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Magnetic interactions and possible structural distortion in kagome FeGe from first-principles
calculations and symmetry analysis

Hanjing Zhou,1,2,* Songsong Yan,1,2,* Dongze Fan,1,2 Di Wang,1,2,† and Xiangang Wan 1,2,3,‡

1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

3Hefei National Laboratory, Hefei 230088, China

(Received 6 December 2022; revised 2 May 2023; accepted 27 June 2023; published 19 July 2023)

Recently, charge density wave (CDW) order has been discovered in a magnetic kagome metal FeGe, providing
a platform to explore the possible connection between magnetism and CDW in a kagome lattice. Based on density
functional theory and symmetry analysis, we present a comprehensive investigation of electronic structure,
magnetic properties, and possible structural distortion of FeGe. We estimate the magnetic parameters including
Heisenberg and Dzyaloshinskii-Moriya (DM) interactions, and find that the ferromagnetic nearest-neighbor J1

dominates over the others, while the magnetic interactions between nearest kagome layers favors antiferro-
magnetic. The Néel temperature TN and Curie-Weiss temperature θCW are successfully reproduced, and the
calculated magnetic anisotropy energy is also consistent with the experimental results. However, these reasonable
Heisenberg interactions and magnetic anisotropy cannot explain the double cone magnetic transition, and the
DM interactions, which even exist in the centrosymmetric materials, can result in this small magnetic cone
angle. Unfortunately, due to the crystal symmetry of the high-temperature structure, the net contribution of DM
interactions to double cone magnetic structure is absent. Based on the experimental 2 × 2 × 2 supercell, we
thus explore the subgroups of the parent phase. Group theoretical analysis reveals that there are 68 different
distortions, and only four of them (space group P622 or P6322) without inversion and mirror symmetry thus
can explain the low-temperature magnetic structure. Furthermore, we suggest that these four proposed CDW
phases can be identified by using Raman spectroscopy. Since DM interactions are very sensitive to small atomic
displacements and symmetry restrictions, we believe that symmetry analysis is a useful method to reveal the
interplay of delicate structural distortions and complex magnetic configurations.

DOI: 10.1103/PhysRevB.108.035138

I. INTRODUCTION

Kagome lattices are emerging as an exciting platform for
the rich physics, including magnetism, charge density wave
(CDW), topology, and superconductivity [1–43] Three key
features have been identified in the electronic structure asso-
ciated with its lattice geometry, which are flat bands derived
from the destructive phase interference of nearest-neighbor
hopping, topological Dirac crossing at the K point in the Bril-
louin zone, and a pair of van Hove singularities (vHSs) at the
M point [2–5]. When large density of states from the kagome
flat bands are located near the Fermi level, strong electron
correlations can induce magnetic order [2,3]. There are several
magnetic kagome materials, such as FeSn [6–10], Fe3Sn2

[11–14], Mn3Sn [15], Co3Sn2S2 [16], and AMn6Sn6 (A=Tb,
Y) [17,18], which usually exhibit magnetic order with ferro-
magnetically ordered layers that are either ferromagnetically
or antiferromagnetically stacked. Meanwhile, when vHSs are
located near the Fermi level, interaction between the saddle
points and lattice instability could induce symmetry-breaking
CDW order [4,5], such as the class of recently discovered

*These authors contributed equally to this work.
†Corresponding author: diwang0214@nju.edu.cn
‡Corresponding author: xgwan@nju.edu.cn

kagome materials AV3Sb5 (A=K, Rb, Cs) [19–41]. Signif-
icant interest has been focused on them since an unusual
competition between unconventional superconductivity and
CDW order has been found [19–41]. Note that in a kagome
system, magnetic order and CDW order have not been usually
observed simultaneously within one material, probably due to
the fact that they originate from the flat band and the vHSs,
respectively, which have a large energy difference and usually
do not both appear near the Fermi level [44].

Very recently, CDW order was discovered to appear deeply
in a magnetically ordered kagome metal FeGe, providing the
opportunity for understanding the interplay between CDW
and magnetism in a kagome lattice [44–49]. Isostructural to
FeSn [6–10] and CoSn [42,43], hexagonal FeGe consists of
stacks of Fe kagome planes with both in-plane and interplane
Ge atoms [50]. A sequence of magnetic phase transitions have
been discussed in the 1970s-80s [51–56]. Below TN = 410 K,
FeGe exhibits collinear A-type antiferromagnetic (AFM) or-
der with moments aligned ferromagnetically (FM) within
each plane and antialigned between layers, and becomes a c-
axis double cone AFM structure at a lower temperature Tcanting

= 60 K [55,56]. Recent neutron scattering, spectroscopy, and
transport measurements suggest a CDW in FeGe which takes
place at TCDW around 100 K, providing the first example of
a CDW in a kagome magnet [45,46]. The CDW in FeGe
enhances the AFM ordered moment and induces an emergent
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anomalous Hall effect (AHE) possibly associated with a chi-
ral flux phase similar with AV3Sb5 [34–36], suggesting an
intimate correlation between spin, charge, and lattice degree
of freedom [45]. Though AHE is not usually seen in anti-
ferromagnets in zero field, recent studies have shown that a
breaking of combined time-reversal and lattice symmetries in
the AFM state results in the AHE [57–59]. In kagome FeGe,
the AHE associated with CDW order indicates that the com-
bined symmetry breaking occurs via the structural distortion
or magnetic structure transition below the CDW temperature.
The CDW in FeGe was then extensively studied experimen-
tally and theoretically [44–49], and the CDW wave vectors
are identical to that of AV3Sb5 [23–28]. However, sharply
different from AV3Sb5 [39–41], all the theoretically calculated
phonon frequencies in FeGe remain positive [44,48,49], and
the structural distortion of the CDW phase remain elusive. It
was suggested to be reduced to P622 with the distortion of
two nonequivalent Fe atoms [45], while later works proposes
that FeGe shares the same space group of P6/mmm with the
pristine phase [48,49]. Based on first-principles calculations
and scanning tunneling microscopy, Shao et al. showed that
the CDW phase of FeGe exhibits a generalized Kekulé distor-
tion [60] in the Ge honeycomb atomic layers [48]. Meanwhile,
using hard x-ray diffraction and spectroscopy, Miao et al.
report an experimental discovery of charge dimerization that
coexists with the CDW phase in FeGe [49]. Therefore, the
understanding of the magnetism and the intertwined connec-
tion between complex magnetism and structural distortion in
kagome FeGe is an emergency issue, which we will address
in this paper based on first-principles study and symmetry
analysis.

In this paper, we systematically analyze the electronic and
magnetic properties of kagome FeGe. Our numerical results
show that this material is a magnetic metal exhibiting large
magnetic splitting around 1.8 eV. Based on combining mag-
netic force theorem and linear-response approach [61–63],
the magnetic exchange parameters have been estimated. The
results show that the nearest-neighbor J1 is FM and domi-
nates over the others, while the magnetic interactions between
nearest kagome layers favors AFM, consequently resulting
in the A-type AFM ground-state configuration. Based on
these spin exchange parameters, the calculated Néel temper-
ature and Curie-Weiss temperature also agree well with the
experiments. Using the method in Refs. [64,65], we also cal-
culate the magnetic anisotropic energy (MAE) to be around
0.066 meV per Fe atom with easy axis being out of the
kagome layers, which is in reasonable agreement with the
experimental results [56]. However, the double cone magnetic
transition at Tcanting = 60 K cannot be reproduced by these
reasonable magnetic parameters. We find that Dzyaloshinskii-
Moriya (DM) interactions [66,67] are much more efficient
than Heisenberg interactions for causing this canted spin
structure. Unfortunately, the space group P6/mmm of the
high-temperature phase in FeGe has inversion symmetry and
mirror symmetries, and all of them eliminate the net contribu-
tion of DM interactions to the double cone magnetic structure.
It is well-known that DM interactions are very sensitive to
atomic displacements, while small structural distortion usu-
ally has little effect on Heisenberg interactions. Therefore,
we explore the possible CDW distortions which can explain

the low-temperature magnetic structure. Symmetry theoret-
ical analysis reveals that there are 68 different distortions,
which are the subgroups of the parent P6/mmm phase with
2 × 2 × 2 supercell [45,46,48,49]. Based on the group theo-
retical analysis, we find that only four structures (space groups
P622 and P6322) without inversion and mirror symmetry thus
can have double cone spin structure. We further propose that
using Raman spectroscopy, these four CDW phases can be
identified from their different numbers of Raman active peaks.

II. METHOD

The first-principles calculations have been carried out by
using the full potential linearized augmented plane-wave
method as implemented in the WIEN2K package [68]. The
k-point mesh convergence test has been done (see Appendix),
and 13 × 13 × 14 k-point mesh is used for the Brillouin-zone
integral of nonmagnetic structure while 13 × 13 × 7 k-point
mesh is used for AFM structure. The self-consistent calcu-
lations are considered to be converged when the difference
in the total energy does not exceed 0.01mRy at consecutive
self-consistent steps.

It is well-known that magnetism is computationally tricky
and may require the DFT (density functional theory) +
DMFT (dynamical mean-field theory) method [69]. However,
in many magnetic systems, the mean-field theory such as the
local spin-density approximation (LSDA) [70] or LSDA + U
schemes could also yield satisfactory results. The LSDA +
U scheme with reasonable U is widely applied to the Slater
insulator [71], Weyl semimetal [72], and Axion insulator [73].
Meanwhile, we note that the LSDA calculations works well
for B20-FeGe, which exhibits a magnetic skyrmion phase
[74–76]. Therefore, we believe that the LSDA calculation can
also present a reasonable description for the magnetic proper-
ties of the kagome FeGe. We also perform the first-principles
calculations with different exchange-correlation potentials,
and the calculated band structures are almost the same (see
Appendix). Furthermore, we also perform the LSDA + U
scheme [77] with the value of U varied from 0 to 4 eV. The
calculated magnetic moments with U = 0 eV are in the best
agreement with the experimental results (see Appendix); thus
we present the first-principles results from the U = 0 eV
calculation in the following.

In addition, we include the spin orbit coupling (SOC) [78],
which results in the DM interaction. As shown in the follow-
ing, any reasonable Heisenberg interaction cannot explain the
double cone magnetic structure [51–56] and the DM interac-
tion is necessary. The contribution of DM interactions to the
low-temperature magnetic structure is restricted by the crystal
symmetry, which inspires us to identify the possible CDW
structures based on the symmetry analysis, as shown in the
following.

The spin exchange interactions, including Heisenberg and
DM interactions [66,67], are calculated using first principles
based on combining magnetic force theorem and linear-
response approach [61–63], which have successfully applied
to various magnetic materials [62,63,79–81].

Monte Carlo (MC) simulations are performed with
Metropolis algorithm for Heisenberg model [82–84]. The size
of the cell in the MC simulation are 16 × 16 × 16-unit cells
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TABLE I. Spin exchange parameters (in meV) including Heisen-
berg and DM interactions of FeGe evaluated from LSDA+SOC
calculations, respectively. The Fe-Fe distances and the corresponding
number of neighbors (NN) are presented in the second and third
columns

Distance (Å) NN J DM

J1 2.50 4 −41.97 (0, 0, 0.03)
J2 4.33 4 5.49 (0, 0, −0.12)
Jc1 4.05 2 8.44 (0, 0, 0)
Jc2 4.76 8 −2.04 (0.01, −0.02, −0.07)
Jc3 5.93 8 1.81 (0.07, −0.04, −0.09)
Jc′1 8.11 2 −0.66 (0, 0, 0)
Jc′2 8.49 8 0.09 (−0.04, −0.09, −0.03)

with periodic boundary conditions. The details of the con-
vergence test for cell size are displayed in the Appendix. At
each temperature, we carry out 400 000 sweeps to prepare the
system, and sample averages are accumulated over 800 000
sweeps.

All the input files for the computational details of the first-
principles calculations for band structures, Heisenberg, and
DM interactions, as well as MC simulations, can be obtained
in the open-source website of Ref. [85].

III. RESULTS

A. The electronic and magnetic properties

The pristine phase of FeGe crystallizes in the hexagonal
structure with space group P6/mmm (No. 191) [50], where
the coordinates of the atoms are shown in Table II and Fig. 1.
First, we perform nonmagnetic local-density approximation
(LDA) + SOC calculations, and show the band structures
and partial density of states in Figs. 2(a)–2(c). While Ge-
2p states are mainly located between −6.0 and −2.0 eV
as shown in Fig. 5 of the Appendix, the main contribution
around the Fermi level comes from the 3d orbitals of Fe
ions. Along the high-symmetry directions � − M − K − �

lying in the kz = 0 plane, there are two different kagome

structures near the Fermi level. Consistent with previous first-
principles calculations [44,47], the kagome flat bands around
the Fermi level exhibit a large peak in the density of states
as shown in Fig. 2(c), which indicates magnetic instability.
Therefore, LSDA + SOC calculations are performed based
on the A-type AFM configuration, and the band structures
and partial density of states are shown in Figs. 2(d)–2(f).
The magnetic moment of Fe ions is estimated to be 1.55 μB,
which is in agreement with the previous experimental value
around 1.7 μB [52,54]. Note that each kagome layer is FM
and the key signatures of electronic structures in the kagome
lattice remain. The magnetic splitting is around 1.8 eV, which
makes the large peaks above and below the Fermi level cor-
respond to the spin minority bands and spin majority bands
respectively, as shown in Fig. 2(f). Meanwhile, the vHSs that
are relatively far from the Fermi level in the nonmagnetic
state [−0.65 eV and −0.76 eV as shown in Figs. 2(a) and
2(b)] are brought near the Fermi level by the spin splitting,
as shown in Figs. 2(d) and 2(e). We present orbital-resolved
band structures and find that the vHSs near the Fermi level
in the A-type AFM configuration, marked as vHS-1 (located
at 0.07 eV above fermi energy) and vHS-2 (-0.26 eV) in
Figs. 2(d) and 2(e), are mainly contributed by the dxy/dx2−y2

and dxz/dyz orbitals, respectively. These vHSs near the Fermi
level are suggested to induce symmetry-breaking CDW order
in kagome metal FeGe [44].

To quantitatively understand the rich magnetic phe-
nomenon in kagome FeGe, a microscopic magnetic model
with proper parameters is extremely important. Based on the
calculated electronic structures, we estimate the exchange pa-
rameters including Heisenberg and DM interactions using the
linear-response approach [61–63] and summarize the results
in Table I. As shown in Fig. 1, we divide the magnetic inter-
actions considered into three types: the exchange interactions
Ji, Jci, and Jc′i represent the ith-nearest-neighbor interactions
between Fe ions within kagome layers, on the nearest kagome
layers, and on the next-nearest kagome layers, respectively.
As shown in Table I, the in-plane nearest-neighbor coupling
J1 favors FM order and is estimated to be −41.97 meV,
which has a similar value to the one in kagome FeSn (around

TABLE II. Four types of 2 × 2 × 2 CDW phases which can lead to nonzero DM contribution to double cone spin structure. The
corresponding Wyckoff positions and the coordinates of the atoms in the pristine phase and these four CDW phases are summarized.

Pristine phase (P6/mmm) P622 (type I) P622 (type II) P6322 (type I) P6322(type II)
WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 1a (0, 0, 0) Ge1 2e (0, 0, z1) Ge1 2a (0, 0, 0) Ge1 2b (0, 0, 1/4)
Ge2 1b (0, 0, 1/2) Ge2 6i (1/2, 0, z2) Ge2 6g (x1, 0, 0) Ge2 6h (x1, 2x1, 1/4)
Ge3 3 f (0, 1/2, 0)
Ge4 3g (0, 1/2, 1/2)

Ge2 2d (1/3, 2/3, 1/2) Ge5 4h (1/3, 2/3, z1) Ge3 2c (1/3, 2/3, 0) Ge3 2c (1/3, 2/3, 1/4) Ge3 4 f (1/3, 2/3, z2)
Ge6 12n (x2, y2, z2) Ge4 2d (1/3, 2/3,1/2) Ge4 2d (1/3, 2/3, 3/4) Ge4 12i (x3, y3, z3)

Ge5 6l (x3, 2x3, 0) Ge5 6h (x2, 2x2, 1/4)
Ge6 6m (x4, 2x4, 1/2) Ge6 6h (x3, 2x3, 1/4)

Fe 3 f (1/2, 0, 0) Fe1 6 j (x3, 0, 0) Fe1 12n (x5, y5, z5) Fe1 6g (x4, 0, 0) Fe1 6h (x4, 2x4, 1/4)
Fe2 6k (x4, 0, 1/2) Fe2 12n (x6, y6, z6) Fe2 6g (x5, 0, 0) Fe2 6h (x5, 2x5, 1/4)
Fe3 6l (x5, 2x5, 0) Fe3 12i (x6, y6, z6) Fe3 12i (x6, y6, z6)
Fe4 6m (x6, 2x6, 1/2)

035138-3



ZHOU, YAN, FAN, WANG, AND WAN PHYSICAL REVIEW B 108, 035138 (2023)

FIG. 1. Crystal and magnetic structures of FeGe. Yellow and purple spheres represent Fe and Ge atoms, respectively, while arrows denote
magnetic moments of Fe atoms. (a) Top view of FeGe. The exchange interactions Ji denote the ith-nearest-neighbor interactions between
Fe ions within kagome layers. (b) The exchange interactions Jci denote the ith-nearest-neighbor interactions between Fe ions on the nearest
kagome layers. (c) The exchange interactions Jc′ i denote the ith-nearest-neighbor interactions between Fe ions on the next-nearest kagome
layers.

−50 meV) [7–10]. Note that the distance in J1 is 2.5 Å while
the others are all greater than 4 Å. Though there are also AFM
in-plane magnetic interactions such as in-plane next-nearest-
neighbor coupling J2, they are at least an order of magnitude
smaller than J1, resulting in each FM kagome layer. As the
out-of-plane nearest-neighbor coupling, Jc1 is estimated to be

8.44 meV. It makes the magnetic moments stacked antiferro-
magnetically between kagome layers, consequently resulting
in the A-type AFM order in kagome FeGe, which is consistent
with the experiment [51]. It is worth mentioning that SOC
always exists and leads to the DM interactions even in the
centrosymmetric compound FeGe, since not all Fe-Fe bonds

FIG. 2. (a), (b) Orbital-resolved band structure of Fe-dxy/dx2−y2 and Fe-dxz/dyz for nonmagnetic FeGe from LDA + SOC calculation.
(c) Partial density of states of Fe atom located at (1/2,0,0) for nonmagnetic FeGe from LDA + SOC calculation. (d), (e) Orbital-resolved band
structure of Fe-dxy/dx2−y2 and Fe-dxz/dyz for A-type AFM configuration with spin orientations along the (001) direction from LSDA + SOC
calculation. (f) Partial density of states of Fe atom located at (1/2,0,0) for A-type AFM configuration from LSDA + SOC calculation.
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have inversion symmetry. For the equivalent DM interactions
connected by the crystal symmetry (see Tables VIII–X in the
Appendix), we only present one of them as a representative.
As shown in Table I, the in-plane nearest-neighbor D1 has
the form of (0, 0, Dz

1 ) according to the crystal symmetry
and Dz

1 is estimated to be 0.03 meV. Meanwhile, the in-plane
next-nearest neighbor D2 is estimated to be (0, 0, −0.12) meV.
For the out-of-plane nearest neighbor, Dc1 is zero because
its bond has an inversion center. The other calculated DM
interactions are also listed in Table I, and most of them are
small in the order of 0.01 meV.

To explore the magnetic anisotropy in kagome FeGe, we
consider the MAE with the expression EMAE = K2 sin2 θ +
K4 sin4 θ [51,54–56], neglecting terms of order higher than
four, where θ is the angle between the magnetic moment
and the z axis. The values of K2 and K4 are estimated to
be 0.066 meV and 0.018 meV, respectively, based on the
approach of Refs. [64,65], which are in reasonable agreement
with the experimental values 0.021 meV [56] and 0.012 meV
[51]. Here K2 and K4 are both positive, making out-of-plane
magnetization favored, which is different from the easy-plane
anisotropy in FeSn [8]. Note that positive K4 is the require-
ment for the stability of the double cone magnetic structure,
which will be discussed below.

Based on the calculated spin exchange parameters, we
calculate Curie-Weiss temperature and Néel temperature by
fitting the relationship curve between the inverse of the mag-
netic susceptibility and temperature from MC simulations
[82–84]. The θCW and TN are calculated to be −219 K and
370 K, respectively, which agree well with the experimental
results (θCW = −200 K, TN = 410 K) [51]. This implies
that our calculated results of magnetic interactions are reli-
able. The relative low value of the frustration index |θCW|/TN

(smaller than 1) reveals the interplay of the FM and AFM
interactions [86], which is also verified by our calculated
results of spin exchange couplings in Table I.

Similar to the electronic structure of a kagome lattice,
the spin wave for a localized spin model with FM nearest-
neighbor magnetic exchange also yields a flat magnetic band
and a Dirac magnon [87]. Using the calculated spin model
parameters, one can obtain the magnon spectrum [88,89]. The
calculated spin-wave dispersion along the high-symmetry axis
is shown in Fig. 3, which basically captures the key features
of kagome lattice geometry. Similar to the FeSn case [7–10]
(see Appendix), strongly dispersive magnons in the xy plane
extend to about 260 meV, where the magnon dispersion along
the out-of-plane direction has a relatively small bandwidth of
less than 15 meV, reflecting the quasi-two-dimensional mag-
netic properties in kagome FeGe. Meanwhile, the Dirac-like
node appears at the K point at about 107 meV, and we find
that DM interactions introduce a gap around 1 meV at the
Dirac point, as shown in the inset of Fig. 3. Furthermore, the
single-ion anisotropy produces a spin gap of about 2 meV,
which could be verified in future inelastic neutron scattering
experiments.

B. The double cone magnetic structure

At Tcanting = 60 K, the kagome lattice FeGe becomes a
c-axis double cone AFM structure [51,52,54–56], where the

FIG. 3. Calculated spin-wave dispersion curves along the high-
symmetry axis for FeGe. The insets show the spin gap at the �

point induced by easy-axis anisotropy, and the gap located at about
107 meV of K point induced by DM interactions.

magnetic ground state could be written as Eq. (A6) in the Ap-
pendix. Considering the magnetic interactions and the MAE,
the total energy of the double cone spin structure could be
written as Eq. ((A8) ) in the Appendix. When DM interactions
are not considered, the extremum condition of the total energy
gives the equilibrium value of wave vector δ and the cone half
angle θ [i.e., Eqs. (A9) and (A10) in the Appendix]:

cos δ =
∑

i NciJci

4
∑

i Nc′iJc′i
, (1)

sin2 θ = −K2 − 1
2N

∑
i Nc′iJc′iδ

4

2K4
. (2)

Note that the minimum of the total energy requires that
the second derivative of Eq. (A8) in the Appendix is positive,
thus K4 must be positive. Hence K2 − 1

2N

∑
i Nc′iJc′iδ

4 [i.e.,
the numerator of Eq. (2)] must be negative. However, our rea-
sonable magnetic parameters cannot explain the double cone
magnetic ground state. The value of wave vector δ is small
in experimental measurement (0.17 in Ref. [51] and 0.25 in
Ref. [53]), thus δ4 is around 0.001. Meanwhile, the value of

1
2N

∑
i Nc′iJc′i is of the order of 1 meV, which obviously cannot

explain the double cone magnetic structure [51].
We thus consider the effect of DM interactions on double

cone spin structure. Since the exchange interactions between
two next-nearest-neighbor kagome layers are relatively small,
we only consider the Heisenberg and DM interactions be-
tween two nearest neighbor kagome layers, i.e., Jci and Dci.
We find that wave vector δ and the cone half angle θ have the
expressions as [i.e., Eqs. (A11) and (A12) in the Appendix]

tan δ =
∑

i, j Dz
ci, j∑

i NciJci
, (3)

sin2 θ = −K2 − 1
2N

∑
i, j Dz

ci, jδ

2K4
. (4)

It should be noted that, comparing Eqs. (2) and (4), DM
interactions are much more efficient than Heisenberg interac-
tions for causing double cone spin structures since δ is small.
Though the space group P6/mmm of the high-temperature
phase in FeGe has a global inversion center, not all Fe-Fe
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bonds have inversion symmetry and DM interactions could
exist. However, according to the inversion symmetry of space
group P6/mmm, the total contribution of DM interactions to
the energy of the double cone magnetic structure in Eq. (A8) is
absent, i.e.,

∑
i, j Dz

ci, j = 0 (see Appendix). Meanwhile, mir-
ror symmetries in space group P6/mmm would also eliminate
the contribution of DM interactions based on the symmetry
analysis. Therefore, DM interactions have no net contribution
to the double cone magnetic structure with the symmetry of
high-temperature phase. For the CDW phases with the space
group of P6/mmm suggested by Refs. [48,49] (the first two
structures of Table XI in the Appendix), the total contribution
of DM interactions is still absent and cannot explain the mag-
netic ground state of double cone spin structure.

C. The interplay of CDW and double cone structure

As mentioned above, DM interactions play a more impor-
tant role in the double cone spin structure. Meanwhile, it is
very sensitive to atomic displacements. Therefore, in the fol-
lowing we explore the CDW phases with symmetry-allowed
DM contribution to the double cone spin structure, which may
explain the canted magnetic ground state.

The 2 × 2 × 2 supercell structure of CDW phase (com-
pared with the nonmagnetic pristine phase) is suggested
experimentally [45,46,48,49]. Considering all CDW phases
whose associated point group is in the maximal subgroups
of D6h, we find 68 different possible CDW phases which are
the subgroups of the parent P6/mmm phase with 2 × 2 × 2
supercell (see details in the Appendix). The corresponding
relations of atomic positions between the pristine phase and
these proposed CDW phases are all summarized in Tables XI–
XV of the Appendix.

Note that the inversion symmetry and mirror symmetries
would all eliminate the net contribution of DM interactions
as discussed above. We find that among these 68 proposed
CDW phases, only four distorted structures break all these
symmetries above, and can lead to nonzero DM contribution
in Eq. (A8) of the Appendix. We list the corresponding Wyck-
off positions (WPs) and the coordinates of the atoms in the
pristine phase and these four CDW phases in Table II. They
comes from two space groups P622 and P6322. It should be
mentioned that there are two different CDW phases for each
of these two space groups, which are labeled as types I and
II in Table II. The CDW phase with P622 space group is also
suggested in Ref. [45]. The single crystals have Fe1.00Ge0.98

stoichiometry reported by Ref. [45], and the influence of these
defects on the formation of the crystal CDW phase and mag-
netic structure needs further research.

Raman spectroscopy is a fast and usually nondestructive
technique which can be used to characterize the structural
distortion of materials. Based on the atomic coordinates in
Table II, we predict the irreducible representation of the Ra-
man active modes of these four proposed CDW phases using
symmetry analysis [90]. For P622 type-I and type-II CDW
phases, the Raman active modes are 8A1 + 26E1 + 22E2

and 10A1 + 26E1 + 22E2. Meanwhile, for P6322 types I
and II, the Raman active modes are 8A1 + 24E1 + 24E2 and
10A1 + 24E1 + 24E2, respectively. Note that even within the
same symmetry of space group P622, the different structural

distortion of CDW phases P622 types I and II could result in
the different number of Raman active modes (56 and 58, re-
spectively), which could be identified by Raman spectroscopy.

IV. CONCLUSION

In conclusion, we systematically analyze the electronic
and magnetic properties of kagome FeGe. Our numerical
results show that this material is a magnetic metal exhibit-
ing large magnetic splitting around 1.8 eV. The magnetic
splitting makes the flat bands away from the Fermi level
and brings two vHSs near the Fermi level. We estimate the
magnetic parameters and find that the FM nearest-neighbor
J1 dominates over the others, while the magnetic interactions
between nearest kagome layers favors AFM. Based on these
spin exchange parameters, the calculated Néel temperature
and Curie-Weiss temperature also agree well with the ex-
periments. Furthermore, the magnetic excitation spectra are
calculated using linear spin wave theory and a spin gap about
2 meV is predicted. Note that the double cone magnetic
transition at a lower temperature cannot be reproduced by
these reasonable magnetic parameters. Meanwhile, due to the
inversion symmetry and mirror symmetries in the space group
P6/mmm of the high-temperature phase, the total contribution
of DM interactions to the double cone magnetic structure
is absent. Since DM interactions are very sensitive to small
atomic displacements and symmetry restrictions, and also
much more efficient than Heisenberg interactions for causing
this canted spin structure, we propose that the double cone
spin structure may arise from the structural distortion. We
explore 68 possible CDW phases of kagome FeGe which are
subgroups of the pristine phase with 2 × 2 × 2 supercell, and
four symmetry-allowed CDW structures which have nonzero
DM contribution and may result in double cone spin structure
are proposed. These four CDW phases belong to two space
groups P622 and P6322, and we further propose that they can
be identified from their different numbers of Raman active
peaks. Therefore, we believe that symmetry analysis plays an
important role in exploring the possible structural distortion
in complex magnetic configurations.

ACKNOWLEDGMENTS

This work was supported by the NSFC (No. 12188101,
11834006, 12004170), National Key R&D Program of China
(No. 2022YFA1403601), Natural Science Foundation of
Jiangsu Province, China (Grant No. BK20200326), the ex-
cellent programme in Nanjing University, and Innovation

TABLE III. The calculated total energies (Ry) of FeGe and mag-
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k mesh Total energy (Ry) Magnetic moment (μB)

(4 × 4 × 2) −40462.67056 1.46732
(5 × 5 × 3) −40462.67243 1.56920
(7 × 7 × 3) −40462.67267 1.56931
(8 × 8 × 4) −40462.67118 1.55428
(13 × 13 × 7) −40462.67112 1.55122
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TABLE IV. The calculated Heisenberg interactions (meV) with different k-point meshes of FeGe from LSDA+SOC calculations,
respectively.

k mesh (4 × 4 × 2) (5 × 5 × 3) (7 × 7 × 3) (8 × 8 × 4) (13 × 13 × 7)

J1 −39.91 −43.08 −43.21 −42.11 −41.97
J2 4.26 5.31 5.35 5.37 5.49
Jc1 7.43 8.00 8.05 7.96 8.44
Jc2 −2.32 −2.19 −2.16 −2.17 −2.04
Jc3 1.69 1.91 1.89 1.94 1.81
Jc′1 1.91 −1.41 −1.41 −0.40 −0.66
Jc′2 −0.70 0.26 0.24 0.09 0.09

Program for Quantum Science and Technology (No.
2021ZD0301902). X.W. also acknowledges the support from
the Tencent Foundation through the XPLORER PRIZE.

APPENDIX

1. The k-point mesh convergence test

To validate the reliability of k-point mesh convergence,
we perform first-principles calculations with different k-point
meshes from LSDA + SOC calculations. The calculated total
energies and magnetic moments of the Fe ions are presented in
Table III. We also supplement the calculated Heisenberg and
DM interactions with different k-point meshes in Tables IV
and V. We believe that a 13 × 13 × 7 k-mesh can pro-
vide a relatively accurate description of the properties of the
material.

2. Band structures from different
exchange-correlation potentials

We perform the first-principles calculations using different
exchange-correlation potentials including standard PBE-GGA
[91], LSDA [92], WC-GGA [93], and PBEsol-GGA [94]. The
band structures from different exchange-correlation function-
als are shown in Fig. 4, which are almost the same.

3. The convergence test for cell size in MC simulation

The convergence test for the number of unit cells in MC
simulation are shown in Table VI. The calculated Néel tem-
perature and Curie-Weiss temperature exhibit little variation
with varying unit cell numbers. Therefore, we believe that
the calculated results obtained with the current cell size are
reliable.

4. The density of states in kagome FeGe

The partial density of states (DOS) of FeGe from LSDA +
SOC calculations are shown in Fig. 5.

5. The calculated magnetic moments for different values of U

The calculated magnetic moments of Fe ions from the
LSDA + SOC + U (= 0, 1, 2, 3, and 4 eV) calculations are
summarized in Table VII. It can be seen that the calculated
magnetic moment with U = 0 is in the best agreement with the
experimental results (1.7 μB) [52,55]. Therefore, we believe
that the LSDA + SOC calculation could present a reliable
description of the magnetic properties of kagome FeGe.

6. Spin-wave dispersion curves of FeSn

The calculated spin-wave dispersion of FeSn along the
high-symmetry axis is shown in Fig. 6 according to the re-
sults of magnetic interactions in Ref. [9]. The spin excitation
spectrum in FeSn with strong dispersion in the kagome plane
extend beyond 330 meV. Conversely, the magnon dispersion
along the out-of-plane direction has a bandwidth of less than
20 meV, indicating the dominant magnetic interactions are
within the kagome-lattice planes. Moreover, the spin-wave
dispersion presents a sharp linear magnon band crossing at
around 120 meV at the K point. The high-energy spectra
in FeSn have a larger bandwidth compared to that in FeGe,
which may be attributed to the greater J2 value in FeSn.

7. The symmetry restrictions on the magnetic interactions

Here we consider a general pairwise spin model

H =
∑

l,n,l ′,n′
SlnJRl +τn,Rl′ +τn′ Sl ′n′ , (A1)

TABLE V. The calculated DM interactions (meV) with different k-point meshes of FeGe from LSDA+SOC calculations, respectively.

k-mesh (4 × 4 × 2) (5 × 5 × 3) (7 × 7 × 3) (8 × 8 × 4) (13 × 13 × 7)

D1 (0.00, 0.00, 0.08) (0.00, 0.00, 0.02) (0.00, 0.00, 0.02) (0.00, 0.00, 0.02) (0.00, 0.00, 0.03)
D2 (0.00, 0.00, −0.08) (0.00, 0.00, −0.14) (0.00, 0.00, −0.14) (0.00, 0.00, −0.09) (0.00, 0.00, −0.12)
Dc1 (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)
Dc2 (0.14, −0.17, −0.10) (0.02, −0.02, −0.15) (0.02, −0.03, −0.15) (0.05, −0.05, −0.08) (0.01, −0.02, −0.07)
Dc3 (0.02, −0.23, 0.00) (0.04, −0.02, −0.03) (0.06, −0.03, 0.02) (0.10, −0.10, −0.07) (0.07, −0.04, −0.09)
Dc′1 (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)
Dc′2 (−0.41, −0.20, 0.00) (−0.08, −0.16, −0.04) (−0.05, −0.12, −0.04) (−0.08, −0.08, −0.02) (−0.04, −0.09, −0.03)
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FIG. 4. The band structures for A-type AFM configuration of FeGe from different exchange-correlation potentials, (a) standard PBE-GGA
[91], (b) LSDA [92], (c) WC-GGA [93], (d) PBEsol-GGA [94].

where JRl +τn,Rl′ +τn′ , a 3 × 3 tensor, represents the spin ex-
change parameters. Rl and τn represent the lattice translation
vector and the position of magnetic ions in the lattice basis,
and Sln means the spin at the site of Rl + τn.Translation
symmetry will restrict JRl +τn,Rl′ +τn′ to be only related to
Jτn,τn′ +Rl′′ , where Rl ′′ = Rl ′ − Rl , irrespective of the starting
unit cell. Other spatial symmetries will also give restrictions
on the magnetic exchange interactions. We consider a general
space group element {α|t}, where the left part represents the
rotation and the right part means the lattice translation. Sup-
posing under this symmetry operator, Rm + τ p and Rm′ + τp′

transfer to Rl + τn and Rl ′ + τn′ , respectively, meanwhile the
transformation of spin becomes Smp = M(α)Sln, where M(α)
is the representation matrix of the proper rotation part of the
operation α in the coordinate system, we get the following

TABLE VI. The calculated TN and θCW (K) of FeGe from MC
simulation with different unit cell numbers with periodic boundary
conditions.

Unit cells TN θCW

(6 × 6 × 6) 371 −222
(8 × 8 × 8) 368 −216
(10 × 10 × 10) 368 −219
(16 × 16 × 16) 370 −219

expression:

H =
∑

l,n,l ′,n′
SlnJRl +τn,Rl′ +τn′ Sl ′n′

=
∑

l,n,l ′,n′
SlnM†(α)M(α)JRl +τn,Rl′ +τn′ M

†(α)M(α)Sl ′n′

=
∑

m,p,m′,p′
Smp[M(α)JRl +τn,Rl′ +τn′ M

†(α)]Sm′ p′ . (A2)

Then the exchange interactions should satisfy the following
condition:

JRm+τ p,Rm′ +τp′ = M(α)JRl +τn,Rl′ +τn′ M
†(α). (A3)

After decomposing the 3 × 3 tensor J into scalar Heisen-
berg term J and the vector DM term D as in the main text, we

TABLE VII. The calculated magnetic moments of Fe ions evalu-
ated from LSDA + SOC (+ U ) calculations with different values of
U .

U (eV) Moment (μB)

0.0 1.551
1.0 2.066
2.0 2.406
3.0 2.620
4.0 2.772
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FIG. 5. Partial DOS of FeGe from LSDA + SOC calculations.
The Fermi energy is set to zero. (a) and (b) represent the spin-up and
spin-down channel of d orbitals in Fe1 atom located at (1/2,0,0),
while (c) represents the DOS of Ge-p orbitals.

obtain the following results:

JRm+τ p,Rm′ +τp′ = JRl +τn,Rl′ +τn′ ,

DRm+τ p,Rm′ +τp′ = M(α)DRl +τn,Rl′ +τn′ . (A4)

Meanwhile, it is should be noted that the Heisenberg and
DM interactions obey the following commutation relations:

JRl′ +τn′ ,Rl +τn = JRl +τn,Rl′ +τn′ ,

DRl′ +τn′ ,Rl +τn = −DRl +τn,Rl′ +τn′ . (A5)

According to the above equations [i.e., Eqs. (A4) and
(A5)], one can obtain the symmetry-restricted magnetic in-
teractions for kagome FeGe with space group P6/mmm, as
shown in Table VIII–X. Note that the equivalent Di’s are
labeled as the subindex of j, i.e., Di, j in Table VIII–X.

FIG. 6. Calculated spin-wave dispersion curves along the high-
symmetry axis for FeSn.

TABLE VIII. The distances, the bond information, and the
symmetry-restricted interactions of corresponding Fe ions within xy
planes. Here n, n′, and Rl correspond to Jτn,τn′ +Rl , where Rl and τn

represent the lattice translation vector and the position of magnetic
ions in the lattice basis. Three magnetic ions are located at τ1 (1/2, 0,
0), τ2 (0, 1/2, 0), and τ3 (1/2, 1/2, 0). The equivalent Di’s are labeled
as the subindex of j, i.e., Di, j in the table.

Distance (Å) n n′ Rl J DM

2.50 3 1 (0,1,0) J1 D1,1(0, 0, Dz
1)

1 2 (0,–1,0) J1 D1,2

(
0, 0, Dz

1

)
2 3 (0,0,0) J1 D1,3

(
0, 0, Dz

1

)
3 1 (0,0,0) J1 D1,4

(
0, 0, Dz

1

)
1 2 (1,0,0) J1 D1,5

(
0, 0, Dz

1

)
2 3 (−1,0,0) J1 D1,6

(
0, 0, Dz

1

)
4.33 1 2 (1,–1,0) J2 D2,1

(
0, 0, Dz

2

)
2 3 (0,1,0) J2 D2,2

(
0, 0, Dz

2

)
3 1 (−1,0,0) J2 D2,3

(
0, 0, Dz

2

)
1 2 (0,0,0) J2 D2,4

(
0, 0, Dz

2

)
2 3 (−1,–1,0) J2 D2,5

(
0, 0, Dz

2

)
3 1 (1,1,0) J2 D2,6

(
0, 0, Dz

2

)

8. The details of double cone structure

According to the experimental works [51,54–56], in hexag-
onal FeGe there is a transition from a uniaxial spin system to
a double cone spin structure at Tcanting = 60 K [51], which is
expressed by the following equations:

〈Sx〉 = S sin θ cos
(

(π ± δ)
z

c
+ ϕ

)
,

〈Sy〉 = S sin θ sin
(

(π ± δ)
z

c
+ ϕ

)
,

〈Sz〉 = S cos θ cos
(πz

c

)
, (A6)

where θ is the cone half angle and c represents the lattice
parameter. If δ = 0, there will be a simple tilting of the spins.
When δ represents the small angle, Eq. (A6) gives a double
cone spin structure. Following previous works [51,54–56],
here we consider the MAE with the expression neglecting
terms of order higher than four written as

EMAE = K2 sin2 θ + K4 sin4 θ. (A7)

Therefore, the total energy of Eqs. (A1) and (A7) in double
cone spin structure per unit cell could be written as

E (δ, θ ) =
∑

i

NciJci(− sin2 θ cos δ − cos2 θ )

+
∑

i

Nc′iJc′i(sin2 θ cos 2δ + cos2 θ )

−
∑
i, j

Dz
ci, j (sin2 θ sin δ)

−
∑
i, j

Dz
c′i, j (sin2 θ sin 2δ)

+N (K2 sin2 θ + K4 sin4 θ ), (A8)
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TABLE IX. The distances, the bond information, and the
symmetry-restricted interactions of corresponding Fe ions between
nearest-neighbor (001) planes. Here n, n′, and Rl correspond to
Jτn,τn′ +Rl , where Rl and τn represent the lattice translation vector and
the position of magnetic ions in the lattice basis. Three magnetic ions
are located at τ1 (1/2, 0, 0), τ2 (0, 1/2, 0), and τ3 (1/2, 1/2, 0). The
equivalent Dci’s are labeled as the subindex of j, i.e., Dci, j in the
table.

Distance (Å) n n′ Rl J DM

4.05 1 1 (0,0,1) Jc1 Dc1,1(0, 0, 0)
2 2 (0,0,1) Jc1 Dc1,2(0, 0, 0)
3 3 (0,0,1) Jc1 Dc1,3(0, 0, 0)

4.76 3 1 (0,0,1) Jc2 Dc2,1

(
Dx

c2,−
√

3Dx
c2, Dz

c2

)
1 2 (1,0,1) Jc2 Dc2,2

(
Dx

c2,
√

3Dx
c2, Dz

c2

)
2 3 (−1,0,1) Jc2 Dc2,3

( − 2Dx
c2, 0, Dz

c2

)
3 1 (0,1,1) Jc2 Dc2,4

( − Dx
c2,

√
3Dx

c2, Dz
c2

)
1 2 (0,–1,1) Jc2 Dc2,5

( − Dx
c2, −

√
3Dx

c2, Dz
c2

)
2 3 (0,0,1) Jc2 Dc2,6

(
2Dx

c2, 0, Dz
c2

)
1 3 (0,–1,1) Jc2 Dc2,7

( − Dx
c2,

√
3Dx

c2, −Dz
c2

)
2 1 (0,1,1) Jc2 Dc2,8

( − Dx
c2, −

√
3Dx

c2, −Dz
c2

)
3 2 (0,0,1) Jc2 Dc2,9

(
2Dx

c2, 0, −Dz
c2

)
1 3 (0,0,1) Jc2 Dc2,10

(
Dx

c2, −
√

3Dx
c2, −Dz

c2

)
2 1 (−1,0,1) Jc2 Dc2,11

(
Dx

c2,
√

3Dx
c2,−Dz

c2

)
3 2 (1,0,1) Jc2 Dc2,12

( − 2Dx
c2, 0, −Dz

c2

)
5.93 2 1 (−1,1,1) Jc3 Dc3,1

( − √
3Dy

c3, Dy
c3, −Dz

c3

)
3 2 (0,–1,1) Jc3 Dc3,2

(
0, −2Dy

c3, −Dz
c3

)
1 3 (1,0,1) Jc3 Dc3,3

(√
3Dy

c3, Dy
c3, −Dz

c3

)
2 1 (0,0,1) Jc3 Dc3,4

(√
3Dy

c3,−Dy
c3, −Dz

c3

)
3 2 (1,1,1) Jc3 Dc3,5

(
0, 2Dy

c3, −Dz
c3

)
1 3 (−1,–1,1) Jc3 Dc3,6

( − √
3Dy

c3, −Dy
c3, −Dz

c3

)
1 2 (0,0,1) Jc3 Dc3,7

(√
3Dy

c3, −Dy
c3, Dz

c3

)
2 3 (−1,–1,1) Jc3 Dc3,8

(
0, 2Dy

c3, Dz
c3

)
3 1 (1,1,1) Jc3 Dc3,9

( − √
3Dy

c3, −Dy
c3, Dz

c3

)
1 2 (1,–1,1) Jc3 Dc3,10

( − √
3Dy

c3, Dy
c3, Dz

c3

)
2 3 (0,1,1) Jc3 Dc3,11

(
0, −2Dy

c3, Dz
c3

)
3 1 (−1,0,1) Jc3 Dc3,12

(√
3Dy

c3, Dy
c3, Dz

c3

)

where Nci and Nc′i are the corresponding number of neighbors
of Jci and Jc′i, and N represents the number of magnetic ions
in one unit cell. When DM interactions are not considered,
the extremum condition in total energy gives the equilibrium
value of wave vector δ with the following equation [51,56]:

cos δ =
∑

i NciJci

4
∑

i Nc′iJc′i
, (A9)

while the cone half angle θ has the expression

sin2 θ = −K2 − 1
2N

∑
i Nc′iJc′iδ

4

2K4
. (A10)

A minimum in the total energy [see Eq. (A8)] will oc-
cur only if K4 is positive, and Eq. (A10) requires that K2 −

1
2N

∑
i Nc′iJc′iδ

4 must be negative.
When the magnetic interactions including Heisenberg and

DM interactions between two nearest-neighbor xy planes, i.e.,
Jci and Dci, are considered, the equilibrium value of wave
vector δ is obtained by the minimum in total energy written

TABLE X. The distances, bond information, and the symmetry-
restricted interactions of corresponding Fe ions between next-
nearest-neighbor (001) planes. Here n, n′, and Rl correspond to
Jτn,τn′ +Rl , where Rl and τn represent the lattice translation vector and
the position of magnetic ions in the lattice basis. Three magnetic ions
are located at τ1 (1/2, 0, 0), τ2 (0, 1/2, 0), and τ3 (1/2, 1/2, 0). The
equivalent Dc′ i’s are labeled as the subindex of j, i.e., Dc′ i, j in the
table.

Distance (Å) n n′ Rl J DM

8.11 1 1 (0,0,2) Jc′1 Dc′1,1(0, 0, 0)
2 2 (0,0,2) Jc′1 Dc′1,2(0, 0, 0)
3 3 (0,0,2) Jc′1 Dc′1,3(0, 0, 0)

8.49 2 1 (0,1,2) Jc′2 Dc′2,1

(
Dx

c′2,
√

3Dx
c′2, Dz

c′2
)

3 2 (0,0,2) Jc′2 Dc′2,2

( − 2Dx
c′2, 0, Dz

c′2
)

1 3 (0,−1,2) Jc′2 Dc′2,3

(
Dx

c′2,−
√

3Dx
c′2, Dz

c′2
)

2 1 (−1,0,2) Jc′2 Dc′2,4

( − Dx
c′2, −

√
3Dx

c′2, Dz
c′2

)
3 2 (1,0,2) Jc′2 Dc′2,5

(
2Dx

c′2, 0, Dz
c′2

)
1 3 (0,0,2) Jc′2 Dc′2,6

( − Dx
c′2,

√
3Dx

c′2, Dz
c′2

)
1 2 (1,0,2) Jc′2 Dc′2,7

( − Dx
c′2, −

√
3Dx

c′2, −Dz
c′2

)
2 3 (−1,0,2) Jc′2 Dc′2,8

(
2Dx

c′2, 0, −Dz
c′2

)
3 1 (0,0,2) Jc′2 Dc′2,9

( − Dx
c′2,

√
3Dx

c′2, −Dz
c′2

)
1 2 (0,−1,2) Jc′2 Dc′2,10

(
Dx

c′2,
√

3Dx
c′2,−Dz

c′2
)

2 3 (0,0,2) Jc′2 Dc′2,11

( − 2Dx
c′2, 0, −Dz

c′2
)

3 1 (0,1,2) Jc′2 Dc′2,12

(
Dx

c′2, −
√

3Dx
c′2, −Dz

c′2
)

as

tan δ =
∑

i, j Dz
ci, j∑

i NciJci
, (A11)

where j is the subindex of the equivalent Dci’s. Meanwhile,
we find the following expression for θ :

sin2 θ = −K2 − 1
2N

∑
i, j Dz

ci, jδ

2K4
(A12)

Note that in Eq. (A12), DM interactions are combined with
only the first order of δ, and may be much more efficient than
Jc′i in Eq. (A10) since δ is small around 0.2 [51,53]. This
implies that DM interactions may be the origin of double cone
structure.

9. The symmetry analysis of CDW phases

The high-temperature phase FeGe crystallizes in space
group P6/mmm, which has the generators {3+

001|0}, {2001|0},
{2110|0}, and {−1|0}, where the left part represents the rota-
tion and the right part means the lattice translation (here −1
denotes the inversion symmetry). According to the inversion
symmetry, the total contribution of DM interactions to the en-
ergy of double cone magnetic structure in Eq. (A8) is absent,
i.e.,

∑
i, j Dz

ci, j = 0, which is easy to see from Tables IX and
X. First, each kagome layer is still FM in the double cone
magnetic state, thus the in-plane DM interactions are ineffec-
tive. For interlayer DM interactions with an inversion center
such as Dc1, the inversion symmetry restricts it to be zero, as
shown in Table IX. Meanwhile, for other interlayer DM inter-
actions, the inversion symmetry combines the equivalent DM
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TABLE XI. The corresponding Wyckoff positions and the coordinates of the atoms in the pristine phase and CDW phases with different
symmetries. (Part I.)

Pristine phase (P6/mmm) SG191-P6/mmm (type I) SG191-P6/mmm (type II) SG194-P63/mmc (type I) SG194-P63/mmc(type II)
WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 1a (0, 0, 0) Ge1 2e (0, 0, z) Ge1 2a (0, 0, 0) Ge1 2b (0, 0, 1/4)
Ge2 1b (0, 0, 1/2) Ge2 6i (1/2, 0, z) Ge2 6g (1/2, 0, 0) Ge2 6h (x, 2x, 1/4)
Ge3 3 f (1/2, 0, 0)

Ge4 3g (1/2, 0, 1/2)

Ge2 2d (1/3, 2/3, 1/2) Ge5 4h (1/3, 2/3, z) Ge3 2c (1/3, 2/3, 0) Ge3 2c (1/3, 2/3, 1/4) Ge3 4 f (1/3, 2/3, z)
Ge6 12o (x, 2x, z) Ge4 2d (1/3, 2/3, 1/2) Ge4 2d (1/3, 2/3, 1/4) Ge4 12k (x, 2x, z)

Ge5 6l (x, 2x, 0) Ge5 6h (x, 2x, 1/4)

Ge6 6m (x, 2x, 1/2) Ge6 6h (x, 2x, 1/4)

Fe 3 f (1/2, 0, 0) Fe1 6 j (x, 0, 0) Fe1 12n (x, 2x, z) Fe1 12k (x, 0, 0) Fe1 6h (x, 2x, 1/4)
Fe2 6k (x, 0, 1/2) Fe2 12o (x, 0, z) Fe2 12k (x, 2x, z) Fe2 6h (x, 2x, 1/4)
Fe3 6l (x, 2x, 0) Fe3 12 j (x, y, 1/4)
Fe4 6m (x, 2x, 1/2)

Pristine phase (P6/mmm) SG193-P63/mcm (type I) SG193-P63/mcm (type II) SG192-P6/mcc (type I) SG192-P6/mcc(type II)

WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 2b (0, 0, 0) Ge1 2a (0, 0, 1/4) Ge1 2b (0, 0, 0) Ge1 2b (0, 0, 1/4)

Ge2 6 f (1/2, 0, 0) Ge2 6g (x, 0, 1/4) Ge2 6g (1/2, 0, 0) Ge2 6 f (1/2, 0, 1/4)

Ge2 2d (1/3, 2/3, 1/2) Ge3 4c (1/3, 2/3, 1/4) Ge3 4d (1/3, 2/3, 0) Ge3 4c (1/3, 2/3, 1/4) Ge3 4d (1/3, 2/3, z)
Ge4 12 j (x, y, 1/4) Ge4 12i (x, 2x, 0) Ge4 12k (x, 2x, 1/4) Ge4 12l (x, y, 0)

Fe 3 f (1/2, 0, 0) Fe1 12i (x, 0, z) Fe1 6g (x, 0, 1/4) Fe1 12l (x, y, 0) Fe1 12 j (x, 0, 1/4)
Fe2 12k (x 2x,0) Fe2 6g (x, 0, 1/4) Fe2 12l (x, y, 0) Fe2 12k (x, 2x, 1/4)

Fe3 12 j (x, y, 1/4)

Pristine phase (P6/mmm) SG190-P62c (type I) SG190-P62c (type II) SG189-P6 2m (type I) SG189-P 62 m(type II)

WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 2a (0, 0, 0) Ge1 2b (0, 0, 1/4) Ge1 1a (0, 0, 0) Ge1 2e (0, 0, z)
Ge2 6g (x, 0, 0) Ge2 6h (x, y, 1/4) Ge2 1b (0, 0, 1/2) Ge2 6i (x, 0, z)

Ge3 3 f (x, 0, 0)

Ge4 3g (x, 0, 1/2)

Ge2 2d (1/3, 2/3, 1/2) Ge3 2c (1/3, 2/3, 1/4) Ge3 4 f (1/3, 2/3, z) Ge5 4h (1/3, 2/3, z) Ge3 2c (1/3, 2/3, 0)
Ge4 2d (1/3, 2/3, 3/4) Ge4 12i (x, y, z) Ge6 12l (x, y, z) Ge4 2d (1/3, 2/3, 1/2)
Ge5 6h (x, y, 1/4) Ge5 6 j (x, y, 0)
Ge6 6h (x, y, 1/4) Ge6 6k (x, y, 1/2)

Fe 3 f (1/2, 0, 0)) Fe1 6g (x, 0, 0) Fe1 6h (x, y, 1/4) Fe1 3 f (x, 0, 0) Fe1 6i (x, 0, z)
Fe2 6g (x, 0, 0) Fe2 6h (x, y, 1/4) Fe2 3 f (x, 0, 0) Fe2 6i (x, 0, z)
Fe3 12i (x, y, z) Fe3 6h (x, y, 1/4) Fe3 3g (x, 0, 1/2) Fe3 12l (x, y, z)

Fe4 6h (x, y, 1/4) Fe4 3g (x, 0, 1/2)

Fe5 6 j (x, y, 0)

Fe6 6k (x, y, 1/2)

Pristine phase(P6/mmm) SG188-P6c2(type I) SG188-P6c2(type II) SG187-P6 m2(type I) SG187-P 6m2(type II)

WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 2a (0, 0, 0) Ge1 2d (1/3, 2/3, 1/4) Ge1 1a (0, 0, 0) Ge1 2h (1/3, 2/3, z)
Ge2 6 j (x, 2x, 0) Ge2 6k (x, y, 1/4) Ge2 1b (0, 0, 1/2) Ge2 6n (x, 2x, z)

Ge3 3j (x, 2x, 0)

Ge4 3k (x, 2x, 1/2)

Ge2 2d (1/3, 2/3, 1/2) Ge3 2d (2/3, 1/3, 1/4) Ge3 2a (0, 0, 0) Ge5 2i (2/3, 1/3, z) Ge3 1a (0, 0, 0)
Ge4 2f (1/3, 2/3, 1/4) Ge4 2e (2/3, 1/3, 0) Ge6 2h (1/3, 2/3, z) Ge4 1b (0, 0, 1/2)
Ge5 6k (x, y, 1/4) Ge5 6 j (x, 2x, 0) Ge7 6n (x, 2x, z) Ge5 1e (2/3, 1/3, 0)
Ge6 6k (x, y, 1/4) Ge6 6 j (x, 2x, 1/2) Ge8 6n (x, 2x, z) Ge6 1f (2/3, 1/3, 1/2)

Ge7 3j (x, 2x, 0)
Ge8 3j (x, 2x, 0)
Ge9 3k (x, 2x, 1/2)

Ge10 3k (x, 2x, 1/2)

Fe 3 f (1/2, 0, 0) Fe1 6 j (x, 2x, 0) Fe1 6k (x, y, 1/4) Fe1 3j (x, 2x, 0) Fe1 6n (x, 2x,z)
Fe2 6 j (x, 2x, 0) Fe2 6k (x, y, 1/4) Fe2 3j (x, 2x, 0) Fe2 6n (x, 2x,z)
Fe3 12l (x, y, z) Fe3 6k (x, y, 1/4) Fe3 3k (x, 2x, 1/2) Fe3 12o (x, y, z)

Fe4 6k (x, y, 1/4) Fe4 3k (x, 2x, 1/2)

Fe5 6l (x, y, 0)

Fe6 6m (x, y, 1/2)
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TABLE XII. The corresponding Wyckoff positions and the coordinates of the atoms in the pristine phase and CDW phases with different
symmetries. (Part II.)

Pristine phase (P6/mmm) SG186-P63mc (type I) SG185-P63cm (type I) SG184-P6cc (type I) SG183-P6mm(type I)
WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 2a (0, 0, z) Ge1 2a (0, 0, z) Ge1 2a (0, 0, z) Ge1 1a (0, 0, z)
Ge2 6c (x, 0, z) Ge2 6c (x, 2x, z) Ge2 6c (1/2, 0, z) Ge2 1a (0, 0, z)

Ge3 3c (1/2, 0, z)
Ge4 3c (1/2, 0, z)

Ge2 2d (1/3, 2/3, 1/2) Ge3 4b (1/3, 2/3, z) Ge3 2b (1/3, 2/3, z) Ge3 4b (1/3, 2/3, z) Ge5 2b (1/3, 2/3, z)
Ge4 12d (x, y, z) Ge4 2b (1/3, 2/3, z) Ge4 12d (x, y, z) Ge6 2b (1/3, 2/3, z)

Ge5 6c (x, 2x, z) Ge7 6e (x, 2x, z)
Ge6 6c (x, 2x, z) Ge8 6e (x, 2x, z)

Fe 3 f (1/2, 0, 0) Fe1 6c (x, 0, z) Fe1 6c (x, 2x, z) Fe1 12d (x, y, z) Fe1 6d (x, 0, z)
Fe2 6c (x, 0, z) Fe2 6c (x, 2x, z) Fe2 12d (x, y, z) Fe2 6d (x, 0, z)
Fe3 12d (x, y, z) Fe3 12d (x, y, z) Fe3 6d (x, 2x, z)

Fe4 6d (x, 2x, z)

Pristine phase (P6/mmm) SG182-P6322 (type I) SG182-P6322 (type II) SG177-P622 (type I) SG177-P622(type II)

WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 2a (0, 0, 0) Ge1 2b (0, 0, 1/4) Ge1 1a (0, 0, 0) Ge1 2e (0, 0, z)
Ge2 6g (x, 0, 0) Ge2 6h (x, 2x, 1/4) Ge2 1b (0, 0, 1/2) Ge2 6i (1/2, 0, z)

Ge3 3 f (0, 1/2, 0)

Ge4 3g (0, 1/2, 1/2)

Ge2 2d (1/3, 2/3, 1/2) Ge3 2c (1/3, 2/3, 1/4) Ge3 4 f (1/3, 2/3, z) Ge5 4h (1/3, 2/3, z) Ge3 2c (1/3, 2/3, 0)
Ge4 2d (1/3, 2/3, 3/4) Ge4 12i (x, y, z) Ge6 12n (x, y, z) Ge4 2d (1/3, 2/3,1/2)
Ge5 6h (x, 2x, 1/4) Ge5 6l (x, 2x, 0)
Ge6 6h (x, 2x, 1/4) Ge6 6m (x, 2x, 1/2)

Fe 3 f (1/2, 0, 0) Fe1 6g (x, 0, 0) Fe1 6h (x, 2x, 1/4) Fe1 6 j (x, 0, 0) Fe1 12n (x, y, z)
Fe2 6g (x, 0, 0) Fe2 6h (x, 2x, 1/4) Fe2 6k (x, 0, 1/2) Fe1 12n (x, y, z)
Fe3 12i (x, y, z) Fe3 12i (x, y, z) Fe3 6l (x, 2x, 0)

Fe4 6m (x, 2x, 1/2)

Pristine phase (P6/mmm) SG176-P63/m (type I) SG176-P63/m (type II) SG175-P6/m (type I) SG175-P6/m(type II)

WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 2b (0, 0, 0) Ge1 2a (0, 0, 1/4) Ge1 1a (0, 0, 0) Ge1 2e (0, 1/2, z)
Ge2 6g (1/2, 0, 0) Ge2 6h (x, y, 1/4) Ge2 1b (0, 0, 1/2) Ge2 6i (0, 0, z)

Ge3 3 f (1/2, 0, 0)

Ge4 3g (1/2, 0, 1/2)

Ge2 2d (1/3, 2/3, 1/2) Ge3 2c (1/3, 2/3, 1/4) Ge3 4 f (1/3, 2/3, z) Ge5 4h (1/3, 2/3, z) Ge3 2c (1/3, 2/3, 0)
Ge4 2d (1/3, 2/3, 3/4) Ge4 12i (x, y, z) Ge6 212l (x, y, z) Ge4 2d (1/3, 2/3, 1/2)
Ge5 6h (x, y, 1/4) Ge5 6 j (x, y, 0)
Ge6 6h (x, y, 1/4) Ge6 6k (x, y, 1/2)

Fe 3 f (1/2, 0, 0) Fe1 12i (x, y, z) Fe1 6h (x, y, 1/4) Fe1 6 j (x, y, 0) Fe1 12l (x, y, z)
Fe2 12i (x, y, z) Fe2 6h (x, y, 1/4) Fe2 6 j (x, y, 0) Fe2 12l (x, y, z)

Fe3 6h (x, y, 1/4) Fe3 6k (x, y, 1/2)

Fe4 6h (x, y, 1/4) Fe4 6k (x, y, 1/2)

Pristine phase(P6/mmm) SG165-P3c1(type I) SG165-P3c1(type II) SG164-P3 m1(type I) SG164-P 3m1(type II)

WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 2b (0, 0, 0) Ge1 2a (0, 0, 1/4) Ge1 1a (0, 0, 0) Ge1 2c (0, 0, z)
Ge2 6e (1/2, 0, 0) Ge2 6 f (x, 0, 1/4) Ge2 1b (0, 0, 1/2) Ge2 6i (x, 2x z)

Ge3 3e (0, 1/2, 0)

Ge4 3 f (0, 1/2, 1/2)

Ge2 2d (1/3, 2/3, 1/2) Ge3 4d (1/3, 2/3, z) Ge3 4d (1/3, 2/3, z) Ge5 2d (1/3, 2/3, z) Ge3 2d (1/3, 2/3, z)
Ge4 12g (x, y, z) Ge4 12g (x, y, z) Ge6 2d (1/3, 2/3, z) Ge4 2d (1/3, 2/3, z)

Ge7 6i (x, 2x, z) Ge5 6i (x, 2x, z)

Ge8 6i (x, 2x, z) Ge6 6i (x, 2x, z)

Fe 3 f (1/2, 0, 0) Fe1 12g (x, y, z) Fe1 6 f (x, 0, 1/4) Fe1 6i (x, 2x, z) Fe1 6i (x, 2x, z)
Fe2 12g (x, y, z) Fe2 6 f (x, 0, 1/4) Fe2 6i (x, 2x, z) Fe2 6i (x, 2x, z)

Fe3 12g (x, y, z) Fe3 12 j (x, y, z) Fe3 12 j (x, y, z)
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TABLE XIII. The corresponding Wyckoff positions and the coordinates of the atoms in the pristine phase and CDW phases with different
symmetries. (Part III.)

Pristine phase (P6/mmm) SG163-P31c (type I) SG163-P31c (type II) SG162-P3 1m (type I) SG162-P 31m(type II)
WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 2b (0, 0, 0) Ge1 2a (0, 0, 1/4) Ge1 1a (0, 0, 0) Ge1 2e (0, 0, z)
Ge2 6g (0, 1/2, 0) Ge2 6h (x, 2x, 1/4) Ge2 1b (0, 0, 1/2) Ge2 6k (x, 0, z)

Ge3 3 f (1/2, 0, 0)

Ge4 3g, (1/2, 0, 1/2)

Ge2 2d (1/3, 2/3, 1/2) Ge3 2c (1/3, 2/3, 1/4) Ge3 4 f (1/3, 2/3, z) Ge5 4h (1/3, 2/3, z) Ge3 2c (1/3, 2/3, 0)
Ge4 2d (1/3, 2/3, 3/4) Ge4 12i (x, y, z) Ge6 12l (x, y, z) Ge4 2d (1/3, 2/3, 1/2)
Ge5 6h (x, 2x, 1/4) Ge5 6i (x, 2x, 0)
Ge6 6h (x, 2x, 1/4) Ge6 6 j (x, 2x, 1/2)

Fe 3 f (1/2, 0, 0)) Fe1 12i (x, y, z) Fe1 6h (x, 2x, 1/4) Fe1 6i (x, 2x, 0) Fe1 6k (x, 0, z)
Fe2 12i (x, y, z) Fe2 6h (x, 2x, 1/4) Fe2 6 j (x, 2x, 1/2) Fe2 6k (x, 0, z)

Fe3 12i (x, y, z) Fe3 6k (x, 0, z) Fe3 12i (x, y, z)
Fe4 6k (x, 0, z)

Pristine phase (P6/mmm) SG68-Ccce (type I) SG68-Ccce (type II) SG68-Ccce (type III) SG68-Ccce(type IV)

WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 8c (1/4, 1/4, 0) Ge1 8e (x, 1/4, 1/4) Ge1 8g (0, 1/4, z) Ge1 4a (0, 1/4, 1/4)
Ge2 8d (0, 0, 0) Ge2 8 f (0, y, 1/4) Ge2 8h (1/4, 0, z) Ge2 4b (0, 1/4, 3/4)

Ge3 8h (1/4, 0, z)

Ge2 2d (1/3, 2/3, 1/2) Ge3 8 f (0, y, 1/4) Ge3 16i (x, y, z) Ge3 8 f (0, y, 1/4) Ge3 16i (x, y, z)
Ge4 8 f (0, y, 1/4) Ge4 16i (x, y, z) Ge4 8 f (0, y, 1/4) Ge4 16i (x, y, z)
Ge5 16i (x, y, z) Ge5 16i (x, y, z)

Fe 3 f (1/2, 0, 0)) Fe1 8g (0, 1/4, z) Fe1 4a (0, 1/4, 1/4) Fe1 8c (1/4, 1/4, 0) Fe1 8e (x, 1/4, 1/4)
Fe2 8h (1/4, 0, z) Fe2 4b (0, 1/4, 3/4) Fe2 8d (0, 0, 1/2) Fe2 8 f (0, y, 1/4)
Fe3 16i (x, y, z) Fe3 8h (1/4, 0, z) Fe3 16i (x, y, z) Fe3 16i (x, y, z)
Fe4 16i (x, y, z) Fe4 16i (x, y, z) Fe4 16i (x, y, z) Fe4 16i (x, y, z)

Fe5 16i (x, y, z)

Pristine phase (P6/mmm) SG67-Cmme (type I) SG67-Cmme (type II) SG67-Cmme (type III) SG67-Cmme(type IV)

WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 4c (0, 0, 0) Ge1 4a (1/4, 0, 0) Ge1 4g (0, 1/4, z) Ge1 8n (x, 1/4, z)
Ge2 4d (0, 0, 1/2) Ge2 4b (1/4, 0, 1/2) Ge2 4g (0, 1/4, z) Ge2 8m (0, y, z)
Ge3 4e (1/4, 1/4, 0) Ge3 4g (0, 1/4, z) Ge3 8l (1/4, 0, z)

Ge4 4 f (1/4, 1/4, 1/2) Ge4 4g (0, 1/4, z)

Ge2 2d (1/3, 2/3, 1/2) Ge5 8m (0, y, z) Ge5 8m (0, y, z) Ge4 8j (1/4, y, 0) Ge3 8j (1/4, y, 0)
Ge6 8m (0, y, z) Ge6 8m (0, y, z) Ge5 8k (1/4, y, 1/2) Ge4 8k (1/4, y, 1/2)
Ge7 16o (x, y, z) Ge7 16o (x, y, z) Ge6 8m (0, y, z) Ge5 8m (0, y, z)

Ge7 8m (0, y, z) Ge6 8m (0, y, z)

Fe 3 f (1/2, 0, 0)) Fe1 4a (1/4, 0, 0) Fe1 4c (0, 0, 0) Fe1 8n (x, 1/4, z) Fe1 4g (0, 1/4, z)
Fe2 4b (1/4, 0, 1/2) Fe2 4d (0, 0, 1/2) Fe2 8m (0, y, z) Fe2 4g (0, 1/4, z)
Fe3 4g (0, 1/4, z) Fe3 4e (1/4, 1/4, 0) Fe3 16o (x, y, z) Fe3 8l (1/4, 0, z)
Fe4 4g (0, 1/4, z) Fe4 4 f (1/4, 1/4, 1/2) Fe4 16o (x, y, z) Fe4 16o (x, y, z)
Fe5 16o (x, y, z) Fe5 16o (x, y, z) Fe5 16o (x, y, z)
Fe6 16o (x, y, z) Fe6 16o (x, y, z)

Pristine phase(P6/mmm) SG66-Cccm(type I) SG66-Cccm(type II) SG66-Cccm(type III) SG66-Cccm(type IV)

WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 4c (0, 0, 0) Ge1 4a (0, 0, 1/4) Ge1 8l (x, y, 0) Ge1 8g (x, 0, 1/4)
Ge2 4d (0, 0, 1/2) Ge2 4b (0, 1/2, 1/4) Ge2 8l (x, y, 0) Ge2 8h (0, y, 1/4)
Ge3 4e (1/4, 1/4, 0) Ge3 8k (1/4, 1/4, 1/4)

Ge4 4 f (1/4, 1/4, 1/2)

Ge2 2d (1/3, 2/3, 1/2) Ge5 8h (0, y, 1/4) Ge4 8l (x, y, 0) Ge3 8h (0, y, 1/4) Ge3 8l (x, y, 0)
Ge6 8h (0, y, 1/4) Ge5 8l (x, y, 0) Ge4 8h (0, y, 1/4) Ge4 8l (x, y, 0)
Ge7 16m (x, y, z) Ge6 8l (x, y, 0) Ge5 16m (x, y, z) Ge5 8l (x, y, 0)

Ge7 8l (x, y, 0) Ge6 8l (x, y, 0)

Fe 3 f (1/2, 0, 0)) Fe1 8l (x, y, 0) Fe1 8g (x, 0, 1/4) Fe1 4c (0, 0, 0) Fe1 4a (0, 0, 1/4)
Fe2 8l (x, y, 0) Fe2 8h (0, y, 1/4) Fe2 4d (0, 0, 1/2) Fe2 4b (0, 1/2, 1/4)
Fe3 8l (x, y, 0) Fe3 16m (x, y, z) Fe3 4e (1/4, 1/4, 0) Fe3 8k (1/4, 1/4, 1/4)
Fe4 8l (x, y, 0) Fe4 16m (x, y, z) Fe4 4 f (1/4, 1/4, 1/2) Fe4 16m (x, y, z)
Fe5 8l (x, y, 0) Fe5 8l (x, y, 0) Fe5 16m (x, y, z)
Fe6 8l (x, y, 0) Fe6 8l (x, y, 0)

Fe7 8l (x, y, 0)

Fe8 8l (x, y, 0)
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TABLE XIV. The corresponding Wyckoff positions and the coordinates of the atoms in the pristine phase and CDW phases with different
symmetries. (Part IV.)

Pristine phase (P6/mmm) SG65-Cmmm (type I) SG65-Cmmm (type II) SG65-Cmmm (type III) SG65-Cmmm(type IV)
WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 2a (0, 0, 0) Ge1 4i (0, y, 0) Ge1 4k (0, 0, z) Ge1 8o (x, 0, z)
Ge2 2b (0, 1/2, 0) Ge2 4 j (0, y, 1/2) Ge2 4l (0, 1/2, z) Ge2 8n (0, y, z)
Ge3 2c (0, 1/2, 1/2) Ge3 4g (x, 0, 0) Ge3 8m (1/4, 1/4, z)
Ge4 2d (0, 0, 1/2) Ge4 4h (x, 0, 1/2)
Ge5 4e (1/4, 1/4, 0)
Ge6 4 f (1/4, 1/4, 1/2)

Ge2 2d (1/3, 2/3, 1/2) Ge7 8n (0, y, z) Ge5 8n (0, y, z) Ge4 4i (0, y, 0) Ge3 4i (0, y, 0)
Ge8 8n (0, y, z) Ge6 8n (0, y, z) Ge5 4i (0, y, 0) Ge4 4i (0, y, 0)
Ge9 16r (x, y, z) Ge7 16r (x, y, z) Ge6 4 j (0, y, 1/2) Ge5 4 j (0, y, 1/2)

Ge7 4 j (0, y, 1/2) Ge6 4 j (0, y, 1/2)
Ge8 8p (x, y, 0) Ge7 8p (x, y, 0)
Ge9 8q (x, y, 1/2) Ge8 8q (x, y, 1/2)

Fe 3 f (1/2, 0, 0) Fe1 4g (x, 0, 0) Fe1 2a (0, 0, 0) Fe1 8o (x, 0, z) Fe1 4k (0, 0, z)
Fe2 4h (x, 0, 1/2) Fe2 2b (0, 1/2, 0) Fe2 8n (0, y, z) Fe2 4l (0, 1/2, z)
Fe3 4i (0, y, 0) Fe3 2c (0, 1/2, 1/2) Fe3 16r (x, y, z) Fe3 8m (1/4, 1/4, z)
Fe4 4 j (0, y, 1/2) Fe4 2d (0, 0, 1/2) Fe4 16r (x, y, z) Fe4 16r (x, y, z)
Fe5 8p (x, y, 0) Fe5 4e (1/4, 1/4, 0) Fe5 16r (x, y, z)
Fe6 8p (x, y, 0) Fe6 4 f (1/4, 1/4, 1/2)
Fe7 8q (x, y, 1/2) Fe7 8p (x, y, 0)
Fe8 8q (x, y, 1/2) Fe8 8p (x, y, 0)

Fe9 8q (x, y, 1/2)
Fe10 8q (x, y, 1/2)

Pristine phase (P6/mmm) SG64-Cmce (type I) SG64-Cmce (type II) SG64-Cmce (type III) SG64-Cmce (type IV)
WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 4a (0, 0, 0) Ge1 4a (0, 0, 0) Ge1 8e (1/4, y, 1/4) Ge1 8e (1/4, y, 1/4)
Ge2 4b (0, 0, 1/2) Ge2 4b (0, 0, 1/2) Ge2 8 f (0, y, z) Ge2 8 f (0, y, z)
Ge3 8c (1/4, 1/4, 0) Ge3 8c (1/4, 1/4, 0)

Ge2 2d (1/3, 2/3, 1/2) Ge4 16g (x, y, z) Ge4 8e (1/4, y, 1/4) Ge3 8d (x, 0, 0) Ge3 8 f (0, y, z)
Ge5 16g (x, y, z) Ge5 8e (1/4, y, 1/4) Ge4 8d (x, 0, 0) Ge4 8 f (0, y, z)

Ge6 8 f (0, y, z) Ge5 16g (x, y, z) Ge5 16g (x, y, z)
Ge7 8 f (0, y, z)

Fe 3 f (1/2, 0, 0)) Fe1 8d (x, 0, 0) Fe1 8e (1/4, y, 1/4) Fe1 8e (1/4, y, 1/4) Fe1 8e (1/4, y, 1/4)
Fe2 8 f (0, y, z) Fe2 8 f (0, y, z) Fe2 8 f (0, y, z) Fe2 8 f (0, y, z)
Fe3 16g (x, y, z) Fe3 16g (x, y, z) Fe3 16g (x, y, z) Fe3 16g (x, y, z)
Fe4 16g (x, y, z) Fe4 16g (x, y, z) Fe4 16g (x, y, z) Fe4 16g (x, y, z)

Pristine phase(P6/mmm) SG64-Cmce(type V) SG64-Cmce(type VI) SG64-Cmce(type VII) SG64-Cmce(type VIII)
WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 8e (1/4, y, 1/4) Ge1 8e (1/4, y, 1/4) Ge1 8d (x, 0, 0) Ge1 8d (x, 0, 0)
Ge2 8 f (0, y, z) Ge2 8 f (0, y, z) Ge2 8 f (0, y, z) Ge2 8 f (0, y, z)

Ge2 2d (1/3, 2/3, 1/2) Ge3 8 f (0, y, z) Ge3 8d (x, 0, 0) Ge3 16g (x, y, z) Ge4 8e (1/4, y, 1/4)
Ge4 8 f (0, y, z) Ge4 8d (x, 0, 0) Ge4 16g (x, y, z) Ge5 8e (1/4, y, 1/4)
Ge5 16g (x, y, z) Ge5 16g (x, y, z) Ge6 8 f (0, y, z)

Ge7 8 f (0, y, z)

Fe 3 f (1/2, 0, 0)) Fe1 8e (1/4, y, 1/4) Fe1 8e (1/4, y, 1/4) Fe1 4a (0, 0, 0) Fe1 4a (0, 0, 0)
Fe2 8 f (0, y, z) Fe2 8 f (0, y, z) Fe2 4b (0, 0, 1/2) Fe2 4b (0, 0, 1/2)
Fe3 16g (x, y, z) Fe3 16g (x, y, z) Fe3 8c (1/4, 1/4, 0) Fe3 8c (1/4, 1/4, 0)
Fe4 16g (x, y, z) Fe4 16g (x, y, z) Fe4 16g (x, y, z) Fe4 16g (x, y, z)

Fe5 16g (x, y, z) Fe5 16g (x, y, z)

interactions in pairs. For example, as shown in Table IX, the
Dc2,1 and Dc2,7 are connected by the inversion symmetry and
have opposite values. Therefore, the summation over equiva-
lent interlayer DM interactions are all zero due to the inversion

symmetry. Note that not only inversion symmetry but mirror
symmetries such as {m001|0}, {m110|0}, {m100|0}, {m010|0},
{m1−10|0}, {m120|0}, and {m210|0} in space group P6/mmm,
would also make the DM contributions to the canted
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TABLE XV. The corresponding Wyckoff positions and the coordinates of the atoms in the pristine phase and CDW phases with different
symmetries. (Part V.)

Pristine phase (P6/mmm) SG63-Cmcm (type I) SG63-Cmcm (type II) SG63-Cmcm (type III) SG63-Cmcm(type IV)
WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 4a (0, 0, 0) Ge1 4a (0, 0, 0) Ge1 4c (0, y, 1/4) Ge1 4c (0, y, 1/4)
Ge2 4b (0, 1/2, 0) Ge2 4b (0, 1/2, 0) Ge2 4c (0, y, 1/4) Ge2 4c (0, y, 1/4)
Ge3 8d (1/4, 1/4, 0) Ge3 8d (1/4, 1/4, 0) Ge3 8g (x, y, 1/4) Ge3 8g (x, y, 1/4)

Ge2 2d (1/3, 2/3, 1/2) Ge4 8g (x, y, 1/4) Ge4 4c (0, y, 1/4) Ge4 8e (x, 0, 0) Ge4 8e (x, 0, 0)
Ge5 8g (x, y, 1/4) Ge5 4c (0, y, 1/4) Ge5 8e (x, 0, 0) Ge5 8e (x, 0, 0)
Ge6 8g (x, y, 1/4) Ge6 4c (0, y, 1/4) Ge6 16h (x, y, z) Ge6 16h (x, y, z)
Ge7 8g (x, y, 1/4) Ge7 4c (0, y, 1/4)

Ge8 8g (x, y, 1/4)
Ge9 8g (x, y, 1/4)

Fe 3 f (1/2, 0, 0) Fe1 8e (x, 0, 0) Fe1 8e (x, 0, 0) Fe1 4c (0, y, 1/4) Fe1 4c (0, y, 1/4)
Fe2 8 f (0, y, z) Fe2 8 f (0, y, z) Fe2 4c (0, y, 1/4) Fe2 4c (0, y, 1/4)
Fe3 16h (x, y, z) Fe3 16h (x, y, z) Fe3 8g (x, y, 1/4) Fe3 8g (x, y, 1/4)
Fe4 16h (x, y, z) Fe4 16h (x, y, z) Fe4 8g (x, y, 1/4) Fe4 8g (x, y, 1/4)

Fe5 8g (x, y, 1/4) Fe5 8g (x, y, 1/4)
Fe6 8g (x, y, 1/4) Fe6 8g (x, y, 1/4)
Fe7 8g (x, y, 1/4) Fe7 8g (x, y, 1/4)

Pristine phase (P6/mmm) SG63-Cmcm (type V) SG63-Cmcm (type VI) SG63-Cmcm (type VII) SG63-Cmcm (type VIII)
WP Coordinates WP Coordinates WP Coordinates WP Coordinates WP Coordinates

Ge1 1a (0, 0, 0) Ge1 4c (0, y, 1/4) Ge1 4c (0, y, 1/4) Ge1 8e (x, 0, 0) Ge1 8e (x, 0, 0)
Ge2 4c (0, y, 1/4) Ge2 4c (0, y, 1/4) Ge2 8 f (0, y, z) Ge2 8 f (0, y, z)
Ge3 8g (x, y, 1/4) Ge3 8g (x, y, 1/4)

Ge2 2d (1/3, 2/3, 1/2) Ge4 8 f (0, y, z) Ge4 8 f (0, y, z) Ge3 8g (x, y, 1/4) Ge4 4c (0, y, 1/4)
Ge5 8 f (0, y, z) Ge5 8 f (0, y, z) Ge4 8g (x, y, 1/4) Ge5 4c (0, y, 1/4)
Ge6 16h (x, y, z) Ge6 16h (x, y, z) Ge5 8g (x, y, 1/4) Ge6 4c (0, y, 1/4)

Ge6 8g (x, y, 1/4) Ge7 4c (0, y, 1/4)
Ge8 8g (x, y, 1/4)
Ge9 8g (x, y, 1/4)

Fe 3 f (1/2, 0, 0)) Fe1 4c (0, y, 1/4) Fe1 4c (0, y, 1/4) Fe1 4a (0, 0, 0) Fe1 4a (0, 0, 0)
Fe2 4c (0, y, 1/4) Fe2 4c (0, y, 1/4) Fe2 4b (0, 1/2, 0) Fe2 4b (0, 1/2, 0)
Fe3 8g (x, y, 1/4) Fe3 8g (x, y, 1/4) Fe3 8d (1/4, 1/4, 0) Fe3 8d (1/4, 1/4, 0)
Fe4 8g (x, y, 1/4) Fe4 8g (x, y, 1/4) Fe4 16h (x, y, z) Fe4 16h (x, y, z)
Fe5 8g (x, y, 1/4) Fe5 8g (x, y, 1/4) Fe5 16h (x, y, z) Fe5 16h (x, y, z)
Fe6 8g (x, y, 1/4) Fe6 8g (x, y, 1/4)
Fe7 8g (x, y, 1/4) Fe7 8g (x, y, 1/4)

magnetic ground state to be zero based on the similar analysis
above. Therefore, DM interactions have no contribution to
double cone magnetic structure with the symmetry of high-
temperature phase.

As mentioned in the main text, since the 2 × 2 × 2 su-
percell structure of the CDW phase (compared with the
nonmagnetic pristine phase) is suggested experimentally
[45,46,48,49], we present the possible CDW phases of
kagome FeGe with 2 × 2 × 2 supercell. The 2 × 2 × 2 su-
percell without distortion has the symmetry of space group
P6/mmm, the nonprimitive translation operations tx {1|
1/2,0,0}, ty {1|0,1/2,0}, tz {1|0,0,1/2}, and many symme-
try operations from their combinations. As the subgroups
compatible with 2 × 2 × 2 supercell of pristine FeGe, the
structural distortion of CDW phases would break the nonprim-
itive translation operations tx, ty, and tz, and possibly break
other symmetry operations as well. Since the point group as-

sociated with high-temperature phase FeGe (P6/mmm) is D6h,
we consider all CDW phases whose associated point group
is D6h itself or in maximal subgroups of D6h (D2h, D6, C6h,
C6v , D3d , D3h). In total, we find 68 different possible CDW
phases and list the corresponding relations of atomic positions
in the high-temperature phase and all types of proposed CDW
phases in Tables XI–XV. Note that the inversion symmetry
and mirror symmetries in parent group P6/mmm would all
eliminate the contribution of DM interactions based on the
symmetry analysis. Among these 68 proposed CDW phases,
only four distorted structures do not have the inversion sym-
metry and mirror symmetries, which can lead to nonzero DM
contribution to the double cone spin structure and may explain
this magnetic ground state. They belong to two space groups
P622 and P6322, and we list the corresponding Wyckoff po-
sitions and the coordinates of the atoms in the pristine phase
and these four CDW phases in Table II of the main text.
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