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Systems with strong electronic Coulomb correlations often display rich phase diagrams exhibiting different
ordered phases involving spin, charge, or orbital degrees of freedom. The theoretical description of the interplay
of the corresponding collective fluctuations giving rise to this phenomenology, however, remains a tremendous
challenge. Here, we introduce a multichannel extension of the recently developed fluctuating field approach to
competing collective fluctuations in correlated electron systems. The method is based on a variational optimiza-
tion of a trial action that explicitly contains the order parameters of the leading fluctuation channels. It gives
direct access to the free energy of the system, facilitating the distinction between stable and metastable phases of
the system. We apply our approach to the extended Hubbard model in the weak to intermediate coupling regime
where we find it to capture the interplay of competing charge density wave and antiferromagnetic fluctuations
with qualitative agreement with more computationally expensive methods. The multichannel fluctuating field
approach thus offers a promising route for a numerically low-cost treatment of the interplay between collective
fluctuations in small to large systems.
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I. INTRODUCTION

A hallmark of materials with strong electronic Coulomb
correlations are their typically extremely rich phase diagrams,
exhibiting various kinds of ordering phenomena. These result
from competing instabilities involving, e.g., charge, spin, or-
bital, or pairing fluctuations. The theoretical description of
these collective phenomena remains a challenging issue of
computational complexity [1,2] as well as conceptual diffi-
culty, e.g., the explicit breaking of symmetries [3,4]. In this
sense, the interplay of competing electronic fluctuations con-
stitutes a roadblock to the understanding of the complex phase
diagrams of a wide range of material systems. Constructing
simplified methods to study interplaying collective fluctua-
tions is thus of crucial importance.

The extended Hubbard model [5–8] provides a suitable
framework for investigating the interplay between collective
electronic fluctuations. The physics of this model is de-
termined by the competition between the local U and the
nonlocal V Coulomb interactions. A repulsive U stabilizes
collective spin fluctuations [9], which may compete with
charge fluctuations driven by a strong repulsive V [10,11]. The
earliest considerations of the extended Hubbard model were
already implicit in the initial work of Hubbard in 1963 [5].
However, the first studies of the model occurred in the 1970s,
with studies of the strong [10,12] and weak coupling limits
of the half-filled one-dimensional (1D) chain [13,14]. To-
gether with an access to the intermediate coupling regime by
early numerical exact diagonalization and lattice Monte Carlo

calculations [15,16], the phase diagram of the 1D extended
Hubbard model was predicted to be composed of regions
of strong charge density wave (CDW) and antiferromagnetic
(AFM) fluctuations, with a CDW-AFM transition occurring
in the vicinity of U = 2V . The transition was later discovered
to be modified in the weak coupling limit by an intermediate
bond-order wave (BOW) state [17,18], also arising in the ionic
Hubbard model [19–22].

Extensive studies have been conducted on the extended
Hubbard model for elucidating the interplay between collec-
tive charge and spin fluctuations [12,14–16,23–32]. Consid-
erable insight has been acquired for the extended Hubbard
model on a two-dimensional square lattice at half filling
with nearest-neighbor interaction V [24–30,33–41], which we
study in this paper. It has been found that this model displays
a phase diagram similar to the 1D counterpart, besides the
apparent lack of an intermediate BOW phase. In particular, the
system reveals a checkerboard CDW pattern, which interplays
with strong AFM fluctuations in the vicinity of a CDW-AFM
transition line U = 4V [24,42]. In a recent work [29] based
on the dynamical cluster approximation (DCA) [43–45], the
competition near the transition line has been shown to induce
a coexistence region of charge- and spin-ordered states.

By the Mermin-Wagner theorem [46–48], magnetic or-
dering at finite temperatures is excluded in a broad class of
one- and two-dimensional systems, including the extended
Hubbard model, due to the continuous nature of the under-
lying symmetry. Thus, the regime of strong collective AFM
fluctuations is, strictly speaking, not a phase. However, in this
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paper the AFM phase will refer to a slightly broader definition
of short-range AFM ordering, which transforms to a true
phase for a quasi-two-dimensional system. In contrast, the dis-
crete symmetry of the CDW allows for a true phase transition.
In addition, technically speaking, in the present paper, we are
performing calculations for finite systems, where long-range
fluctuations are eventually cut off, so neither the AFM or
CDW state are, strictly speaking, phases. Nevertheless, in the
following, we will refer to both states as phases, since we
are interested in the interplay of the competing fluctuations
corresponding to these orderings. Our conclusions should thus
be understood as applying either to finite systems, replacing
the notion of the phase by a state dominated by the respec-
tive fluctuations, or to a quasi-two-dimensional system in the
thermodynamic limit.

Limitations in the treatment of competing collective fluctu-
ations arise in the currently available approaches employed for
studying quantum lattice systems. Numerically exact meth-
ods, such as exact diagonalization [1] and lattice Monte Carlo
[2] have studied the interplay between U and V [15,16,24,25]
but are restricted to small system sizes and thus cannot ad-
dress long-range collective fluctuations. The same problem is
also inherent in cluster extensions of the dynamical mean-
field theory (DMFT) [49–54], such as, e.g., DCA [43–45].
Diagrammatic methods based on the parquet approximation
[55–60] allow one to account for the interplay between charge
and spin fluctuations [30] originating from the two-particle
vertex functions in an unbiased and powerful fashion. These
vertices are incorporated with full momentum and frequency
dependence, and the approach is thus computationally very
expensive, which severally limits its applicability. Advanced
diagrammatic extensions of DMFT [61] are able to describe
long-range fluctuations simultaneously in different instability
channels. In the presence of the nonlocal interaction V , this
can be done within the dual boson theory [38,40,62–64], the
dynamical vertex approximation (D�A) [65,66], the triply ir-
reducible local expansion (TRILEX) method [67], or the dual
TRILEX (D-TRILEX) approach [31,32,68]. However, these
fluctuations are usually treated in a ladderlike approximation,
where different instability channels affect each other only
indirectly via self-consistent renormalization of single- and
two-particle quantities.

Current approaches to quantum lattice systems that are
able to capture competing collective fluctuations are too
complicated for broad usage. In this paper, we develop a mul-
tichannel generalization of the fluctuating field (FF) approach
that allows us to incorporate multiple collective fluctuation
channels and their interplay in a numerically cheap way with-
out explicitly breaking the symmetry of the model. The FF
method was originally introduced for the study of spin fluctu-
ations in the classical Ising plaquettes [69,70] and was further
developed for single- and multimode treatment of collective
spin fluctuations in the Hubbard model [71–73]. We employ
the proposed multichannel fluctuating field (MCFF) approach
to study the interplay between CDW and AFM fluctuations
in the extended Hubbard model on a half-filled square lattice
with a repulsive on-site U and nearest-neighbor V interac-
tions. We show that the MCFF approach predicts results for
the CDW and AFM phase boundaries in qualitative agreement
with more elaborate numerical methods. Furthermore, it al-

lows us to model competing collective fluctuations from small
systems to large systems near the thermodynamic limit. Im-
portantly, the method is especially appropriate for small pla-
quettes, with relevance in small physical systems, e.g., molec-
ular magnets [74–76], and due to conventional strongly corre-
lated methods being commonly limited to small system sizes.
In addition, the method is able to distinguish between stable
and metastable (MS) collective fluctuations. For this reason,
the MCFF approach allows us to capture the true ground state
of the coexistence region of CDW and AFM fluctuations that
was obtained in Ref. [29] on the basis of DCA calculations.

II. MODEL

For simplicity, our considerations are limited to a single-
band extended Hubbard model. However, we note that our ap-
proach can be straightforwardly generalized to more complex
single- and multiband quantum lattice systems. The Hamilto-
nian of the extended Hubbard model has the following form:

Ĥ = −t
∑

〈i, j〉,σ
ĉ†

iσ ĉ jσ + U
∑

i

n̂i↑n̂i↓ + V

2

∑
〈i, j〉,σσ ′

n̂iσ n̂ jσ ′ . (1)

In this expression, ĉ(†)
iσ operators correspond to annihilation

(creation) of electrons, where the subscripts denote the
position i and spin projection σ ∈ {↑,↓}. Our system is
modeled by the hopping t between nearest-neighbor sites
〈i, j〉 on a two-dimensional square lattice, with t = 1 being
employed in this paper. The Coulomb interaction between
electronic densities n̂iσ = ĉ†

iσ ĉiσ contains the on-site U and
the nearest-neighbor V components.

The extended Hubbard model Eq. (1) displays two sym-
metries of fundamental importance for our considerations:
a continuous SU(2) symmetry associated with spin degrees
of freedom and a discrete particle-hole symmetry related
to charge degrees of freedom. To facilitate our later treat-
ments, we include a sketch of the finite temperature U,V
phase diagram of the extended Hubbard model on the two-
dimensional square lattice in Fig. 1. Within the sketch, we
denote the regime of strong CDW fluctuations (red gradient),
with asymptotics of the CDW phase boundary highlighted,
and the regime of strong AFM fluctuations (blue gradient).
The CDW phase boundary occurs along V = U/8 + cst at
weak coupling [37], which transforms to V = U/4 at inter-
mediate coupling [24], followed by V ∼ U + cst at strong
coupling [33,38,40,62,77,78]. At weak coupling, the AFM
phase boundary starts at a critical U , which further extends to
the V = U/4 phase boundary at intermediate coupling [29].
We restrict our consideration to the weak to intermediate cou-
pling regime, with the strong coupling regime being outside
the scope of this paper.

The MCFF approach to be introduced in the next section is
based on a variational principle conveniently formulated
within the action formalism. Thus, it is suitable to rewrite the
extended Hubbard model Eq. (1) in the form of the action,

S = − 1

βN

∑
k,ν,σ

c∗
kνσG−1

kν ckνσ + U

βN

∑
q,ω

ρqω↑ρ−q,−ω↓

+ 1

2βN

∑
q,ω,σσ ′

Vqρqωσρ−q,−ωσ ′ , (2)
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FIG. 1. Sketch of the phase diagram of the quasi-two-
dimensional half-filled extended Hubbard model with repulsive
interactions U and V at sufficiently low, but finite, temperature,
allowing for antiferromagnetic (AFM) and charge density wave
(CDW) fluctuations. Beyond a critical local interaction, a regime
of dominant AFM fluctuations is expected, while strong nonlocal
interactions drive the system into a CDW phase. At low U , V the
orderings give way for a normal metal phase. The schematic phase
boundaries of the CDW phase are determined by the asymptotic
expressions V = U/8 + cst at weak coupling [37], V = U/4 at in-
termediate coupling [24,25,42], and V 
 U + cst at strong coupling
[33,38,40,62,77,78]. At weak to intermediate coupling, the AFM
regime extrapolates from a critical U at vanishing V to the V = U/4
phase boundary [29].

with the inverse temperature β and number of sites N .
Grassmann variables c(∗) correspond to the annihilation
(creation) of electrons, where the subscripts denote the mo-
mentum k and fermionic Matsubara frequency ν. The inverse
of the bare (noninteracting) Green’s function is defined
as G−1

kν
= iν + μ − εk, where μ is the chemical potential

and εk = −2(cos kx + cos ky) is the dispersion relation for
the nearest-neighbor hopping on a two-dimensional square
lattice. For convenience, the interaction parts of the ac-
tion Eq. (2) are written in terms of the shifted densities
ρqωσ = nqωσ − 〈nqωσ 〉δq,0δω,0, where q and ω are the momen-
tum and bosonic Matsubara frequency indices, respectively.
This choice of shift will be argued for in our later derivation.
In our considerations, the momentum-space representation for
the nonlocal interaction follows Vq = 2V (cos qx + cos qy), as
it is limited to only a nearest-neighbor interaction.

III. MULTICHANNEL FLUCTUATING FIELD THEORY

In this section, we derive a multichannel generalization of
the FF theory that was originally introduced to address the
fluctuations in a single (magnetic) channel [69,71–73]. We
derive the MCFF theory by utilizing a variational approach

formulated in Ref. [71], which allows us to incorporate the
leading instabilities of the collective fluctuations.

A. Definition of trial action

We define a MCFF trial action

S∗ = − 1

βN

∑
k,ν,σ

c∗
kνσG−1

kν ckνσ

+
∑
Q,ς

[
φ

ς

Qρ
ς

−Q − 1

2

βN

Jς

Q

φ
ς

Qφ
ς

−Q

]
(3)

that explicitly considers sets of scalar charge (ς = c) and vec-
tor spin (ς = s ∈ {x, y, z}) fields φ

ς

Q coupled to the composite
variables ρ

ς

Q = nς

Q − 〈nς

Q〉δQ,0 associated with the respective
static (ω = 0) order parameters of interest. Here

nς

Q = 1

βN

∑
k,ν,σσ ′

c∗
k+Q,νσ σ

ς

σσ ′ckνσ ′ , (4)

where Q is the ordering wave vector, σ c is the identity, and
σ s are the Pauli spin matrices. The interaction part of the trial
action Eq. (3) contains a set of stiffness constants Jς

Q that will
be determined. Within the approach, the aim is to incorporate
the set of classical fields associated with the main leading
instabilities of the system. Importantly, the form of the MCFF
trial action Eq. (3) is identical to a Hubbard-Stratonovich ac-
tion. As the Hubbard-Stratonovich transformation is an exact
rewriting of the fermionic action through the introduction of
additional auxiliary bosonic degrees of freedom, the MCFF
theory would be exact if all modes in quasimomentum and
frequency space were treated explicitly. However, in practice,
the MCFF theory is restricted to only the main leading in-
stabilities of the system, allowing for a numerically low-cost
treatment. Limited to only a few modes, the MCFF theory
will appear to converge in the thermodynamic limit to a
symmetry-conserving sum over the symmetry-broken solu-
tions of mean-field theory. However, for any finite system,
the MCFF theory will introduce important corrections beyond
mean-field theory.

B. Integrating out fermionic degrees of freedom

The trial action Eq. (3) has a Gaussian form with respect
to the Grassmann variables c(∗) and classical fields φς . This
allows one to obtain an effective action for either fermionic
or classical degrees of freedom by analytically integrating out
the other degrees of freedom. Integrating out the fermionic
degrees of freedom, the effective action for the classical fields
becomes

Sφ = − Tr ln

⎡
⎣G−1

kν δQ,0δσ,σ ′ −
∑

ς

φ
ς

Qσ
ς

σσ ′

⎤
⎦

− 1

2

∑
Q,ς

βN

Jς

Q

φ
ς

Qφ
ς

−Q. (5)

The trace is taken over the momenta k, Q, frequency ν, and
spin σ, σ ′ indices. The effective action Eq. (5) depends on a
small number of classical fields φ

ς

Q. For this reason, the phase
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diagram that captures the interplay between the different FFs
can be studied by means of the free energy Fφ corresponding
to this action. Importantly, Fφ nonperturbatively incorporates
the fluctuations of the relevant order parameters ρ

ς

Q by allow-
ing the global minimum of Fφ to shift away from φ

ς

Q = 0.

C. Determination of the stiffness parameters
via a variational principle

To determine Jς

Q, we use the Peierls-Feynman-Bogoliubov
variational principle [79–81], as previously employed for the
single-mode FF method [71]. This variational principle allows
one to construct a unique and unambiguous set of Jς

Q which
minimizes the functional

F
(
Jς

Q

) = Fc
(
Jς

Q

) + 1

βN
〈S − Sc〉Sc

(6)

by varying Jς

Q. Here, 〈· · · 〉Sc denotes the expectation value
with respect to the effective fermionic action Sc, correspond-
ing to the trial action Eq. (3) with the classical fields φ

ς

Q being
integrated out:

Sc = − 1

βN

∑
k,ν,σ

c∗
kνσG−1

kν ckνσ + 1

2

∑
Q,ς

Jς

Q

βN
ρ

ς

Qρ
ς

−Q. (7)

In addition, we have introduced the free energy
Fc(Jς

Q) = − ln (Zc)/βN , where Zc is the partition function
of the action Sc. We finally note that writing the initial Eq. (2)
and the trial Eq. (3) actions in terms of ρς variables above
allows us to keep the bare Green’s function Gkν identical
in both actions, simplifying the variational treatment. In
contrast, another choice of variables would necessitate a shift
in the chemical potential in the trial action S∗ relative to the
extended Hubbard action S .

For the evaluation of 〈· · · 〉Sc , we explicitly rewrite the
expectation value as (see Ref. [71] for details)

〈· · · 〉Sc = 〈〈· · · 〉Se〉Sφ
, (8)

where the inner expectation value is taken with respect to the
fermionic part of the trial action Eq. (3),

Se = − 1

βN

∑
k,ν,σ

c∗
kνσG−1

kν ckνσ +
∑
Q,ς

φ
ς

Qρ
ς

−Q, (9)

which depends on the classical fields φ
ς

Q. A useful property
of the inner expectation value is that Wick’s theorem ap-
plies, as Se is a Gaussian action with respect to the fermions.
Note that for any nonzero value of the classical field φ

ς

Q, the
term φ

ς

Qρ
ς

−Q in the action Eq. (9) allows for the collective
fluctuations by breaking the associate symmetries in the Se

subsystem. The symmetries of the full system Sc are, how-
ever, retained by ultimately taking the outer expectation value
〈· · · 〉Sφ

. We emphasize that mean-field approaches require the
introduction of an explicit symmetry breaking in the system to
enter ordered phases. In contrast, the FF approach allows the
system to fluctuate in an ordering channel while retaining the
underlying symmetry without any explicit symmetry break-
ing.

In this paper, we limit our considerations to the collec-
tive AFM and CDW fluctuations with the Q = (π, π ) wave
vector that are the leading modes in the half-filled extended

Hubbard model. Our choice to keep only the main Q mode
for each fluctuation is motivated by the observation that
the momentum-space representation for the static lattice sus-
ceptibility X ς (q, ω = 0) at the transition point between the
normal and the ordered phases usually has the form of a
delta-function-like Bragg peak located at the ordering vectors
X ς (q, ω = 0) ∼ δq,Q (see, e.g., Refs. [31,32]). Thus (while a
multimode FF has been developed to incorporate the leading
and subleading momentum modes in Ref. [72]), we argue
that considering only the leading Q mode is sufficient for
predicting phase boundaries in the case of strong competing
fluctuations.

Given the symmetries of the considered model, the charge
and spin channels are described by two independent stiffness
constants Js

Q and Jc
Q that can be obtained by minimizing the

corresponding free energy Eq. (6) as

∂F
(
Jς

Q

)
∂Jς

Q

= 0. (10)

This leads to Js
Q = −U/2 for the stiffness constant in the spin

channel, in agreement with the result of the previous work
[71], and to Jc

Q = U/2 − 4V in the charge channel (see Ap-
pendix A for details). Importantly, the employed variational
approach avoids the hidden Fierz ambiguity in the decoupling
of the on-site Coulomb interaction U between the different
fluctuating channels [82–84]. In this regard, it is interesting
to note that the obtained values of the stiffness constants Jς

Q
correspond to the form of the bare interaction in Hartree-Fock
theory, which avoids the Fierz ambiguity problem [42,85], and
in the fluctuating exchange (FLEX) approximation [58,59]. In
addition, the stiffness constants Jς

Q are in agreement with the
diagrammatic D-TRILEX approach, which resolves the Fierz
ambiguity problem in a completely different way [68,86,87].
At this step, the effective action Eq. (5) is fully defined and
can be solved numerically exactly, which allows the approach
to respect the underlying symmetry of the system and, in addi-
tion, incorporate non-Gaussian fluctuations nonperturbatively,
as will be conducted below.

D. Free energy

In this section, we describe the method employed to in-
vestigate the interplay between collective CDW and AFM
fluctuations in the extended Hubbard model using the devel-
oped MCFF method. The phase diagram of the system can
be determined based on the free energy Fφ of the effective
MCFF action Eq. (5), which allows us to avoid computing
the more complex susceptibilities in the instability channels.
To find the phase boundary for the CDW phase, we introduce
the free energy F (φc

Q) for the respective classical field φc
Q by

integrating out the spin degrees of freedom φs
Q numerically

exactly:

F
(
φc

Q

) = − 1

βN
ln

∫
D

[
φs

Q

]
exp

{ − Sφ

[
φc

Q, φs
Q

]}
. (11)

Within the logarithm, the numerical integration over φs
Q may

be performed by the trapezoidal rule over a sufficiently
dense grid, exploiting the rotational invariance of the action
Sφ[φc

Q, φs
Q] with respect to φs

Q. The first term in the action
Eq. (5) can be efficiently evaluated by rewriting the trace
over all internal indices as a trace over k and ν indices
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FIG. 2. Free energy F (φς

Q) for the spin (a) and charge (b) chan-
nels. The results are obtained for the half-filled extended Hubbard
model on a square lattice at β = 10 and U = 2 in the vicinity of the
CDW-AFM transition point V = U/4 for a plaquette of 128 × 128
lattice sites. Choice of U,V is denoted as stars in Fig. 3.

over the logarithm of the determinant of a 4 × 4 matrix in
a 2 × 2 momentum (k, k + Q) and 2 × 2 spin (↑,↓) space:
Trk,Q,ν,σ ln[· · · ] = Trk,ν ln detQ,σ [· · · ]. Note that within this
rewriting, Trk is taken over the reduced (half) Brillouin zone.
The sum over the Matsubara frequencies ν is performed
analytically, leaving the k summation to be performed numer-
ically. The free energy of the classical vector spin field φs

Q can
be obtained in a similar way by integrating out the φc

Q field.
This procedure allows us to construct the free energy for a
single channel that, however, fully accounts for the effect of
collective fluctuations in the other channel that is integrated
out. The introduced free energy has the stability requirement
Jς

Q < 0 that ensures that F (φς ) has a global minimum for
each φς , i.e., the φ

ς

Q mode is stable. In contrast, the effective
fermionic action Eq. (7) for Jς

Q > 0 is associated with an
unstable collective mode, as ordering in the ρ

ς

Q channel is
energetically penalized. This requirement limits the regions
in which the different collective fluctuations are incorporated
within the MCFF scheme. For the considered extended Hub-
bard model, the stability requirement for the AFM and CDW
fluctuations are U > 0 and V > U/8, respectively. With the
method for constructing the free energy within the MCFF
theory, we may now finally generate the U,V phase diagram
for the extended Hubbard model.

IV. RESULTS

A. Phase diagram in the thermodynamic limit

We now focus on the half-filled extended Hubbard model
on a square lattice with repulsive U and V interactions. The
numerical MCFF investigation is based on the construction of
the free energies Eq. (11) for the CDW and AFM fluctuations.
A typical behavior of the introduced free energy F (φς

Q) is
illustrated in Fig. 2. In the normal phase, the global minimum
of F (φς

Q) lies at φ
ς

Q = 0. The formation of the ordered phase
is signaled by a shift of the global minimum to a φ

ς

Q �= 0
point. In addition to the global minimum, the free energy
may reveal a local minimum that indicates the presence of a
MS phase. We will discuss the appearance of the MS phases

FIG. 3. Phase diagram for the half-filled extended Hubbard
model with repulsive U,V interactions as predicted by the MCFF ap-
proach. The result is obtained at β = 10 for a plaquette of 128 × 128
lattice sites. Red and blue areas depict the CDW and AFM phases,
respectively. The corresponding phase boundaries are shown by col-
ored circles. Black dashed lines describe the asymptotic behavior
of the phase boundaries: V = 0.185 + U/8 for CDW, U = 1.477
for AFM, and V = U/4 for CDW-AFM transitions. The boundaries
of metastable CDW and AFM phases are illustrated by lines with
small square markers. Metastability displays the first-order nature of
the CDW-AFM phase transition to contrast with the second-order
phase transitions occurring between the normal metal phase (white
region) and the CDW and AFM phases. Yellow stars depict the points
at which the free energies shown in Fig. 2 were calculated. For
comparison, we add the RPA estimate CRPA = 0.185 for the CDW
boundary in the U → 0 limit, and the DiagMC estimate ADiagMC for
the AFM boundary in the limit of V → 0 [88]. The RPA estimate
V = 0.185 + U/4 for the CDW boundary is also shown.

below. Finally, we observe a nonanalyticity appearing as a
kink in the free energy F (φς

Q). It signals a change of behavior
of F (φς

Q) between the region in the vicinity of φ
ς

Q = 0, where
the fluctuations in the integrated channel are strong, and the
region of φ

ς

Q �= 0, where the fluctuations in the considered
channel are strong. Thus, the observed kink is inherently
connected to the interplay between the collective CDW and
AFM fluctuations.

We perform calculations for a plaquette of 128 × 128
lattice sites with periodic boundary conditions, which can
arguably be considered as the thermodynamic limit, as we
do not see any difference in the results compared to the
256 × 256 case. Figure 3 shows the phase diagram of the
system obtained at β = 10. We note that the MCFF method
can also be applied at much lower temperatures. The choice of
β is due to convenience in comparison to earlier works. Based
on the free-energy considerations discussed above, our cal-
culations reveal three phases: a normal (white color), a CDW
(red color), and an AFM (blue color) phase. We find that in the
weak coupling regime U � 1.447, the CDW phase boundary
follows the V = 0.185 + U/8 line. This result is in exact
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agreement with the perturbative estimation V = CRPA + U/8
[37], where the constant CRPA corresponds to the critical
value of the nonlocal interaction for the CDW transition
V CDW

U=0 obtained for U = 0 using the random phase approxi-
mation (RPA). The RPA estimate is determined by the critical
V CDW

U=0 associate with a singularity in the RPA construction of
the charge susceptibility at the (π, π ) point or equivalently
determined by a vanishing RPA dielectric function. For the
considered system, CRPA = 0.1847, which confirms that the
MCFF theory correctly captures the exact U → 0 limit for
the CDW phase boundary. The AFM phase boundary in
the weak coupling regime lies along the U = 1.477 line in
exact agreement with the FLEX result obtained for V = 0:
AFLEX = U AFM

V =0 = 8CRPA. However, FLEX is known to un-
derestimate the critical interaction for the AFM transition.
For instance, in the thermodynamic limit, the exact diagram-
matic Monte Carlo (DiagMC) solution gives ADiagMC 
 2.5
for β = 10 [88]. Determination of U AFM

V =0 within FLEX is
similar to the RPA estimate of the critical V CDW

U=0 , associated
instead with a divergence of the FLEX construction of the
spin susceptibility at the (π, π ) point. We note that in the
weak-coupling regime close to the obtained phase boundaries,
either the CDW or AFM fluctuation is negligibly small. If one
neglects one of these two modes within the MCFF method and
applies a saddle-point approximation to the remaining mode,
the theory reduces to a mean-field approach with the form
of the bare local interactions U c/s = ±U/2 used, e.g., in the
FLEX approach. The exact agreement for the phase bound-
aries in the weak-coupling regime of the FF and mean-field
theories can also be shown analytically (see Appendix B).

In the moderate interaction regime, where the compe-
tition between the CDW and AFM fluctuations is strong,
one has to take both fluctuations into account. Indeed, if
one considers fluctuations only in one channel and com-
pletely disregards the other channel, the single-channel FF
method predicts the CDW and AFM phase boundary to follow
exactly V = CRPA + U/8 and U = 8CRPA, respectively (see
Appendix B), as depicted by dashed lines in Fig. 3. The
single-channel FF method thus predicts the weak interaction
estimate to continue into the moderate interaction regime. If
we now consider both fluctuations, the CDW and AFM phases
are mutually exclusive, with the interplay leading to the sys-
tem developing a CDW-AFM phase boundary at V = U/4
in agreement with numerically exact techniques [24,25] and
the mean-field Hartree-Fock estimate [42], and follows the
mean-field RPA or GW [78] prediction V = U/4 + cst (ex-
cept for a constant shift). An explanation for the simple form
of the CDW-AFM phase boundary is rather intuitive. Due
to both fluctuations displaying identical ordering vectors Q,
their contributions to the first term of the effective action
Eq. (5) are analogous. Thus, the strength of these fluctua-
tions is dominantly determined by the stiffness parameters:
Js

Q = −U/2 and Jc
Q = U/2 − 4V . An equivalence between

the two stiffness parameters thus arises at V = U/4, i.e., along
the CDW-AFM phase boundary. A more nontrivial competi-
tion arises for small system sizes as considered in the next
section. In addition, nontrivial interplay may arise for compet-
ing modes characterized by different ordering vectors Q, due
to the coupling of modes through the first term of the effective
action Eq. (5).

FIG. 4. Free energy F (φc
Q) = F (φs

Q) calculated at the CDW-
AFM transition point U = 2, V = 0.5 for a plaquette of 128 × 128
lattice sites, with different values of the inverse temperature β.

Interestingly, we find that in some regions inside the CDW
and AFM phases, besides the global minimum, the free energy
F (φς

Q) reveals a local minimum. The appearance of the local
minimum can be associated with the presence of a MS phase.
The boundaries of the MS phases are depicted in Fig. 3 by
blue (MS AFM) and red (MS CDW) lines with small square
markers. Figure 2 illustrates a particular example of the free
energy behavior in the regime of strong competing CDW and
AFM fluctuations. In the spin channel [Fig. 2(a)], as V is in-
creased from deep within the AFM phase the global minimum
at φs

Q �= 0 in the free energy F (φs
Q) turns into a local mini-

mum above the CDW-AFM transition point V = U/4, where
the CDW ordering becomes dominant. The local minimum
disappears at the MS AFM phase transition point, which for
U = 2 corresponds to V = 0.60. Similar results can be found
for the charge channel [Fig. 2(b)]: As V decreases from deep
within the CDW phase, the MS CDW phase appears at the
AFM-CDW transition point and vanishes at U = 2, V = 0.46.

We note that at the CDW-AFM transition, the minima
located at φ

ς

Q = 0 and φ
ς

Q �= 0 points correspond to the same
value of the free energy F (φς

Q). On the contrary, no MS
solution occurs in the vicinity of the phase boundaries that
separate the normal phase from either the CDW or AFM
phases. This result suggests that the transitions in the lat-
ter case are of second order, while the transition between
the competing CDW and AFM phases is of first order. In
addition, we find that the spin and charge channels are de-
generate [F (φs

Q) = F (φc
Q)] along the CDW-AFM transition

line, which indicates that the two instabilities are mutually
exclusive. If these free energies were not identical at the
transition point, one channel would be energetically favorable.
Figure 4 shows the behavior of the free energy F (φς

Q) at the
CDW-AFM transition point U = 2, V = 0.5 for different tem-
peratures. We observe that at high temperature corresponding
to β = 4 the AFM and CDW fluctuations are suppressed, and
the free energy has only one minimum at φ

ς

Q = 0: the normal
phase. Upon lowering the temperature, the second minima
develops at φ

ς

Q �= 0 and propagates to larger values of φ
ς

Q,
corresponding to the increase of the strength of corresponding
fluctuations. We also observe that the free-energy barrier be-
tween the two minima increases with decreasing temperature.
A larger energy barrier allows for a more stable coexistence
of the two phases associated with φ

ς

Q = 0 and φ
ς

Q �= 0. It
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FIG. 5. Stable (a) and metastable (b) AFM (blue) and CDW (red) ordering boundaries predicted by the MCFF approach for the half-filled
extended Hubbard model on 4 × 4, 6 × 6, 8 × 8, and 128 × 128 plaquettes at β = 10. The dashed line specifies the mean-field estimate for
the CDW-AFM phase boundary V = U/4. For comparison, the RPA estimates CRPA and C8×8

RPA for the CDW boundary in the U → 0 in the
thermodynamic limit and for a 8 × 8 plaquette, respectively, are included. In addition, the DiagMC estimate ADiagMC, taken from Ref. [88],
and the QMC estimate A8×8

QMC for the AFM boundary in the limit of V → 0 are included in the thermodynamic limit and for a 8 × 8 plaquette,
respectively.

should be emphasized, however, that the two channels are
degenerate and that the minima at φ

ς

Q = 0 and φ
ς

Q �= 0 have
the same energy only at the CDW-AFM transition point. Away
from this point, one of the two solutions becomes MS, which
means that one of the CDW or AFM phases always domi-
nates. Distinguishing between stable and MS solutions is not
a trivial problem, and even the more elaborate DCA method in
the regime of strong competing CDW and AFM fluctuations
predicts a coexistence between these two mutually exclusive
phases [29]. Thus, the ability to distinguish between the stable
and the MS phases is an advantage of the MCFF method.

B. Evolution of the phase diagram with system size

The MCFF approach can also be applied to small sys-
tems, where it is expected to perform significantly better than
the conventional mean-field theory [69,71]. For small system
sizes, the result of the MCFF method can be compared to
the exact Monte Carlo calculations. Figure 5 displays the
stable (a) and MS (b) ordering boundaries for AFM and CDW
phases for 4 × 4, 6 × 6, and 8 × 8 plaquettes, in addition
to the previously considered 128 × 128 plaquette near the
thermodynamic limit. For all system sizes, the MCFF ap-
proach extrapolates the AFM and CDW ordering boundaries
between weak coupling results obtained, respectively, on the
basis of FLEX calculations and perturbative estimations, and
the asymptotic behavior of the CDW-AFM phase boundary
at intermediate coupling predicted by mean-field theories. A
region of coexisting stable and MS ordering is observed for
all system sizes. Phase boundaries of the coexistence region
appears converged for the 128 × 128 plaquette, indicating its

stability in the thermodynamic limit. Importantly, we observe
for small systems a more significant modification of the weak
coupling CDW and AFM phase boundaries as predicted by
the MCFF approach, due to the interplay of collective fluc-
tuations. The modification displays itself by a bending of the
phase boundaries not only in the vicinity of V = U/4, a dis-
tinct effect beyond conventional mean-field theory estimates.

To gain insight into the performance of the MCFF approach
with inclusion of collective AFM and CDW fluctuations, we
now perform a comparison with respect to numerically exact
QMC simulations. For a 8 × 8 plaquette, QMC simulations
give us A8×8

QMC = 2.05 ± 0.05 for β = 10. By a comparison to
the MCFF prediction of U AFM

V =0 = 1.225, we find a significant
overestimation of the critical interaction U for the AFM phase
boundary. This observation is consistent with our result for the
128 × 128 plaquette and can be related to dynamical correla-
tion effects that are not incorporated within the approach. In
contrast, the MCFF method accurately determines the CDW
phase boundary at small U , with the MCFF prediction for the
critical interaction V CDW

U=0 coinciding with the RPA result CRPA

for all plaquette sizes.

C. Measure of collective fluctuations

To quantify the strength of the collective fluctuations in
the MCFF approach around the minimum of the free en-
ergy, we introduce 〈|nς

Q|〉 as a measure. The measure 〈|nς

Q|〉
is computed by taking the expectation value of |nς

Q| in the
respective channel, i.e., performing a numerical integration
over all classical field degrees of freedom associated with the
collective fluctuations. The numerical integration corresponds
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to the inclusion of fluctuations about the saddle point known to
be important, e.g., see work on the crossover from BCS theory
to Bose-Einstein condensate [89,90]. Our calculations of the
measure 〈|nς

Q|〉 are compared to the saddle-point estimate
〈|nς

Q|〉MF, i.e., the value at the minimum of the free energy,
which is equivalent with a conventional mean-field theory
estimate. Thus, we seek to evaluate the differences between
the FF and mean-field theories.

Figure 6 displays the calculated integrated measure 〈|nς

Q|〉
and the saddle-point measure 〈|nς

Q|〉MF, in addition to their
difference 〈|nς

Q|〉 − 〈|nς

Q|〉MF, at β = 10 for plaquettes of the
size 4 × 4, 6 × 6, 8 × 8, and 128 × 128 along V = U/4.
Specifically, within Figs. 6(a) and 6(b), the measures and their
difference is calculated within the single-channel FF theory,
namely, without considering the interplay between the fluc-
tuations in the competing channel. Note that along V = U/4,
the noninterplaying collective CDW and AFM fluctuations are
degenerate. We observe 〈|nς

Q|〉, displayed as a solid line in
Fig. 6(a), to monotonically increase as a function of U . The
measure 〈|nς

Q|〉 vanishes in the limit of U → 0 and saturates to
the mean-field theory estimate 〈|nς

Q|〉MF in the limit of large U ,
displayed as a dashed line in Fig. 6(a). We observe in Fig. 6(b)
the deviation of the measure relative to the saddle-point es-
timate is positive and a monotonically increasing function
of U below the phase boundaries evaluated within mean-
field theory. A sharp decrease in the deviation follows above
the phase boundaries, until a maximal negative deviation is
reached, in turn followed by a saturation to zero deviation at
large U . The collective fluctuations around the minimum of
the free energy are most relevant in the vicinity of the phase
transition, and especially for small systems. We observe the
difference 〈|nς

Q|〉MF to be suppressed with increasing system
size. However, we note that for a plaquette of size 128 × 128,
deviations with respect to mean-field theory remain small but
non-negligible close to the phase boundary.

We now consider the measures for interplaying collective
CDW and AFM fluctuations within the introduced MCFF
theory, displayed in Figs. 6(c)–6(f). Due to degeneracy of the
saddle-point minima of the CDW and AFM channels along
V = U/4, two choices of 〈|nς

Q|〉MF exist. Either 〈|nc
Q|〉MF is

nonzero for vanishing 〈|ns
Q|〉MF, or vice versa. We observe

that the collective AFM fluctuations [Fig. 6(e)] dominate over
the collective CDW fluctuations [Fig. 6(c)] in the regime of
study. This naturally follows from the larger number of de-
grees of freedom of the AFM mode relative the CDW mode.
A behavior similar to the single-channel results is observed
in the measure 〈|ns

Q|〉, displayed as a solid line in Fig. 6(e).
However, within the multichannel results the measure 〈|ns

Q|〉
is larger for the interplaying treatment due to the additional
channel of fluctuation. In contrast, the measure 〈|nc

Q|〉 behaves
dissimilar to the single-channel results. We observe the mea-
sure 〈|nc

Q|〉 to display a nonmonotonic behavior: increasing
as a function of U at small U and decreasing as a func-
tion of U at large U . In fact, the measure 〈|nc

Q|〉 vanishes
in both limits of small and large U . As noted previously,
the largest deviation with respect to mean-field theory occurs
in the vicinity of the phase transition and for small system
sizes. In the thermodynamic limit, the collective CDW and
AFM fluctuations appear to saturate to the mean-field theory,

FIG. 6. The measure 〈|nς

Q|〉 of collective fluctuations is calcu-
lated along V = U/4 in the phase diagram for 4 × 4, 6 × 6, 8 × 8,
and 128 × 128 plaquettes at β = 10 in (a), (c), and (e). Dashed
lines in (a), (c), and (e) denote the saddle-point (mean-field) measure
〈|nς

Q|〉MF. In (b), (d), and (f), the difference 〈|nς

Q|〉 − 〈|nς

Q|〉MF is plot-
ted. Dashed lines in (a), (c), and (e) denote the saddle-point estimate
of the phase transition boundaries. Without interplay, displayed in
(a), (b), the two modes ς = c, s are degenerate along V = U/4. With
interplay, displayed in (c), (d) for the CDW mode and (e), (f) for the
AFM mode, the degeneracy is broken. However, due to degeneracy
of saddle-point minima of the channels, two choices of 〈|nς

Q|〉MF

exist: zero or nonzero.

following the saddle-point choice associated with a nonzero
〈|ns

Q|〉MF and vanishing 〈|nc
Q|〉MF. The main message remains

from the single-channel considerations—contributions from
collective fluctuations around the minimum of the free energy
are of largest importance near the phase boundaries evaulated
within mean-field theory, with most significant contributions
for small system sizes.
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V. CONCLUSION

We have introduced a multichannel extension of the FF
approach to address interplaying collective fluctuations for
correlated electronic systems based on a variational optimiza-
tion of a trial action respecting the underlying symmetries of
the system. Exploiting this numerically low-cost method, we
are able to study competing CDW and AFM fluctuations in
the half-filled extended Hubbard model from small to large
plaquettes. The MCFF method predicts a repulsive U -V phase
diagram in qualitative agreement with more costly methods.
Our approach correctly captures the U → 0 limit for the CDW
phase boundary, which is a nontrivial problem for compu-
tationally heavy cluster-based DMFT techniques due to the
cluster size limitations. In addition, at intermediate interac-
tions a first-order CDW-AFM transition U = 4V is captured
in agreement with numerically exact methods. A quantita-
tive agreement is observed with respect to DCA simulations
[29], with both approaches observing a coexistence region
of collective AFM and CDW fluctuations. The coexistence
regions display a strength of the MCFF approach, as it allows
direct access to distinguish between the stable and MS phases.
Studying the evolution of interplaying collective fluctuations,

we observe MCFF theory to incorporate effects beyond mean-
field theory which are exceptionally important for treatment in
the vicinity of the phase boundaries for small plaquettes. The
general nature of the MCFF theory makes it a promising tool
for studying the interplay of collective fluctuations in strongly
interacting electronic systems.
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APPENDIX A: VARIATIONAL PRINCIPLE

In this Appendix, we present a detailed derivation of the stiffness constant Jς

Q. To this aim, we apply the Peierls-Feynman-
Bogoliubov variational principle that maps the initial problem Eq. (2) on the trial action Eq. (7) by minimizing the free energy
F (Jς

Q) Eq. (6) with respect to variations in Jς

Q. The free energy can be explicitly rewritten as

F
(
Jς

Q

) = Fc
(
Jς

Q

) + 1

βN

〈
U

βN

∑
q,ω

ρqω↑ρ−q,−ω↓ + 1

2

∑
q,ω

Vq

βN
ρqωρ−q,−ω −

∑
ς

1

2

Jς

Q

βN
ρ

ς

Qρ
ς

−Q

〉
Sc

. (A1)

Now exploiting Eq. (8), we may rewrite the local interaction term explicitly using Wick’s theorem as

U 〈njτ↑n jτ↓〉Sc = U 〈〈c†
jτ↑c jτ↑c†

jτ↓c jτ↓〉Se〉Sφ
= U 〈〈c†

jτ↑c jτ↑〉Se〈c†
jτ↓c jτ↓〉Se − 〈c†

jτ↑c jτ↓〉Se〈c†
jτ↓c jτ↑〉Se〉Sφ

= U

4

〈〈
nc

jτ

〉2
Se

− 〈
ns

jτ

〉2
Se

〉
Sφ

, (A2)

where, for convenience, we have employed a real-space representation for the interaction term. Rewriting the term in the Fourier
basis, we arrive at ∑

j,τ

U 〈ρ jτ↑ρ jτ↓〉Sc = 1

βN

∑
q,ω

U

4

〈〈
ρc

qω

〉
Se

· 〈
ρc

−q,−ω

〉
Se

− 〈
ρs

qω

〉
Se

· 〈
ρs
−q,−ω

〉
Se

〉
Sφ

. (A3)

Similarly, we may rewrite the nonlocal interaction term approximately using Wick’s theorem as

1

2
Vi j〈niτ n jτ 〉Sc = 1

2
Vi j

∑
σσ ′

〈〈c†
iτσ ciτσ c†

jτσ ′c jτσ ′ 〉Se〉Sφ
= 1

2
Vi j

∑
σσ ′

〈〈c†
iτσ ciτσ 〉Se〈c†

jτσ ′c jτσ ′ 〉Se − 〈c†
iτσ c jτσ ′ 〉Se〈c†

jτσ ′ciτσ 〉Se〉Sφ

≈ 1

2
Vi j

〈〈
nc

iτ

〉
Se

〈
nc

jτ

〉
Se

〉
Sφ

, (A4)

where i �= j. Note that on the last line of this equation we have dropped the subleading nonlocal expectation values scaling as
1/N , see Ref. [71]. Rewriting the term in the Fourier basis, we arrive at

1

2

∑
i j,τ

Vi j〈ρiτ ρ jτ 〉Sc ≈ 1

2βN

∑
q,ω

Vq
〈〈
ρc

qω

〉
Se

〈
ρc

−q,−ω

〉
Se

〉
Sφ

. (A5)

Similarly, we approximately evaluate the expectation value of the interaction in the MCFF action as

1

2

Jς

Q

βN

〈
ρ

ς

Qρ
ς

−Q

〉
Sc

≈ 1

2

Jς

Q

βN

〈〈
ρ

ς

Q

〉
Se

〈
ρ

ς

−Q

〉
Se

〉
Sφ

. (A6)
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The form of the MCFF action Se Eq. (9) only allows for certain quasimomentum modes of the local and nonlocal interaction
terms to contribute to the free energy. Specifically, only the static (ω = 0) component with the momentum q = Q contributes to
the average of the shifted density: 〈ρς

qω〉Sc = 〈ρς

Q〉Sc . Thus, the free energy Eq. (A1) takes the following form:

F
(
Jς

Q

) ≈ Fc
(
Jς

Q

) + 1

(βN )2

(
U

4
+ VQ

2
− Jc

Q

2

)〈〈
ρc

Q

〉
Se

〈
ρc

−Q

〉
Se

〉
Sφ

− 1

(βN )2

(
U

4
+ Js

Q

2

)〈〈
ρs

Q

〉
Se

〈
ρs
−Q

〉
Se

〉
Sφ

. (A7)

The stiffnesses Jς

Q may now be constructed by the proposed
variational approach by varying the free energy F (Jς

Q) with
respect to Jς

Q, i.e., ∂F/∂Jς

Q = 0. We thus identify Js
Q = −U

2

and Jc
Q = U

2 + VQ. This completes the determination of the
stiffness constants Jς

Q.

APPENDIX B: PHASE BOUNDARIES WITHIN THE
SINGLE-CHANNEL FLUCTUATING FIELD APPROACH

In this Appendix, a derivation of the CDW and AFM phase
boundaries within the single-channel FF theory, i.e., without
interplaying collective fluctuations, is given. We begin by
limiting our considerations to a single classical field, either
in the CDW channel (φc

Q) or in the AFM channel (φs
Q). This

is valid in the weak-coupling regime, where the competition
between the two channels is not strong. An effective action
Sφς can be constructed as in Eq. (5), limited to the single φ

ς

Q
mode:

Sφς ≡ −Tr ln
[
G−1

kν δQ,0δσ,σ ′ − φ
ς

Qσ
ς

σσ ′
] − 1

2

βN

Jς

Q

φ
ς

Q
2
. (B1)

As a reminder, in this expression the trace is taken over the
momenta k, Q, frequency ν, and spin σ, σ ′ indices. Consider-
ing the system at half filling (μ = 0), we may explicitly sum
over the momenta Q, frequency ν, and spin σ, σ ′ indices in
Eq. (B1), obtaining the following:

Sφς =−
∑

k

[ln (1 + e−βεk,+ ) + ln (1 + e−βεk,− )] − 1

2

βN

Jς

Q

φ
ς

Q
2
,

(B2)

where we have introduced the parameters

εk,± = εk+εk+Q

2 ±
√

( εk−εk+Q

2 )2 + φ
ς

Q
2 and dropped the

irrelevant constant term. To identify the value of the stiffness
parameter generating a phase transition, we perform a Taylor
expansion for the first term of Eq. (B2), which leads to

Sφς =
{

β
∑

k

[
f (εk ) − f (εk+Q)

εk − εk+Q

]
− 1

2

βN

Jc
Q

}
φ

ς

Q
2 + O

(
φ

ς

Q
4)

,

(B3)

where the Fermi-Dirac distribution f (ε) ≡ 1/(eβε + 1) is em-
ployed and the irrelevant constant term dropped, as previously.
Thus, the phase transition can be identified by the factor
associated with the φ

ς

Q
2 term switching sign. This leads to

the critical stiffness parameter for both the CDW and AFM
channels to have the following analytic form:

Jς

Q = 1/�Q. (B4)

Here, we have introduced the (static) noninteracting polariza-
tion �Q, which is of a Lindhard function form:

�Q ≡ 2

N

∑
k

[
f (εk ) − f (εk+Q)

εk − εk+Q

]
. (B5)

This result allows us to connect the single-channel FF calcu-
lations to the RPA and FLEX estimates of the associate phase
boundaries.

The RPA estimate V CDW
U=0 for the CDW phase boundary and

the FLEX estimate U AFM
V =0 for the AFM phase boundary can be

obtained as follows. The CDW phase boundary is identified
by a divergence of the charge susceptibility of RPA at the
Q = (π, π ) points. At U = 0 this divergence arises if the
condition 1 − �QVQ = 0 is satisfied. This gives the following
estimate for the CDW phase boundary:

VQ = 1/�Q. (B6)

Analogously, the AFM phase boundary is identified by a di-
vergence of the spin susceptibility at the Q = (π, π ) point.
Using the FLEX form for the bare local spin interaction
U s = −U/2 leads to the following condition for identifying
the AFM phase boundary: 1 − U s�Q = 0 or, equivalently, to

U s = 1/�Q. (B7)

These results show that the single-channel FF theory gives
exactly the same estimates for the V CDW

U=0 and U AFM
V =0 transi-

tion points as RPA and FLEX, respectively. However, we
emphasize that in the multichannel FF approach the Tr ln[· · · ]
term of the effective action Eq. (5) couples together different
collective fluctuations. This means a simple analytic treatment
performed above is, in general, unfeasible in the case of inter-
playing collective fluctuations.
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