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We present an unbiased mean-field analysis of magnetic and charge orders in the two-dimensional Hubbard
model on a square lattice, at both zero and finite temperatures. Unrestricted Hartree-Fock calculations on large
finite lattices are complemented by solutions restricted to Néel and circular spiral order in the thermodynamic
limit. The magnetic states are classified by a systematic scheme based on the dominant Fourier components of
the spin texture. On finite lattices a whole zoo of ordering patterns appears. We show that many of these states are
finite-size artifacts related to the limited choice of ordering wave vectors on a finite lattice. In the thermodynamic
limit only three classes of states with a relatively simple structure survive: Néel, circular spiral, and stripe states.
Stripes involve also charge order and can be unidirectional or bidirectional, with horizontal and/or vertical
orientation. We present complete phase diagrams in the plane spanned by electron density and temperature, for
a moderate Hubbard interaction and various choices of the next-nearest-neighbor hopping amplitude.
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I. INTRODUCTION

The two-dimensional Hubbard model is a prototype for
competing ordering tendencies in interacting electron sys-
tems. It captures key features of the valence electrons in
high-Tc cuprates such as antiferromagnetism and d-wave su-
perconductivity [1]. In spite of substantial progress in the
development of quantum many-body methods, only fragments
of the phase diagram of this important model have been
established [2,3].

There is no doubt that at half filling the ground state of the
two-dimensional Hubbard model with pure nearest-neighbor
hopping is a Néel-ordered antiferromagnet for any repulsive
Hubbard interaction U > 0, and beyond a certain critical
repulsion if hopping amplitudes beyond nearest neighbors are
present. However, for electron densities below half filling the
Néel state quickly becomes unstable [4–7], leading to other
magnetic states or possibly phase separation. These states are
usually metallic and thus prone to pairing instabilities.

There is a whole zoo of possible magnetic states. Except
for the Néel state, most of them are characterized by one
or several ordering wave vectors which are generically in-
commensurate with the lattice periodicity. Many approximate
calculations point toward planar circular spirals [4–16] and
collinear spin density waves [17–29] as the most important
candidates. The latter entail charge order with regions of re-
duced charge density arranged along one-dimensional lines,
and are therefore also known as “spin-charge stripes” [30].
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By contrast, the charge distribution of (circular) spiral states
remains uniform.

Recently, exact numerical calculations on finite lattices
have provided strong evidence for stripe order in the ground
state of the Hubbard model with pure nearest-neighbor hop-
ping and large U for special hole-doping fractions: 1/10 and
1/8, corresponding to electron densities 0.9 and 0.875, respec-
tively [31,32]. No superconductivity was found in these cases.
However, allowing for next-nearest-neighbor hopping, super-
conductivity reemerges for a range of densities away from half
filling [33]. Exact numerical evaluations at finite temperatures
yield peaks in the spin susceptibility at the Néel wave vector
(π, π ) near half filling, and peaks at incommensurate wave
vectors in the spin and charge susceptibility for sufficiently
large hole doping [34,35].

Unlike superconductivity, magnetic order in the (repul-
sive) Hubbard model can be captured already within a static
mean-field approximation, also known as Hartree-Fock the-
ory. While the size of the order parameter and the regime of
ordered states in the phase diagram are grossly overestimated
by mean-field theory, finite-size effects can be studied in
more detail because much larger lattices can be dealt with.
For Néel, circular spiral, and stripe states, mean-field cal-
culations can be performed directly in the thermodynamic
limit, albeit only for wave vectors commensurate with the
lattice in the case of stripes. Indeed, numerous Hartree-Fock
studies of the two-dimensional Hubbard model have already
appeared. However, in many of them the magnetic states
were restricted to ferromagnetic and Néel [36–38], or spiral
order [11,12]. The latter includes ferromagnetic and Néel
states as the special cases with wave vectors (0,0) and (π, π ),
respectively. For small hole doping, this restriction often
leads to phase separation in paramagnetic, ferromagnetic, and
antiferromagnetic regions [11,12,38]. Allowing for arbitrary
collinear spin order or even for completely arbitrary spin
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configurations—combined with charge order—spin-charge
stripes have been found [17–22,27,29].

With very few exceptions, Hartree-Fock studies of the
two-dimensional Hubbard model have been limited to the
ground state. At finite temperatures, any magnetic order is
prohibited by thermal fluctuations, as is rigorously estab-
lished by the Mermin-Wagner theorem [39]. Magnetic states
obtained in the Hartree-Fock approximation at finite temper-
atures obviously violate this theorem. However, such states
become meaningful as an ingredient for theories of fluctuat-
ing magnetic order, where the electron is fractionalized into
a “chargon” with a magnetically ordered pseudospin, and a
fluctuating spin rotation matrix, which restores the SU(2) spin
symmetry of the electronic state [40–42]. The “handshake”
between magnetic order found in the ground state and mag-
netic correlations at finite temperatures has attracted much
interest recently, and there has been some progress in attempts
to close the gap between exact numerical solutions obtained
from zero- and finite-temperature algorithms [35,43–45].

In this paper we perform a comprehensive and completely
unrestricted Hartree-Fock study of the two-dimensional Hub-
bard model at zero and finite temperatures. We choose a
moderate interaction strength and analyze a broad range
of electron densities below, at, and above half filling. We
consider both the “pure” Hubbard model, with pure nearest-
neighbor hopping t , as well as its physically more relevant
extension with next-nearest-neighbor hopping t ′. Unrestricted
real-space calculations on large lattices (from 20 × 20 to
48 × 48) are complemented by momentum-space calculations
for Néel and spiral states in the thermodynamic limit.

As our main result we present three complete mean-field
phase diagrams spanned by density and temperature, for three
choices of t ′/t . All of them contain Néel, spiral, and stripe
states, where, for t ′ � −0.15, the latter two are confined to the
hole-doped region (below half filling). Other, more complex
magnetic states appearing in the real-space calculations could
be identified as finite-size artifacts, which are related to the
restricted discrete choice of ordering wave vectors on the finite
lattice. The momentum-space calculations for Néel and spiral
states are consistent with the real-space calculations, and in-
stabilities toward stripe states are signaled by a divergence of
the spin-charge susceptibility in the spiral state.

The remainder of the paper is structured as follows. In
Sec. II we describe the real-space mean-field theory, and in
Sec. III we present our results. In the Conclusion, in Sec. IV,
we provide a summary and outlook. Some details regarding
the calculations and classification of states are described in
two Appendixes.

II. MODEL AND METHOD

The Hubbard Hamiltonian for spin- 1
2 fermions with inter-

site hopping amplitudes t j j′ and a local interaction U reads

H = H0 + Hint =
∑
j, j′,σ

t j j′c
†
jσ c j′σ + U

∑
j

n j↑n j↓, (1)

where c jσ (c†
jσ ) annihilates (creates) an electron on lattice

site j with spin orientation σ ∈ {↑,↓}, and njσ = c†
jσ c jσ . The

hopping matrix t j j′ depends only on the distance between the
sites j and j′, and it is parametrized by −t if j and j′ are
nearest-neighbor sites, and by −t ′ if j and j′ are next-to-
nearest neighbors. We consider only the repulsive Hubbard
model where U is positive. In the following, we use the
nearest-neighbor hopping amplitude t as our energy unit; that
is, we set t = 1.

A. Real-space mean-field theory

In the mean-field (or Hartree-Fock) approximation, the
interaction part of the Hamiltonian Hint is replaced by an
effective quadratic (in c, c†) operator. Following Zaanen and
Gunnarsson [18], we decouple Hint as

HMF
int =

∑
jσ

� jσ n jσ +
∑

j

(� j−c†
j↑c j↓ + � j+c†

j↓c j↑)

− 1

U

∑
j

(� j↑� j↓ − � j−� j+), (2)

with the convention ↑ = ↓ and ↓ = ↑. The parameters � jα

are self-consistently determined by the “gap equations”

� jσ = U 〈n jσ 〉, (3a)

� j+ = �∗
j− = −U 〈c†

j↑c j↓〉. (3b)

The decoupling in Eq. (2) allows for arbitrary spin and charge
patterns. In most of the previous mean-field studies of the
Hubbard model, only the first (Hartree) or the second (Fock)
term on the right-hand side of Eq. (2) has been consid-
ered, restricting the spin order to collinear or spiral order,
respectively.

We iteratively solve the mean-field equations on a finite
square lattice with Nx (Ny) sites in the x (y) direction and
periodic boundary conditions. We denote the total number of
lattice sites by N = NxNy.

The mean-field Hamiltonian can be written as

HMF = H0 + HMF
int =

∑
j, j′

∑
σ,σ ′

c†
jσHσσ ′

j j′ c j′σ ′ + const, (4)

where Hσσ ′
j j′ ∈ C2N×2N is a square matrix with 4N real

parameters to be determined self-consistently (� j↑, � j↓,
Re� j+, and Im� j+ for each lattice site). These parameters
are related to the expectation values of the charge and spin
order parameters by

〈n j〉 = � j↑ + � j↓
U

, (5a)

〈
Sz

j

〉 = � j↑ − � j↓
2U

, (5b)

〈
Sx

j

〉 = −� j+ + � j−
2U

, (5c)

〈
Sy

j

〉 = −� j+ − � j−
2iU

, (5d)

where n j = n j↑ + n j↓ and 	S j = 1
2 c†

j 	σc j , with 	σ being the
Pauli matrices.

We run calculations at fixed density n; that is, we enforce
the constraint 1

N
∑

jσ 〈n jσ 〉 = n. In the ground state this is
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achieved by calculating the expectation values on the right-
hand sides of Eqs. (3)

〈c†
jσ c jσ ′ 〉 =

N∑
�=1

(
v�

jσ

)∗
v�

jσ ′ , (6)

where N is the total particle number, � labels the 2N eigenval-
ues ε� of Hσσ ′

j j′ in ascending order, and v�
jσ is the normalized

eigenvector corresponding to the �th eigenvalue. In this way,
only rational densities of the form n = N/N are obtained. At
finite temperatures T > 0, one needs to introduce a chemical
potential μ, and Eq. (6) is replaced by

〈c†
jσ c jσ ′ 〉 =

2N∑
�=1

(
v�

jσ

)∗
v�

jσ ′ f (ε� − μ), (7)

with f (x) = 1/(1 + ex/T ) being the Fermi function. The
chemical potential is adjusted to enforce the chosen value for
the average density

1

N
∑

j

〈n j〉 = 1

N

2N∑
�=1

f (ε� − μ) = n, (8)

where we have made use of the property
∑

j,σ (v�
jσ )∗v�

jσ =
1, deriving from the orthonormality condition of the
eigenvectors.

We solve our system of equations in the following iterative
manner: Starting from a random initial set of parameters � jα

with α ∈ {↑,↓,+,−} and � j− = �∗
j+, we plug them into

Hσσ ′
j j′ , from which we compute the eigenvectors and the expec-

tation values in Eq. (3) to update the values of � jα . We repeat
this procedure until convergence is reached. At finite temper-
atures, we compute the chemical potential at every iteration
from Eq. (8). More details on the numerical implementation
can be found in Appendix A.

Within the mean-field approximation, the free energy per
lattice site is given by

F/N = − T

N
∑

�

ln
(
1 + e−β(ε�−μ))

− 1

NU

∑
j

(� j↑� j↓ − � j−� j+) + μn. (9)

B. Classification of magnetic orders

In this section we introduce a classification of the distinct
magnetic states we find. We classify the different states solely
based on their spin pattern, similarly to the classification of
Sachdev et al. [46]. In agreement with Ref. [46], we generally
find that the modulation of the charge density is roughly
proportional to the square of the spin amplitudes, that is,

〈n j〉 ≈ const
〈	S2

j

〉 + const, (10)

as could be deduced from the lowest-order coupling between
the charge and spin density wave order parameters in Landau
theory [47].

To identify a state from a (converged) real-space spin pat-
tern defined by the spin expectation values 〈	S j〉, we perform a

Fourier transform,

〈	S j〉 =
∑

q

	Sq eiq·r j , (11)

where 	Sq with 	Sq = 	S∗
−q is the Fourier component of the spins

corresponding to the wave vector q, and r j represents the
real-space coordinate of lattice site j. The sum runs only over
the N = NxNy momenta allowed by the periodic boundary
conditions on the finite-size lattice. Since we are exclusively
dealing with even numbers Nx and Ny, the allowed momenta
can be written as

q ∈
{(

π − π
2νx

Nx
, π − π

2νy

Ny

)∣∣∣∣να ∈ {0, 1, . . . ,Nα − 1}
}
.

(12)

In the majority of cases only one or two modes with fixed
wave vectors q (together with their partner −q) contribute
significantly to 〈	S j〉. Usually, these wave vectors have the
form Qx ≡ (π − 2πηx, π ) and/or Qy ≡ (π, π − 2πηy). The
parameters ηα are frequently referred to as “incommensura-
bilities” in the literature. Note that, in a finite system, ηα is
restricted to integer multiples of 1/Nα [see Eq. (12)]. For
lattices with Nx = Ny, we always find ηx = ηy ≡ η. We also
checked for magnetic order with diagonal wave vectors of the
form Qxy ≡ (π − 2πη, π − 2πη), but we rarely found states
with these modes as dominant contributions, and these rare
instances did not survive when repeating the calculation on a
larger lattice.

In cases with only one mode, we can express 	Sq as

	Sq = 1
2 ( 	S δq,Q + 	S∗ δq,−Q), (13)

where Q has the form Qx or Qy. In states with two modes, we
have

	Sq = 1
2

( 	Sx δq,Qx + 	S∗
x δq,−Qx

)
+ 1

2

( 	Sy δq,Qy + 	S∗
y δq,−Qy

)
. (14)

In our mean-field calculations we find nine distinct phases.
We sketch the spin and charge order pattern for a representa-
tive of each phase in Fig. 1. Phases that can be transformed
into each other, by a point group symmetry operation of
the lattice (rotations and reflections), by a spatial translation
(changing the phases of 	Sx and 	Sy), or by a global SU(2)
rotation of the spin frame, belong to the same class. In the
following, we describe each class by one of its representatives.

In principle, there might be other possible spin configura-
tions, for example, the phases F and G in the classification of
Ref. [46], but we do not find them in the parameter regime
chosen in our calculations.

1. Paramagnetism

In the paramagnetic phase the expectation value of the
spin on each site vanishes (that is, 〈	S j〉 = 0), and the charge
distribution is uniform, 〈nj〉 = n [see Fig. 1(a)].

2. Néel antiferromagnetism

In a Néel antiferromagnet only 	S(π,π ) is nonzero. In real
space, adjacent spins point in opposite directions, all spins
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(a)

min

max
(b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. Overview of the different orders found in our calculations, schematically shown on a 10 × 10 lattice. In each panel, the square on
the left shows the relative spin orientations and amplitudes (length of the arrows) of each phase, where we chose a frame such that the spins lie
in the x-y plane and the bottom left spin points along the y direction. The right plot in each panel shows the corresponding charge modulation,
using a color code defined on the right edge of the figure. The various panels exemplify the following magnetic orders: (a) paramagnetism,
(b) Néel antiferromagnetism, (c) spiral order, (d) stripe order, (e) collinear bidirectional stripe order, (f) coplanar bidirectional stripe order,
(g) beat order, (h) other collinear orders, and (i) “strange” order. Only one example of strange order has been shown, while we also find
different ones, often with less regular patterns.

have the same amplitude, and the charge is homogeneously
distributed, as shown in Fig. 1(b).

3. Spiral

We refer to planar circular spiral states briefly as “spiral”
states. Such a state is characterized by a single mode with a
wave vector Q, and (as a representative)

	S = S0

⎛
⎜⎝

1

i

0

⎞
⎟⎠, (15)

where S0 is a real number. In real space, the corresponding
spin pattern has the form

〈	S j〉 = S0

⎛
⎜⎝

cos(Q · r j )

sin(Q · r j )

0

⎞
⎟⎠. (16)

The spin magnitude |〈	S j〉| is constant (independent of j), and
the charge distribution is therefore homogeneous, as shown
in Fig. 1(c). The wave vector Q has the form Qx = (π −
2πη, π ) or Qy = (π, π − 2πη); that is, only one component
deviates from π . The Néel state can be viewed as the special
case of a spiral with Q = (π, π ).

4. Unidirectional stripes

A (unidirectional) stripe state is described by a single q
mode such that

	S = S0

⎛
⎜⎝

1

0

0

⎞
⎟⎠. (17)

In this state, the spins are ordered collinearly with a modula-
tion along the x (or y) axis. In real space, the spin modulation
is given by

〈	S j〉 = S0

⎛
⎜⎝cos(Q · r j )

0
0

⎞
⎟⎠. (18)

Once again, the wave vector Q has either the form Qx or
the form Qy. The charge order of this state is a unidirec-
tional charge density wave with a wave vector 2Q; that is,
〈n j〉 − n ∝ cos(2Q · r j ). The minima in the amplitude of the
spin coincide with the minima of the charge modulation, as
shown in Fig. 1(d).

5. Collinear bidirectional stripes

We call a state a collinear bidirectional stripe (ClBS) if it
consists of two orthogonal stripes with parallel spin orienta-
tions, that is, if the nonzero components of 	Sq in Eq. (14) are
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given by

	Sx = 	Sy = S0

⎛
⎝1

0
0

⎞
⎠, (19)

where S0 is a real constant. In real space, this corresponds to

〈	S j〉 = S0

⎛
⎝cos(Qx · r j ) + cos(Qy · r j )

0
0

⎞
⎠. (20)

This phase has charge modulations in both x and y directions,
proportional to [cos(Qx · r j ) + cos(Qy · r j )]2, as displayed in
Fig. 1(e).

6. Coplanar bidirectional stripes

We call a state a coplanar bidirectional stripe (CpBS) if
it consists of two orthogonal stripes with orthogonal spin
orientations, that is, if we find two q modes of the form

	Sx = S0

⎛
⎝1

0
0

⎞
⎠, 	Sy = S0

⎛
⎝0

1
0

⎞
⎠, (21)

with S0 being a real constant. In the real-space representation
this corresponds to

〈	S j〉 = S0

⎛
⎜⎝

cos(Qx · r j )

cos(Qy · r j )

0

⎞
⎟⎠. (22)

This phase also has charge modulations in both x and y di-
rections, proportional to [cos(Qx · r j )]2 + [cos(Qy · r j )]2, as
shown in Fig. 1(f).

7. Beat states

Sometimes we find states whose dominant q components
take the form (up to a lattice rotation) Qx = (π − 2πη, π )
and Q′

x = (π − 2πη′, π ) with η 
= η′. As shown in Fig. 1(g),
in these states there are unidirectional charge modulations,
and the spin patterns usually show beatlike modulations, since
the spin components are sums of cosines with different wave
numbers and phases. As we will discuss in more detail in
Sec. III A 3, we attribute these states to finite-size effects. In
fact, they arise due to the fact that the “optimal” incommen-
surability ηopt lies in between η and η′, which is, however, not
allowed by the finite size of the system [cf. Eq. (12)]. In the
thermodynamic limit, where any (real) value of η is permitted,
we expect these states to converge to a pure stripe or spiral
phase.

8. Other collinear orders

In some cases all the spins are ordered collinearly (that is,
〈	S j〉 ∝ n̂ with n̂ being a constant unit vector), but not in the
shape of Néel order, stripe order, or collinear bidirectional
stripes. In these phases, the amplitude of the spins varies
spatially, and as a result we also obtain a charge modulation.
As noted in Ref. [18], these states may be replaced by stripe
states in the thermodynamic limit. Indeed, the lattice sizes
treated in our calculations are too small to resolve stripes with
wave vectors Q close to (π, π ), so that the system prefers to

order in a more complex manner. Such a state, sketched in
Fig. 1(h), can be viewed as a kind of stripe order where the
lines of constant density, instead of lying parallel to the x (or
y) direction, close onto themselves, forming a ring. In these
cases, we find several nonzero components of 	Sq.

9. Strange orders

In some cases we cannot classify a state by the previously
described orders. Such states do not exhibit a simple structure
in momentum space and often show complex charge patterns.
In the following we will refer to these orders as “strange
order.” In the majority of cases, but not always, their spin order
is coplanar. An example is sketched in Fig. 1(i). We expect
these strange states to disappear in the thermodynamic limit,
as we will discuss more exhaustively in Sec. III A 3.

III. RESULTS

We now present our results. Unrestricted real-space
Hartree-Fock calculations have been carried out on a 20 × 20
lattice, supplemented by a few calculations on larger lattices
(up to 48 × 48) to analyze finite-size effects. Except for one
case, we chose Nx = Ny to not bias the system towards orders
breaking point group symmetries.

We chose a moderate coupling strength U = 3t in all calcu-
lations. This choice is motivated by two reasons. First, within
the Hartree-Fock approximation, U = 3t is strong enough to
obtain magnetic order for all our choices of t ′ for both hole and
electron doping. For weaker interactions, magnetic order may
be restricted to a small hole-doping regime around Van Hove
filling. Second, it is weak enough to obtain (qualitatively)
plausible results from the Hartree-Fock approximation. At
strong coupling, the Hartree-Fock approximation yields mag-
netic ordering patterns which are most likely artifacts of the
approximation, so that it is not worthwhile discussing them.

For the hopping amplitudes we consider three distinct
ratios t ′/t , namely, 0, −0.15, and −0.3. The first one cor-
responds to the so-called “pure” Hubbard model, which has
been the preferred choice in many numerical studies, while the
second and third choices are ratios that are frequently used for
a realistic modeling of the cuprate superconductors belonging
to the lanthanum strontium copper oxide (LSCO) and yttrium
barium copper oxide (YBCO) families, respectively. Note,
however, that the interaction strength in cuprates is much
larger than our choice U = 3t .

We performed a temperature and filling scan with steps
of 0.01 in T/t and n. We classified the converged states ac-
cording to the classification scheme described in Sec. II B. In
Appendix B, we specify the criteria and numerical method
employed to achieve this. In most cases the system con-
verges to a unique (modulo symmetries) state independently
of the initial conditions. To reduce the risk of converging
to a metastable state corresponding to a local but not global
minimum of the free energy, we repeated the calculations for
each point (n, T ) starting five times from a random configura-
tion and then from the converged solutions at the neighboring
points (n ± 0.01, T ) and (n, T ± 0.01t ). In the rare cases
where the iterations converged to inequivalent states, we re-
tained the state with the lowest free energy.
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FIG. 2. Phase diagram for U = 3t and t ′ = −0.15t . The col-
ors label the states resulting from the real-space calculation on a
20 × 20 lattice. The black lines were obtained from calculations in
momentum space in the thermodynamic limit. The solid black line
indicates the transition temperature T ∗ separating the paramagnetic
(para) regime from the magnetically ordered regime, the dashed
black line indicates the transition between Néel and non-Néel spiral
order, and the dotted black line indicates the divergence of the charge
susceptibility in the spiral state.

For Néel and, more generally, spiral states, the mean-field
equations can be solved in the thermodynamic limit, using a
momentum-space representation [6–9,11], and the stability of
the spiral states in the thermodynamic limit can be probed
by computing the spin and charge susceptibilities [48,49]. We
exploit this complementary approach to benchmark and to in-
terpret the results from the real-space finite-size calculations.

A. Results for t ′ = −0.15t

We start by presenting exemplary results for a next-nearest-
neighbor hopping t ′ = −0.15t at intermediate interaction
strength U = 3t . In Sec. III B, we show results for t ′ = 0 and
t ′ = −0.3t .

1. Phase diagram

In Fig. 2, we show the mean-field phase diagram as a
function of the particle density n and the temperature T .
The colors label the states resulting from the real-space cal-
culation on a 20 × 20 lattice, while the black lines were
obtained from calculations in momentum space in the ther-
modynamic limit. The transition temperature T ∗ obtained
from the momentum-space calculation (solid black line) is
very close to the transition temperature obtained for the fi-
nite system. Since electronic correlations are neglected, the
Hartree-Fock approximation overestimates the size of the crit-
ical dopings at the edges of the ordered regime. For the same
parameters, significantly smaller critical values are found in
a renormalized mean-field theory with effective interactions
obtained from a functional renormalization group flow [13].

For densities close to half filling, we find a Néel-ordered
region, which at n = 1 extends up to a critical temperature
T ∗ ≈ 0.43t . With few exceptions, Néel order is also obtained
in the entire electron-doped region (for n > 1). Not only T ∗,
but also the boundary of the Néel-ordered region inside the
magnetic regime obtained from the momentum-space cal-
culation (dashed line) agrees very well with the real-space
finite-size calculation.

On the hole-doped side, the momentum-space calculation
in the thermodynamic limit yields a regime of stable spiral
order with a continuously varying incommensurability η be-
tween the dashed and the dotted black lines in Fig. 2. In
the real-space calculation on the 20 × 20 lattice, the spiral
regime is split into spiral and beat order regions, where the
incommensurabilities in the spiral regions are either η = 0.05
(close to the Néel region) or η = 0.1.

At densities and temperatures where we observe beat states
it is energetically more costly for the system to order as a
spiral state with the discrete incommensurabilities 0.05 or 0.1
allowed on the 20 × 20 lattice. We will discuss this point
further in Sec. III A 3. Since intermediate ordering vectors
are prohibited due to the periodic boundary conditions, the
system orders in a beat-ordered pattern. Looking at the wave
vectors of the Fourier modes 	Sq in these states, one finds
Q1 = (π − 2π 1

20 , π ) and Q2 = (π − 2π 1
10 , π ). We therefore

expect the beat states to be artifacts of the finite system size.
We recalculated the magnetic and charge orders in the beat
region between the spiral states on a 40 × 40 lattice and
found that beat order is indeed replaced by spiral order with
an intermediate wave vector Q = (π − 2π 3

40 , π ). Hence the
real-space calculation is consistent with a spiral phase with a
smoothly varying η (increasing upon decreasing density and
temperature) in the thermodynamic limit, as suggested by the
momentum-space analysis.

Below the dotted line in Fig. 2, and for any temperature
at densities below n ≈ 0.75, spiral states exhibit negative (for
some wave vectors) spin and charge susceptibilities, and are
thus unstable. In this region we find extended phases with
stripes and other collinear orders. The stripe region is split into
several domains with distinct incommensurabilities: η = 0.05
for densities n ≈ 0.93, η = 0.1 for densities close to n ≈ 0.82,
η = 0.15 for densities around 0.7, and η = 0.2 near n ≈ 0.62.
These stripe regimes are separated by intermediate regions
of beat-ordered and strange phases, where the predominant
wave vectors are the ones of the two adjacent stripe regimes.
In these intermediate regions, we recalculated the states on a
40 × 40 lattice for a few (n, T ) pixels and found stripes with
intermediate values of η. This confirms the hypothesis that
beat and strange states are just artifacts of the finite system
size.

The stability of the spiral state can be probed in the
thermodynamic limit by computing the spin and charge
susceptibilities in momentum space in the random phase ap-
proximation (RPA), following Refs. [48,49]. Joint divergences
are found for the in-plane spin susceptibility and for the charge
susceptibility. The dotted black line in Fig. 2 marks the line at
which the charge susceptibility χC diverges. For temperatures
below that line, one obtains an unphysical negative charge
susceptibility. The divergence of the charge susceptibility,
occurring for a wave vector of the form QC = (±q̄x, 0) for a
spiral with wave vector (π − 2πη, π ), is always concomitant
with a divergence of the spin susceptibility in the plane in
which the spirals lie. This indicates the instability of the spiral
state towards a state displaying a charge modulation and a
rearrangement of the spins in the plane. The fact that the line
of diverging charge susceptibility coincides with the transition
from spiral order to stripe order confirms the idea that stripes
emerge as an instability of the spiral states [4,8,50]. We show
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FIG. 3. Inverse of the RPA charge susceptibility χ−1
C along the

momentum line q = (qx, 0) for n = 0.85, t ′ = −0.15t , and U = 3t .
The divergence of χC occurs at T ≈ 0.146. For these parameters,
we find an optimal wave vector Q of the form (π − 2πη, π ) with
η = 0.089. We show χ−1

C for three different temperatures. χC be-
comes negative for T < 0.146.

χC for the density n = 0.85 and temperatures in the vicinity of
the spiral-stripe transition in Fig. 3. Close to the transition, we
find that QC is given by twice the optimal spiral wave vector
Q modulo a reciprocal lattice vector, indicating the onset of
stripe order with a charge modulation wave vector 2Q, and
a spin modulation with wave vector Q, in agreement with
Eq. (10).

For densities below n ≈ 0.75 we observe a direct second-
order transition from the paramagnetic state to a stripe state.
This occurs without a diverging charge susceptibility at the
critical temperature (only the magnetic susceptibility di-
verges), as the charge modulation in the stripe phase is a
second-order effect, induced by the spin ordering [47]. In
the momentum-space mean-field calculation with spiral order,
we observe in this regime diverging charge and in-plane spin
susceptibilities at any temperature below T ∗, that is, as soon as
the spiral order parameter forms. This shows that spiral order
is not even metastable in the stripe regime.

2. Magnetization

In Fig. 4, we plot the average magnetization per site,

m = 1

N
∑

j

√〈
Sx

j

〉2 + 〈
Sy

j

〉2 + 〈
Sz

j

〉2
. (23)

Within the limitations due to the discrete grid for n and T ,
the transitions from the paramagnetic state to Néel, spiral, and
stripe order look all continuous. A continuous phase transition
from a paramagnetic state to a collinear spin configuration is
consistent with the Landau theory of phase transitions [47].
The magnetization is maximal near half filling, as expected.
We see slight dips in the average magnetization near the
transition from stripe to spiral phases as well as in some of
the beat phases. We believe that this originates from the finite
size of the system, since the scale of the dips is approximately
the same as the change in the value of the magnetization
between calculations on a 40 × 40 and a 20 × 20 lattice.

FIG. 4. Average magnetization m for U = 3t and t ′ = −0.15t ,
calculated on a 20 × 20 lattice.

3. Energetic analysis

To further clarify which phases found in our finite-size
calculation will survive in the thermodynamic limit, we com-
pared the finite-size free energy Ffs from Eq. (9) with its
counterpart Fis in an infinite system, where the magnetic states
are restricted to Néel and spiral order. Focusing on the more
interesting hole-doped regime, in Fig. 5 we show Ffs − Fis for
densities 0.65 � n � 1. We only show the energy differences
in the magnetic regime and set the energy differences in the
paramagnetic phase to zero.

To set a reference scale, we note that the typical “condensa-
tion” energy Ffs − Fpm, where Fpm is the free energy obtained
in the (unstable) paramagnetic mean-field solution, is of the
order of −0.05t . The energy difference Ffs − Fis is of the order

FIG. 5. Energy difference Ffs − Fis between the real-space cal-
culation on a 20 × 20 lattice and the momentum-space calculation
in the thermodynamic limit. The model parameters are U = 3t and
t ′ = −0.15. The solid black line indicates T ∗, the dashed black line
indicates the transition between Néel and spiral order, and the dotted
black line indicates the divergence of the charge susceptibility in the
spiral state as obtained from the momentum-space mean-field code
(as in Fig. 2).
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FIG. 6. Phase diagram for U = 3t and t ′ = 0. The colors label
the states obtained from a real-space calculation on a 20 × 20 lattice,
and the black lines are defined as in Fig. 2. We show the phase
diagram only for densities n � 1, since the system is particle-hole
symmetric without next-to-nearest-neighbor hopping.

of a few percent of the total condensation energy. In regions
where the real-space calculation yields Néel or spiral order,
|Ffs − Fis| is smaller than 10−5t .

In the beat state separating Néel and spiral order, one can
see that Ffs > Fis, so the beat order is not expected to be stable
in the thermodynamic limit, since the spiral state with optimal
η has a lower free energy. The same applies to the beat states
separating the two spiral regions with different pitches.

Below the dotted line in Fig. 5, we see a clear gain in
energy in the centers of the stripe-ordered phases, indicating
that stripe order can remain stable even in the thermodynamic
limit. In the intermediate beat- and strange-ordered states,
where stripe orders with Q near the optimal wave vector are
prohibited by the periodic boundary conditions, we again find
Ffs > Fis. Therefore the beat- and strange-ordered states will
not be stable in the thermodynamic limit. As we know from
the RPA susceptibilities that also spiral states are unstable in
this regime, we expect stripe order with optimized intermedi-
ate wave vectors to take their place.

The analysis of the wave vectors of the beat states de-
scribed in Sec. III A 1 together with the free-energy analysis
above makes us believe that the beat states and the strange
states are artifacts of the finite system size, and that in the
thermodynamic limit the phase diagram consists only of a
Néel-ordered dome around half filling accompanied by a spi-
ral region and a stripe-ordered phase with smoothly varying
wave vectors Q on the hole-doped side.

B. Results for t ′ = 0 and −0.3t

In this section, we show results similar to those of Sec. III A
for next-to-nearest-neighbor hopping strengths t ′ = 0 and t ′ =
−0.3t . We choose the same interaction strength U = 3t and
lattice size Nx = Ny = 20 as before.

1. Phase diagrams

The phase diagrams for t ′ = 0 and t ′ = −0.3t are shown
in Figs. 6 and 7, respectively. For t ′ = 0, the Hamiltonian is
particle-hole symmetric, so that the hole- and electron-doped
sides of the phase diagram look identical. Hence only the hole-
doped side of the phase diagram is shown in Fig. 6.

FIG. 7. Phase diagram for U = 3t and t ′ = −0.3t . The colors
label the states obtained from a real-space calculation on a 20 × 20
lattice, and the black lines are defined as in Fig. 2.

In the electron-doped regime, the phase diagram for
t ′ = −0.3t exhibits primarily a Néel-ordered regime, similar
to the case t ′ = −0.15t , and in agreement with previous works
[11,13,49].

On the hole-doped side the critical hole doping increases
for larger |t ′|, while T ∗ at half filling decreases. For all
three values of t ′, we find a Néel-ordered regime also in the
hole-doped regime in the proximity of half filling, shrink-
ing, however, at low temperatures. For lower densities, all
three phase diagrams exhibit an intermediate spiral regime.
Analogously to Fig. 2, we also show the Néel-spiral tran-
sition line (dashed line) and the divergence of the charge
susceptibility (dotted line) in the thermodynamic limit, as
obtained from the momentum-space calculation. Similarly to
the case t ′ = −0.15t , we find that the spiral states obtained
on the 20 × 20 lattice are mostly located between these two
lines. For t ′ = 0, all spiral states have an incommensurabil-
ity of η = 0.05, whereas for t ′ = −0.3t , the spiral regime is
again split into two regions, one with η = 0.05 and one with
η = 0.1, separated by an intermediate beat region, in which
the dominant wave vectors correspond to η = 0.05 and 0.1.
The bigger |t ′| is, the larger is the area where spirals are the
energetically favored state. While for t ′ = 0 the spiral area is a
relatively thin strip below Néel order, for t ′ = −0.3t the spiral
region extends over a wide range of densities, and spiral order
remains stable even in the ground state for densities down to
n = 0.91. In the thermodynamic limit we expect a continuous
evolution of η from η = 0 to η ≈ 0.1 within the spiral region,
and we expect the beat states to disappear from the phase
diagram.

Below the dotted line, the phase diagrams exhibit stripe-
ordered patches divided by intermediate beat states. For t ′ =
0, there is an η = 0.05 stripe region around n ≈ 0.88 and an
η = 0.1 stripe region around n ≈ 0.78, separated by a beat re-
gion consisting of wave vectors with both values of η. For low
doping, n � 0.92, the system is collinearly ordered, but not in
a perfect stripe pattern. The charge and spin patterns in this
regime resemble those displayed in Fig. 1(h). As explained in
Ref. [18], this is likely due to the fact that longer wavelengths
cannot be accommodated on a 20 × 20 lattice. Indeed, when
repeating the calculations on a 48 × 48 system, we found a
stripe-ordered phase at a density of n = 0.96 for T � 0.05.
The stripes we find in this regime do not appear in the shape
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FIG. 8. Average magnetization per site for U = 3t and either
t ′ = 0 (left) or t ′ = −0.3t (right) on a 20 × 20 lattice.

of a simple cosine as in Eq. (18), but their profile is generally
sharper. We find two almost-half-filled regions separated by
two hole-doped domain walls, which extend over five to ten
sites each. Since the domain walls are usually perfectly paral-
lel to the x or y axis, and all spins are collinear, we still refer to
this region as stripe ordered. We expect that for larger lattices
(but fixed density) the size of the domains remains roughly the
same, being determined by the incommensurability, while the
number of domains would increase. This differs from phase
separation, where the lattice contains only two macroscopic
domains (with distinct densities), which grow with the lattice
size. For t ′ = −0.3t , there are two patches of stripe order,
one centered around n ≈ 0.8 corresponding to η = 0.1 and
one centered around n ≈ 0.7, with η = 0.15. Unlike in the
t ′ = 0 and −0.15t cases, there is a regime of collinear bidi-
rectional stripes centered around filling n = 0.6, with η = 0.2,
followed by two regions of coplanar bidirectional stripes with
η = 0.25 and 0.30. These bidirectional stripe phases have a
lower energy than the optimal spirals which we found from the
momentum-space calculation, but to confirm that they remain
stable in the thermodynamic limit and are not artifacts of the
finite system size, we repeated the calculation for four (n, T )
points in each of the three bidirectional stripe regimes for
lattice sizes 28 × 28 and 40 × 40. In all cases, bidirectional
stripe phases with a minimal free energy were found; so we
believe that they will remain stable also in the thermodynamic
limit.

At first sight, one may be surprised that the magneti-
cally ordered regime becomes broader on the hole-doped side
with increasing |t ′|, although a next-nearest-neighbor hopping
amplitude leads to a certain degree of frustration for antiferro-
magnetic order. At half filling, the critical temperature indeed
shrinks with increasing |t ′|. However, a negative t ′ also shifts
the Van Hove filling (where the Fermi surface touches the sad-
dle point of the dispersion) into the hole-doped regime, which
leads to an enhancement of the bare spin susceptibility there.
At weak coupling, this effect extends the magnetic regime to
larger hole doping, compared with the case t ′ = 0.

2. Magnetization

In Fig. 8, we show the average magnetization per site for
t ′ = 0 (left panel) and t ′ = −0.3t (right panel). The mag-
netization is maximal near half filling. The transition from

FIG. 9. Energy difference Ffs − Fis between the real-space calcu-
lation on a 20 × 20 lattice and the momentum-space calculation in
the thermodynamic limit as in Fig. 5, for U = 3t and t ′ = 0.

the paramagnetic phase to the ordered phases seems again
smooth, as in the t ′ = −0.15t case. However, due to discrete
nature of our (n, T ) grid, we cannot exclude weak first-order
transitions.

3. Energy considerations

We have calculated the free-energy differences between
the real-space calculation on a 20 × 20 lattice and the
momentum-space calculation in the thermodynamic limit,
Ffs − Fis, in the magnetic regime for t ′ = 0 and t ′ = −0.3t ,
analogously to Sec. III A 3. The results are shown in Figs. 9
and 10, respectively.

In both plots, we see that the differences in free energies in
the Néel and spiral regimes are almost zero. There is generally
an energy gain in the stripe-ordered phases and an energy loss
in the beat- and strange-ordered phases, as for t ′ = −0.15t
in Sec. III A 3. For t ′ = −0.3t , we also see an energy gain in
the collinear and coplanar bidirectional stripe phases at low
fillings, compared with the spiral phase.

FIG. 10. Energy difference Ffs − Fis between the real-space cal-
culation on a 20 × 20 lattice and the momentum-space calculation in
the thermodynamic limit as in Fig. 5, for U = 3t and t ′ = −0.3t .
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FIG. 11. Density of states histogram for n = 7
8 , T = 0, t ′ = 0,

and U = 3, calculated on a 40 × 32 lattice. The states are counted in
equidistant bins in the energy range between −4 and 5.

These observations reaffirm our expectation that the beat
and strange states disappear from the phase diagram in the
thermodynamic limit, while the Néel, spiral, and stripe states
remain stable.

4. Density of states for n = 7
8 , T = 0, and t ′ = 0

A particular point in parameter space has received spe-
cial attention in recent years: the ground state (T = 0) at a
density n = 7

8 for the two-dimensional Hubbard model with
pure nearest-neighbor hopping. Exact numerical ground state
techniques have provided fairly convincing evidence that for
strong coupling the ground state is an insulating stripe state
in this case [31,32]. Hence we investigate this special point
in more detail, too, keeping, however, a moderate interaction
strength U = 3t , in line with our Hartree-Fock approximation.
To allow for a variety of distinct commensurabilities, and
because stripes with wavelengths 8 and 16 were found by
different numerical methods at n = 7

8 [31–33,51,52], we work
on an anisotropic lattice with Nx = 40, Ny = 32 in this case.

The solution of the real-space mean-field equations unam-
biguously yields unidirectional stripes with an incommensu-
rability η = 1

16 along the y axis. To see whether this stripe
ground state is an insulator, we have computed the distribution
of energy levels, which is a finite-size proxy to the density of
states. In Fig. 11, we show a histogram of the distribution of
the energy levels εl , shifted by the chemical potential (placed
halfway between the highest occupied state and the lowest
unoccupied state). The histogram is defined with equidistant
bins between −4 and 5. We see that there are no energy levels
close to the chemical potential, that is, there is a finite band
gap with size � ≈ 0.25t . The state we find for this parameter
set is therefore indeed an insulator. There are other insulating
points in the ground state, but metallic behavior is much more
frequent.

C. Phase diagrams in the thermodynamic limit

Collecting the insights gained from the real-space and
momentum-space solutions of the mean-field equations
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FIG. 12. (n, T ) phase diagram for t ′ = 0 and U = 3t in the ther-
modynamic limit with Néel, spiral, and unidirectional stripe order.
Because of the Hamiltonian’s particle-hole symmetry, this phase
diagram is symmetric.

discussed above, we now present our expectation for the
mean-field phase diagrams of the two-dimensional Hubbard
model in the thermodynamic limit. These final (n, T ) phase
diagrams for U = 3t and t ′ = 0, −0.15t , and −0.3t are shown
in Figs. 12–14, respectively.

Based on the energy considerations and the analysis of
the dominant wave vectors in each phase, we concluded that
neither beat nor strange states will remain stable in the ther-
modynamic limit. There is no indication that the Néel and
spiral states are unstable within the regions shown in the phase
diagrams. The divergence of the charge susceptibility at the
low-temperature boundary of the spiral regime (dotted line
in Figs. 12–14) indicates a transition to a stripe state, which
is indeed found within the real-space calculation whenever
the optimal wave vector can be accommodated on the finite
lattice.

At zero temperature, the Néel state is stable for densities
n � 1 for t ′ � −0.15t , and a spiral phase extends from half
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FIG. 13. (n, T ) phase diagram for t ′ = −0.15t and U = 3t in
the thermodynamic limit with Néel, spiral, and unidirectional stripe
order. There is a narrow spiral regime at small hole doping even at
T = 0.
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FIG. 14. (n, T ) phase diagram for t ′ = −0.3t and U = 3t in the
thermodynamic limit with Néel, spiral, and stripe order. Its topology
is similar to the t ′ = −0.15 case, but the spiral regime is larger,
especially at low temperatures, and besides unidirectional stripes
there are also regimes of collinear and coplanar bidirectional stripes.

filling to a hole doping p = 0.02 for t ′ = −0.15t , and to
p = 0.09 for t ′ = −0.3t , while for larger hole doping stripe
order prevails. For t ′ = 0 the Néel ground state is unstable
toward stripe order at any finite doping. For t ′ = −0.3t we
also found collinear bidirectional stripes and coplanar bidirec-
tional stripes on the 20 × 20 lattice, which remain stable also
for larger systems. It is difficult to determine the exact domain
borders of the three stripe variants in the thermodynamic limit.
On the 20 × 20 lattice, the system exhibits ClBS order in the
doping range p ≈ 0.35–0.45 and CpBS order in the doping
range p ≈ 0.45–0.65.

IV. CONCLUSION

We have performed an unbiased mean-field analysis of
magnetic and charge orders in the two-dimensional Hubbard
model, both at zero and finite temperature. Fully unre-
stricted Hartree-Fock calculations on large finite lattices (from
20 × 20 to 48 × 48) have been complemented by momentum-
space solutions restricted to Néel and circular spiral states
in the thermodynamic limit. The Hubbard interaction was
fixed at the moderate value U = 3t , while three distinct
ratios of next-nearest-neighbor to nearest-neighbor hopping
amplitudes were considered: t ′/t = 0, −0.15, and −0.3. The
magnetic states were classified by a systematic scheme based
on the dominant Fourier components 	Sq of the spin texture
〈	S j〉. All but Néel and circular spiral states entail charge, in
addition to spin, order.

On the finite lattices a whole zoo of magnetic states
has been found, some of which look quite messy. However,
comparing solutions on different lattices, analyzing the con-
densation energies, and comparing these states with Néel and
spiral solutions in the thermodynamic limit, we could show
that the more complex states are finite-size artifacts, which are
related to the limited choice of ordering wave vectors on finite
lattices. On a finite lattice with periodic boundary conditions
the optimal wavelength of a spin (and charge) density wave
can be accommodated only if the lattice size is an integer

multiple of that wavelength. If the mismatch is too big, the
magnetic and charge orders assume complex structures, for
example, with charge stripes closing to a ring [18]. These
“compromise” states disappear as the lattice size increases.

In the thermodynamic limit, only Néel, circular spiral,
and stripe states are present. The latter are usually unidirec-
tional, but can be bidirectional for t ′ = −0.3t . All phases
are homogeneous; we find no evidence for macroscopic
phase separation. The final (n, T ) phase diagrams for t ′ = 0,
−0.15t , and −0.3t are shown in Figs. 12–14, respectively.
The boundaries of the Néel and spiral regimes can be de-
termined with high accuracy directly in the thermodynamic
limit from the momentum-space solution of the mean-field
equations restricted to these phases, complemented by an
analysis of the RPA charge and spin susceptibilities. The sus-
ceptibilities are positive for all wave vectors inside the Néel
and spiral domains, and divergences occur exclusively due
to the Goldstone modes [49,53]. The charge distribution is
uniform in the entire Néel and spiral regime. The instability of
the spiral state toward stripe order is marked by a divergence
of the charge susceptibility. On general grounds, one would
expect either a first-order transition from circular spiral to
stripe before the charge susceptibility diverges, or an interme-
diate elliptical spiral phase [47]. However, our data indicate
that the transition from spiral to stripe order occurs close to
the line where the charge susceptibility diverges. We did not
detect any intermediate elliptical spiral states, but we might
have missed them due to tiny energy differences and finite
size limitations. Preliminary calculations for commensurate
ordering wave vectors in the thermodynamic limit indicate the
presence of elliptical spirals between the circular spiral and
the stripe regimes.

In the ground state, Néel order is limited to half filling if
t ′ = 0, and extends to the electron-doped regime (n > 1) for
t ′ = −0.15t and t ′ = −0.3t . Néel order is replaced by spiral
or stripe order for arbitrarily small hole doping at T = 0.
Note, however, that Néel order can be stable for low hole
doping and negative t ′ for weaker bare or renormalized inter-
actions [6,7,13]. In most parts of the phase diagram, the spatial
dependence of the spin and charge patterns is well described
by simple trigonometric functions (sine and cosine) with few
wave vectors. Only for t ′ = 0 and low doping does a sharp
real-space profile with antiferromagnetic domains separated
by hole-rich domain walls develop, corresponding to a sizable
contribution from higher harmonics in a Fourier decomposi-
tion. While doped Néel and spiral states are always metallic,
we find some insulating spots in the stripe regime, in particular
for the intensively studied special case t ′ = 0 and n = 7

8 , in
qualitative agreement with exact numerical calculations on
finite lattices [31–33,51,52].

A static mean-field calculation is clearly not applicable
to the physics of cuprate superconductors, which should be
described by the Hubbard model (or extensions) at strong
coupling. Nevertheless, some broad features we obtain are
in line with experimental observations in cuprates [54]: Néel
order at and near half filling, with a broader Néel regime for
electron-doped cuprates, incommensurate magnetic correla-
tions with wave vectors of the form Q = (π − 2πη, π ) for
hole-doped cuprates, and charge and/or stripe order for some
of them.
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The mean-field analysis presented in this paper could be
extended in various directions. At moderate coupling, sub-
stantial quantitative improvement could be achieved, and the
interplay with d-wave pairing could be studied by using
a renormalized mean-field theory where effective couplings
obtained from a functional renormalization group flow are
used instead of the bare Hubbard interaction [13,55,56].
An extension of dynamical mean-field theory (DMFT) to
inhomogeneous systems, the iDMFT [57], can capture ar-
bitrary spin and charge order patterns at strong coupling.
Inhomogeneous DMFT studies of spin and charge order in
the two-dimensional Hubbard model have already been per-
formed [24,26,28], but so far only at zero temperature and for
pure nearest-neighbor hopping. Finally, one could take spin
fluctuations into account to replace the magnetic state with
long-range order by a fluctuating magnet with short-range
(and possibly topological) order by extending SU(2) gauge
theories with Néel- and spiral-ordered chargons [40–42] to
stripes.

The code we developed to perform the calculations is pub-
licly available [58].
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APPENDIX A: COMPUTATIONAL DETAILS

We provide here additional information about the proce-
dure we used to obtain converged states for a given set of
parameters U , t ′, T , n, Nx, and Ny.

1. Mixing

To improve the convergence of the iterative scheme, we
employ a linear mixing between each iteration. Instead of
constructing the new Hamiltonian with the expectation values
as obtained from Eq. (6) or (7), we instead use 60% of the
new expectation values and keep 40% of the current ones. The
mixing has proven to be essential to ensure convergence and
avoid getting trapped in local minima.

2. Convergence criteria

We consider a state to be converged either if all the pa-
rameters � jα from Eq. (3) change by less than 10−8 between
two iterations, or after 3500 iterations. Reducing the threshold
value below 10−8 does not affect the results. The second con-
vergence criterion was chosen to ensure that the computation
will eventually terminate. A total of 3500 iterations is usually
more than enough to obtain a state which is already clearly de-
fined and can be classified as the same type of magnetic order
as the fully converged state. Since we additionally calculated
each (n, T ) pixel multiple times with various random initial
conditions, we are confident to have classified the true global
minimum for each parameter set.

3. Scaling of the code with N
In each iteration the step which takes by far most of

the time is the diagonalization of the quadratic Hamiltonian,
Eq. (4). This matrix diagonalization scales roughly as N 3. The
matrix is very sparse; so there are more efficient algorithms for
obtaining the lowest eigenstates. However, we make use of all
the eigenvalues and eigenvectors, and most of the commonly
used eigensolvers for sparse matrices are only efficient to
obtain a few of the lowest-energy eigenstates.

APPENDIX B: CLASSIFICATION OF STATES

We here give an overview of how we classify states on the
20 × 20 lattice via the Fourier components 	Sq introduced in
Eq. (11). The classification is usually not too sensitive to the
chosen thresholds and the used norms.

If we find that

1

N

√∑
q

| 	Sq|2 < 2.5 × 10−7, (B1)

we classify the state as paramagnetic.
To classify the other states, we first note that the 	Sq with

the largest norms usually correspond to wave vectors of the
form

qx = (π − 2πηx, π ),

qy = (π, π − 2πηy), (B2)

with variable ηx,y. Note that we use the notation qx (qy)
to indicate the class of vectors of the form (B2), while Qx

(Qy) denotes a single wave vector with a fixed value of ηx

(ηy). We also checked for diagonal order of the form qxy ≡
(π − 2πη, π − 2πη); however, we found almost no states
with these modes as dominant contributions [less than 40
(n, T ) pixels in all three phase diagrams], and when we found
them, the order did not remain stable when repeating the
calculations on a 40 × 40 lattice.

To determine the � dominant q modes, labeled as qi, of a
state, we used the condition√∑l

i=1 | 	Sqi |2 + | 	S−qi |2√∑
q∈{qx,qy} | 	Sq|2

> 95%, (B3)

where q1 · · · ql are the subset of wave vectors {qx, qy} with the
largest amplitudes | 	Sqi | in descending order, and we always
considered the q and −q modes as a single mode, since
	S−q = 	S∗

q .
For most states we find that only one or two modes have

a significant Fourier component. If three or more modes
contribute, we label the state as displaying either strange or
other collinear order. To check whether a state is collinearly
ordered, we first rotate all 	Sq so that the real part of 	Sq with
the biggest norm points in the x direction. We then say that a
state is collinear if

1

N

√∑
q

∣∣Sy
q

∣∣2
< 2.5 × 10−7, (B4)
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and the same for Sz
q. We proceed analogously if the q modes

of the qx or qy form make up less than 70% of the total norm
of the Fourier transformation, that is, if√∑

q∈{qx,qy} | 	Sq|2√∑
q | 	Sq|2

< 70%. (B5)

If we find only two contributing modes Q1, Q2 ∈ {qx, qy},
we proceed as follows.

If Q1 and Q2 are both in {qx} or both in {qy}, we consider
the state a beat state. Typically, Q1 and Q2 correspond to
adjacent allowed values of η.

If Q1 and Q2 have the form Q1 = (π − 2πη, π ) and
Q2 = (π, π − 2πη), we rotate the vectors so that the real

part of 	SQ1 points in the x direction and then divide each
vector by the norm of 	SQ1 . We then check how the 	SQ1

are oriented relative to each other with an error tolerance of
5 × 10−3. For example, for coplanar bidirectional stripes (see
Sec. II B), we check whether 	SQ1 · 	SQ2 = 0, Sy

Q1
= Sz

Q1
= 0,

and | 	SQ1 | = | 	SQ2 |, each equality up to a tolerance of 0.5%.
We proceed analogously for collinear bidirectional stripes. If
we find different orientations of 	SQ1 and 	SQ2 , as proposed in
Ref. [46], we would classify the state as strange ordered, but
this happens very rarely.

If we find only one contributing mode Q, we
proceed analogously to identify stripes or spirals. If
additionally η = 0, we classify the state as a Néel
antiferromagnet.
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