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Simple approach for electronic structure calculations on self-organized perovskite quantum dot films
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All-inorganic perovskite quantum dots films have received significant research interest for photovoltaic
applications because of their better mechanical durability than bulk film and the various tunable properties
that perovskite quantum dots exhibit. Here we develop a simple, almost analytic approach to calculating the
electronic states in self-organized perovskite quantum dot systems. We present an extension to the tight-binding
method, where the role of atoms is now played by quantum dots. This generalized tight-binding approach
is applied to assess the feasibility of achieving miniband formation through phenyl-C60-butyric acid methyl
ester (PCBM)/CsPbI3 quantum dots films. Type-II band alignment in these hybrid heterostructures led to the
development of a nearly-free-electron model combined with a Hartree variational approach for describing
conduction-band states. By implementing our approach, we reveal that PCBM/CsPbI3 quantum dot films are
indirect-band-gap systems. A 41-meV bandwidth for the hole ground miniband is found due to the coupling
between dots. Energy-gap values consistent with the experiment are obtained. This approach opens the way for
calculating relevant optical properties in a broad class of perovskite quantum dot systems, such as the absorption
coefficient.
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I. INTRODUCTION

Perovskite solar cells are one the most promising emerg-
ing technologies in the field of photovoltaics, with certified
power conversion efficiencies (PCEs) above 25% [1]. Col-
loidal perovskite quantum dots (PQDs) have various superior
properties over bulk perovskites, such as efficient multiexciton
effects, size-dependent optical and electronic states, extraordi-
nary defect tolerance, and high-quality quantum dot (QD) film
deposited at room temperature [2–5]. Currently, all-inorganic
CsPbI3 QD is highly desired for solar-harvesting technolo-
gies, because this composition can withstand temperatures of
more than 460 ◦C [6,7], and surface strain enables QDs to
remain in the perovskite phase at room temperature [4,8,9].
Moreover, CsPbI3 QD solar cells achieved a PCE of more than
16%, exceeding that of traditional PbS QDs, showing great
potential for efficient flexible photovoltaics [9–11].

In general, the approach to form arrays of close-packed
PQDs is to spin coat and/or heat treat colloidal solutions of
QDs developing the formation of a self-organized QD film
[11,12]. Thus the quantum-mechanical coupling between QDs
increases with decreasing interdot distance, and the confined
levels overlap to form minibands [13,14]. The miniband for-
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mation is expected in either perfect or disordered QD arrays
with small interdot distances [15]. The QDs in these disor-
dered arrays only exhibit local order due to a size distribution
of about 10% [7]. Therefore, to achieve a significant formation
of delocalized, extended states, it is important to improve the
size distribution of QDs.

The standard approaches to the energy-band structure of
QD arrays are the finite-element method and the Kronig-
Penney model within an effective-mass envelope-function
framework [13,16–18]. However, the simplicity of this ap-
proximation comes at a cost that includes the following:
(i) phenomena associated with the Bloch functions of carri-
ers that are symmetrized to the lattice system are neglected.
(ii) There are regions outside the dots where the potential is
overestimated by assuming it as the sum of three independent
periodic functions in orthogonal directions. Thus the coupling
among neighboring dots decreases, which leads to an under-
estimation of the miniband widths.

Here we develop a simple, almost analytic, alternative ap-
proach for the band structure of perovskite QD systems, where
the Bloch states are considered. Furthermore, the potential
outside the dots is not overestimated, avoiding a decrease
in the coupling of wave functions between neighboring dots.
The system being examined is an organic compound/CsPbI3

QD hybrid film. The organic molecule phenyl-C60-butyric
acid methyl ester (PCBM) is introduced into the CsPbI3

QD layers, forming a hybrid heterojunction in which holes
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FIG. 1. (a) Schematic representation of the perovskite quantum
dot system modeled as an array of regularly spaced, equal-sized
cubic dots on a square periodic lattice in an organic material matrix.
The system has a finite number of quantum dot layers in the growth
direction. The dashed blue line defines a unitary cell of the system.
(b) Type-II band alignment for PCBM/CsPbI3 hybrid heterostructure
with hole confinement at perovskite dots [20].

are confined in the PQDs and electrons move almost freely
through the organic matrix, see Fig. 1. Assuming the dots are
the same size and aligned, which makes sense at least locally,
as schematically illustrated in Fig. 1(a), the formation of the
hole minibands is to be expected in this system. Nevertheless,
the generality of our approach makes it suitable for studying
the band structure of a variety of coupled quantum dot systems
in a relatively simple and computationally fast way.

In this paper we introduce a simple approach to as-
sess the feasibility of achieving miniband formation through
PCBM/CsPbI3 quantum dots films. We present an extension
to the tight-binding (TB) method originally suggested by
Bloch [19], by considering QDs instead of atoms, in order
to calculate the valence-band (VB) states. For the description
of conduction-band (CB) states, we develop a nearly-free-
electron model combined with a Hartree variational approach
that allows capturing the effects of finite film thickness on the
band structure. We describe the electronic-band-gap depen-
dence on the QD layer number for PQD films. The predicted
energy band gap for PCBM/CsPbI3 quantum dot films is
consistent with experimental data.

II. DESCRIPTION OF THE APPROACH

For QD films, we are only interested in the valence- and
conduction-band structure, which describe the system’s fun-
damental optical and electronic properties. In this work we
assumed that the states near the band edges behave very much
like the ground states they had when they were isolated.

The valence-band states of the system are formed from
localized states in the perovskite quantum dots, while the
conduction-band states come from delocalized electronic
states at the matrix material. For this reason we use different
electronic band-structure calculation methods for valence and
conduction bands. The first method consists of a tight-binding
approach, and the second one utilizes a Hartree variational
approach to calculate the VB and CB states, respectively.
The appeal of these methods is that the electronic struc-
ture can be calculated by solving a one-electron Schrödinger
wave equation which is computationally less expensive than

ab initio calculations and provides a relatively easy means of
generating the electronic band structure.

First, we start by finding the ground-state energy in isolated
quantum dots that constitute the system. We implemented
a variational method based on using a Gaussian trial wave
function in the form

φ0(�r) = Ae−αr2/2, (1)

where A is a normalization constant, r = |r|, and the parame-
ter α is adjusted in order to minimize the expectation value of
the Hamiltonian operator,

Ĥ = − h̄2

2m(r)
∇2 + υQD(r), (2)

with m(r) and υQD(r) depicting the position-dependent elec-
tron effective mass and the confinement potential which is
labeled by V v

D and V v
M within the dot and matrix region, re-

spectively.

A. Valence-band states of the system: Tight-binding approach

For the present approach, as shown in Fig. 1, the system’s
structure is described in terms of the geometry of the arrange-
ment of identical quantum dots in the unit cell. The positions
of QDs in the unit cell are described by the vector τs and the
array of unit cells remaining unchanged by the translation,

Ru = u1a1 + u2a2, (3)

where the subscript u indicates a collection of two integers u1,
u2 and a1, a2 that are mutually orthogonal primitive translation
vectors with |a1| = |a2| = a.

In our TB approach, where the role of atoms is assumed
by quantum dots, the eigenstates of the QDs in the unit cell
of a given QDs system are used as the basic expansion set for
the Bloch function of the array. Let φμs(r − rus) indicate the
eigenstate defined by quantum numbers μ (μ = 0, 1, ..., with
μ = 0 indicating the ground state) for a QD located in position
τs (s = 0, 1, ..., with s = 0 labeling the QD at the bottom of
the unit cell) in the unit cell Ru. It is convenient to define,
for any eigenstate φμs(r − rus), the corresponding Bloch sum
�μs(k, r) of vector k,

�μs(k, r) = 1√
N

∑
u

eik·Ruφμs(r − rus), (4)

where rus = Ru + τs, and N is the number of unit cells in the
system.

The Hamiltonian of the QD system is given in the form

Ĥv = T̂ +
∑

u

∑
s

Vus(r), (5)

where T̂ is the kinetic energy operator, and the second term
on the right-hand side of Eq. (5) describes the QD system
potential where Vus(r) = V0s(r − rus) represents the QD-like
potential for a QD located in position τs in the unit cell Ru.
We next consider the matrix elements of the Hamiltonian,
Hv

a′s′;as = 〈�μ′s′ (k, r)|Hv|�μs(k, r)〉, which are given by

Hv
μ′s′;μs =

∑
u

eik·Ru
(
Eμ′s′S0;u

μ′s′;μs + ν0;u
μ′s′;μs

)
, (6)

035147-2



SIMPLE APPROACH FOR ELECTRONIC STRUCTURE … PHYSICAL REVIEW B 108, 035147 (2023)

where Eμ′s′ is the energy of the μ′-th eigenstate for an iso-
lated QD in position τs′ in the unit cell, S0;u

μ′s′;μs = 〈φμ′s′ (r −
r0s′ )|φμs(r − rus)〉 denotes the overlap integral between two
QD eigenstates, and ν0;u

μ′s′;μs = 〈φμ′s′ (r − r0s′ )|vus′ (r)|φμs(r −
rus)〉 is the potential integral with vus′ (r) = ∑

u

∑
s Vus(r) −

Vus′ (r) as the difference between the potential of the QD
system and the potential of the QD located in rus′ .

The localized states of QDs decay rapidly away from the
QD, and it is expected that the overlap integral S0;u

μ′s′;μs ≈ 0, for
large Ru. Therefore we only include the overlap and potential
integrals between nearest-neighbor QDs in our calculation.

The potential integral in Eq. (6) is split into two parts,
within each of which the potential is constant,

ν0;u
μ′s′;μs = V v

D D0;u
μ′s′;μs + V v

MM0;u
μ′s′;μs, (7)

where the overlap integral D0;u
μ′s′;μs is taken over the dots region

with constant average potential V v
D , and M0;u

μ′s′;μs is taken over
the matrix region with constant average potential V v

M . For
simplicity, we take the energy to be zero at the valence-band
edge of bulk perovskite, i.e., the bottom of QDs, V v

D = 0, as
shown in Fig. 1(b). Then, substituting Eq. (7) into Eq. (6),
we finally arrive at the expression for the Hamiltonian matrix
elements,

Hv
μ′s′;μs =

∑
u∈η

eik·Ru
(
Eμ′s′S0;u

μ′s′;μs + V v
MM0;u

μ′s′;μs

)
, (8)

where η represents the collection of two integers that gener-
ates the translation vectors to the nearest neighbor QDs.

In our tight-binding approach, the eigenstates of the QD
system are the zeros of the secular determinant [21]:

det(‖〈�μ′s′ |Ĥv − E |�μs〉‖) = 0. (9)

In the case of a layer of QDs, the system contains a QD per
unit cell, which leads to a unique Bloch sum �μs(k, r) if only
one state is considered per QD. Then we obtain the following
expression for the corresponding eigenstates of the one-layer
system of QDs:

E (k) = Eμs + V v
M

∑
u∈η eik·Ru M0;u

μs;μs∑
u∈η eik·Ru S0;u

μs;μs

. (10)

For the overlap integral M0;u
μ′s′;μs, a similar expression is ob-

tained but integrated over the matrix region.

B. Conduction-band states of the system:
Hartree approximation

Conduction electrons can move almost freely in the matrix
region through the QD array. So we can treat the QD system’s
potential, VQD(r), as a periodic potential added to the Hamil-
tonian of a free electron. The total Hamiltonian describing the
system has the form

Ĥc = T̂1 + T̂2 + VQD(r), (11)

where T̂1 = − h̄2

2m∗ ∇2
ρ and T̂2 = − h̄2

2m∗ ∇2
z are the kinetic energy

operators expressed in terms of the in-plane and out-of-plane
coordinates ρ and z, respectively and m∗ = 0.84m0 is the
electron effective mass in bulk PCBM [22] with m0 denoting

the free-electron mass. We define VQD(r) as

VQD(r) = V1(ρ) + U (ρ, z), (12)

where V1(ρ) represents the potential of a square cross-
section quantum wire system with cross-section SD of area
c2, where c is the side length of the PQD. Furthermore, the
quantum wire system is invariant under translations given by
Eq. (3). Here U (ρ, z) = [V c

M − V1(ρ)] f (z), V c
M denotes the

conduction-band edge of the matrix material, and f (z) is given
by the expression

f (z) = 1 −
Nl∑

i=1

�(z − li )�(ri − z), (13)

where li = (i − 1)(c + d ) − W/2 and ri = li + c are the left
and right boundary positions for the ith QD layer, respec-
tively, and W = cNl + d (Nl − 1) is the QD film thickness. �

represents the Heaviside step function, Nl denotes the number
of QD layer in the film, and d labels the interdot distance.
The function f (z) plays an important role in modeling the QD
system’s potential. In the z intervals where f (z) is equal to 1,
the potential V1(ρ) is replaced by the potential V c

M , leading to
a layered system of QDs from a quantum wire system.

In the Hartree approximation, we assume that the eigen-
states of the total Hamiltonian �(�r) can be written as a product
of states dependent on ρ and z coordinates in the form

�(r) = ϕ1(ρ)ϕ2(z). (14)

Let us define the quantity

K (ϕ1, ϕ2) = 〈�|Ĥc|�〉 −
2∑

i=1

εi〈ϕi|ϕi〉, (15)

where the Lagrange multipliers εi associated with the normal-
ization condition of the ϕi have been introduced. For �(r) to
be a solution of the Hamiltonian Ĥc, the functional derivative
of K (ϕ1, ϕ2) with respect to the functions ϕ1 and ϕ2 must
be stationary. As a result, we obtain the following system of
coupled integro-differential equations for the ϕi states:

[T̂1 + V ′
1 (ρ) − ε′

1]ϕ1(ρ) = 0, (16)[
T̂2 + f (z)�V cN

∫
SD

ds|ϕ1(ρ)|2 − ε2

]
ϕ2(z) = 0. (17)

Here

V ′
1 (ρ) = V1(ρ)

[
1 −

∫ ∞

−∞
dzϕ∗

2 (z) f (z) ϕ2(z)

]
, (18)

ε′
1 = ε1 − V c

M

∫ ∞

−∞
dzϕ∗

2 (z) f (z)ϕ2(z), (19)

and �V c = V c
M − V c

D, with V c
D denoting the conduction-band

edge of the dot material and N is the number of unit cells
in the QD film. Equation (17) describes a one-dimensional
problem of a layered system in which the number of barriers
corresponds to the number of QD layer in the film. Otherwise,
Eq. (16) describes the in-plane motion of a nearly free particle
in a quantum wire system with the same two-dimensional
lattice as that of the QD film given by Eq. (3) and eigenenergy
ε′

1. The wave function ϕ1 solution of Eq. (16) has the same
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periodicity of the lattice and therefore satisfies the normal-
ization condition N

∫
SU

dsϕ∗
1 (ρ)ϕ1(ρ) = 1, where SU denote

the ẑ cross section of the unit cell. Therefore the integral in
Eq. (17) can be bounded in the form

0 � γ = N
∫

SD

ds|ϕ1(ρ)|2 � N
∫

SU

ds|ϕ1(ρ)|2 = 1, (20)

where γ denotes the probability of finding an electron in the
dot material.

In order to obtain the eigensolution of the set of Eqs. (16)
and (17), we first assign an input value γin ∈ [0, 1] to γ

in Eq. (17), and then we solve the corresponding one-
dimensional problem. Once the wave function ϕ2 and the
corresponding eigenenergy ε2 have been calculated, the next
step is to find the in-plane wave function ϕ1 and the corre-
sponding eigenenergy ε1 using Eqs. (16) and (19). Finally, we
evaluate the output value γout for γ through its definition given
in Eq. (20). If the output value of γout matches the input value
γin, we have found an eigenstate �(r) and its corresponding
eigenenergy ε = ε1 + ε2 for the QD system. In brief, it is
essentially a root-finding procedure for γin − γout.

To solve the one-dimensional problem described by
Eq. (17), the wave function ϕ2 was expanded as a linear
combination of a basis set, {χi(z)}, of the solutions of the
rectangular quantum well, with infinite barrier height and
width L; ϕ2(z) = ∑

i Ciχi(z). The boundary L is the “quan-
tum thickness of the film,” which represents the length over
which the energy levels are well defined and is placed away
from the layered system. The Hamiltonian matrix elements
are evaluated within the basis set {χi(z)}, and the resulting
Hamiltonian matrix is diagonalized to yield Ci [23]. To solve
the Schrödinger equation (16) we use the usual nearly-free-
electron approach, where a restatement of the equation in
momentum space is given in the form[

h̄2

2m∗ |k − Km|2 − ε1(k − Km)

]
βk−Km

+
∑

n

V̄n−mβk−Kn = 0, (21)

where βk−Kn are the coefficients of the plane-wave expansion
of the wave function ϕ1,

ϕ1k(ρ) = eik·ρ ∑
n

βk−Kn e−iKn·ρ, (22)

where the sum is over all reciprocal lattice vectors Kn, and V̄n
represents the Fourier transform of the quantum wire system’s
potential V1(ρ), with subscript n indicating a collection of two
integers n1, n2. We arrive at the expression for V̄n:

V̄n(z) = V c
Mδn10δn20 − �V cg(n1)g(n2), (23)

where the function g(n) is given in the form

g(n) =
{

1
πn sin(πnc/a), n �= 0 ;

c/a, n = 0.
(24)

Thereby, the band-structure calculation is reduced to solv-
ing the eigenvalue problem specified by Eq. (21). For a fixed
k in the first Brillouin zone there is a set of equations in the
form (21) for all reciprocal lattice vectors Kn, and the many

FIG. 2. Overlap integral S0;1
00;00 and potential integral M0;1

00;00 in
units of the matrix region potential V v

M between the ground states
φ00 of two nearest-neighbor QDs for a film formed by a QD layer.
The inset shows a normalized ground-state horizontal slice of the
wave function φ00 at the center of an isolated cubic dot. A significant
exponential decay inside the barrier is also displayed, showing the
potential formation of minibands from localized states.

different solutions to (21) for a given k are labeled with the
band index n. The number of reciprocal lattice vectors used
determines both the matrix size and calculation accuracy.

III. IMPLEMENTATION OF THE MODEL:
PCBM/CsPbI3 QD FILMS

We investigated the electronic-band-gap and miniband for-
mation for PCBM/CsPbI3 quantum dot films. The system
is modeled as an array of regularly spaced cubic dots in
a fixed-thickness PCBM matrix as shown in Fig. 1(a). The
perovskite dot dimensions are described by c = 10 nm, and
the interdot distance in each coordinate direction is d = 2 nm.
Here a tight-binding approach is used to calculate the valence-
band structure and wave functions, while to compute the
conduction-band states, we use a Hartree variational ap-
proach. The PCBM forms a type-II band alignment with
CsPbI3 QDs: Holes are confined in dot regions, representing
barriers for electrons, see Fig. 1(b). The values of band offset
and band gaps of 1.694 eV and 2 eV for CsPbI3 and PCBM,
respectively, were taken from the literature [20]. The param-
eter values used in our calculations were V v

M = −412 meV
[20], �V c = 109 meV [20], as shown in Fig. 1(b). The ef-
fective mass of holes in the quantum dot and matrix material
are 0.095 m0 [24] and 1.65 m0 [22], respectively. Experimental
values of PQD film thickness are not accurately reported in the
literature [11,12,25]. However, our model assumes isolated
QD films with a thickness of 200 nm, so L matches the
thickness of the films. Our L value is a good approximation
of the average of the film thicknesses estimated in Refs. [11],
[12,25]. Finally, we compared the calculated electronic band
gap with the experimental optical gap reported in the three
previous papers.

The overlap integrals S0;u
μ′s′;μs and potential integrals ν0;u

μ′s′;μs
between wave functions of neighboring dots were cal-
culated in order to compute the valence-band dispersion
relation of the QD system. Figure 2 shows the effect of the
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FIG. 3. (a) Contour plot of the miniband energy within the first
Brillouin zone for a square two-dimensional lattice of a film based
on three QD layers. Only the ground state of perovskite QDs and
the interactions up to the second neighbor’s coordination sphere
were considered in the calculations. Gray lines represent isoener-
getic curves. (b) Miniband structure for several films which differs
in the number of QD layers. Miniband width values are shown in
parentheses.

proximity between nearest-neighboring dots on the overlap
between ground-state wave functions and potential integrals,
which are calculated for a film formed by a layer of QDs.
Notice from Fig. 2 that the potential integral scales with the
interdot distance, up to a maximum for 1.4 nm, after which
it decreases. By increasing the interdot distance, the potential
integral value is increased due to the increased matrix region,
but the interaction between dots, which is described through
the overlap integral, is reduced and consequently, the potential
integral value decreases.

Assuming that only the ground state from each QD con-
tributes to the states of the system, we use Eqs. (9) and (10) to
calculate the valence-miniband dispersion relation for several
perovskite QD films. Miniband energy contours within the
first Brillouin zone for a film formed by three QD layers
is shown in Fig. 3(a). Dispersions given along the k line
connecting X − M − � − X for several PQD films in the TB
approach are displayed in Fig. 3(b). Miniband width values
are shown in parentheses in the figure legend and are taken as
the difference between the maximum and minimum allowed
miniband energy. Also, note from Fig. 3(b) that the top of
the minibands shifts to higher energies with increasing QD

FIG. 4. Effective potential profile and normalized ground-state
wave function for electrons in the vicinity of barrier systems. Black
dashed line represents the ground energy level calculated for the one-
dimensional problem given by Eq. (17). Each barrier corresponds to
a layer of perovskite quantum dots: (a) one QD layer, (b) two QD
layers, and (c) three QD layers. Here energy zero corresponds to the
conduction-band edge of the bulk matrix material.

layers. The presence of the other QDs depresses the potential
throughout the system. Furthermore, the increasing number
of interactions between neighboring dots leads to a decrease
in the carrier effective mass and consequently, an increase in
the miniband width. It is worth noting that films with three or
more QD layers were all found to have quite similar miniband
formations. This is because the overlap integral is significant
up to the second neighbor’s coordination sphere.

Once the structure of valence bands and the corresponding
Bloch states have been described, we proceed to study the
conduction-band states of the system. Here we focus on the
band edge formed by the conduction-band ground states of
the system, so we take the minimum γ value that satisfies the
set of Eqs. (16) and (17). Figure 4 displays the normalized
ground-state wave function in the vicinity of the barrier sys-
tem and corresponding eigenenergy ε2 of the one-dimensional
problem given by Eq. (17) for several perovskite QD systems.
Being isolated QD films, the electrons are restricted to a finite
region L, i.e., infinitely high potential barriers outside this
region. The barrier system potential profiles are plotted in the
figure as well. To ensure convergence within 0.1 meV for all
barrier systems, we use a basis set of 400 wave functions.
Notice from Fig. 4 that by increasing the QD layer number
the barrier height is reduced and consequently, the probability
of finding an electron in the dot material decreases; see the
coupling term in Eq. (17) containing an integration over the
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FIG. 5. Calculated conduction-band structure for the in-plane problem described by Eq. (16) for films with one (a), two (b, dashed line),
and three (b, solid line) quantum dot layers. Normalized ground-state wave function ϕ1(ρ) at point � for the film problem with one (c) and
three (d) quantum dot layers. Wave functions are normalized over the unit cell area SU . Adding quantum dot layers causes a band shift toward
high energies and decreases the electron probability density in the dot material.

SD area. The effect of QD layers addition on the conduction
states of the system is mentioned below in the discussion of
Fig. 5.

In order to solve the two-dimensional problem described
by the eigenvalue equation (21), the Fourier transform of the
in-plane effective potential V ′

1 (ρ) was evaluated by means of
expression (23). In our calculations, 625 plane waves are suffi-
cient to expand the wave function ϕ1k, expression (22), and the
potential V ′

1 (ρ) ensuring convergence within 0.1 meV. Each
plane wave corresponds to a vector in the reciprocal lattice,
and the expansion should be symmetric about the reciprocal
lattice origin to guarantee real eigenvalues. We confirmed that
the difference in energy calculated using 625 and 2025 plane
waves in the Fourier expansion is less than 0.1 meV, which in-
dicates that convergence is being achieved. This confirmation
allows us to reduce the computational efforts of the eigenvalue
problem.

By varying the wave vector k values, both the conduction-
band structure and the normalized ground-state wave function
ϕ1(ρ) for the in-plane problem (i.e., quantum wires problem),
defined according to Eq. (16), are obtained for perovskite
quantum dot films (see Fig. 5). Note that a band shift to-
wards high energies occurs due to QD layer incorporation.
Specifically, the lower energy miniband experiences a 7-meV
increment at point � when varying the QD layer number from
1 to 3. Adding more layers causes the energy to increase by
less than 1 meV, as shown in Fig. 7(a). Furthermore, with
the incorporation of QD layers, the probability of locating
electrons in the interstices between quantum wires increases,
and the exponential decay distance of the wave function in
the quantum wire region decreases, as shown in Figs. 5(c) and
5(d). This behavior occurs as a consequence of an increment
in the maximum value of the two-dimensional periodic poten-
tial in Eq. (18) together with the above-mentioned decrease in
the barrier height in Eq. (17) with QD layer incorporation.

Next, both the wave function �(r) of the system’s electron
states and the eigenenergies are finally obtained. Figure 6
shows the electron probability density in the vicinity of the

dots, |�(r)|2, at point � for PCBM/CsPbI3 quantum dot
films. Adding QD layers causes a ground-state shift to higher
energies, allowing electrons to diffuse relatively freely into
the matrix material above and below the QD layers. Besides
this behavior, it is reasonable to expect that the electrons
are somewhat constrained within the interstitial space by the
surrounding dots. This behavior can be more pronounced as
the number of QD layers increases in fixed-thickness films.
A balance between these two phenomena defines the electron
density probability for a given film.

We examine the effect of quantum-dot-layer incorporation
on the electronic-band-gap values for CsPbI3 QD films [see
Fig. 7(a)]. Theoretical computations suggest that the band gap
decreases with QD layer number and eventually remains al-
most constant, with an increment in energy lower than 1 meV,
from three QD layers onwards.

FIG. 6. Calculated electron probability density for CsPbI3 quan-
tum dot arrays embedded in a PCBM matrix, with cubic dots (in
gray) of side length equal to 10 nm and an interdot distance equal
to 2 nm. The numbers are the corresponding eigenenergies in meV.
The plotted density corresponds to values greater than 0.08 of the
maximum wave function square values, respectively. Here, the en-
ergy zero corresponds to the conduction-band edge of bulk PCBM
material.
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FIG. 7. Electronic band gap dependence with QD layer number
for PCBM/CsPbI3 quantum dot films (a) and calculated band-edge
structure (b) of a film composed of three QD layers. The electronic
band gap is indicated in the band structure at the M point.

The band-edge dispersion relation obtained for electron
and hole states of a PCBM/CsPbI3 quantum dot film formed
by three QD layers is illustrated in Fig. 7(b). A 41-meV
bandwidth is revealed for the hole ground miniband due to
wave function coupling between neighboring dots in the stud-
ied perovskite quantum dot systems. Our calculations show
that PCBM/CsPbI3 quantum dot films are indirect-band-
gap systems. Its electronic band gap is calculated from the
valence-band maximum at the M point to the conduction-band
minimum at the � point. The band gap, using the materi-
als parameters and the PCBM/perovskite band offset values
mentioned above, is calculated to be Eg = 1.687 eV, which
is consistent with experimental findings (1.75 eV [11,12,25]).
We mainly attribute the discrepancy between the calculated
band gap and the experimental value for the optical gap

of PCBM/CsPbI3 QD films to the omission of both dot
size effects and in-plane periodicity breaking in our calcula-
tions. The size-dependent tensile strain can have significant
effects on the optical and structural properties [7]. These
size-dependent effects are understudied and should be further
explored; they have not been reported for many PQD systems.
Additionally, both size distribution and randomly arranged
QDs in a disordered film lead to the coexistence of localized
and delocalized states [15]. Thus optical transitions between
the discrete and bandlike states of this mixture are possible.

IV. CONCLUSIONS

A simple approach to calculating the electronic states in
self-organized perovskite quantum dot systems has been de-
veloped and applied to PCBM/CsPbI3 PQD films. In the
framework of the tight-binding method, we assumed quantum
dots in the role of atoms and extend the method originally
suggested by Bloch to arrays of quantum dots. We found a
significant quantum coupling that leads to the formation of
energy minibands. The hole miniband width was calculated to
be 41 meV for the ground states in the systems considered.
We developed a nearly-free-electron model combined with a
Hartree variational approach for describing conduction-band
states due to a type-II band alignment with hole confine-
ment. By mathematically constructing the potential of the
quantum dot system from the potential of a quantum wire
system, the solution to the three-dimensional conduction-
band problem was simplified to the solution of two coupled
lower-dimensional problems. Our approach allows the finite
thickness of the films to be considered in band-structure cal-
culations. It was shown that from three QD layers the film can
be considered thick for the purposes of its band structure. This
is partly because significant coupling interactions between
dots occur up to the second neighbor’s coordination sphere.
By applying our approach, we revealed that PCBM/CsPbI3

quantum dot films are indirect-band-gap systems. We found
consistency between the computed band-gap value of 1.69 eV
and the reported experimental value of 1.75 eV deduced from
photoluminescence spectra. The simplicity and adaptability
of the approach to other QD-based systems, together with its
modest computational requirements, make it an ideal tool for
analyzing experimental data and a starting point for calculat-
ing relevant optical properties.
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