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Construction of model Hamiltonians for transition-metal impurities
via the quasiparticle self-consistent GW method
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We show a method to construct model Hamiltonians for describing multiplet excitations of transition-metal
impurities. Here, we treat systems of a transition metal substituting Al in α-Al2O3. Based on the results of
quasiparticle self-consistent GW (QSGW) calculations for the systems, we construct the model Hamiltonian of
3d orbitals. We determine not only the crystal-field parameters, but also the parameters of effective interactions
based on the theoretical correspondence between the QSGW calculations and the model Hamiltonian, and
investigate the systematic change in these parameters. Finally, we discuss the structures of multiplet excitations
calculated from these parameters.
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I. INTRODUCTION

Light emission from luminescent centers of transition met-
als (TMs) is one of the most important physical phenomena
for white light-emitting diode applications [1–6] as well as
the tunable laser applications [7]. Ruby, Cr3+-doped α-Al2O3

(α-Al2O3:Cr3+), was utilized for the first solid-state laser de-
veloped by Maiman [8]. α-Al2O3:Ti3+ is widely used these
days, whereas, other TM elements in α-Al2O3 are also po-
tentially applicable to the solid-state lasers [9–12]. Possible
combinations of TMs with host materials are extensively ex-
amined [7]. To assist such examination by the computational
material design (CMD), we have to figure out a reliable
method to compute properties that control the light emis-
sion. Such a method should be applicable to any systems on
the same footing without choosing computational settings by
hand.

The luminescent centers are described well as the mul-
tiplets of 3d electrons. Excitations among these multiplets
cause light emission. The spectrum of ruby is analyzed by the
multiplet excitations [13,14]. If we assume the 3d electrons of
the luminescent center are well isolated from the other elec-
trons, we can regard the system as TM 3d electrons embedded
in the crystal field (CF) with effective interactions between the
electrons.

In order to treat the multiplets, we have to use a method
to go beyond the mean-field theories, which describe elec-
tronic structure by a single Slater determinant. A possible
method is based on the idea of the configuration interaction
(CI) [15]. For instance, Cr3+ in α-Al2O3 was examined by

the single-electron cluster calculation [16,17] where only a
few positions of bands or lines of the spectrum were obtained
from analytic relation between the molecular-orbital energies
and the multiplet energies. Duan et al. calculated the whole
multiplet structure of ruby, whereas, their method could not
be applicable to the calculation of the emission spectra [18].
Also for α-Al2O3:V3+, similar first-principles calculations
were carried out [19,20]. Ogasawara et al. developed a hybrid
method combining density functional theory (DFT) and the CI
to obtain multiplet structures [21–23]. However, such methods
based on CI have some problems to treat TM in solids. At
first, we have to choose the size of clusters including TM at
the center; such a choice is not easy technically, therefore,
unsuitable for CMD. In addition, if the size of the cluster is
not large enough, we may not reproduce properties of hosts,
such as band gaps. This can cause a problem because we
should describe the levels of 3d electrons relative to the band
structure of host materials so as to describe the localization
of the 3d electrons. In fact, we saw a large reduction of the
spin-orbit coupling because of the delocalization of the 4 f
eigenfunction when Eu is doped into GaN [24].

On the other hand, we may describe the electronic struc-
ture of the ground state even in a mean-field theory by a
Slater determinant; in the case of atom, we expect that Lz

and Sz of the Slater determinant should be consistent with
the Hund rule. Kitaoka et al. performed the constraint DFT
in the local spin density approximation (LSDA)+U result-
ing ∼1.0 eV for transition energy from 4A2g to 2Eg states
of α-Al2O3:Cr3+, whereas, experimental value is around
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1.8 eV [25]. Na-Phattalung et al. obtained the transition ener-
gies 2.12 eV between the 2Eg excited state and the 4A2g ground
state in the hybrid functional [26].

We have another first-principles approaches to determine
only the parameters of CF. Haverkort et al. demonstrated
ab initio cluster calculations including the full Coulomb
interactions using the localized Wannier orbitals based on
nonmagnetic generalized gradient approximation electronic
structure [27]. Kuzian et al. performed calculations on local
magnetic centers with open 3d and 5 f shells using a similar
Wannier orbital method [28]. Although their approaches gave
good agreement with the experimental CF parameters, their
methods are not satisfactory from the view of CMD because
the adopted Coulomb parameters are those of free ion or
experimental analysis.

In this paper, we present a method to determine the model
Hamiltonian of 3d electrons of the luminescent centers based
on the quasiparticle self-consistent GW (QSGW) calcula-
tions [29–32]. This method, originally developed by Suzuki
et al. [24] for 4 f multiplets, virtually overcomes problems
in previous works mentioned above. The model Hamiltonian
was constructed from the terms of the CF and the screened
Coulomb interactions.

To determine the many-body model Hamiltonian (in other
words, to determine parameters in the Hamiltonian) based on
the one-body QSGW results, we start from our core idea.
The core idea is in the requirement that “QSGW applied
to the model Hamiltonian” should reproduce the one-body
Hamiltonian of QSGW. This is possible because the idea of
QSGW is applicable not only to the first-principles calcu-
lations, but also to the model Hamiltonians. This core idea
satisfies a renormalization principle that the model Hamilto-
nian should be closer to the original Hamiltonian when we
utilize larger model space, e.g., including electrons of ligands.
Roughly speaking, QSGW is a screened Hartree-Fock method
where the size of screening is self-consistently determined
without parameters by hand. In the present paper, we adoped
the QSGW method instead of the hybrid functional methods
since QSGW incorporates flucturations due to particle-hole
excitations.

In practice, we use QSGW80 instead of QSGW. QSGW80
means that we use 80% QSGW + 20% LSDA for exchange-
correlation terms. This is to avoid the overestimation of
exchange effects due to the underestimation of screening ef-
fects for the interaction between electrons. A justification of
QSGW80 is given in Ref. [33] where we show that the vertex
correction adding to the random-phase approximation (RPA)
used in QSGW enhances the screening effects by ∼20%.
QSGW80 is a quick remedy including the vertex correction.
We had observed that QSGW80 works well for a wide range
of materials [32]. Applying QSGW80 to TM-doped Al2O3 is
justified by the fact that QSGW80 describes not only sp-block
semiconductors/insulators, but also TM oxides very well. For
instance, the spin-wave dispersions are well reproduced for
TM and TM oxides [34,35]. We will show our results for
TM-doped α-Al2O3 systematically in order to confirm the
performance of our method.

In the next section, after showing computational setting
of our first-principles calculations in Sec. II A, we will
explain our model Hamiltonian H specified by six parameters

in Sec. II B. Then, we will illustrate the determination of
parameters in model Hamiltonian of 3d orbitals in TMs in
Sec. II C.

II. METHOD

A. First-principles calculations

α-Al2O3 has a corundum structure: oxygen atoms around
an aluminum ion are located at the vertices of a distorted
octahedron. When an aluminum ion is substituted by a TM
ion, its structure should be relaxed to become a more sta-
ble one. For structure optimization, we prepared a 2×2×2
rhombohedral supercell of α-Al2O3 substituted one aluminum
ion with a TM ion for structure relaxation. Both the lattice
volume and the atomic positions were optimized using the
projected augmented-wave method with the revised Perdew-
Burke-Ernzerhof functional for solids implemented in the
QUANTUM ESPRESSO package [36,37]. The cut-off energy for
wave functions is 60 Ry for the charge density, the potential is
360 Ry, and the k-point mesh is 6×6×6. Since the optimized
structure differs from the original one mainly around the TM
ions, we extract the local 1×1×1 structure around the TM
ion from the supercell and assume C3v symmetry around the
TM ion. This optimized crystal structure was employed for
the QSGW80 calculation (see the results in Table SI of the
Supplemental Material [38]). The charge neutrality is con-
served by imposing uniform background charges to the cell:
Positive (negative) charge +e (−e) was added in the case of
TM4+ (TM2+). On the contrary to the one-shot GW , the self-
consistency cycle of QSGW automatically keeps the charge
neutrality even with the background charge.

The first-principles QSGW calculations, as well as the lo-
cal density approxamation calculations for comparison, were
performed with the ECALJ package in Ref. [39]. We used
k-point mesh 8×8×8 for the band structure part, whereas,
4×4×4 for the self-energy part. We used 10×10×10 for
producing maximally localized Wannier functions (MLWFs)
of 3d orbitals.

For calculations of free TM ions, we employed a face-
centered-cubic structure with lattice constant 10 Å, which is
sufficiently larger than the ionic radius of the TM free ion.
Background charges were added to calculate the electronic
states of TM cations. We used the same k-point mesh as in
the cases of α-Al2O3.

B. Model Hamiltonian

In a similar manner with Ref. [24], we assume our model
Hamiltonian (3d electrons only) as

H = H0 + HCF + HC, (1)

where we have H0 for the spherical mean-field term, HCF for
CF, HC for the effective Coulomb interaction. The dimension
of H is 10CN , where N is the number of 3d electrons, e.g.,
N = 3 for Cr3+ (3d3). Since we do not take into account
hybridization with the other electrons, we put 3d electrons at
the zero level, that is, we set H0 = 0. The spin-orbit coupling
is neglected because it affects little for the estimation of CF
and the effective Coulomb parameters in the 3d system.
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HCF and HC are given as

HCF = HC3v

CF =
∑
mm′

∑
σσ ′

(
hC3v

CF

)
mm′ ĉ

†
mσ ĉm′σ ′, (2)

hC3v

CF = −7DσO0
2 − (14Dq + 21Dτ )O0

4

+ 2
√

70Dq(O3
4 − O−3

4 ), (3)

HC = 1

2

∑
m1m3

∑
m2m4

∑
σσ ′

gm1m2m3m4 ĉ†
m1σ

ĉ†
m2σ ′ ĉm4σ ′ ĉm3σ . (4)

Here, m and σ are for the magnetic quantum number and
spin. ĉmσ is the electron-annihilation operator. We represent
HCF with the Stevens’ operator On

l [42], where we have the
octahedral CF parameter Dq, the trigonal CF parameters Dσ

and Dτ [43] in addition because a TM ion replacing Al3+ in
α-Al2O3 has C3v symmetry.

HC in Eq. (4) is given with

gm1m2m3m4 = (−1)m1−m3δm1+m2,m3+m4

×
l∑

p=0

F 2pc2p(m1, m3)c2p(m2, m4), (5)

where we have the Gaunt coefficients cp(m, m′) and the Slater-
Condon parameters F 2p [44]. F 2p are given by the modified
Slater-Condon parameters F0, F2, and F4 [45] as

F 0 = F0, F 2 = 49F2, F 4 = 441F4. (6)

Note that U and J in Ref. [46] are related as U = F0 and
J = (7/2)F2 + (63/2)F4.

As a summary, H is determined by the six parameters,
F0, F2, F4, Dq, Dσ , and Dτ via HC and HCF. As shown
in Sec. II C, we can determine the six parameters by our
matching method after we perform QSGW80 calculations for
α-Al2O3:TMs.

C. Determination of parameters in the model Hamiltonian

Based on the core idea given in the Introduction, we have
to determine the six parameters so that the one-body Hamil-
tonian of QSGW for 3d electrons H3d

QSGW is reproduced when
we apply QSGW to H. Note that we can apply QSGW even
to the model Hamiltonian.

Now, we make a further approximation for simplicity.
We first apply the first-principles method, QSGW80 to the
systems where we substitute one of the Al sites in the host ma-
terial α-Al2O3 with one TM ion. From this result of QSGW80,
we obtain H3d

QSGW in the procedure of the MLWFs [47]. We
expect QSGW80 gives a good description of the screening
effect [33]. Then, we determine the six parameters so that
H3d

QSGW is reproduced well using the result calculated by the
Hartree-Fock approximation (HFA) applied to H. We assume
that applying HFA to H with the screened Coulomb param-
eters gives virtually the same results as applying QSGW to
H. We think this assumption is reasonable since QSGW can
be interpreted as a Hartree-Fock method with the screened
Coulomb interaction instead of the bare one.

Let us illustrate the case of Al2O3:Cr3+. In Figs. 1(b)
(majority spin) and 1(e) (minority spin), we show the band

structure of α-Al2O3:Cr3+ in QSGW80 together with that
in LSDA as references [(a) and (d)]. We use a supercell
of α-Al2O3 with one Cr substituting Al (see Fig. S1 in the
Supplemental Material [38]). QSGW80 gives the band gap of
9.2 eV for Al2O3, in good agreement with experimental value
(8.7 eV [48]), whereas, LSDA gives too small a value 6.5eV.
Impurity levels of 3d orbitals relative to the host bands can
affect the localization of the 3d orbitals and hybridization with
host electrons. QSGW80 is one of the best available choices
to obtain band gaps as well as the impurity levels correctly.
In Ref. [32], we see how QSGW80 works not only for simple
insulators, but for NiO and MnO. We, therefore, use QSGW80
in order to describe both transition-metal compounds and
semiconductors/insulators on the same footing.

In the left panels of Figs. 1(c) and 1(f) (the MLWF pan-
els), we show ten eigenvalues (five for each spin) of H3d

QSGW,
which is calculated in the manner of MLWFs for the results
of QSGW80. We see t2g states are almost degenerated, eg

states as well. This means that octahedral symmetry is almost
preserved. H3d

QSGW is, thus, specified essentially by three levels
relative to the occupied t2g states of majority spin.

The HFA to H gives the one-body Hamiltonian HHF as

HHF = HCF + HHF
C ,

HHF
C =

∑
m1m3

∑
σ

[ ∑
m2m4

(
gσσ

m1m2m3m4
− gσσ

m1m2m4m3

)〈
c†

m2σ
cm4σ

〉

+ gσσ
m1m2m3m4

〈
c†

m2σ
cm4σ

〉]
ĉ†

m1σ
ĉm3σ . (7)

Here, σ is opposite spin to σ . 〈· · · 〉 is the expectation value
for the ground state. We name HHF the Hartree-Fock model
Hamiltonian (HFMH). We determine the six parameters so
that HHF is in agreement with H3d

QSGW as good as possible,
without paying attention to the matrix elements. Since H3d

QSGW
has the freedom of a five-dimensional Hermitian matrix for
each spin, we cannot expect perfect agreement.

We have to determine the six parameters so as to minimize
the mean-square error between HHF and H3d

QSGW using the
Powell’s optimization method implimented in SCIPY. Here, we
only require that HHF should reproduce these ten eigenvalues
of H3d

QSGW as good as possible. This is because the matching
of eigenvalues is the main part of the minimization; we guess
that it is not meaningful to consider the matching of matrix
elements within our current model of 3d only. Our minimiza-
tion virtually gives Dσ = Dτ = 0 for Al2O3:Cr3+ because of
the almost-preserved octahedral symmetry. Two degrees of
freedom due to 10Dq and F0, are not enough to reproduce
the three levels. Thus, we need two more contributions due
to F2 and F4. In Figs. 1(c) and 1(f) (the HFMH pannels), we
resolve contributions from F0, F2, F4, and 10Dq. We see that
the degeneracy of octahedral symmetry is preserved well. In
Fig. 1(c), we see that the degeneracy of occupied states of the
majority spin is recovered by adding the contribution from F4,
although the degeneracies of other states are not completely
recovered because of our limited degree of freedom. As shown
in Table I, Dσ and Dτ are essentially needed in cases, espe-
cially for the cases of Fe, Ni, and Cu.
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(a) (b) (c)

(d) (e) (f)

FIG. 1. The electronic structure and parameter determination of α-Al2O3:Cr3+. (a) and (d): The band structure of majority and minority
spins together with density of states (DOS) calculated in LSDA. The red lines are for the MLWFs of Cr 3d orbitals. The red filled region is for
the partial DOS of Cr 3d; (b) and (e): in QSGW80; (c) and (f): The red lines in the left panel of (c) and (f) (MLWF panel) show the eigenvalues
of H3d

QSGW (see the text). In the right panel [HFMH panel], the contributions of six parameters are resolved (see the text). Inset illustrates Dσ

and Dτ split t2g into eg and a1g.

In Sec. III A, we will show our main results of the six
parameters of TMs in α-Al2O3. To have a better understanding
of the results, we will show the calculated parameters of free
ions in Sec. III B.

III. RESULTS AND DISCUSSION

A. Calculated parameters in the model Hamiltonian

In Table I, we show calculated six parameters in H for
TM2+, TM3+, or TM4+ in α-Al2O3 together with the ex-
perimental ones derived from optical measurements. In cases
of Fe3+, we have two results corresponding to two con-
verged results of QSGW, the high spin (HS) and the low
spin (LS) states. In cases shown in square brackets such as
[Fe3+(d5) · · · ], we found that 3d occupied states are strongly
hybridized with the oxygen 2p orbitals. Our current model
including only 3d orbitals may not be suitable enough for such
cases. Thus, data lines with square brackets should be taken as
less reliable cases. The calculated DOS in the Supplemental
Material shows the size of hybridization (Figs. S2–S8) [38].

For Cr3+, F0 = 4.98 eV in QSGW80 is very different from
0.80 eV in LSDA. This is because LSDA does not include

on-site nonlocality of the one-body potential, which is usually
described by U of LSDA+U . This causes the difference of
positions of 3d bands (see Fig. 1 in Sec. II). On the other
hand, we see just ∼10% differences as for F2, F4, and 10Dq
between QSGW80 and LSDA. This means that difference
in the screening effects given in QSGW80 and in LSDA
does not affect the anisotropic part of interactions so much.
F2 = 0.108 eV in QSGW80 gave a little better agreement with
experimental values 0.136 or 0.133 eV than F2 = 0.092 eV in
LSDA. Since we usually expect that varieties of experimental
values fall between QSGW80 and LSDA, we feel still the
remaining difference of 0.136–0.108=0.028 eV sounds a little
too large, whereas, we have no definite idea to identify the
main cause of the difference. A cluster theory [23] shows
better agreement with experiments, however, it is not simple
enough as a method for CMD. Note that we cannot determine
F2 and F4 for the case where all of the majority spin states
are filled completely (HS with d5) because degeneracy of 3d
bands in QSGW80 gives insufficient information for deter-
mining all the six parameters. We have room to improve this
point by adding bias fields in QSGW80 to have the informa-
tion of the excited states as well.
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TABLE I. Calculated six parameters of TM ions in α-Al2O3. The number of 3d occupancy is shown as dm(m = 1, . . . , 9). N↑ − N↓ means
the spin moment in μB. HS is for high spin, LS is for low spin. Some of “—” for d5 mean no data in our current treatment. The systems with
brackets means strong hybridization with 2p orbitals (see the text).

F0 F2 F4 10Dq Dσ Dτ

TM ion N↑−N↓ Method (eV) (eV) (eV) (eV) (eV) (eV)

Ti2+ (d2) 2 QSGW80 4.46 0.093 0.0070 2.68 −0.005 0.000
V2+ (d3) 3 QSGW80 4.92 0.087 0.0104 2.64 −0.001 0.001

Expt. [49] 0.112 0.0088 1.69 0.048 −0.022
Cr2+ (d4) HS 4 QSGW80 5.50 0.166 0.0081 2.10 0.281 −0.023

Expt. [50] 0.118 0.0096 1.86
Cr2+ (d4) LS 0 QSGW80 4.44 0.250 0.0135 2.35 0.029 0.009
Mn2+ (d5) HS 5 QSGW80 9.55 — — 1.82 — —

Expt. [51] 0.149 0.0127 1.25
Mn2+ (d5) LS 1 QSGW80 4.92 0.089 0.0142 2.41 −0.015 0.004
Fe2+ (d6) HS 4 QSGW80 5.78 0.151 0.0148 1.97 0.144 −0.030
[ Co2+ (d7) HS 3 QSGW80 6.00 0.195 0.0119 2.11 0.000 0.000]
[ Expt. [52] 0.167 0.0131 1.37 ]
[ Ni2+ (d8) 2 QSGW80 5.49 0.142 0.0130 2.44 0.004 0.007]
[ Expt. [53] 0.187 0.0151 1.25 ]
[Cu2+ (d9) 1 QSGW80 5.54 0.220 0.0112 2.13 −0.115 −0.008]

Ti3+ (d1) 1 QSGW80 4.59 0.095 0.0124 2.73 0.004 −0.001
Expt. [54] 2.36

V3+ (d2) 2 QSGW80 4.77 0.117 0.0099 2.40 −0.003 0.003
Expt. [55] 0.129 0.0093 2.21 0.002 −0.013

Cr3+ (d3) 3 QSGW80 4.98 0.108 0.0113 2.17 −0.001 0.001
LSDA 0.80 0.092 0.0105 2.33 0.003 0.000
Theory[23] 0.123 0.0099 2.27
Expt. [57] 0.136 0.0131 2.32 −0.057 −0.012
Expt. [14] 0.133 0.0106 2.25

Mn3+ (d4) LS 0 QSGW80 4.15 0.256 0.0112 2.04 −0.021 0.005
Fe3+ (d5) LS 1 QSGW80 4.00 0.141 0.0054 1.25 −0.199 0.013
[ Fe3+ (d5) HS 5 QSGW80 10.6 — — 1.19 — —]
[ Expt. [51] 0.137 0.0111 1.87 ]
[Co3+ (d6) HS 4 QSGW80 5.06 0.170 0.0150 1.19 −0.133 0.021]
[Ni3+ (d7) HS 3 QSGW80 5.72 0.129 0.0107 1.21 −0.152 0.027]
[Ni3+ (d7) LS 1 QSGW80 3.36 0.190 0.0110 3.01 −0.015 −0.029]

V4+ (d1) 1 QSGW80 3.85 0.116 0.0132 2.68 0.021 −0.002
Expt. [58] 2.48

Cr4+ (d2) 2 QSGW80 3.61 0.119 0.0116 2.52 0.010 0.000
Expt. [59] 0.139 0.0113 2.67 −0.022 −0.013

[ Mn4+ (d3) 3 QSGW80 5.56 0.103 0.0124 2.23 0.006 −0.001]
[ Expt. [49] 0.162 0.0099 2.69 −0.001 −0.026]
[Fe4+ (d4) LS 2 QSGW80 3.60 0.141 0.0100 2.12 0.000 0.000]
[Co4+ (d5) HS 5 QSGW80 6.87 — — 1.33 — —]
[Co4+ (d5) LS 1 QSGW80 3.34 0.226 0.0124 2.57 −0.503 0.051]

Let us compare our results of QSGW80 with experimental
analysis. In the cases of V3+ as well as Cr4+, we see good
agreement as in Cr3+. To make an overall comparison, we
plot the data in Table I (only lines without square brackets)
in Figs. 2(a)–2(d). F0 shows monotonic behavior except d5

where we have fewer screening effects due to the missing
of spin-preserving transitions among 3d electrons. For F2 in
cases without square brackets, we have agreements within
∼20%. For example, V2+ for F2 has agreement with the dif-
ference only 0.112 eV(Expt.)/0.087 eV(QSGW80). We see
similar agreements for F4. On the other hand, the experimental
10Dq for TM2+ shows too large a difference; the experimental

value is only ∼ 70% of QSGW values; 1.69 eV/2.64 eV for
V2+ and 1.25 eV/1.82 eV for Mn2+. A reason might be in the
background charge used for our supercell (see Sec. II A) to
keep the given valency. In fact, we may expect TM2+ replac-
ing Al3+ should introduce one half of oxygen vacancy near
TM2+. This may reduce the octahedral symmetry, resulting in
smaller eg-t2g splitting effectively.

We calculated the multiplet excitation energies by the exact
diagonalization of H [56] with the parameters in Table I.
Figure 3 is the Tanabe-Sugano diagram of α-Al2O3:Cr3+,
showing multiplet energies relative to the ground state 4A2g

as a function of 10Dq. We show a label of multiplet for
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(a) (e)

(b) (f)

(c)

(d)

(g)

FIG. 2. The parameters of effective Coulomb interactions and cubic CF interaction as a function of the 3d electron number in α-Al2O3

compared with those in free ions. The trends of four parameters are shown in (a) and (e): The modified Slater-Condon parameter F0; (b) and
(f): F2; (c) and (g): F4; and (g): cubic CF parameter 10Dq. The left figures show results of TM ions in α-Al2O3, and the right show results
of the ones of free TM ions. In all the figures, the following symbols are employed: red circles denote the QSGW80 of TM2+, blue triangles
denote the QSGW80 of TM3+, and open symbols express experimental analysis. Circles express TM2+, and triangles express TM3+.
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(a) (b)

FIG. 3. Tanabe-Sugano diagram of Cr3+ in α-Al2O3 (d3). (a): Calculation results by using the parameters given by the QSGW80. The axis
10Dq = 0 roughly corresponds to the energy splitting of free ion states, namely, multiplet structure without CF parameters. Multiplet symbols
are assigned to each state, and these are distinguished by spin multiplicity of doublet (red) and quartet (green). The symbols of irreducible
representation of Oh symmetry are shown in the QSGW80 multiplet structure. The red broken line means the 10Dq value of the QSGW80.
The intersection points of this red broken line and black curves give multiplet states. (b): Result of experimental analysis. The horizontal axis
in (b) is opposite to that in (a). Corresponding multiplet states between (a) and (b) are connected by dotted lines.

each branch. Figure 3(a) is for the set of parameters of the
QSGW80, Fig. 3(b) is for the set of the experimental analy-
sis [57] as well. We see how the difference in the sets results in
the difference of the multiplet excitations. Because of the non-
negligible size of Dσ = −0.057 eV, Fig. 3(b) shows minor
splittings of branches as well as kinky behaviors of branches
near 10Dq = 0, whereas Fig. 3(a) does not show them.

Considering the fact that 10Dq’s are similar in Figs. 3(a)
and 3(b), differences of excitation energies should be
mainly from F2 and F4. In fact, the difference of ex-
citation energies (∼20%) is almost corresponding to the
error ratio of F2 between experimental analysis and
QSGW80, (0.136–0.108)/0.136 ∼ 0.21, and that of F4,
(0.131 – 0.113)/0.113 ∼ 0.15. In contrast, we see quartets
4T2g and 4T1g shown by green are less affected by the ratio.
Only multiplets starting from 2G show strong nonlinear be-
haviors as a function of 10Dq. This results in a little larger
difference in 2T2g. We have to pay attention to this type of error
enhancement mechanism, that is, small differences in param-
eters can cause large errors. We show the Tanabe-Sugano
diagrams for other TM ions in the Supplemental Material
(Figs. S11–S16) [38].

B. Calculated parameter of free ions

To have a better understanding of Table I, we have applied
our method to free TM ions. See computational settings in
Sec. II A. Since we have no CF, we set Dq = Dσ = Dτ = 0.

Figures 2(e)–2(g) show F0, F2, and F4 for TM2+ and TM3+
together with experimental values [45]. Our results follow
the Hund rule. F0 shows a monotonic increase along the

atomic number for the former half up to d4 as Fig. 2(a). This
monotonic behavior is due to two contributions, the orbital
shrinkage and the screening effect in the RPA. The size of F0

is completely different from the case of α-Al2O3:TMs due to
the screening effect.

Our calculation for F2 based on QSGW80 reproduced the
experimental values very well especially from d3 to d7. This
will support the reliability of our method. On the other hand,
we have some systematic disagreements for F4: we see a
jump between the former half and the latter half. We have no
definite idea to explain the disagreements. F2’s in α-Al2O3 are
a little lower than free ions because of anisotropic screening
effects.

IV. SUMMARY

We have developed a new method to determine param-
eters in the effective Hamiltonian of 3d electrons for the
α-Al2O3:TMs based on the results of QSGW80. Deter-
mined parameters are consistent with experimental results.
Moreover, our method was able to predict some reasonable
systematic trends of effective interactions in α-Al2O3 as well
as in the TM free ion states, and the reduction of effective
Coulomb parameters in α-Al2O3 compared to those of the free
ion.

However, we have faced some problems of hybridization
of TM 3d orbitals with 2p orbitals of surrounded oxygen
atoms, insufficient information to determine parameters, and
shifts of 10Dq due to background charge. For constructing a
more precise model, the effect of 2p orbitals of oxygen atoms
around TM ions should be included as a self-energy in the

035141-7



SAITO, SUZUKI, SATO, AND KOTANI PHYSICAL REVIEW B 108, 035141 (2023)

future. Consideration of delocalization effects may improve
especially the estimation of CF parameters.

We evaluated the mechanism of numerical errors as shown
in Fig. 3. A little numerical difference in the parameters
can change the energy ordering of multiplets. This may
indicate that our method should be combined with some
data assimilation techniques for obtaining reliable results for
CMD.
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