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Materials with square lattices composed of group IV or V elements provide a promising platform for
topological phases to emerge. We present the study on single crystals of LuPb2, which is a compound based on
the Pb square net. The de Haas–van Alphen effect measurements reveal clear quantum oscillations, from which
nonzero Berry phases are extracted. DFT calculation confirmed the presence of anisotropic Dirac dispersion
near Fermi energy, suggesting that LuPb2 is a candidate Dirac semimetal. Additionally, LuPb2 shows a large
quasilinear magnetoresistance. Through analysis of the magnetotransport data, we have determined that the
quasilinear magnetoresistance is primarily governed by the average carrier mobility, as predicted by the classic
Parish-Littlewood model. Furthermore, we observed the surface superconductivity, with a highly anisotropic
upper critical field and enhancement of the resistivity critical field, which we attributed to the presence of a
potential nanoscale lead layer on the surface of the sample. These findings are expected to provide a new platform
for hosting anisotropic Dirac fermions and superconductivity.
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I. INTRODUCTION

Materials with square-net structures have attracted signif-
icant attention in recent years due to their exotic topological
properties [1]. Notable examples include XMnBi2 compounds
(X = Ca, Sr, Ba) [2–5], ZrSiM compounds (M = S, Se,
Te) [6–8], and RSn2 compounds (R = Y, Lu, Sc) [9–12].
These two-dimensional electronic structures have played
a crucial role in discovering topological semimetals. No-
tably, square nets in crystal structure also make significant
contributions to superconductivity. In cuprate superconduc-
tors, they are thought to be responsible for the extremely
high superconducting transition temperature [13]. Recently,
an increasing number of square-net superconductors have
been identified [14–16], indicating that these materials may
provide a promising avenue for discovering novel topo-
logical phases and emerging phenomena. Thus, square-net
materials present a promising avenue for research in these
areas.

Magnetoresistance, the change in electrical resistance of a
material in response to an applied magnetic field, is a crucial
phenomenon in modern condensed matter physics [17]. Lin-
ear magnetoresistance (LMR), a type of magnetoresistance
characterized by a linear increase in resistance with magnetic
field strength, has emerged as an intriguing deviation from
the typical quadratic behavior observed in most metals and
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semimetals [18,19]. LMR has been observed in a diverse
range of materials, ranging from disordered systems such
as bismuth thin films [20], InSb [21], and Ag2−δX [22–25],
to topological semimetals like γ -PtBi2 [26], YPdBi [27],
TaAs [28], Na3Bi [29], and Cd3As2, as well as topologi-
cal insulators such as Bi2Te3 [30]. The underlying physical
mechanisms behind LMR in these materials have been subject
to extensive debate among researchers. Abrikosov proposed
a quantum LMR mechanism that arises when the magnetic
field strength approaches the quantum limit [30,31], while
Parish and Littlewood proposed a classical mechanism based
on spatial fluctuations in charge-carrier mobility in silver
chalcogenides [22,32]. In addition, other factors have been
implicated in LMR, including open Fermi surfaces [26],
Hall fields [33], and carrier density fluctuations [34]. These
proposed mechanisms highlight the complexity of LMR in
semimetals. Further research is needed to fully understand
the mechanisms behind LMR and to explore its potential
applications in various fields.

In this study, we synthesized single crystals of LuPb2

and studied their electronic band structure. Our analysis of
de Haas–van Alphen (dHvA) quantum oscillations through
torque measurements revealed the presence of multiple Fermi
pockets and a nontrivial Berry phase. Theoretical calcula-
tions suggest that this compound is a topological semimetal.
Moreover, our transport experiment demonstrated a large
quasilinear MR at low temperature. We also observed su-
perconductivity in this system, characterized by a significant
anisotropy of the upper critical field and an enhancement of
the resistivity critical field.
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II. EXPERIMENT

LuPb2 single crystals were synthesized using the Pb-
flux method. Lu and Pb pieces with a molar ratio of
Lu:Pb = 1:20 were loaded into an alumina crucible, sealed
in a quartz tube under a low-pressure argon gas environment,
and then heated to 600 ◦C. After maintaining this temperature
for 6 hours, the tube was slowly cooled to 450 ◦C in 150 hours,
and excess flux was removed in a centrifuge. The grown crys-
tals typically had dimensions of 1×3×0.2 mm3. Elemental
analysis was carried out using inductively coupled plasma-
optical emission spectrometry (Agilent ICP-OES730), while
powder x-ray diffraction (XRD) measurements were per-
formed at room temperature using a PANalytical X’Pert3
powder diffractometer with Cu-K radiation. Resistivity and
heat capacity measurements were carried out using a Quantum
Design physical property measurement system with a standard
four-probe method adopted for resistivity measurements.

The dHvA effect was measured using a homemade
cantilever torque magnetometer. The deflection of the can-
tilever resulting from the magnetic torque was measured in
capacitance using an Andeen-Hagerling 2550A automatic ca-
pacitance bridge, with a capacitance measurement resolution
of �C = 0.03 fF. When the magnetization �M and magnetic
field �B were confined to the xz plane, the torque was calculated
as �τ = �M×�B = (MzBx − MxBz )̂y. In paramagnetic materials
such as LuPb2, the torque formula can be rewritten as |�τ | =
�χB2 sin φ cos φ, where φ is the tilt angle of �B away from
the ẑ axis, and �χ = χz − χx is the magnetic susceptibility
anisotropy. The longest crystalline b axis of LuPb2 was ori-
ented along the ẑ axis in our measurement.

The first-principles calculation for LuPb2 is based on den-
sity functional theory (DFT) [35], within the Perdew-Burke-
Ernzerhof (PBE) [36] exchange correlation implemented in
the Vienna ab initio simulation package (VASP) [37,38]. The
semilocal generalized gradient approximation (GGA) with the
PBE parametrization was utilized to account for exchange-
correlation effects. The self-consistent inclusion of spin-orbit
coupling (SOC) was also considered in our calculations. The
plane wave cutoff energy is 350 eV with a k mesh of 7×7×13
for self-consistent calculations. Maximally localized Wannier
functions are utilized to derive the tight-binding model [39]
of bulk LuPb2, which is subsequently employed for the
calculation of the Fermi surface (FS). WannierTools [40]
was used to calculate the topological properties of this
system.

III. RESULTS AND DISCUSSION

A. Crystal structure

Figure 1(a) shows the crystal structure of LuPb2, which
belongs to the ZrSi2-type family. This structure can be un-
derstood as an alternating arrangement of a square planar Pb
atomic layer and a corrugated square lattice of Lu and Pb. As
depicted in Fig. 1(b), the square net of the Pb planar layer
exhibits slight distortion, with a bonding angle of approxi-
mately 90.51◦. Consequently, the Pb atomic layers manifest
a subtle corrugation in the ac plane, as shown in Fig. 1(c).
Figure 1(d) displays the x-ray diffraction (XRD) patterns of
a LuPb2 single crystal, in which the peaks can be indexed as

FIG. 1. (a) Crystal structure of LuPb2. The blue and red balls
represent the Lu and Pb atoms, respectively. (b) Top view of Pb
plane. (c) Side view of the slightly distorted Pb square net layer.
(d) Single-crystal x-ray-diffraction spectra of LuPb2. Inset shows the
optical image of a typical single crystal placed on a millimeter grid.
(e) Powder XRD results at room temperature.

(0l0) reflections, indicating a preferred orientation along the b
axis. Notably, a small peak resulting from the remnant Pb flux
is observed in the XRD pattern and denoted by an asterisk.

Figure 1(e) displays the powder x-ray diffraction patterns
of LuPb2. Apart from the peaks attributed to Pb impurities,
all the diffraction peaks can be indexed to an orthorhombic
phase with the space group Cmcm. The obtained lattice pa-
rameters are a = 4.450 Å, b = 16.369 Å, and c = 4.448 Å.
To determine the content of excess lead in the sample, we
conducted an elemental analysis using inductively coupled
plasma atomic emission spectroscopy (ICP-OES) measure-
ments, as presented in Table I. The results indicate that excess
lead is present in all three samples, both on the surfaces
and inside the samples, which is consistent with previous re-
ports [41]. The excess lead mainly aggregates on the surfaces

TABLE I. The elemental analysis of the product by ICP-OES.

Sample Pb:Lu atomic ratio Is the surface flux cleaned?

4 2.089 Yes
5 2.220 Yes
6 2.581 No
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FIG. 2. (a) Magnetic field dependence of magnetic torque τ at various temperatures with B along the b axis. The curves have been
shifted for clarification. (b) The FFT spectra of dHvA oscillations at different temperatures. (c) Temperature dependence of the FFT
amplitudes for α and β band. The solid lines are the LK fits for the effective mass. (d) The oscillatory part of the �τ dependence of
1/B at θ = 7.9◦. The blue line is the experimental data, and the red line is the fit by the two-band LK formula. (e) Landau level fan
diagram for α band. The solid line is the linear extrapolated fit. The inset shows the filtered wave of the α band. (f) dHvA oscilla-
tions as a function of 1/B at various angles. (g) The FFT spectra of the dHvA at different angles. (h) The angular dependence of the
oscillation frequencies. The inset shows the schematic of the measurement configuration with the angle φ between the applied field B
and the b axis.

of the samples, which are imperceptible to the naked eye.
However, due to the excess lead and the sample’s sensitivity
to air, determining the crystal structure of LuPb2 remains
challenging [41,42]. To minimize these effects, we polished
the surfaces of the measured samples and estimated the excess
lead in the bulk to be within 8.17%–18.03%.

B. de Haas–van Alphen oscillations

Magnetic torque measurement is a fundamental experi-
mental technique that provides insight into the electronic
properties of materials. Figure 2(a) displays the isothermal
magnetic torque τ with the magnetic field along the b axis at
various temperatures. At a field as low as 3 T and 2 K, quan-
tum oscillations are observed, indicating a high quality of the
single crystal grown with a magnetic length of lB ≈ 15 nm. By
the criterion μB > 1, we estimate the mobility μ to be larger
than 0.33 m2 V−1 s−1. The quantum oscillations persist up to
20 K, implying that the bands have light effective masses.
After the fast Fourier transform (FFT) analysis of the dHvA
oscillations in the inverse magnetic field, three fundamental
frequencies are extracted, as shown in Fig. 2(b). Specifically,
two low frequencies Fα = 111 T, Fγ = 233 T, and one high
frequency Fβ = 1041 T are identified. Notably, these frequen-
cies are lower than those reported for pure lead, indicating
that the quantum oscillations arise from LuPb2 rather than
lead inclusions [43,44]. According to the Onsager relation
F = �0

2π2 AF, we calculate the corresponding cross-sectional
areas of the Fermi surface, which occupy 0.5%, 5.0%, and
11.1% of the kakc in the plane of the Brillouin zone for the
α, γ , and β bands, respectively. The corresponding Fermi
momentum kF = ( AF

π
)1/2, the Fermi velocity vF = h̄kF

m∗ , and the

volume carrier density nq = k3
F

3π2 are calculated and listed in
Table II.

Generally, the quantum oscillation amplitude of magnetic
torque �τ can be described by the Lifshitz-Kosevich (LK)
formula [45,46],

�τ ∝ −B3/2RT RDRS sin

[
2π

(
Fs

B
+ 1

2
− φB

2π
− δ

)]
, (1)

where RT = λT/ sinh(λT ) is the temperature damping factor,
where λ = 2π2kBμ/h̄eB, μ = m∗/m0. Here, m0, h̄, and e are

TABLE II. Parameters for Fermi pockets of LuPb2 derived from
the analyses of quantum oscillations. The Fs, m/me, Ax

F , kF , vF , nq,
TD, l , μq, and φB are the quantum oscillation frequency, effective
mass, Fermi cross section, Fermi wave vector, Fermi velocity, Dingle
temperature, mean-free path, quantum mobility, and Berry phase of
the extreme cross section of Fermi pocket, respectively.

Branch α γ β

Fs (T) 111 233 1041
m∗/m0 0.179 0.225 0.355
AF (10−2 Å−2) 1.06 2.22 9.94
kF (Å−1) 0.058 0.084 0.178
vF (106 m/s) 1.27 1.65 1.98
nq (1018 cm−3) 6.6 20.0 190.5
TD (K) 30.03 33.94
l (nm) 5.1 7.1
μq (cm2 V−1 s−1) 1323 600
φB(LK δ = − 1

8 ) 1.02π 0.65π

φB(LK δ = 1
8 ) 0.52π 0.15π

φB(LL fan δ = − 1
8 ) 1.05π

φB(LL fan δ = 1
8 ) 0.53π
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the free-electron rest mass, reduced Planck constant, and the
charge of the bare electron, respectively. RD = exp(−λTD) is
the Dingle damping factor, and RS = cos(πgμ/2) is the spin-
damping factor. The sine function term contains the Berry
phase φB, and the additional phase shift δ = 0 (2D system)
or ±1/8 (+ and − for the minimum or maximum cross sec-
tion of the Fermi surface in 3D systems, respectively) [10,11].
The temperature-dependent FFT amplitude can be well fitted
by the thermal factor RT as shown in Fig. 2(c). Due to the
fact that the amplitude of the FFT is employed as the am-
plitude of the oscillation for the fitting shown in Fig. 2(b),
it is necessary to substitute the field B in RT with the average
field B̄ = 2/(1/Bstart + 1/Bend ), where Bstart = 6 T and Bend =
14 T. From the fitting, we extracted the cyclotron effective
cyclotron masses mα = (0.179 ± 0.0011)m0, mγ = (0.225 ±
0.0033)m0, and mβ = (0.355 ± 0.0027)m0, respectively. The
calculated effective masses m∗ for LuPb2 are comparable to
the previous report in YSn2 (0.023m0–0.082m0) [9], LuSn2

(0.053m0–0.06m0) [10], ScSn2 (0.04m0–0.054m0) [11], and
ZrSiS (0.11m0–0.27m0) [47].

To gain insight into the topological properties of the charge
carriers, we performed Berry phase analyses on the dHvA
oscillations using Eq. (1). As the dHvA oscillation comprises
two primary frequencies α and β, we fitted the experimental
data using the two-band LK formula, as shown in Fig. 2(d).
The LK fitting revealed a phase factor of (1/2 − φB/2π −
δ) = 0.30 for the β band, with φB = 0.15π for (δ = 1/8) and
0.65π for (δ = −1/8). Similarly, the phase factor for the α

band was determined to be 0.116, which gives a Berry phase
of φB = 0.52π for δ = 1/8 and 1.02π for δ = −1/8. The
phase factor of 0.116 between −1/8 and 1/8. Additionally,
we used the oscillation pattern fit to determine the Dingle
temperatures for the α and β pockets, which were found to
be 30.03 K and 33.94 K, respectively. The corresponding
quantum mean-free path lq = vF h̄

2πkBTD
and quantum mobility

μq = eh̄
2πkBTDm∗ were then calculated and are listed in Table II.

To investigate the potential topological character of the α

band, we also determined the Berry phase from the Landau
Level (LL) fan diagram. First, we separated the �τ frequency
via a filtering process and assigned the minima of �τ to
the Landau level index n, following the method described in
Ref. [48]. The inset of Fig. 4(e) shows the �τ dependence
of 1/B for the α band. The plot of n versus the inverse field
1/B is displayed in Fig. 4(e), from which we could obtain
the Berry phase φB = 2π (n0 − δ + 1/2), where δ = ±1/8.
The extrapolation of the linear fit in the fan diagram yields
an intercept of n0 = −0.10, which leads to a Berry phase of
0.55π for δ = 1/8 and 1.05π for δ = −1/8. This value is
in good agreement with the value determined from the two-
band LK fitting and provides further evidence of the potential
topological character of the α band. However, it is essential to
recognize that the relationship φB ∼ π may not consistently
serve as a sole indicator for the nontrivial topological features
of Fermi pockets. This is due to the influence of factors such as
symmetry, the position of extremal orbits, and various nonge-
ometric phase shifts [49,50]. Therefore, in the following text,
we have provided additional evidence from DFT calculations
of LuPb2 to further support the conclusion.

To investigate the Fermi surface in LuPb2, we measured the
field dependence of the dHvA oscillations at various angles

ranging from the B ‖ b axis to the B ‖ a axis at a temperature
of 2 K. Figure 2(f) displays the inverse field 1/B dependence
of the dHvA oscillation �τ after background subtraction at
specific angles, which were shifted in 3◦ increments from 0◦ to
90◦ for clarity. The angle φ was defined as the angle between
the direction of the field B and the b axis. Corresponding FFT
spectra at different angles are shown in Fig. 2(g). The β band,
exhibiting the highest oscillation frequency of 1041 T, was ob-
served at all angles ranging from 0◦ to 90◦ and demonstrated
significant angular dependence, implying a mildly anisotropic
3D Fermi surface, as shown in Fig. 2(h). In contrast, the
other oscillation frequencies α and γ were detectable up to
approximately 17◦ but vanished beyond this angle, suggesting
potential open orbits or reduced carrier mobility as the angle
inclined.

C. Electronic band structure

To further explore the topological properties of LuPb2,
we conducted first-principles calculations. Figure 3(a) shows
the electronic band structure along the high-symmetry path
direction without considering spin-orbit coupling effects. The
red circle highlights the crossing points P1 and P2 near the
Fermi energy (EF). However, once spin-orbit coupling is con-
sidered, a gap of 75 meV opens at point P1 due to the crossing
bands belonging to the same irreducible representation of the
point group, as depicted in Fig. 3(b). However, the crossing
point P2 at the high-symmetry T point is different. At P2,
the bands belong to two distinct irreducible representations
T3 and T4. Therefore, no gap is observed at the band cross-
ing point P2, which implies that LuPb2 can be considered
as a Dirac semimetal. Figure 3(g) presents the magnified
view at point P2. It is evident that the bands near the T
point, and along the T-Y and T-E path directions, exhibit a
linear energy-momentum dispersion relation. However, the
energy-momentum dispersion along the T-Z direction (kz di-
rection) is quadratic. Thus, the crossing point at P2 can be
considered as a semi-Dirac point, which has been discussed
in the literature [51,52]. The semi-Dirac point is located at
171 meV above the Fermi level, which is comparable to that of
the Dirac semimetal Cd3As2 (∼200 meV) [53,54]. In addition,
as shown in Fig. 3(h), there are two Dirac nodal lines in the
ky = π,−π plane, respectively. We further examine the reli-
ability of the nodal line electronic state in the Supplemental
Material [55].

Figures 3(c)–3(e) shows the calculated Fermi surface of
LuPb2. These results clearly demonstrate that LuPb2 is a
multiband system with a complex Fermi surface composed of
multiple sheets. The pockets are labeled as β, α, and γ in the
red dashed boxes in Figs. 3(c)–3(e). As shown in Table III,
the calculated Fermi wave vector kF and effective mass m∗
of the γ and β pockets are consistent with the results derived
from the oscillation components Fγ and Fβ . The effective mass

m∗ was calculated using the relation m∗ = h̄2

2π
∂AF
∂E |EF [56],

where AF is the cross-sectional area of the Fermi surface, h̄ is
the reduced Plank constant, and EF is the Fermi energy. Given
the absence of smaller Fermi pockets, the Fα observed in the
dHvA experiment is posited to correspond to the extremal
cross section of the bottleneck-shaped Fermi surface depicted
in Fig. 3(d). This open orbit is consistent with the scenario
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FIG. 3. (a), (b) Electronic band structures for LuPb2 without and with SOC. The red circles represent the crossing points P1 and P2 of the
energy bands. The green box highlights the positions of Fermi pockets β, α, and γ . (c)–(e) Multiple FS sheets of LuPb2. (f) The Fermi surface
on the kz = π plane. (g) An expanded view of the band structure near EF around T (indicated by the circle) is shown, where a band crossing is
found ∼171 meV above the Fermi energy. (h) The first Brillouin zone of LuPb2, where high-symmetry points and nodal line are marked.

in which Fα only emerges at low angles, as demonstrated in
Fig. 2(h). Although the theoretical Fermi wave vector is larger
than the experimental value, this discrepancy could be as-
cribed to self-doping of the grown single crystal. Furthermore,
the smaller Fermi pocket α is relatively sensitive to variations
in Fermi energy. Figures 3(c)–3(e) also revealed several larger
Fermi pockets. Nevertheless, it is possible that the lower mo-
bility of quasiparticles within these pockets prevented their
clear resolution in dHvA oscillations. Figure 3(f) shows the
Fermi surfaces at kz = π , from which the Fermi wave vectors
of the three Fermi pockets can be calculated. The β pocket is
situated along the Y-C path, while the γ and α pockets reside
on the Y-T path. Their positions are indicated by green boxes
in Fig. 3(b). It indicates that the α and β pockets are hole type,
while the γ pocket is electronic type. Besides, the calculations
suggest that the α pocket is related to Dirac crossing band at

the T points, which further suggests the existence of nontrivial
topological electronic states in LuPb2.

D. Quasilinear magnetoresistance and Hall measurement

Figure 4(a) displays the temperature dependence of resis-
tivity from 300 K down to 2 K in zero fields with current
applied along the a axis. Figure 4(b) below 30 K shows
the best fit by ρ = ρ0 + AT 2 with A = 7.5×10−3 µ� cm/K2,
indicating that electron-electron scattering dominates low-
temperature transport in the compound. Moreover, we
observed a residual resistivity ratio of around 52, indi-
cating a high-quality single crystal. Figure 4(c) presents
the magnetoresistance (MR = [ρ(B) − ρ(0)]/ρ(0)×100%)
dependence of the magnetic field applied along the b
axis. At low magnetic fields, the MR exhibits a quadratic

TABLE III. Fermi wave vector and effective mass obtained from the first-principles calculations and dHvA experiments for the α, β, and
γ pockets.

Pocket dHvA frequencies kF (Å−1) estimated kF (Å−1) (m∗/m0 ) estimated (m∗/m0 )
name Fs(T) for B ‖ b from the dHvA DFT-calculated from the dHvA DFT-calculated

α 111 0.0580 0.0402 0.179 0.066
β 1041 0.178 0.166 0.355 0.437
γ 233 0.0841 0.0867 0.225 0.146
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FIG. 4. (a) Zero-field ρxx as a function of T from 2 K to 300 K.
(b) The low-temperature part of ρxx and its fit with ρxx = ρ0 + AT 2

(ρ0 = 1.29 µ� cm, A = 0.0075 µ� cm K−2). (c) MR dependence of
B at different temperatures. (d) Kohler’s plot of the MR at different
temperatures.

dependence, similar to previous observations in WTe2 [57]
and Gd3As2 [58]. The quadratic MR is induced by the
Lorenz deflection of carriers under the magnetic field. As the
magnetic field increases, the quadratic MR becomes approxi-
mately linear, with no signs of saturation. At the field of 9 T,
the magnetoresistance exhibited a remarkable increase, rising
from 1.4% at T = 100 K to nearly 120% at a low temperature
of T = 10 K. Figure 4(d) presents the Kohler plot, in which
the MR ratio is plotted as a function of B/ρxx(0). Below 50 K,
the MR curves can be nearly scaled to a single universal curve,
indicating a single relevant scattering process is dominant in
LuPb2.

To further investigate the observed LMR in LuPb2, we
have performed the Hall effect measurements with the mag-
netic field along the b axis and the current along the a axis.
Figure 5(a) shows the field dependence of the Hall resis-
tivity ρxy over a temperature range of 10 K to 100 K. The
temperature-dependent behavior of ρxy exhibits a positive de-
pendence on the magnetic field across the entire temperature
range, indicating the predominance of hole carriers. The Hall
resistivity ρxy showed nonlinearity at low magnetic fields,
suggesting that two types of charge carriers were involved.
We employed a two-carrier model to fit the Hall conductiv-
ity σxy = − ρxy

ρ2
xx+ρ2

xy
and imposed an additional restriction by

using the zero-field longitudinal conductivity σxx = ρxx

ρ2
xx+ρ2

xy
.

Figure 5(b) displays the best-fitting result within the magnetic
field range of −9 T to 9 T,

σxy = eB

(
neμ

2
e

1 + (μeB)2
− nhμ

2
h

1 + (μhB)2

)
. (2)

The two-carrier model fits σxy well from 10 K to 100 K.
The temperature dependence of carrier densities and mobility
obtained by fitting are shown in Figs. 5(c) and 5(d), respec-
tively. At 10 K, nh was larger than ne, indicating incomplete
electron-hole compensation and hole dominance at low tem-
peratures. The densities on the order of 1020 cm−3 imply

FIG. 5. (a) ρxy as a function of B at different temperatures.
(b) Magnetic field dependence of Hall conductivity σxy at various
temperatures. The dashed lines present the good fitting result of the
two-band model. (c) The temperature dependence of the calculated
carrier density. (d) Mobility μ (right axis) and dMR/dB (left axis)
dependence of T . The inset shows the dMR/dB dependence of
mobility. The dotted line is the guiding line.

the concentration of semimetal. They also agreed with those
calculated from the quantum oscillations of the β band. Both
μh and μe decrease with increasing temperature. We note that
the transport mobility μ was larger than the quantum mobility
μq derived from quantum oscillations. The quantum mobility
μq was sensitive to both small-angle and large-angle scatter-
ing, whereas the transport mobility μ was mainly sensitive to
large-angle scattering only [32,59].

The phenomenon of LMR can be partially explained
through the application of both classical and quantum models.
According to the linear quantum MR model developed by
Abrikosov [31,60], LMR is observed in the quantum limit
h̄ωc > EF when all the charge carriers are confined into the
lowest Landau levels, where ωc is the cyclotron frequency and
EF is the Fermi energy. However, the LMR here already exists
at the low field and the dHvA effect measurement indicates
that even with a 9 T magnetic field applied, the lowest Landau
level is not achieved in the smallest pocket α. Therefore the
observed LMR should not be attributed to the quantum model.
On the other hand, the 3D larger β Fermi pocket with higher
light carrier density would dominate the transport behavior.
As a result, the open-orbit scenario is at odds with a linear
field-dependent MR.

Subsequently, the classical PL model [22] is employed to
account for the LMR. According to the model, a disordered
conducting system is viewed as an infinite network of small
four-terminal van der Pauw resistors. A high magnetic field,
when applied, compels the majority of the current to flow
in a direction perpendicular to the applied voltage, resulting
in a linear field-dependent Hall resistance contribution to ef-
fective magnetoresistance. Once there is an application of an
external field perpendicular to the network’s plane, either the
width of the mobility disorder �μ or average mobility 〈μ〉
dominate the linear MR. In Fig. 5(c), there is a high carrier
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FIG. 6. (a) Temperature dependence of the superconducting and
normal-state resistivity for LuPb2 between 2 K and 14 K with the
measuring current applied along the [100] crystal direction. LuPb2

has a superconducting transition at Tc = 7.2 K. (b) C/T as a function
of T 2 at zero fields (black line). The red solid line represents the fit
to the equation C/T = γ + βT 2. The insert shows the specific heat
C dependence of temperature at B = 0 T and B = 1.5 T.

concentration ∼1020 cm−3, which could partially screen the
spatial fluctuations of mobility by the disorder. Therefore,
the fluctuations of mobility �μ should be smaller than the
average mobility 〈μ〉 at low temperature. In this case, the
classical model expects that the slope of magnetoresistance
at high fields should be proportional to average mobility 〈μ〉.
Figure 5(d) presented the first-order derivative of MR in high
magnetic fields, denoted on the left axis. Additionally, the
values of μ for both electrons and holes are shown on the
right axis. As a result, the behavior of dMR/dB with respect
to temperature does appear to be similar to that of μe and
μh below 50 K. The inset of Fig. 5(d) demonstrates the close
linear relationship between the carrier mobility and dMR/dB.
Below 50 K, hole carriers serve as the majority carriers and
thus display a more linear dependence compared to electron
carriers. At temperatures above 50 K, the hole and electronic
carriers approach perfect compensation, which may lead to
a reduced contribution of the Hall resistance to the effective
magnetoresistance. As a result, the dependence of carrier mo-
bility μ on dMR/dB begins to deviate from linearity. At the
same time, this also causes the dependence not to be strictly
proportional [61,62]. Therefore, the observed results satisfy
the conditions for the weak mobility fluctuation limit of the
PL model. The LMR in LuPb2 is most likely attributed to the
classical origin.

E. Superconductivity

We turn to the observed superconductivity in the sample.
Figure 6(a) shows the sharp superconducting transition be-
low the temperature of T = 7.2 K, which is close to that
of pure lead. To further characterize the superconductivity
of LuPb2, we conducted temperature-dependent specific-heat
measurements at B = 0 T and B = 1.5 T, as shown in inset
of Fig. 6(b). The specific heat shows a small jump (�C ∼
3 mJ mol−1 K−1) at the critical temperature of Tc ∼ 7.17 K
under zero field. Above the transition temperature, the data are
well described by C/T = γ + βT 2 in Fig. 6(b) and yield the
Sommerfeld coefficient γ = 2.22 ± 0.16 mJ mol−1 K−2, β =
0.527 ± 0.004 mJ mol−1 K−4. We find the value of �C/γ Tc to
be 0.19, which is significantly below the BCS limit of 1.43 for
weakly coupled superconductors. This discrepancy suggests

that the observed superconductivity in the sample may not be
intrinsic.

The Meissner effect measurements further confirm the
superconductivity in the sample. Figure 7(a) shows the tem-
perature dependence of the DC magnetic susceptibility in a
field of 100 Oe applied along the b axis and ac plane. Note
that the effective magnetic susceptibility χdc = χ/(1 − N )
was obtained with a demagnetization factor N⊥ = 0.18 for
B ⊥ b axis and N‖ = 0.8 for B ‖ b axis. Nevertheless, we
obtained χB‖b = −1 and χB⊥b = −0.8 at T = 2 K. The obser-
vation that the volume fraction of the superconducting state
in the sample is nearly 100% suggests the manifestation of
bulk superconductivity properties. However, the low value
of �C/γ Tc mentioned earlier implies that the high volume
fraction of superconductivity determined by the Meissner ef-
fect may also be attributed to the shell effect [63,64].

Figures 7(b) and 7(f) show the isothermal magnetization
for B ‖ b axis and B ⊥ b axis, respectively. The Meissner
fraction induced by the superconducting state undergoes a
significant reduction in several hundred Oe and eventually
disappears at approximately 2 kOe for B ‖ b and 4 kOe for
B ⊥ b. The critical field anisotropy in the sample is differ-
ent from that of pure bulk lead with isotropic properties.
Figures 7(c) and 7(g) present the temperature dependence of
longitudinal resistivity ρxx under fields applied along the ac
plane and b axis, respectively. Notably, the resistivity criti-
cal field is nearly one order of magnitude higher than that
observed in magnetization, in addition to its anisotropy. This
phenomenon of resistivity critical field enhancement has been
previously observed in other superconducting materials, such
as BeAu [65], BiPd [66], and LaPtSi3, all of which are type
I or I/II superconductors with upper critical fields ranging
between 100 and 1000 Oe. However, the upper critical field in
LuPb2 is distinctly one order of magnitude larger than these
materials.

Considering that surface superconductivity may be a po-
tential explanation for the observed enhancement of critical
field, it is assumed here that the upper critical field obtained
from resistivity measurements corresponds to the surface
critical field Bc3. Figures 7(e), 7(d), and 7(h) show the
temperature-dependent lower critical field Bc1, upper criti-
cal field Bc2, and surface critical field Bc3, respectively. The
lower critical field, Bc1, is defined as the field at which the
M(H ) curves first deviate from linear behavior. The data
can be well described by the Ginzburg-Landau (GL) expres-
sion Bc1(t ) = Bc1(0)(1 − t2), where t = T/Tc. The estimated
critical fields Bc1(0)(B ⊥ b) and Bc1(0)(B ‖ b) are 259 and
187 Oe, respectively. The field corresponding to 10% of
the maximum magnetization value is defined as Bc2. The
data were analyzed using the Ginzburg-Landau (GL) for-
mula, where Bc2(t ) = Bc2(0)(1 − t2)(1 + t2). The estimated
critical fields Bc2(0)(B ⊥ b) and Bc2(0)(B ‖ b) were found to
be 0.43 T and 0.1 T, respectively. The field corresponding
to 90% of the normal-state resistivity was defined as Bc3.
Due to the unusual shape of the curve, we estimated the
value of Bc3(0) by fitting the GL formula Bc3(t ) = Bc3(0)
(1 − t2). The obtained values of Bc3(0) are 4.2 T and 1.1 T
for for B ⊥ b and B ‖ b, respectively. The calculated ratios
Bc3/Bc2 are up to 15 and 5.6 for B ⊥ b and B ‖ b, respec-
tively. Notably, both ratios are larger than the Saint-James
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FIG. 7. (a) The ZFC and FC magnetic volume susceptibility under magnetic field B = 100 Oe. The ZFC susceptibility saturates to a
value of −1 for B ‖ b and −0.82 for B ⊥ b. (b) and (f) DC magnetization M vs magnetic field B at various temperatures for LuPb2 for both
orientations. Bc1 is the field that deviates from the linear part. (c) and (g) The magnetic field dependence of the superconducting transition
temperature is measured at different temperatures. (d) Phase diagram of the upper critical field Bc2 versus T/Tc for the B ‖ b axis (blue) and
B ⊥ b axis (red). The solid lines show fits to the data using the Ginzburg-Landau formula Bc2(T ) = Bc2(0)[1 − (T/Tc )2]/[1 + (T/Tc )2]. (e)
Phase diagram of lower critical field Bc1 versus T/Tc. The solid lines show fits to the data using the GL formula Bc1(T ) = Bc1(0)[1 − (T/Tc )2].
(h) Phase diagram showing the temperature dependence of the critical field Bc3.

and de Gennes limit [67] of 1.695 for type-II superconduc-
tors. This relatively large ratio suggests that the enhancement
of resistivity critical field may be dominated by other
mechanisms.

The anisotropy and enhancement of the resistivity critical
field indicate an interesting anomaly in the superconductivity
of the sample. We also note that the critical field can be
significantly enhanced in aluminum nanowires [68], small
lead particles [69] lead films [70], and (TMTSF)2CLO4 and
(TMTSF)2PF6 nanoparticles [71] compared to bulk materials.
This could suggest that the mechanism behind the enhance-
ment critical field in the sample may be connected with
quantum size effect [72,73]. According to the theory, when
a field is applied parallel to the surface and a film with thick-
ness comparable to the penetration depth is considered, the
transition to the normal state occurs at the field Ht‖(T ) =
2
√

6λe(T )Hcb(T )/d , where Hcb(T ), λe(T ), and d represent
the bulk critical field, bulk weak field penetration depth [74],
and thickness of the film, respectively [75–78]. We estimated
that, for the critical upper field of 4.2 T, the thickness of the
lead layer on the sample surface is approximately 2.86 nm.
However, the superconducting transition shown in Fig. 7(c)
exhibits significant broadening, suggesting that the estimated
thickness value represents a lower limit. Overall, we believe
that the nanoscale lead layer appearing on the ac plane of
the sample leads to observations of superconductivity that
differ from pure bulk lead. This phenomenological analysis
provides some understanding of all low-temperature experi-
mental observations, including the sharp resistivity transition,
small specific-heat jump, strong anisotropy of critical field,
large superconducting volume fraction, and broadening of the
superconducting transition. However, the underlying mecha-
nism that governs the occurrence of a nanoscale lead layer
exclusively on the ac plane of the sample remains unclear.

Besides that, this kind of microstructure has not been directly
observed. Although we attempted TEM experiments, we did
not receive good experimental results due to the air sensitivity
of the sample. Further investigation is warranted to unravel
the intricate details of this phenomenon and address these
lingering questions that persist.

IV. CONCLUSION

In conclusion, we have successfully synthesized high-
quality LuPb2 single crystals. The observation of clear
quantum oscillations in the dHvA experiment has confirmed
the 3D Fermi characteristics and nontrivial Berry phase. Our
DFT calculations further confirm the existence of Dirac linear
energy-momentum dispersion in the α band, suggesting that
LuPb2 could be a topologically nontrivial material. Further-
more, our investigation of the magnetotransport properties
of LuPb2 single crystals revealed a quasilinear MR at high
magnetic fields. Our analysis suggests that this quasilinear
MR is primarily governed by the average mobility of charge
carriers. Moreover, we have observed the presence of surface
superconductivity with a highly anisotropic upper critical field
and enhancement of the resistivity critical field, which we
attribute to a potential nanostructured lead layer on the sample
surface.
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