixed point, which encodes
the universal long-distance and low-energy properties of the
phase. Moreover, the existence of such a fixed point under-
lies the key role played by continuum quantum field theory
as a tool to describe universal properties of phases (and
phase transitions) while discarding extraneous nonuniversal
information.

Fracton models in three spatial dimensions (3D) [4,5] pro-
vide exceptions to this conventional wisdom, and accordingly
challenge our understanding of the relationships among quan-
tum phases of matter, the renormalization group, and quantum
field theory. This is nicely illustrated in the X-cube model
[6], perhaps the simplest fracton model. The defining char-
acteristic of a fracton model is the presence of excitations of
restricted mobility, and the X-cube model supports point-like
excitations mobile in planes (planons), along lines (lineons),
and for which an isolated excitation is fully immobile (frac-
tons). The model is exactly solvable and has zero correlation
length, so we might expect it to be a fixed point of the RG, as
is the case for toric code and string-net models [7,8].

However, the X-cube model on a lattice of linear size
L is equivalent (under the application of a finite-depth cir-
cuit) to an X-cube model on a smaller lattice stacked with
2D toric code layers [9]. Therefore, when trying to coarse
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grain the X-cube model, nontrivial 2D layers are left behind.
These layers cannot be integrated out or otherwise removed,
thus preventing the model from being a fixed point of any
conventional RG procedure. This behavior is closely related
to the striking system-size dependence of certain properties,
such as the ground-state degeneracy (GSD) and the num-
ber of types of fractional excitations, both of which grow
exponentially in the linear system size [9,10]. Similar phe-
nomena occur in other fracton models, including Haah’s cubic
code [11].

It is interesting to ask whether some fracton models are
fixed points of a suitably generalized RG. While there are
many schemes and procedures for carrying out RG in different
settings, it is important to emphasize that simply finding a new
RG scheme is not enough. Instead, a more radical general-
ization of what we usually mean by RG is needed, because,
for instance, any RG procedure that can have the fracton
models as fixed points must allow for the increase/decrease
in GSD and the addition/removal of fractional excitations in
the process.

Along these lines, it was found the X-cube model is a
fixed point of a foliated RG procedure [9,12–14]. It is helpful
to recall the conventional RG procedure for gapped phases
[2,3], which allows, in each RG step, for continuous de-
formations of the Hamiltonian that keep the gap open, and
for the addition/removal of trivial gapped systems (those
whose ground state is a product state). In the foliated RG,
one also allows addition or removal of decoupled, gapped
2D systems, as shown in the top panel of Fig. 1. Such 2D
systems can be topologically ordered and thus carry non-
trivial GSD and fractional excitation types, hence allowing
for these properties to change under RG. In the case of the
X-cube model, we can remove 2D toric code layers under
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FIG. 1. Top: The foliated RG scheme, where a layer of
topologically-ordered state (shown in orange) can be added into or
removed from a foliated fracton model via a finite-depth circuit.
Bottom: Generalized foliated RG scheme realized by condensation
of bosonic planons or a sequential linear-depth circuit around the
plane.

the foliated RG, thus making the model into a fixed point.
More generally, a large class of type-I fracton models
[6]—those where some of the fractional excitations are
mobile—are fixed points of the foliated RG.

The foliated RG leads to the closely related notion of
foliated fracton phases [10,15]. Foliated fracton phases, which
we define in Appendix A, are a coarser equivalence relation on
ground states than ordinary phases, and each foliated fracton
phase contains a fixed point of the foliated RG. This fixed
point captures certain universal properties that are the same
everywhere in the foliated phase, and these properties are
referred to as foliated fracton order. When a model belongs
to a foliated fracton phase, it is a convenient shorthand termi-
nology to refer to the model as being foliated.

An interesting type-I fracton model that has not been inves-
tigated from this perspective is the Ising cage-net model [16].
The Ising cage-net model is very similar to the X-cube model
in many ways. Both are exactly solvable models that can be
obtained from a coupled-layer construction, based on toric
code layers in the X-cube case [17,18], and doubled-Ising
string-net layers in the cage-net case [16]. Both have fracton
excitations that are created at the corners of a rectangular
membrane operator. Both have lineon excitations (Abelian in
the X-cube model and non-Abelian in the cage-net model) that
move in the x, y, and z directions. Both have other planon
excitations that move in xy, yz, or zx planes.

Despite these similarities, it has not been clear whether
the Ising cage-net model is foliated in the sense defined
above. It is important to emphasize that, while both involve
a layer structure, the coupled-layer constructions of X-cube
and cage-net models are very different from foliated RG and
from the notion of foliated fracton phases. In particular, there
is no obvious relationship between whether a model can be
obtained by a coupled-layer construction and whether it is
foliated. By analogy with the X-cube model, it is natural to
guess that the Ising cage-net model is a foliated RG fixed

point upon adding/removing doubled-Ising string-net layers.
However, this cannot be the case, because the doubled-Ising
string-net model contains non-Abelian excitations with quan-
tum dimension

√
2, while the cage-net model has excitations

with integer quantum dimension only [16]. While this ar-
gument does not rule out the possibility of a foliated RG
fixed point with other 2D topological states as resources, in
fact the Ising cage-net model is not foliated. This can be
seen by studying the model’s GSD, which has been com-
puted by some of the authors in a separate paper [19]. It
is found that the GSD does not grow by integer multiples
when the system size grows by unity in the x, y, or z direc-
tions.

The question is then open again: Can we think of the
Ising cage-net model as a fixed point of a suitably gen-
eralized RG? More specifically, can the foliated RG be
generalized somehow to include the Ising cage-net model?
In fact, we argue in this paper that the foliated RG should
be extended, independent of the Ising cage-net example. We
do this by re-examining foliated RG from two complemen-
tary perspectives, one based on planon condensation, and
the other based on quantum circuits, and point out that in
both these pictures, the foliated RG has unnatural restrictions.
These observations lead us to a generalized foliated RG un-
der which, remarkably, the Ising cage-net model is a fixed
point.

The generalized foliated RG can be carried out either by
condensing or uncondensing bosonic planon excitations sup-
ported near a 2D plane, or by acting with a quantum circuit,
supported near a 2D plane, whose depth scales with the linear
size of the plane. See bottom panel of Fig. 1. We show that
either of these operations can be used to decrease or increase
the system size of the Ising cage-net model, which is thus
a generalized foliated RG fixed point. The two apparently
different ways of carrying out the generalized foliated RG are
closely related, through a connection that we explain between
anyon condensation and a class of linear-depth circuits that
we refer to as sequential circuits.

We note that the original foliated RG arises as a spe-
cial case of the generalized procedure introduced here. In
particular, for the X-cube model, instead of decoupling a
toric code layer and removing it to decrease system size,
we can condense the bosonic planon that effectively comes
from the toric code layer (either e or m), which has the
same effect as removing the layer. Alternatively, we can
act with a certain linear-depth circuit (more specifically, a
sequential circuit) whose effect is to condense the same
bosonic planon. Therefore, we can use generalized foliation
to study the X-cube model, the Ising cage-net model and
many other type-I fracton models within a single framework.
Just as foliated RG comes with the notion of foliated fracton
phases and foliated fracton order, we expect that the gen-
eralized foliated RG comes with corresponding notions of
generalized foliated fracton phases and generalized foliated
fracton order. It will be interesting to study these notions in
future work.

The paper is structured as follows: In Sec. II, we review
the original foliated RG by focusing on the X-cube model.
In Sec. III, we review the Ising cage-net model, which is
not foliated according to the original scheme. Section IV
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FIG. 2. (a) The three types of vertex terms in the X-cube Hamil-
tonian Ax

v , Ay
v , and Az

v , which are tensor products of Pauli-Z operators.
(b) The cube term Bc.

then briefly points out some unnatural restrictions within the
original foliated RG, and proposes a generalized foliated RG
where these restrictions are removed. In Sec. V, we show
that the Ising cage-net model is foliated in terms of a gen-
eralized foliated RG defined by planon condensation. Then,
in Sec. VI, we demonstrate that the generalized foliated RG
can also be implemented by a planar linear-depth circuit. The
linear-depth circuit has a special structure, and we dub it a
sequential circuit; in Sec. VII we show how the sequential
circuit we use is closely related to the condensation of planons
via gapped boundaries. Finally, in Sec. VIII, we conclude with
a brief discussion on the implications of and outlook for the
generalized foliated RG.

II. FOLIATION IN X-CUBE

Before our discussion of the “generalized foliation”, it is
instructive to review the original notion of foliation and see
how the corresponding RG procedure is carried out for the
X-cube. The X-cube model has a foliated structure, where
layers of the toric code can be added to or removed from
the X-cube via a finite-depth circuit S [9]. Given an X-cube
ground state |�X.C.〉 of the system size Lx × Ly × Lz and a
toric code ground state |�T.C.〉, S yields a |�X.C.〉 of the
size Lx × Ly × (Lz + 1). In rest of this section, we review the
finite-depth circuit S on the three-torus.

Let us consider the X-cube Hamiltonian defined on a cubic
lattice on the three-torus; and one copy of the toric code
Hamiltonian defined on a square lattice on the two-torus. For
both models, the local qubit DOFs are placed on the edges.
The X-cube Hamiltonian [6]

HX.C. = −
∑

v

(
Ax

v + Ay
v + Az

v

) −
∑

c

Bc (1)

contains three types of vertex terms Ax
v , Ay

v , and Az
v; and one

type of cube term Bc, as shown in Fig. 2. The toric code
Hamiltonian [20]

HT.C. = −
∑

v

Qv −
∑

p

Bp (2)

is a sum of local terms as shown in Fig. 3.
To construct the circuit, we first insert a decoupled toric

code into the X-cube. As depicted in Fig. 4, when the inserted
toric code lies in the xy plane, it bisects the z direction edges in
the X-cube model, thus creating new qubit edges k′ colored in
orange. These new k′ edges are added to the system as product
states whose Hamiltonian is chosen to be H0 = −∑

{k′} Zk′ .

FIG. 3. (a) The vertex term Qv in the toric code Hamiltonian.
(b) The plaquette term Bp.

For each bisected edge i in the X-cube Hamiltonian, we sub-
stitute Zi → Zi′ and Xi → Xi′ .

The circuit S is a product of two finite-depth circuits
S2 and S1, S = S2S1. Each is a product of the controlled-
NOT (CNOT) gates. The circuit S1 acts on the edges of the
modified X-cube Hamiltonian, as shown in Fig. 5(a). Every
CNOT gate in S1 has an i′ edge serving as the controlled
qubit and the corresponding k′ edge as the target. On the
other hand, S2 acts on both edges of the X-cube and those
of the toric code. Every edge of the toric code serves as
the controlled qubit for the CNOT gates whose targets are
edges in the modified X-cube. An illustration of S2 is given
in Fig. 5(b). The CNOT gate, acting by conjugation, has the
actions of

ZI �→ ZI, IZ ↔ ZZ,

XI ↔ XX, IX �→ IX, (3)

where the first qubit is the control and the second is the target.
All the CNOT gates in S1 or S2 commute with each other.
Therefore, S is a finite-depth circuit. By direct computation,
we see that

S
(
H̃

(Lx,Ly,Lz )
X.C. + HT.C. + H0

)
S† ∼= H

(Lx,Ly,Lz+1)
X.C. , (4)

FIG. 4. The insertion of a layer of toric code living on an xy
plane (blue colored square lattice) into a cubic lattice, which hosts
the X-cube. The inserted layer bisects an edge i near the inserted
plane into edges labeled by i′ and k′. For every bisected edge, the
X-cube Hamiltonian is modified by replacing Zi → Zi′ and Xi → Xi′ .
The new edges k′ are product states with the Hamiltonian of H0 =
−∑

{k′} Zk′ .

035148-3



WANG, MA, STEPHEN, HERMELE, AND CHEN PHYSICAL REVIEW B 108, 035148 (2023)

FIG. 5. An illustration of the finite-depth circuit S = S2S1.
(a) The action of the circuit S1 when focus on an elementary cube of
the original cubic lattice. The arrows, representing the CNOT gates,
point from the controlled qubits to the targets. (b) S2’s action viewed
at a cube.

where H̃X.C. is the modified X-cube Hamiltonian, and the
symbol ∼= denotes that the left-hand side and the right-hand
side share the same ground space.

III. ISING CAGE-NET

In this section, we review the basic definition and proper-
ties of the Ising cage-net model.

The Ising cage-net is an exactly solvable model obtained
from the coupled-layer construction [16], in which decoupled
layers of the doubled-Ising string-net [21–25] are coupled
together through the particle-loop (p-loop) condensation.

Specifically, we take three stacks of the doubled-Ising
string-net defined on a square-octagon lattice (see Fig. 6),
and stack them together to form a truncated cubic lattice,
as shown in Fig. 7. Each of the six faces of a cube is an
octagonal plaquette. We call an edge l , parallel to the μ

direction for μ ∈ {x, y, z}, a μ-principal edge, and denote
it by lμ.

As a 2D lattice model, the doubled-Ising string-net is
built from the Ising unitary modular tensor category [26,27],
which consists of an index set {0, 1, 2} and a set of symbols
(δi jk, ds, F i jm

kln , Ri j
k ). The model has a three-dimensional local

Hilbert space of spanC{|0〉 , |1〉 , |2〉} for each edge of the

FIG. 6. A square-octagon lattice, where the doubled-Ising string-
net is defined. Each edge has a local Hilbert space with a basis
{|0〉 , |1〉 , |2〉}. Qv is defined for every trivalent vertex, and Bp =∑2

s=0(ds/D)Bs
p is defined for each square and octagonal plaquette.

The string operator for a fluxon excitation W fluxon
l violates the two Bp

terms containing the edge l and no Qv term anywhere.

FIG. 7. A truncated cubic lattice. It is formed by intersecting lay-
ers of the square-octagon lattice. Every cube has six octagonal faces.
At the corners of each cube are octahedrons (see Fig. 9). The edges
l , parallel to μ direction for μ ∈ {x, y, z}, are called the μ-principal
edges, which are denoted by lμ. For the system of decoupled layers,
a μ-principal edge has a nine-dimensional local space given by the
tensor product of (spanC{|0〉 , |1〉 , |2〉})⊗2.

square-octagon lattice. The states |0〉, |1〉, |2〉 are dubbed as
0-string, 1-string, and 2-string respectively. The commuting
projector Hamiltonian

HD.I. = −
∑

v

Qv −
∑

p

Bp (5)

consists of the vertex projector Qv and the plaquette projector
Bp = ∑2

s=0(ds/D)Bs
p (see Fig. 6). The symbol ds takes values

in d0 = d2 = 1, and d1 = √
2. D = ∑

s(ds)2 is the total quan-
tum dimension of the model. Qv’s action is defined by

(6)

where the symbol δi jk is symmetric under permutation of
its indices. The nonzero elements are δ000 = δ011 = δ211 =
δ022 = 1, up to permutations. The subspace where all the ver-
tex terms Qv are satisfied is called the stable vertex subspace
HD.I.

Qv
[25]. The plaquette operator Bs

p’s action are evaluated by
the graphical rules, which are defined via the d and F symbols
(Appendix B). Bs

p acts on a plaquette by fusing a loop of s into
the edges as, for example,

(7)
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FIG. 8. An elementary ψψ̄ particle loop (p-loop), the red loop,
created by the coupling operator Vlμ shown by the green tube. We
represent a flux by a line segment normal to the hosting plaquette.
Joining the segments together, we have the red loop.

For every ground state |�D.I.〉, which is a superposition of
different configurations of closed loops satisfying Qv at each
vertex, Bs

p acts as

Bs
p |�D.I.〉 = ds |�D.I.〉 . (8)

Moreover, the Bs
p operators form a commutative fusion alge-

bra of

Bi
pB j

p =
2∑

k=0

δi jkBk
p. (9)

The doubled-Ising string-net has nine topological exci-
tations {1, ψ, ψ̄, σ, σ̄ , σ ψ̄, ψσ̄ , σ σ̄ , ψψ̄}. In terms of the
theory of anyons, these excitations come from a copy
of the chiral Ising anyon {1, σ, ψ}, and an antichiral
copy {1, σ̄ , ψ̄}. The fusion rules for the chiral Ising
anyon are

× 1 σ ψ

1 1 σ ψ

σ σ 1 + ψ σ

ψ ψ σ 1

(10)

The antichiral Ising anyon obeys the same fusion rules; we
simply replace the anyon labels above with the barred version.
Among the nine excitations, the non-Abelian σ σ̄ and the
Abelian ψψ̄ are bosons. They are also the only nontrivial pure
fluxon excitations. A fluxon excitation violates exactly one
Bp term and none of the Qv terms. A fluxon string operator
W fluxon

l creates the fluxon and its antiparticle on the two adja-
cent plaquettes sharing the edge l (see Fig. 6). In particular,
the ψψ̄ has a string operator

W ψψ̄

l = (−1)n1(l ), (11)

where n1(l ) = 1 if the edge l is in the state |1〉, and n1(l ) = 0
otherwise.

To couple the stacks of the doubled-Ising string-net layers
together, we condense the ψψ̄ p-loop. The p-loop condensa-
tion is a direct generalization of anyon condensation in 2D.
We review some simple examples of anyon condensation in
Appendix E. Illustrated in Fig. 8 is the smallest ψψ̄ p loop

created by the coupling operator

Vlμ = W (ψψ̄ )μν

lμ
W (ψψ̄ )μρ

lμ
, (12)

which is a product of ψψ̄ string operators, from the μν and
μρ planes, acting on the edge lμ. We add −Vlμ for every prin-
cipal edge to the Hamiltonian of the decoupled layers. −Vlμ
penalizes the presence of the states |01〉, |10〉, |21〉, and |12〉
on lμ. Using the Brillouin-Wigner degenerate perturbation
theory and treating doubled-Ising string-nets as perturbations,
we arrive at the Ising cage-net. Hence, on a principal edge,
the Ising cage-net has a five-dimensional local Hilbert space
of spanC{|00〉 , |11〉 , |02〉 , |20〉 , |22〉}. Other edges are un-
changed.

The Ising cage-net has a commuting Hamiltonian of

HI.C. = −
∑
μν,v

Aμν
v −

∑
ps

Bps −
∑

po

1

2

(
B0

po
+ B2

po

) −
∑

c

Bc,

(13)
where Aμν

v is the vertex projector in a μν plane; Bps is the
doubled-Ising string-net plaquette projector for a square pla-
quette; 1

2 (B0
po

+ B2
po

) is a plaquette term associated with each
octagonal plaquette po; and

Bc =
∏
po∈c

√
2

2
B1

po
(14)

is the cube term. The vertex term acts as

(15)

where we have used the doubled line to represent a principal
edge in the state | j�〉, and

δ( j,�) =
{

1 for ( j, �) ∈ I
0 otherwise

(16)

with the index set I = {(0, 0), (1, 1), (0, 2), (2, 0), (2, 2)}.
The quasiparticle excitations of the Ising cage-net follow

directly from the constituent doubled-Ising layers. Excitations
that survive the condensation must have string operators that
commute with Vlμ . Thus, some of the doubled-Ising planons
must now exist together with some other doubled-Ising
planons from a perpendicular plane, hence the emergence of
lineons. A lineon can turn at a corner and become another
lineon at the cost of emitting a third one (Fig. 9). The ψψ̄ , on
the other hand, splits into two fractons, where each fracton
is immobile as there is no operator that can annihilate an
individual fracton and create it at a different location. We
summarize the excitations in Table I.

A ground state of the Ising cage-net is a superposition
of different configurations of cages, as illustrated in Fig. 10.
Bps , B0

po
, B2

po
, and Bc all have the eigenvalue of 1 on the

ground state. In a separate paper [19], we find the GSD of a
Lx × Ly × Lz Ising cage-net to be

GSD(Lx, Ly, Lz ) = 1
8 (A + B + 5C + 45), (17)

where A = 9Lx+Ly+Lz , B = 9Lx+Ly + 9Ly+Lz + 9Lz+Lx , and C =
9Lx + 9Ly + 9Lz . We immediately see that GSD(Lx, Ly, Lz +
1)/GSD(Lx, Ly, Lz ) is not an integer. Thus, the Ising cage-net
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FIG. 9. The vacuum fusion channel of three different lineons
at an octahedron (Ref. [16]). The colored solid lines represent the
labeled string operators in the same color. The dashed lines represent
edges without string operators.

is “not” foliated according to the foliation [10,15] introduced
previously for the X-cube and other models. Nevertheless, as
we will see, the Ising cage-net is foliated in a generalized
sense.

IV. GENERALIZING THE NOTION OF FOLIATION

The calculation of the GSD for Ising cage-net model shows
that it is not foliated in the usual sense. However, from its
construction in terms of stacks of 2D topological orders, it is
reasonable to expect that it may be foliated in some general-
ized sense. Indeed, once we examine the original definition of
foliation in more detail, we can uncover two parallel ways in
which it is unnaturally restrictive.

First, let us formulate the original foliated RG process
purely in terms of quantum circuits. Recall that foliated RG
in the X-cube model involves adding a topologically-ordered
layer and then coupling it to the X-cube bulk with a finite-
depth quantum circuit. The topological layer cannot itself
be created with a finite-depth circuit from a product state.
However, it is now well understood that it can be created with
a linear-depth circuit [28,29]. Therefore, if we view foliated
RG as a generalization of usual entanglement RG [2,3], in
which one is allowed to add ancillary degrees of freedom in
a product state and then apply finite-depth circuits, moving to
foliated RG corresponds to additionally allowing linear-depth

TABLE I. Excitations in the Ising cage-net for each μν plane,
written in terms of the doubled-Ising excitations. Amongst, the only
composite excitation, (ψψ̄ )μν , is a fracton dipole, a planon in the
μν plane. A lineon can only move along the line specified by the
repeated position index. For example, σμνσμρ is mobile along a line
in the μ direction. Moreover, pairs of lineons from different planes
can form a lineon dipole, which is a planon.

Mobility Type Excitations

Planons Abelian (ψψ̄ )μν ψμν ψ̄μν

Non-Abelian (σ σ̄ )μν

Lineons Abelian
Non-Abelian σμνσμρ σ̄μνσμρ σμνσ̄μρ

σ̄μν σ̄μρ

FIG. 10. A cage configuration, as dictated by Av . The orange
colored cage is formed by a loop of 1 on each octagonal face. The
purple lines represent strings of 2.

circuits within a 2D subsystem of the 3D model. However,
from this perspective, the current definition of foliated RG
is restricted, in that we only allow the linear-depth circuit to
act on the ancillae qubits and not on the 3D bulk. A more
natural definition would be to allow the linear-depth circuit
to act arbitrarily within a 2D layer on both the ancillae and
the bulk. We remark that the kinds of linear-depth circuits
involved here have a special structure that preserves the area
law of entanglement, as discussed in more detail in Sec. VII.

Second, we can also view foliated RG in terms of conden-
sation. Namely, suppose we want to implement the inverse
process of removing a single layer from the X-cube model,
reducing its size in one direction. This can be achieved by
condensing a planon within a single layer, corresponding to
disentangling the toric code layer and then trivializing that
layer by condensing a boson. In this case, the planon, which
we condense is very special: it can be viewed as being part of
a 2D theory that is decoupled from the rest of the excitation
spectrum of the 3D bulk. To be more general, if we allow
condensation of planons in RG, we should allow condensation
of arbitrary planons, not only those that are part of decoupled
2D theories.

In light of the above, there are two natural ways to extend
the notion of foliated RG: linear-depth circuits and planon
condensation. In what follows, we will show that both ap-
proaches lead to a generalized foliated RG that is applicable
to the Ising cage-net model. Then, in Sec. VII, we argue that
these two approaches, while seemingly distinct, are in fact
very closely related to each other.

V. RG VIA CONDENSATION

How can the system size of the Ising cage-net model be
increased/decreased? In this section, we show that it can be
changed through condensation and uncondensation of bosonic
planons. This is closely tied to the topic of anyon condensation
in 2D systems,which we briefly review in Appendix E. For a
comprehensive review, we refer the reader to Ref. [30] and
references therein.

Let us begin by considering the process of condensing
planons in an xy plane to decrease the system size in the z
direction by one (Fig. 11). Recall from the last section that
for each xy plane there is a bosonic planon ψψ̄ , which can
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z = −1

z = 0

z = 1

FIG. 11. An illustration of the relevant xy planes of a Lx × Ly ×
Lz Ising cage-net. Via the condensation process described in the text,
we remove the z = 0 plane and obtain a Lx × Ly × (Lz − 1) Ising
cage-net.

be condensed. When ψψ̄ in plane z = 0 is condensed, the
quasiparticle content of the model changes as follows:

(1) Since ψψ̄ is the fracton dipole, fractons between
planes z = 0 and z = 1 are identified with the corresponding
fracton between planes z = −1 and z = 0.

(2) The planons ψ and ψ̄ on the z = 0 plane are identified.
(3) The σ σ̄ planon on the z = 0 plane splits into two

Abelian bosonic planons e and m with a mutual −1 braiding
statistics.

(4) The lineons in the z = 0 plane composed of σxyσxz,
σ̄xyσxz, σxyσ̄xz, and σ̄xyσ̄xz are all confined.

(5) Planons and lineons on other planes are unchanged.
After this step, we can further condense either e or m.

This gets rid of the remaining planons on the z = 0 plane
without affecting other quasiparticle excitations. Now, we see
that the quasiparticle content of the model is the same as that
of an Ising cage-net model with the z = 0 plane removed.
The planons and lineons on planes other than z = 0 are left
intact. Moreover, the fracton between z = 0 and z = 1, which
is now identified with the fracton between z = −1 and z = 0,
becomes the new fracton between z = −1 and z = 1. There-
fore, the size of the Ising cage-net model can be decreased by
one in the z direction by first condensing the ψψ̄ planon in a
plane, and then by condensing one of the split channels of the
σ σ̄ planon on the same plane.

We see that if we allow condensation of bosonic planons
as a RG operation, we obtain a generalized foliated RG under
which the Ising cage-net model is a fixed point. As noted in
Sec. IV, the original foliated RG for the X-cube model can
also be viewed in terms of such condensation.

The condensation of planons is, of course, a singular pro-
cess where the bulk gap needs to close and then reopen,
corresponding to a phase transition between different standard
phases (see Appendix A for the definition of standard phases).
This means that, similar to the original foliated RG, the gener-
alized foliated RG operations can move across certain phase
boundaries. However, only certain phase boundaries can be
crossed; the singularity involved in planon condensation is

localized to a selected plane and is hence a “subsystem”
singularity, not one in the full 3D bulk.

A useful way to think about the condensation process is to
use the fact that the Ising cage-net model can be obtained by
gauging the planar Z2 symmetries of a subsystem symmetry
protected topological (SSPT) model protected by the planar
symmetries [31]. Note that, subsystem symmetries usually
contain generators associated with rigid subsystems like x, y,
z planes in the 3D bulk. They are different from higher-form
symmetries [32] with generators associated with deformable
subsystems. The planons being condensed correspond to the
symmetry charges of the planar symmetries in the SSPT
model. Hence the condensation of the planons in a given plane
corresponds to breaking/removing that planar symmetry and
reducing the size of the model. On the other hand, if we want
to increase the size of the system by adding a plane at z = 0,
we need to add the planar symmetry and the corresponding
planar state back to the SSPT model and “regauge” the planar
symmetry.

VI. RG VIA PLANAR LINEAR-DEPTH CIRCUIT

The planar linear depth circuit we construct for the Ising
cage-net model is a direct generalization of a RG scheme that
maps product states to ground states of a string-net model,
introduced by Liu et al. [29]. In Sec. VI A, we review this
RG procedure for the string-net models. We describe carefully
an initialization step that is nontrivial for non-Abelian string-
net models, which was not discussed in detail in Ref. [29]. In
Sec. VI B, we describe the RG scheme as a linear-depth circuit
for the Ising cage-net model. We will see that the initialization
step is also important and nontrivial.

A. String-net RG

In this section, we will first describe an important step in
the RG procedure—the controlled gate, which adds a plaque-
tte to the string-net wavefunction. After that, we will describe
the full RG procedure starting from the string-net wave-
function on the minimal lattice on a torus and then adding
plaquettes row by row. A brief review of the string-net models
is given in Appendix B 1.

1. Adding plaquettes via the controlled gate

The controlled gate can be used to add a plaquette to the
string-net wavefunction. We present the definition and prop-
erties of the gate in this subsection. Computational details of
the results discussed here can be found in Appendix D.

Suppose that on a trivalent lattice, a plaquette is added by
adding an edge (the red edge in the diagrams below), and we
want to extend the string-net wavefunction from the original
lattice to that including this new plaquette. When the edge is
added, it is not entangled with the rest of the lattice and is in
the state |0〉. To merge the added edge into the lattice, first,
map it to

∑
s

ds√
D
|s〉 where D is the total quantum dimension

of the string-net,

|0〉 �→
∑

s

ds√
D

|s〉. (18)
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Then, we use this edge as the control to draw loops around
the added plaquette. More specifically, we can represent the
controlled gate Gp = ∑

s Gs
p graphically as in Eq. (19). The

action of Gs
p is similar to the action of Bs

p, which adds a loop s
to a plaquette, but for the graphical evaluation of Gs

p, we treat
the control edge as if it is in the state |0〉, i.e.,

(19)

where the red line with an arrow marks the control edge. We
carry out the explicit graphical evaluation in Appendix D 1.
Note that Gs

p can be defined on any polygonal plaquette.
Gs

p is not a unitary on the full Hilbert space, but only
between subspaces. More specifically, it is an isometry from
VSN

p,s to HSN
p,s, both of which involve the DOF around a pla-

quette p. In VSN
p,s , the control edge is set to |s〉 while the other

edges come from the string-net wavefunction on the lattice
with the control edge missing (pretending that it is set to
|0〉). The vertices containing the control edge, then, involve
configurations like

(20)

In HSN
p,s, all edges, including the control edge, come from the

string-net wavefunction with the control edge set to |s〉.
In Appendix D 2, we prove that Gs

p is an isometry from VSN
p,s

to HSN
p,s by demonstrating

(21)
The controlled gates commute with each other[

Gs
p, Gs′

p′
] =0 = [

Gs
p

†
, Gs′

p′
]
, (22)

as long as they do not act on each other’s controlled edge.
Moreover, we can show[

Gs
p, Bs′

p′
] = 0 = [

Gs
p

†
, Bs′

p′
]
, (23)

provided that Bs′
p′ does not act on the control edge of Gs

p. We
prove these commutation relations in Appendix D 3.

In Appendix D 4, we prove a useful equation, which we
call the central equation

Gs
p(|s〉 〈s′|)ctG

s′
p

† = Ps
ct

(∑
k

dk

dsds′
Bk

p

)
Ps′

ct , (24)

where (|s〉 〈s′|)ct acts on the control edge and Ps
ct = |s〉 〈s| is a

projector on the control edge. With the central equation, we
can show that the controlled gate does what we claimed—it
adds a plaquette to the string-net wavefunction. In particular,
we show below that under conjugation by Gp = ∑

s Gs
p, the

projector on the control edge Pct = ∑
s,s′

dsds′
D |s〉〈s′| is mapped

to the plaquette projector Bp = ∑
s

ds
D Bs

p,

GpPctG
†
p =

∑
s,s′

dsds′

D
Gs

p(|s〉〈s′|)ctG
s′
p

†

=
∑
s,s′,k

dk

D
Ps

ctB
k
pPs′

ct

=
∑

k

dk

D
Bk

p = Bp. (25)

2. The RG circuit

Using the controlled gate as a building block, we can con-
struct the full linear-depth circuit that maps a product state
to the string-net wavefunction. We present the linear-depth
circuit in two steps: (1) from a product state to a string-net
wavefunction on the minimal lattice on torus; (2) from the
string-net wavefunction on the minimal lattice to the full
lattice by adding plaquettes. We are going to focus on the
trivalent square-octagon lattice, although the general proce-
dure applies to other trivalent graphs as well.
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FIG. 12. The initialization step in the RG circuit for generating
the string-net wavefunction. Left: Pick three edges around a vertex
and map them into one of the ground states of the string-net on the
minimal lattice. Right: Grow the minimal structure by copying the
string states |i〉 and | j〉 along noncontractible loops so that they reach
the full extent of the lattice.

The minimal lattice on the torus consists of three edges,
two vertices, and one plaquette, as shown in Fig. 23 (in
Appendix B). On the square-octagon lattice, we start from
the product state ⊗l |0〉l . Pick three edges around a vertex as
shown in Fig. 12. Apply a local unitary transformation on the
three edges so that they become one of the ground states on
the minimal lattice. Note that for Abelian string-net states, the
ground states can be chosen to be a product state of the three
edges. In fact, the ⊗l |0〉l state is a legitimate state already,
because it satisfies the vertex term while the plaquette term
is trivial for Abelian strings on the minimal lattice (for proof
see Appendix B 2). However, for non-Abelian string-nets, the
Bs

p term for a non-Abelian s string acts nontrivially in the sta-
ble vertex subspace, and the ground states generally become
entangled. In the case of the doubled-Ising on the minimal
lattice, ten configurations satisfy the vertex constraints. Of
this ten-dimensional space, only nine dimensions belong to
the ground space, where B0

p = 1, B1
p = √

2, and B2
p = 1. The

remaining one dimension carries a ψψ̄ fluxon excitation such
that B0

p = 1, B1
p = −√

2, and B2
p = 1. One possible choice of

the nine doubled-Ising ground states on the minimal lattice is
given in Appendix C 1.

Now, we need to grow this minimal structure so that it
reaches the full extent of the lattice. To do this, we “copy” the
states on the i and j edges along the noncontractible loops in
the y and x directions. To achieve this, we use controlled gates
of the form

∑
i |i〉|i〉〈i|〈0|, and apply them sequentially along

the noncontractible loops, as shown in Fig. 12. As this step
has to be done sequentially along the loop, its depth increases
linearly with the size of the lattice. This completes step 1 of
the linear-depth circuit, which we call initialization.

Step 2 is also of linear depth. The minimal lattice has
only one plaquette. In step 2, we add more plaquettes to the
lattice using the controlled gate introduced in Sec. VI A 1. The
plaquettes cannot be added all at once, because the controlled
gates commute only when they do not act on each other’s
control edge. A linear-depth circuit is hence needed to add all
the plaquettes to the square-octagon lattice. A particular se-
quence for adding these plaquettes is shown in Fig. 13. Firstly,
all the square plaquettes (red circles) can be added at the same
time because they do not overlap with each other. The small

FIG. 13. Adding loops to plaquettes in step 2 of the RG circuit
for generating the string-net wavefunction. The state has been ini-
tialized into one of the ground states on the minimal lattice (black
lines). First, loops are added to the square plaquettes (shown in red)
in a single step. Then, loops are added to octagon plaquettes in row
(1), (2),... (ly − 1) sequentially. For the last row, loops are added to
octagon plaquette in column (1), (2),...., (Lx − 1) sequentially. No
action is needed in the last plaquette p̃.

circle indicates the control edge while the big circle indicates
the action of Gs

p. Secondly, we add the square-octagon lattice
in row one [labeled (1) in Fig. 13]. All controlled gates in
row one commute with each other so they can be added in
one step. Then we add row two, row three, etc., until the next
to last row [labeled (Ly − 1) in Fig. 13]. For the last row,
we need to choose the control edges side ways because we
need un-entangled edges to be used as control edge. Due to
this change, the plaquettes in the last row need to be added
sequentially as the controlled gates do not commute any more.
As shown in the figure, we can add them in the order of (green
labels) (1), (2),..., (Lx − 1). We do not need to act in the last
plaquette (labeled p̃) as the constraint due to the last plaquette
is already implied by that of the largest plaquette that we
started from combined with all the small plaquettes added so
far. Therefore, at this point, we have finished the linear depth
RG procedure that starts from a product state and maps it to
the the string-net wavefunction on the square-octagon lattice.

B. Ising cage-net

In this section, we use the controlled gate of Eq. (19)
to build up the RG circuit to enlarge an Ising cage-net
ground state on the three-torus by one layer. We will start,
in Sec. VI B 1, by introducing finite-depth circuits that grow
cages on the cage-net ground state. They serve as the building
blocks of the full planar linear-depth RG circuit, which we
discuss in Sec. VI B 2.

1. Adding cages via the controlled gate

In 2D, we have seen that a plaquette can be added to the
string-net wavefunction, via the controlled gates, after an edge
is added to the lattice. We can extend this procedure to 3D
cage-net states.

Suppose that we start with the Ising cage-net ground state
on the truncated cubic lattice (Fig. 7) and add a plane in the xy
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FIG. 14. Insertion of an xy plane bisects a cube in the original
cage-net lattice into two cubes. Each intersection point between the
xy plane and the z-principal edges is expanded into an octahedron to
preserve the trivalent structure in the xy, yz, and zx planes.

direction. At each point where the added plane bisects the z di-
rection edges, an octahedron is added, as shown in Fig. 14, to
ensure the trivalent structure in each of the coupled planes. In
the added plane, octagonal plaquettes fill in the space between
the octahedrons. Every edge of the added octahedrons carries
a three-dimensional Hilbert space spanned by {|0〉, |1〉, |2〉}.
We start with these edges all set to the state |0〉. The prin-
cipal edges on the octagons each carry a five-dimensional
Hilbert space spanned by {|00〉, |02〉, |20〉, |22〉, |11〉}, which
is a subspace of the tensor product Hilbert space of two three-
dimensional DOFs {|0〉, |1〉, |2〉} ⊗ {|0〉, |1〉, |2〉} that come
from the two intersecting planes. We start with these principal
edges in the state |00〉.

We describe first the process to add one cube into the new
layer, which consists of two steps: (1) add the octahedrons to
the cage-net wavefunction; (2) grow a cage structure in the
upper truncated cube of Fig. 14. In step one, we first need
to copy the state of the bisected z-principal edge onto some of
the octahedron edges so that the vertex rules are satisfied at the
octahedrons’ vertices. Suppose the bisected edge is in the state
|xy〉. The copying process can be achieved with the controlled
gates

∑
xy |xy〉〈xy| ⊗ |x〉〈0| and

∑
xy |xy〉〈xy| ⊗ |y〉〈0| as indi-

cated by the blue and green arrows in Fig. 15. Then, we add

FIG. 15. “Copying” the states on the bisected z-principal edges
onto edges of the added octahedron to satisfy vertex rules in the xz
and yz planes. The copying process can be performed by controlled
gates of the form

∑
xy |xy〉〈xy| ⊗ |x〉〈0| and

∑
xy |xy〉〈xy| ⊗ |y〉〈0|,

indicated by the arrows pointing from the control to the target.

FIG. 16. Growing a cage structure in an added cube. (a) First,
using an edge from the bottom face (colored green) as control, add
loops to the bottom and top faces, (b) then use the edges on the side
faces (colored green) as control to add loops to the side face.

the square plaquettes to the cage-net wavefunction. This can
be done as described in the previous section on how to add a
square plaquette to the doubled-Ising string-net wavefunction,
as the square plaquettes remain unaffected when the doubled-
Ising layers are coupled into Ising cage-net. More specifically,
for each square plaquette, we pick an edge in the state |0〉 as
the control edge, map it to

∑
s

ds√
D
|s〉, and use it as the control

in the controlled gate Gp that adds loops into the plaquette.
Step 2, which adds a cage structure to the cube, is more

complicated. As shown in Fig. 16, first we add loops to the
bottom and top faces and then to the side faces. More specifi-
cally, first we pick a principal edge on the bottom face in the
state |00〉 as the control. We will use the convention where the
first |0〉 comes from the xy plane while the second |0〉 comes
from the vertical xz and yz planes. Map the control edge as

|00〉 �→
∑

s

ds√
D

|s0〉 , (26)

Note that this takes the controlled edge out of the five-
dimensional subspace of {|00〉, |02〉, |20〉, |22〉, |11〉} but
keeps it in the nine-dimensional space of {|0〉, |1〉, |2〉}⊗2. This
will also happen to other principal edges as we implement the
procedure, but at the end of the process of growing a cube, all
principal edges will be back to the five-dimensional subspace.

Now, using the |s〉 state as the control, apply the controlled
gate to the bottom face pb and top face pt as

G0
pb

+ G2
pb

+ 1√
2

G1
pb

B1
pt

(27)

as shown in Fig. 16(a). Note that Gs
pb

and Bs
pt

act on the
first part of the principal edges (the part that comes from
horizontal planes). After these controlled gates, the projector
on the control edge |0〉〈0| (the first part) gets mapped to

(|0〉〈0|)ct �→
∑
ss′

dsds′

D
(|s〉〈s′|)ct

�→ B0
pb

+ B2
pb

+ B1
pb

B1
pt
, (28)

where in deriving the last line, we used the fact that the top
face is part of the original cage-net wavefunction and B0

pt
=

B2
pt

= 1. Note that it might seem that the operator in Eq. (27)

is not unitary as B1
p is not. But since B1

pt
B1†

pt
= B0

pt
+ B2

pt
= 2,

the action of the operator restricted to the ground space of the
original cage-net model is indeed unitary.
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Next, we need to add loops to the side faces. To do this, we
take the principal edges on the bottom face, which are now in
the states |s0〉 and send them to |sαs〉, where αs comes from
the xz or yz planes and αs = 0 if s is even, αs = 1 if s is odd.
This brings the principal edges on the bottom face back to the
five dimensional Hilbert space. Then map the |αs〉 states to

|0〉 �→ 1√
2

(|0〉 + |2〉), |1〉 �→ |1〉. (29)

Use the |αs〉 states as the control to draw loop on the side faces
by applying

∑
αs

Gαs
ps

as shown in Fig. 16(b) to each side face.
Let us see how the Hamiltonian terms in Eq. (28) transforms.
We show the step by step calculation for the third term B1

pb
B1

pt
.

The B1
pt

part is not affected by the transformation and will
be omitted from the following equation. Let us focus on the
transformation induced by on principal edge. We label the
two three-dimensional DOFs on the principal edge as 1 and
2 respectively, where 1 comes from the bottom face whose
state is labeled by s and 2 comes from the side face whose
state is labeled by αs,[(

P0
1 + P2

1

)
B1

pb
P1

1 + P1
1 B1

pb

(
P0

1 + P2
1

)] ⊗ (|0〉〈0|)2

�→ 1√
2

(
P0

1 + P2
1

)
B1

pb
P1

1 ⊗ (|0〉2 + |2〉2)2〈1|

+ 1√
2

P1
1 B1

pb

(
P0

1 + P2
1

) ⊗ |1〉2(2〈0| + 2〈2|)

�→ 1√
2

(
P0

1 + P2
1

)
B1

pb
P1

1 ⊗ (
P0

2 + P2
2

)
B1

ps
P1

2

+ 1√
2

P1
1 B1

pb

(
P0

1 + P2
1

) ⊗ P1
2 B1

ps

(
P0

2 + P2
2

)
. (30)

The result is the product of B1
pb

and B1
ps

projected onto the five-
dimensional subspace of the principal edge, as promised. This
works for all side faces. Similar calculations can be carried
out for the first two terms in Eq. (28). If we put everything
together and omit the projection onto the five-dimensional
subspace of the principal edges, we see the Hamiltonian terms
in Eq. (28) becomes(

B0
pb

+ B2
pb

)∏
ps

(
B0

ps
+ B2

ps

) + B1
pb

B1
pt

∏
ps

B1
ps
, (31)

which is a sum over the desired plaquette terms on the bottom
and side faces as well as the cube term on the cube.

In the RG circuit to be discussed in the next section,
we need to grow cubes in the same row at the same time.
This works in a similar way as growing a single cube and
we describe the procedure here. First, as shown in Fig. 17,
which illustrates the situation with two cubes in the row, a
new plane is added, which bisects the row of cubes into two.
Octahedrons are added to the intersection points to preserve
the trivalent structure in the coupled xy, yz, and zx planes. The
“copying” process illustrated in Fig. 15 is then used to restore
vertex rules at the vertices of the octahedrons and then the
square plaquettes in the octahedrons are added to the cage-net
wavefunction. The next step is illustrated in Fig. 18, which
adds cage structures to a whole row of cubes at the same time.
This is done by first picking the principal edge in, for example,
the x direction and use them as controls to add loops in the

FIG. 17. Adding a row of cubes to the cage-net state, step 1: the
inserted xy plane bisects the cubes into two; octahedrons are added
at the intersection point.

bottom and top faces as described above for each cube in the
row [Fig. 18(a)]. The operations in each cube commute with
that in another cube, and hence they can be done all at the
same time. Next, loops are added to the side faces using the
principal edges on the bottom face as control, as shown in
Fig. 18(b). Again, the operations on each side face commute
with each other, so they can be done at the same time. As a
result of this process, all the cubes in the row are now added
to the cage-net wavefunction. Note that the process illustrated
in Fig. 18 applies to the first row in the added plane. When
we try to add subsequent rows, some of the side faces would
have been added to the cage-net state already. Those side faces
can be treated in the same way as the top face. That is, apply
B1

ps
in step Fig. 18(a) when the x-principal edge is in the state

|10〉, instead of applying
∑

αs
Gαs

ps
controlled by the bottom

principal edge of the side face in the state |sαs〉. A similar
procedure applies to the cubes in the last row of the added
plane as well, which have to be added one by one.

FIG. 18. Adding a row of cubes to the cage-net state, step 2:
(a) first, we simultaneously add loops to the bottom and the top faces
of all cubes in the row; (b), use the edges on the side face (colored
green) as control to add loops to all the side faces at the same time.
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2. RG circuit—Ising cage-net

The processes for adding single cubes and a row of cubes
are building blocks for the full RG circuit that adds a full
plane to the cage-net state. Similar to the case of the doubled
Ising, we first need to initialize the added plane into proper
eigenstates of the nonlocal logical operators before adding
the local structures of cubic cages (plaquettes in the case of
doubled Ising).

A commuting set of logical operators of the Ising cage-net
ground space can be chosen to be generated by the string-
operators of ψ, ψ̄ planons in each μν plane along the μ and
ν directions respectively. We can choose the original cage-
net state (before adding the plane) to be an eigenstate of all
such logical operators. The added xy plane can be initialized
into an eigenstate of ψx, ψy, ψ̄x, and ψ̄y on that plane. The
circuit described in the last section on how to add cubic cages
and plaquette terms to the wavefunction does not affect these
nonlocal logical operators. Therefore, the resulting cage-net
state after the RG circuit remains an eigenstate of all the ψ, ψ̄

logical operators.
But the choice of the eigenvalue for the ψ, ψ̄ logical

operators is not arbitrary as the operators are related to
each other and hence their eigenvalues are constrained. In
Ref. [19], we study carefully the relations among these oper-
ators, which allowed us to derive the ground-state degeneracy
of the Ising cage-net model. The relations are listed below.
For derivation, see the discussion in Sec. VII of Ref. [19]. For
{μ, ν, λ} = {x, y, z},∏

i

(ψψ̄ )μμλ(ν = i)
∏

j

(ψψ̄ )ννλ(μ = i) = 1

rμν (λ = i)r̄μν (λ = i) = 1,∀i,∀{μ, ν}
rμν (λ = i)rμν (λ = i + 1) = 1,∀i,∀{μ, ν} (32)

where rμν = 1
2 (1 + ψμ

μν + ψν
μν − ψμ

μνψ
ν
μν ), r̄μν = 1

2 (1 +
ψ̄μ

μν + ψ̄ν
μν − ψ̄μ

μνψ̄
ν
μν ). As we started from a ground state

of the cage-net model, the original set of ψ, ψ̄ operators
satisfy the relations in Eq. (32). When we add a new xy plane,
we need to make sure that after the new ψx

xy, ψ
y
xy, ψ̄x

xy, ψ̄
y
xy

operators are added to the original set, the total set still satisfy
the relations in Eq. (32). This can be guaranteed when the
added string operators satisfy

ψx
xyψ̄

x
xy = 1, ψy

xyψ̄
y
xy = 1, (33)

rxy = r̄xy = ±1. (34)

The choice of ±1 in the last relation depends on whether
rxy(z = i) = 1 or −1 in the original set. Compared to the
eigenstates listed in Appendix C 1, |�D.I.

min 〉1, |�D.I.
min 〉5, |�D.I.

min 〉9

satisfy the relations in Eq. (33) and rxy = 1 while |ψψ̄
D.I.
min〉

satisfies the relations in Eq. (33) and rxy = −1. Therefore, we
can initialize the added layer into one of these states.

In particular, consider the added xy plane in Fig. 19. Each
red ball represents an octahedron. The added DOF are initially
set to be either in state |0〉 (on edges of the octahedron) or |00〉
(on principal edges). Now initialize the trivalent lattice in the
xy plane into one of |�D.I.

min 〉1, |�D.I.
min 〉5, |�D.I.

min 〉9, and |ψψ̄
D.I.
min〉

following the procedure described in Fig. 12. This linear depth

FIG. 19. Inserting an xy plane into the original cage-net lattice.
Each red ball represents an octahedron. The new principal edges are
shown in blue.

process set up the stage for the next step of the RG circuit:
adding cage structures to the cubes.

Now we can use the procedure described in the last sec-
tion to add cage structures to the cubes. As shown in Fig. 20,
on top of the minimal structure set up in the initialization step
(red lines), cage structures are added to the cubes in the 1st
row, the 2nd row,... the (Ly − 1)th row in each step. In the last
row, cage structures are added to the cube in the 1st column,
2nd column,..., (Lx − 1)th column in each step. No action is
required in the last cube. This process has depth ∼(Lx + Ly)
and completes the addition of a new layer into the cage-net
wavefunction.

FIG. 20. Adding cage structures to the cubes in step 2 of the
RG circuit for the cage-net state. The red lines indicate the minimal
lattice state determined by the initialization step. Cage structures are
added to the cubes in the 1st row, the 2nd row,... the (Ly − 1)th row
in each step. In the last row, cage structures are added to the cube in
the 1st column, 2nd column,..., (Lx − 1)th column in each step. No
action is required in the last cube.
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VII. RELATING CONDENSATION AND LINEAR-DEPTH
CIRCUITS VIA GAPPED BOUNDARIES

A. General discussion

In Sec. V, we discussed the RG process in terms of conden-
sation of planons. In Sec. VI, we discussed the RG process in
terms of a linear-depth circuit. In this section, we show that
these two are closely related to each other by understanding
each in terms of gapped boundaries.

We first consider a gapped boundary between a 2D topo-
logical order and vacuum. If an excitation moves from the
bulk to the boundary, it may become trivial in the sense that
it can be destroyed by a local operator on the boundary. This
phenomenon is referred to as condensation at the boundary.
On the other hand, some excitations remain nontrivial as
they approach the boundary. These phenomena can be char-
acterized precisely in a category-theoretic language [33–36];
in the Abelian case, this amounts to specifying a maximal
subset of bosons that can simultaneously condense at the
boundary [37–40]. It is believed the universality class of a
gapped boundary is fully determined by its category-theoretic
characterization.

The above discussion allows us to define distinct types of
anyon condensation (to vacuum) in a precise way, as distinct
types of gapped boundaries (to vacuum). Such a definition
is natural if we view the vacuum as a condensate of certain
anyons in the 2D topological order. For instance, creating a
puddle of anyon condensate within the bulk 2D topological
order amounts to creating a puddle of trivial state (vacuum)
separated from the bulk by a gapped boundary. This discus-
sion, and the definition of anyon condensation in terms of
gapped boundaries, can be generalized to gapped boundaries
between arbitrary 2D topological orders.

In the context of generalized foliated RG, we consider
condensation of planons. Condensation of a single planon
can similarly be associated with—and defined in terms of—
certain gapped boundaries between two fracton orders, with
the property that the boundary should be transparent to mo-
bile excitations away from the selected plane where the
condensation occurs. It will be an interesting problem for
future work to fully characterize those boundaries between
fracton phases that correspond to planon condensation. We
note that there has been some related prior work discussing
gapped boundaries of fracton models in terms of condensation
[41,42].

It turns out that the kind of linear-depth circuits considered
here can also be associated with a type of gapped boundary. A
linear-depth circuit has the general form U = ∏K

�=1 U� where
each layer U� consists of a number of local unitary gates
with nonoverlapping support, and the number of layers K is
proportional to the linear system size L. In general, U� can
contain gates acting across the entire system. However, for
the circuits we employed for RG, each layer U� only contains
gates acting in a lower-dimensional subsystem of the entire
system, such as the rows in Figs. 13 and 20. Such circuits
are much more restrictive than generic dense linear-depth
circuits, particularly because they preserve the area law when
acting on a state. We call this class of circuits sequential
circuits.

Again we first focus on the 2D case, where as we
have discussed, sequential circuits can be used to generate
topologically-ordered ground states from an initial product
state (the topological “vacuum”). In order to avoid complica-
tions associated with periodic boundary conditions, we make a
simplification as compared to the circuits discussed in Sec. VI;
namely, we work with an infinite system and consider circuits
that generate a disk of 2D topological order from vacuum.
If desired, the size of the disk can later be taken to infinity.
This allows us to drop the initialization step, whose role is
to take care of the nontrivial ground-state degeneracy on a
two-torus. We can also drop the final linear-depth sequence
of gates needed to stitch two gapped boundaries together in a
manner consistent with periodic boundary conditions.

With these simplifications, the circuits operate in the fol-
lowing way. We slice the 2D space into 1D concentric circles
surrounding the center of the disk, and order these subspaces
according to their radial coordinate. The �th layer of the cir-
cuit is assumed to be supported near (but not entirely within)
the �th circle. After applying some number of layers of the
circuit, one is left with a disk of topological order, which has
a gapped boundary to the vacuum region, which has not yet
been acted on by the circuit. Then, the next layer in the circuit
acts only within the vicinity of the one-dimensional gapped
boundary between the topological order and the vacuum. The
action of the unitary in this layer is to “grow” the topological
order by a small amount, pushing the gapped boundary further
into the vacuum region. Continuing in this way allows one to
grow the topologically-ordered region arbitrarily.

Based on the above, given a sequential circuit, we can
associate the universality class of the gapped boundary to
vacuum, which emerges when the circuit is truncated at some
radius. This association is well defined in the following sense.
We can define a truncation of the circuit Ū = ∑K0

�=1 U� where
K0 < K . This will create a disk of topological order with a
particular gapped boundary to vacuum. Now, consider a dif-
ferent truncation Ū ′ = ∑K0

�=1 V� where each V� again consists
of nonoverlapping gates such that V� = U� for � sufficiently
less than K0, but the layers near the boundary may differ. By
definition, the two truncated circuits differ only by a finite-
depth circuit near the boundary. But a 1D finite-depth circuit
cannot change the universality class of the gapped boundary,
i.e., it cannot change the set of anyons, which can condense
on the boundary. So the gapped boundary type is indepen-
dent of how the sequential circuit is truncated. We note this
conclusion only holds for truncations that are compatible with
the 1D-layer structure of concentric circles; the key property
is that the truncation only cuts through a finite number of
1D layers, which is bounded above as the size of the disk
increases.

We emphasize that this discussion can be generalized to
gapped boundaries between two different 2D topological or-
ders. That is, given two topological orders referred to as A
and B that admit a gapped boundary, an A ground state can be
converted into a B ground state by applying a sequential cir-
cuit. Or, if we apply a truncated version of the same sequential
circuit, we can create a puddle of B within the bulk topological
order A, separated by a gapped boundary whose universality
class does not depend on how the circuit is truncated.
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In formulating the generalized foliated RG in terms of
quantum circuits, we apply sequential circuits within 2D lay-
ers of a 3D fracton model. Truncating such a sequential circuit
(along its 1D-layer structure) results in a gapped boundary be-
tween two different fracton orders, where some of the mobile
excitations may condense along the layer where the circuit is
applied. This is how we described planon condensation above,
and thus we propose that planon condensation and applying
2D-sequential circuits are different ways to realize the same
operation in generalized foliated RG.

B. Condensation in the Ising cage-net circuit

In accordance with the above discussion, we now iden-
tify the type of gapped boundary that is associated with the
sequential circuits used to create Ising cage-net model. To
accomplish this, we are going to apply the circuit only to a
finite disk-shaped region within a plane; we will not take the
limit that the size of the disk goes to infinity. Inside the region,
we get the fracton order as expected. Outside of the region,
the added degrees of freedom remain unentangled. There is
a gapped boundary between the two sides. We show that the
gapped boundary and the region outside can be obtained by
condensing bosonic planons starting from a complete frac-
tonic state.

First, let us see how a similar relation works in the
doubled-Ising string-net state. We imagine a very large disk
of string-net state, and we ignore the curvature of the disk’s
boundary to simplify the following discussion. Recall that in
the RG circuit, the plaquettes are added row by row. Suppose
that we stop the process at row i. The boundary between row
i and row i + 1 is a smooth boundary on the lattice. As the
Hamiltonian terms remain commuting throughout the process,
the boundary is gapped.

The gapped boundary can be induced by the condensation
of fluxon excitations [22] ψψ̄ and σ σ̄ on the boundary and
beyond. To see that, consider a string operator of the form
shown in Fig. 21, which consists of a string segment above
the lattice, a parallel segment under the lattice and the two
are connected by segments that vertically go through the lat-
tice plane. Note that, while embedded in the 3D space, the
string operator is a closed loop, from the 2D perspective,
it ends at the locations where the string goes through the
lattice plane and can create excitations at those points. In
particular, such string operators in general violate the pla-
quette term at their ends, as the plaquette terms correspond
to a loop operator that links with the string operator and
the linking generates nontrivial action. Therefore, in the bulk
of the string-net state, the string operator generates “fluxon
excitations” at its ends. In the doubled-Ising model, there are
two string operators of this type, corresponding respectively
to a loop of string type 1 and a loop of string type 2. The
two string operators generate the ψψ̄ and σ σ̄ excitations, re-
spectively. If the string operator ends (goes vertically through
the lattice plane) outside of the smooth boundary (Fig. 21),
there are no more plaquette terms to violate and the string
operator does not generate any excitations. Detailed calcula-
tions can be found in Appendix C 2. Therefore, the ψψ̄ and
σ σ̄ excitations condense on the boundary and beyond, thus
demonstrating the connection between anyon condensation

FIG. 21. Condensation of the ψψ̄ and the σ σ̄ fluxons on the
smooth boundary of the doubled-Ising model. The vertex details
are omitted. The dashed lines represent the unentangled edges. An
open-ended fluxon string operator is constructed from a loop of s
string that passes through the lattice plane vertically at a plaquette.
If the plaquette (for example, the one labeled p) lies within the
doubled-Ising region, it creates a fluxon excitation. If the plaquette
(for example, the one labeled p′) falls outside the string-net region,
then no excitation is generated. Thus, all fluxons condense on the
smooth boundary. For computational details on the condensation, see
Appendix C 2.

and the linear-depth circuit for the doubled-Ising string-net
state.

The situation is very similar in the Ising cage-net model.
The RG circuit is again implemented row by row in a se-
quential manner. Suppose that we stop the process at row
i, there will be a gapped boundary between row i and row
i + 1. As shown in Fig. 22, like for the string-nets, a vertical
loop operator that goes through the lattice plane at two points
generates planon excitations ψψ̄ and σ σ̄ in the bulk of the
cage-net state (in rows j � i). Beyond row i, however, it
does not generate any excitations and hence the ψψ̄ and σ σ̄

are condensed. This agrees with the RG procedure driven by
condensation described in Sec. V. Therefore, the process of
sequential application in the linear-depth circuit can be inter-
preted as moving the boundary between the cage-net state and
the condensed state, hence enlarging or shrinking the fracton
order in the plane.

VIII. SUMMARY AND DISCUSSION

In this paper, we studied the renormalization group
transformation for the Ising cage-net model and found
that the system size of the Ising cage-net model can be
decreased/increased by condensing/uncondensing planon ex-
citations near a 2D plane, or correspondingly through a
so-called sequential circuit, which preserves the area law and
whose depth scales with the linear size of the plane. We argued
that these two ways of carrying out the RG are closely related
through gapped boundaries.

We call this procedure the generalized foliated RG, be-
cause the previously defined foliated RG, under which the
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FIG. 22. Condensation of the ψψ̄ and the σ σ̄ fluxon excitations
in the half xy plane (shown in blue) in the Ising cage-net. If the end
of the the fluxon string operator falls within the Ising cage-net region
(for example at the plaquette p), a fluxon excitation is created. If
the end falls outside of the Ising cage-net region (for example at the
plaquette p′), then no excitation is generated. Therefore, both ψψ̄

and σ σ̄ planons condense on the boundary.

X-cube and related models are fixed points [9], fits into
this new definition as a special case. On the one hand, the
system size of the X-cube can be decreased/increased by
condensing/uncondensing a lineon dipole or fracton dipole
on a given plane (both these excitations are planons). Or, the
RG procedure can be carried out with a linear-depth circuit in
the same plane. One way to construct the linear-depth circuit
is to use the finite-depth circuit discussed for the original
foliation scheme [9] to decouple a layer of toric code out
of the X-cube model, and then disentangled the toric code
into product state with a linear-depth circuit. Altogether this
is a linear-depth circuit. Alternatively, we can use a circuit
similar to that discussed in Sec. VI to remove cage structures
in a plane row by row and hence removing a plane from the
X-cube model.

On the other hand, the generalized foliated RG allows a
broader class of RG operations. Indeed, the Ising cage-net
model is not a fixed point of the original foliated RG as can
be seen from its ground-state degeneracy calculation [19].
We recall that the original foliated RG led to an associated
notion of foliated fracton phases (see Appendix A for a def-
inition), with the key property that two systems related by
a foliated RG operation lie within the same foliated frac-
ton phase. Similarly, we expect that there exists a notion of
generalized foliated fracton phase (GFF phase), again with
the key property that two systems related by a generalized
foliated RG operation lie in the same GFF phase. GFF phases
should be a coarser equivalence relation on quantum sys-
tems than foliated fracton phases, because a broader class
of RG operations are allowed. We do not currently know
how to give a definition of GFF phases along the lines of

those in Appendix A; however, one possibility is to give
a definition based on circuit equivalence of ground states,
where one allows certain linear-depth circuits supported on
planes.

In Sec. IV, we pointed out that the original foliated RG
contains certain unnatural restrictions, while the generalized
foliated RG seems to be more natural. Therefore, we expect
that GFF phases are correspondingly a more natural con-
cept than foliated fracton phases as originally defined, so
it will be important to revisit what we have learned about
foliated fracton phases. In particular, several invariants have
been devised for foliated fracton phases as originally de-
fined, including those based on fractional excitations and
entanglement entropy [10,15]. Now, with a new notion of
GFF phases, we need to reconsider the question of what
quantities remain invariant under the new equivalence rela-
tion, and which models belong to the same GFF phase and
which do not. For example, we can ask whether the twisted
foliated fracton model proposed in Ref. [13] is still in a
different phase than the X-cube model or not under the new
definition.

Finally, we want to comment that the generalized foliation
defined in this paper makes the discussion of type-I fracton
models more in-line with that of subsystem symmetry pro-
tected topological (SSPT) phases with planar symmetry in,
e.g., Refs. [43–45]. In the definition of “strong SSPT” in
these papers, when a decoupled layer with planar symmetry
is added to the bulk of the system, the planar symmetry can
be combined with an existing planar symmetry in the system,
which corresponds to the condensation of the composite of the
symmetry charges from the decoupled plane and a planar sym-
metry charge in the bulk of the system. The “strong SSPT”
orders discussed in these papers hence may become nontrivial
(twisted) foliated fracton orders when the planar symmetries
are gauged.
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APPENDIX A: DEFINITION OF FOLIATED
FRACTON PHASES

Here we give a definition of foliated fracton phases, and
in the process provide a framework for thinking about the
relationship among fracton phases, universality, and RG fixed
points. Here we focus on foliated fracton phases as introduced
in earlier works; in Sec. VIII, we briefly comment on a possi-
ble definition of generalized foliated fracton phases associated
with the generalized foliated RG. An important point is that
notions of standard and foliated phases both play important,
but different, roles in fracton physics. For ease of presentation,
we do not consider symmetry in this discussion.

First we recall the definition of standard gapped phases and
make some comments on the physical basis of this definition.
Phases are equivalence classes of systems; by a system we
mean a specification of the degrees of freedom on some d-
dimensional spatial lattice, together with a local Hamiltonian
H . In a slight abuse of notation we use H to denote the system
and not just its Hamiltonian. Two systems H and H ′ are in
the same phase (considered equivalent) if there exist resource
systems R and R′ so that there is a continuous path between the
Hamiltonians for the systems H ⊗ R and H ′ ⊗ R′. Here “⊗”
denotes the operation of stacking two systems. Each “trivial”
resource system is a collection of gapped, decoupled zero-
dimensional systems arranged in d-dimensional space, i.e., R
and R′ have product ground states. The energy gap is required
to remain open along the continuous path, which must also
avoid first-order phase transitions [46] While it may seem the
latter condition is redundant, it is needed if one defines the
energy gap as the gap to local excitations. A special case of
the above definition is that H and H ′ are equivalent if there is a
continuous path between their Hamiltonians (without stacking
with resource systems).

Typically we are interested in the universal properties of
phases, which we define simply as those properties that are
the same everywhere within a phase. In many cases, a standard
phase contains within it a representative system that is a RG
fixed point under some (conventional) scheme for carrying
out the RG. When this occurs, the universal properties of a
phase are encapsulated in the properties of the RG fixed point.
This holds because two (infinite) systems related by a RG step
are in the same phase; for instance, this property is clear in
“entanglement RG” schemes.

Why do we consider stacking with trivial resource sys-
tems? This certainly leads to nice mathematical properties,
and has the advantage of allowing for comparison between
systems with different local degrees of freedom. However,
there is a more fundamental reason, namely to obtain a defini-
tion of phases that can be distinguished in experiments, at least
in principle. The key point is that lattice models are always
idealizations of continuum systems, where some degrees of
freedom are deemed unimportant and left out of the model,
e.g., atomic core levels). Any physically measurable notion of
phases cannot depend on which degrees of freedom we choose
to include or ignore in a theoretical model, and this issue is
addressed by including stacking with trivial resource systems
in the equivalence relation.

More generally, we emphasize that the equivalence relation
used to define standard phases is not arbitrary. Given the

idea that gapped phases should be connected components of
parameter space where the gap remains open, standard phases
are the finest equivalence classes that can be distinguished
(in principle) by experiments. Therefore, it is always phys-
ically relevant to consider standard phases, even when the
universal properties of a standard phase are not captured in
a RG fixed point, as occurs in fracton models. Put another
way, we cannot achieve a complete understanding of fracton
physics if we ignore standard phases. However, this does not
preclude the relevance of other notions of phases to fracton
physics.

Before defining foliated fracton phases, we first introduce
the closely related notion of F phases. In order to talk about
F phases (and foliated fracton phases), we need to introduce a
foliation of 3D space, which is a certain geometrical structure.
In particular, a foliation consists of one or more decomposi-
tions of space into parallel 2D layers. If we have k separate
decompositions, we sometimes speak more specifically about
a k foliation. An important example of a 3-foliation is given
by the sets of all xy, yz, and xz planes.

Similar to standard phases, two systems H and H ′ are
considered to be in the same F phase (or to be F equiva-
lent) if there is a continuous path between the Hamiltonians
for H ⊗ R and H ′ ⊗ R′. The difference from standard phases
is that the resource systems R and R′ are allowed to con-
sist of decoupled gapped 2D systems on any layers of the
foliation structure. For instance, R can consist of decou-
pled 2D toric codes lying on a set of xy planes (as long
as the foliation structure includes xy planes). Here, as in
the foliated RG, we view 2D layers as a free resource,
analogous to product states in the definition of standard
phases.

The relation of F equivalence is obviously coarser than
standard phase equivalence, because the set of allowed re-
source systems contains those allowed for standard phases.
Moreover, it is strictly coarser; for instance, a stack of 2D
topologically-ordered layers is nontrivial as a standard phase,
but is in the trivial F phase (with appropriate foliation struc-
ture). Therefore each F phase can contain multiple standard
phases.

The reason we define F phases is to be able to define
foliated fracton phases, which are those F phases that contain
a representative system that is a fixed point of the foliated RG.
Because two (infinite) systems related by a foliated RG step
are in the same F phase, it is expected that the fixed point of
a foliated fracton phase captures certain universal properties
that are the same throughout the foliated fracton phase, and
are referred to as its foliated fracton order. It is important to
emphasize that the foliated fracton order consists of properties
that are the same even within different standard phases, so
long as these standard phases are F equivalent and belong to
a foliated fracton phase.

Foliated fracton phases are a useful concept in the study of
fracton physics because, in some fracton systems, they restore
a connection between universal properties of a phase and a
RG fixed point. This connection fails when we study fracton
models using standard phases.

It should be noted that not every F phase is a foliated
fracton phase. For instance, the F phase containing Haah’s
cubic code model is not a foliated fracton phase for any choice
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of foliation structure. It is not clear that such F phases are
interesting objects of study.

APPENDIX B: REVIEW OF STRING-NET MODELS

In Appendix B 1, we review the basics of the string-net
models that are relevant for our purposes. We follow the
original construction as introduced in Ref. [21]. For more
comprehensive introductions, we refer the readers to Refs.
[21,22,24,25]. In Appendix B 2, we discuss the string-net
models on the minimal lattice on the torus.

1. String-net models

The input data of a string-net model is a unitary fu-
sion category [47], which includes an index set {0, 1, ..., N}
and the associated data set (δi jk, ds, F i jm

k�n ). A string-net
model is defined on a trivalent lattice, where the local
DOF live on the edges. Each edge has a Hilbert space of
spanC{|0〉 , |1〉 ..., |N〉}. Usually, an edge of the string-net is
represented by a directed line. For a directed edge, i∗ repre-
sents the edge in the state i pointing in the opposite direction.
That is

(B1)

In particular, 0∗ = 0.
The δ symbol specifies the vertex rules. δi jk takes values

in {0, 1} and it is symmetric under permutation of the indices.
δi jk determines the allowed states on edges at a trivalent ver-
tex. A vertex is stable [25] if

(B2)

satisfies δi jk = 1. A vertex is not stable if δi jk = 0.
The d and F symbols define the graphical rules. The d

symbols evaluate loops to real numbers as

(B3)

where d0 = 1. They satisfy the equation

did j =
∑

k

δi jk∗dk . (B4)

The F symbols define the transformations

(B5)

where the F symbols are nonzero if all the vertices satisfy the
vertex rules. They are normalized as

F i jk
j∗i∗0 =

√
dk

did j
δi jk . (B6)

FIG. 23. The minimal trivalent lattice on the torus. The lattice
has three edges colored by red, blue, and green; two vertices; and
one plaquette. i, j, and k are state labels on the colored edges.

For the cases of interest in this paper, the F symbols satisfy
the tetrahedral symmetry

F i jm
k�n = F �km∗

jin = F jim
�kn∗ = F im j

k∗n�

√
dmdn

d jd�

, (B7)

as well as the pentagon equation∑
n

F i jm
k�n F ps�∗

inq F pqn
jkr∗ = F ps�∗

m∗kr∗F rsm∗
i jq . (B8)

From the pentagon equation, we can derive the orthogonality
relation of the F symbols that∑

n

F i jm′
k�n

(
F i jm

k�n

)∗ = δmm′ , (B9)

where the complex conjugation on the F symbol is given by(
F i jm

k�n

)∗ = F i∗ j∗m∗
k∗�∗n∗ . (B10)

The ground-state wavefunction of the string-net model |�〉
is given by

|�〉 =
∑

|X 〉∈HSN
Qv

�(X ) |X 〉 , (B11)

where �(X ) = 〈X |�〉, and |X 〉 denotes a string-net configu-
ration in the stable vertex subspace HSN

Qv
. A vector |X 〉 is a

product state. Note that the set of all different |X 〉’s form an
orthonormal basis for this subspace. The graphical rules define
a set of relations between the amplitudes

(B12)
Moreover, the graphical rules can be used to define trans-
formations for a generic string-net configuration ket vector.
Equations (7) and (19) are examples.
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FIG. 24. An illustration of the two noncontractible loops Cx and
Cy on the minimal lattice, taken by the logical operators W Ci

α where
α is the excitation label.

The commuting projector Hamiltonian, which has the
above wavefunction as the ground state, is given by

HSN = −
∑

v

Qv −
∑

p

Bp, (B13)

where Qv is the vertex projector enforcing the vertex rules
δi jk , and Bp = ∑

s(ds/D)Bs
p with D = ∑

s(ds)2 being the total
quantum dimension is the plaquette projector. Each Bs

p adds a
counterclockwise-directed loop of s in the interior of a plaque-
tte. Its action can be evaluated by the F symbols as illustrated
in Eq. (7). Equation (B4) implies that the Bs

p’s satisfy

Bi
pB j

p =
∑

k

δi jk∗Bk
p. (B14)

The ground state satisfies

Qv |�〉 = |�〉 , Bp |�〉 = |�〉 (B15)

for all v and p.

2. The minimal lattice

A string-net model can be defined on the minimal trivalent
lattice on the torus. The minimal lattice consists of three
edges, two vertices, and one plaquette as shown in Fig. 23.
The ground states first have to satisfy the vertex constraints
Qv . Recall that a vertex is called stable if the vertex constraint
is satisfied. We denote a basis vector of the stable vertex
subspace on the minimal lattice by

(B16)

The logical operators act within HSN
Qv

. Illustrated in Fig. 24
are the two different paths taken by the logical operators
{W Ci

α } where i ∈ {x, y} and α ∈ {excitations}. The action of the
logical operators on a basis vector |i jk〉 can be computed by
the method introduced in Ref. [21], which we will not discuss
in this paper. We will review a string operator construction for
the double-Ising in Appendix C 2.

Next, the ground states need to satisfy the one plaquette
term on the minimal lattice. Consider the action of Bs

p on a
basis vector |abc〉. Instead of directly fusing the s loop into the
edges, we can first fuse different parts of the s loop together

and map it into a trivalent diagram

(B17)

where in the second equality, we have brought the s loop over
the lattice. We can also bring the loop below the lattice. The
choice does not matter. The action of the Bs

p term can then be
determined by fusing the trivalent diagram (orange) into the
underlying lattice (black).

This will help us to show that for Abelian string-net mod-
els, the plaquette term on the minimal lattice is trivial. For
Abelian string-net models, the fusion of s and s∗ is 0. So, the
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above equation reduces to

(B18)

where to get to the last line, we have used (ds)2 = 1 for
Abelian models. Hence, we see that Bp acts as identity on HSN

Qv

in Abelian models. In other words, on the minimal lattice,
HSN

Qv
is the ground space of the Abelian models.

APPENDIX C: OTHER DETAILS OF THE DOUBLED-ISING

In Appendix C 1, we discuss the ground states of the
doubled-Ising string-net on the minimal lattice (introduced in
Appendix B 2). In Appendix C 2, we show that when we put
the doubled-Ising state on a lattice with smooth boundary, ψψ̄

and σ σ̄ are condensed on the boundary.

1. Doubled-Ising on minimal lattice

The doubled-Ising string-net on the minimal lattice has
a 10-dimensional stable vertex subspace HD.I.

Qv
, spanned by

|000〉, |220〉, |202〉, |022〉, |110〉, |112〉, |101〉, |011〉, |211〉,
and |121〉.

One of the dimensions is not part of the ground space, be-
cause the projector Bp has the eigenvalue of 0 on this state. To
find the ground space, we calculate the action of B1

p. Following
from Eq. (B17) (the actions of B0

p and B2
p are trivial), we find

(C1)

That is,

B1
p |abc〉 = 1√

2

(
I + W

Cy

ψ + W Cx
ψ − W Cx

ψ W
Cy

ψ

) |abc〉

= 1√
2

(
I + W

Cy

ψ̄
+ W Cx

ψ̄
− W Cx

ψ̄
W

Cy

ψ̄

) |abc〉 , (C2)

where we have identified the logical operators by the con-
struction discussed in Appendix C 2, and the second equality
follows from that we can bring the s loop below the lattice in
Eq. (B17). We can further compute the action of B1

p by fusing
the orange trivalent diagram into the underlying lattice. At this
point, it is clear that a product state |abc〉 is generally not an
eigenstate of B1

p.

An explicit calculation shows that |ψψ̄
D.I.
min〉 = − 1

2 |000〉 +
1
2 |202〉 + 1

2 |022〉 + 1
2 |220〉 has the eigenvalue −√

2 under
B1

p. Hence, it is an excited state, which carries a ψψ̄ fluxon.

The other nine dimensions have the eigenvalue
√

2 under B1
p

and are, thus, ground states on the minimal lattice.
An orthonormal basis for the nine-dimensional ground

space can be chosen to be the common eigenstates of logical
operators W Cx

ψ , W
Cy

ψ , W Cx

ψ̄
, and W

Cy

ψ̄
, which all commute with

each other. The nine common eigenstates are

∣∣�D.I.
min

〉
1 = 1

2
|000〉 + 1

2
|202〉 + 1

2
|022〉 − 1

2
|220〉 ,

∣∣�D.I.
min

〉
2 = 1√

2
|011〉 + i√

2
|211〉 ,

∣∣�D.I.
min

〉
3 = 1√

2
|101〉 − i√

2
|121〉 ,

∣∣�D.I.
min

〉
4 = 1√

2
|011〉 − i√

2
|211〉 ,

∣∣�D.I.
min

〉
5 = 1

2
|000〉 − 1

2
|202〉 + 1

2
|022〉 + 1

2
|220〉 ,

∣∣�D.I.
min

〉
6 = e− iπ

8√
2

|110〉 + ie− iπ
8√

2
|112〉 ,

∣∣�D.I.
min

〉
7 = 1√

2
|101〉 + i√

2
|121〉 ,

∣∣�D.I.
min

〉
8 = e

iπ
8√
2

|110〉 − ie
iπ
8√
2

|112〉 ,

∣∣�D.I.
min

〉
9 = 1

2
|000〉 + 1

2
|202〉 − 1

2
|022〉 + 1

2
|220〉 .

The tenth dimension |ψψ̄
D.I.
min〉 is also a common eigenstate of

W Cx
ψ , W

Cy

ψ , W Cx

ψ̄
, and W

Cy

ψ̄
. In this basis, the logical operators
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FIG. 25. An illustration of an open-ended fluxon string operator
W path

fluxon acting on a wavefunction of the doubled-Ising string-net.
W path

fluxon creates the fluxon and its antiparticle on the plaquettes p1

and p2. It does not create any excitations along the path. W path
fluxon

is constructed by a loop of s string that vertically penetrates the
square-octagon lattice at the two plaquettes. The string operators of
ψψ̄ and σ σ̄ are given by a loop of 2-string and a loop of 1-string
respectively.

takes the diagonal form

W Cx
ψ =

⎡
⎢⎢⎣

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 −1

⎞
⎟⎟⎠ ⊗ I3×3

⎤
⎥⎥⎦ ⊕ (−1), (C3)

W
Cy

ψ =

⎡
⎢⎢⎣

⎛
⎜⎜⎝

1 0 0

0 −1 0

0 0 1

⎞
⎟⎟⎠ ⊗ I3×3

⎤
⎥⎥⎦ ⊕ (−1), (C4)

W Cx

ψ̄
=

⎡
⎢⎢⎣I3×3 ⊗

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 −1

⎞
⎟⎟⎠

⎤
⎥⎥⎦ ⊕ (−1), (C5)

W
Cy

ψ̄
=

⎡
⎢⎢⎣I3×3 ⊗

⎛
⎜⎜⎝

1 0 0

0 −1 0

0 0 1

⎞
⎟⎟⎠

⎤
⎥⎥⎦ ⊕ (−1). (C6)

2. Condensation on smooth boundary

Using the string-operator construction discussed in
Refs. [22,23], we can readily show that on the smooth bound-
ary, the bosonic fluxons ψψ̄ and σ σ̄ condense.

Let us start with a review of the fluxon string operators.
Consider a large square-octagon lattice placed on the xy plane
as shown in Fig. 25. An open-ended fluxon string operator
is given by a loop of s string which vertically penetrates the
lattice through the center of the plaquettes p1 and p2.
The fluxon excitations are created at p1 and p2 respectively.
The ψψ̄ string operator is given by a loop of 2-string, and
that of σ σ̄ is given by a loop of 1-string.

An open-ended string operator of a chargeon is constructed
by a line segment, which can be either above or below the
lattice, as shown in Fig. 26.

To compute the action of the string operators, we need the
R symbols and the S-matrix [26,27]. The R symbols define the
braiding transformations

FIG. 26. The open-ended chargeon string operators of the
doubled-Ising string-net. They are constructed by line segments of
the strings, which can be either above or below the lattice depend-
ing on the type of the chargeon excitations. On a ground state
of the doubled-Ising, an open-chargeon string operator creates a
vertex violation at each end. The ψ and σ string operators cor-
respond to a 2-string and a 1-string above the lattice respectively.
The string operators for ψ̄ and σ̄ correspond to those below the
lattice.

(C7)

where Rba
c ∈ C. The inverse transformations are defined by

(C8)

Same as the F symbols, Rba
c �= 0 if δbac �= 0. Elements of the

S-matrix are given by

Sab = 1√
D

∑
c

dcRba
c Rab

c , (C9)

where
√

D = √∑
s(ds)2 = 2 is the total quantum dimension

of the Ising unitary modular tensor category. The full S-matrix
is

S = 1

2

⎛
⎜⎜⎜⎝

1
√

2 1√
2 0 −√

2

1 −√
2 1

⎞
⎟⎟⎟⎠. (C10)

Using the R and F symbols, we can always fuse the char-
geon string operators into the lattice at the cost of violating
the vertex constraints at the ends. On the other hand, the
fluxon string operators can be fused into the lattice without
introducing any vertex violations. For example, consider the
action of a nontrivial fluxon string operator on the string-net
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wavefunction,

(C11)

Note that the expression above differs from that of Ref. [22]
by a normalization factor, which is not important for our
purposes. For an example of a chargeon string operator, let
us consider a line segment below the lattice. We compute

(C12)

where in the last step we have removed the s strings. So,
we see that an open-chargeon string operator always creates
violations to the vertex constraints.

Moreover, different fluxons correspond to different sets of
eigenvalues of Ba

p. To determine these eigenvalues, we need
the graphical rule

(C13)

As an example, let us compute

(C14)

from which we see that the ψψ̄ fluxon has the eigenvalues of
1, −√

2, and 1 for B0
p, B1

p, and B2
p respectively. This result

is exactly what we found for the ψψ̄ fluxon state in Ap-
pendix C 1. It is easy to see that the σ σ̄ fluxon has B0

p = 1,
B1

p = 0, and B2
p = −1.

We now show that, on the smooth boundary, the fluxons
ψψ̄ and σ σ̄ are condensed. Without loss of generality, let us
consider the doubled-Ising string-net with a single plaquette
and everywhere else is set to |0〉. Consider the action of an
open-ended fluxon string operator passing through the lattice
just outside the plaquette

Since the s loop does not pass through the region enclosed
by the plaquette, the string operator does not create any fluxon
excitation on the plaquette. Via the F and R symbols, we
can fuse the s loop into the edges of the plaquette without
changing any of the edges outside the plaquette or introducing
any vertex violations. Therefore, we see that the fluxons all
condense on the smooth boundary. On the other hand, because
the chargeon string operators necessarily introduce vertex vi-
olations, the chargeons remain as excitations on the boundary.
Thus, we reach the conclusion that, on the smooth boundary,
the condensed excitations are the fluxons ψψ̄ and σ σ̄ .

APPENDIX D: CONTROLLED GATE DETAILS

In this Appendix, we present the details of the graphical
definition of Gs

p, its inverse, the commutation relations, and
the proof for the central equation.
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1. Graphical definition

We perform the graphical calculation that leads to the last line in Eq. (19). We compute

(D1)

2. Isometric property

We now show that Gs
p is an isometry. That is, Gs

p
†Gs

p

equals identity on the input space, which we called VSN
p,s in

Sec. VI A 1.
Graphically, Gs

p
† removes a string of s from the edges of

the plaquette when the controlled edge is in the state |s〉. Let
us denote the matrix elements of Gs

p by

[
Gs

p

](s,α,β,γ ,δ,ε,η,τ )

(s′,�∗
1,a,�2,b,�3,c,�4 )

(�1, �̄1, �̄2,
¯̄�2, �̄3,

¯̄�3, �̄4, �4)

= δss′F
�1�

∗
10

ss∗α F �̄1a�1
sα∗β F �̄2�2a∗

sβ∗γ F
¯̄�2b�∗

2
sγ ∗δ F �̄3�3b∗

sδ∗ε F
¯̄�3c�∗

3
sε∗η F �̄4�4c∗

sη∗τ .

(D2)

Then, Gs
p

† has an algebraic expression of

(D3)
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Using the orthogonality relation Eq. (B9), we find

(D4)
thereby establishing Gs

p as an isometry. Hence, Gp = ∑
s Gs

p
is also an isometry.

3. Commutation relations

The commutation relations of the Gs
p operators immedi-

ately follow from the graphical definition. Any two Gs
p and

Gs′
p′ commute, provided that they do not act on each other’s

controlled edge. When p and p′ are the same plaquette, Gs
p

and Gs′
p commute trivially, because they act on orthogonal

spaces with the control edge in |s〉 and |s′〉 respectively. If the
plaquettes p and p′ are not next to each other, Gs

p and Gs′
p′

obviously commute. When p and p′ are adjacent, the proof
of commutation amounts to showing the order, in which the
string s and s′ are fused into the bordering edges, does not
matter.

Consider Gs
p and Gs′

p′ acting on two adjacent plaquettes p
and p′. We focus on the bordering edges of these two plaque-
ttes. We will show that the F symbols associated with the two
diagrams (the thickened red arrows indicate the direction of
motion of the s and s′ strings),

are equal. The left diagram corresponds to computing Gs
pGs′

p′
on a reference ket vector, and the right diagram corresponds
to Gs′

p′Gs
p.

In the case where s′ moves first, we find

(D5)
In the case where s moves first, we have

(D6)
For each fixed q, we want to show that the coefficients, i.e.,
free sums over ρ, in Eqs. (D5) and (D6) are equal. To do
this, we consider an alternative way of moving the strings
s and s′. We will show that this alternative expression can
be simplified, via the pentagon equation, to produce either
Eqs. (D5) or (D6). The alternative expression is obtained by
moving both s and s′ to the central edge,
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where, for each q, the coefficient of the alternative expression
is

Ccoef.(q) =
∑
η′,β

F b∗ca
s′ε′∗η′F dc∗e∗

sα∗β F sβ∗c∗
s′η′∗q Fα∗dβ

s′q∗τ ′ F ε′∗b∗η′
sqγ . (D7)

Manipulating the F symbols via the tetrahedral symmetry
Eq. (B7) and performing the above sum over either η′ or β

via the pentagon equation Eqs. (B8), we obtain∑
ρ

F b∗ca
s′ε′∗ρF e∗dc∗

s′ρ∗τ ′ F τ ′ρ∗e∗
sα∗q∗ F ε′∗b∗ρ

sqγ if sum over β,

∑
ρ

F dc∗e∗
sα∗ρ F ab∗c

sρ∗γ F γ ρ∗a
s′ε′∗q Fα∗dρ

s′q∗τ ′ if sum over η′,
(D8)

which are exactly the coefficients in Eqs. (D5) and (D6)
for fixed q. Hence, the order, in which the strings s and s′
are fused into the bordering edges does not matter. That is,
[Gs

p, Gs′
p′ ] = 0, as long as they do not act on each other’s

controlled edge. The proofs for the remaining commutation
relations in Eqs. (22) and (23) are similar.

4. The central equation

Let us prove the central equation on a triangular plaquette.
The proof on any polygon-shaped plaquette is similar. With
the graphical definitions, we find

(D9)

Now, it remains to show that the coefficient for every ba-
sis ket vector (i.e., fixing α and β) is the same as that of∑

k Pγ
ct (

dk
dγ dc

Bk
p)Pc

ct. To do this, first, let us write the pentagon
equation (B8) in a different form via the tetrahedral symmetry
Eq. (B7),

F i j p
kq∗rF iq∗r

�∗sm =
∑

n

F r j∗k∗
n�s∗ F ip j

nsmF q∗kp∗
nm∗�∗

dndr√
dkdsd jd�

. (D10)

Focusing on the F symbols of Eq. (D9), we find

F �2a∗b
c�3�1

F �1c∗a
c�∗

10 F
�∗

1�10
γ ∗γα∗F �2�3�1

γα∗β

=
√

dα

d�1 dγ

√
da

d�1 dc
F �2a∗b

c�3�1
F �2�3�1

γα∗β

=
∑

k

dk

dγ dc
F �1ac∗

kγ ∗α F �2ba∗
kα∗β F �3cb∗

kβ∗γ . (D11)

The first equality follows from the normalization of F sym-
bols in Eq. (B6), and we have used Eq. (D10) in the second
equality to get the last line. The last line is exactly the coeffi-
cient of

∑
k Pγ

ct (
dk

dγ dc
Bk

p)Pc
ct on the same ket vector. Hence, we

have proven the central equation on the triangular plaquette.

APPENDIX E: ANYON CONDENSATION ON A LATTICE

In this Appendix, we briefly review the lattice realization
of anyon condensation as discussed in Refs. [48–50]. Specif-
ically, we review condensation of Abelian bosonic anyons
through two examples: condensation of ψψ̄ in the doubled-
Ising string-net (Appendix E 1) and condensation of e or m
in the toric code model (Appendix E 2). For a comprehensive
review, we refer the reader to Ref. [30] and references therein.

1. Condensation of ψψ̄ in doubled-Ising

After condensing the Abelian boson ψψ̄ in the doubled-
Ising string-net, the resultant system has a topological order
that is the same as the toric code [33]. For the lattice model,
the condensation is achieved as follows [48,49].

First, we couple the doubled-Ising Hamiltonian with the
shortest open-ended string operator of ψψ̄ . That is, we add
the operator W ψψ̄

l for every edge l as

HD.I. − J
∑

l

W ψψ̄

l , (E1)

where HD.I. is given by Eq. (5), J > 0 is a real parameter
controlling the strength of the coupling, and W ψψ̄

l = (−1)n1(l )

with n1(l ) = 1 if l is in the state |1〉 and n1(l ) = 0 otherwise
(see Appendix C 2 for a derivation). W ψψ̄

l creates a pair of ψψ̄

excitations, each at a plaquette bordering l (see Fig. 6).
Next, we energetically favor the creation of ψψ̄ excitations

by increasing J . The system is then driven across a phase tran-
sition. The ground state of the resultant phase is a condensate
of ψψ̄ excitations.

To see the ψψ̄-condensed phase has the topological order
of the toric code, let us take the J → +∞ limit. The cou-
pling term W ψψ̄

l imposes energy costs for every edge in the
state |1〉. Taking the limit essentially removes every string-net
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configuration that contains a 1-string. Treating HD.I. as a per-
turbation, we find a commuting projector Hamiltonian

H = −
∑

v

PQvP −
∑

p

1

2

(
B0

p + B2
p

)
, (E2)

where P = ∏
l

1
2 (I + W ψψ̄

l ) is the projector onto the Hilbert
space of the condensed phase. This Hamiltonian is exactly that
of the toric code [21].

2. Condensation of e or m in toric code

Condensing either the e or the m boson in the toric code
model leads to the trivial phase without any topological order.
On the lattice level, this is analyzed extensively in Ref. [50].
Here, we quickly review the results of Ref. [50] by following
the discussion in Appendix E 1.

Let us start by considering the condensation of the e excita-
tions. The condensation can be induced by coupling the toric

code Hamiltonian [see Eq. (2)] with W e
l = Xl , the shortest

open-ended string operator of e. That is, we consider the
Hamiltonian

HT.C. − J
∑

l

W e
l . (E3)

To see the condensed phase has the trivial topological order,
we again take the J → +∞ limit. We see that the ground state
is a product state given by ⊗l |+〉l , where |+〉 = 1√

2
(|0〉 +

|1〉) is the +1 eigenstate of X . Hence, no topological order.
Similarly, for the condensation of m excitations, we con-

sider the Hamiltonian

HT.C. − J
∑

l

W m
l , (E4)

where W m
l = Zl . At the J → +∞ limit deep inside the con-

densed phase, we find the ground state is again a product state
given by ⊗l |0〉l .
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