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Triplet pair density wave superconductivity on the π-flux square lattice
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Pair-density waves (PDWs) are superconducting states that spontaneously break translation symmetry in
systems with time-reversal symmetry (TRS). Evidence for PDWs has been seen in several recent experiments,
as well as in the pseudogap regime in cuprates. Theoretical understanding of PDWs has been largely restricted
to phenomenological and numerical studies, while microscopic theories typically require strong coupling or fine
tuning. In this work, we provide a symmetry-based mechanism under which PDWs emerge as a weak-coupling
instability of a two-dimensional TRS metal. Combining mean-field and renormalization-group analyses, we
identify a weak-coupling instability towards a triplet PDW realized in the π -flux square lattice model with on-site
repulsion and moderate nearest-neighbor attraction when the Fermi level crosses Van Hove singularities at 1/4
and 3/4 fillings. This PDW is protected by the magnetic translation symmetries characteristic of Hofstadter
systems, of which the π -flux lattice is a special time-reversal-symmetric case.

DOI: 10.1103/PhysRevB.108.035135

I. INTRODUCTION

Several recent experiments on different materials, in-
cluding cuprates [1,2], transition-metal dichalcogenides [3],
kagome systems [4], and most recently UTe2 [5,6], have
reported an exotic form of spatially nonuniform superconduc-
tivity called a pair-density wave (PDW) [7]. Unlike the similar
Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) states, PDWs de-
scend from a time-reversal invariant normal state. On the
theory side, however, it has been a great challenge to identify
scenarios where such elusive order can form. Apart from
one-dimensional (1D) systems [8–13], most of the few mi-
croscopic mechanisms for PDW that have been proposed
generally require strong coupling [14–22].

The main obstacle to the weak-coupling theory, which
would otherwise be desirable, is that the logarithmic di-
vergence of the pairing susceptibility �Q indicating the
formation of Cooper pairs with finite center-of-mass Q gen-
erally only occurs at Q = 0 and no other momentum, leading
only to uniform superconductivity (SC). The divergence is a
consequence of the degeneracy of single-particle states εk =
ε−k, which is guaranteed by either time-reversal or inver-
sion symmetry. In the few weak-coupling theories for PDWs
that have been proposed recently [23–30], this issue is cir-
cumvented by identifying Fermi surfaces that satisfy a PDW
nesting condition εk = ε−k+Q, which leads to the desired log-
arithmic divergence of �Q. However, the nesting condition in
all these models is in general accidental and therefore requires
some degree of fine tuning.

In this work, we show that the PDW nesting condition
is satisfied by symmetry without any fine-tuning in the two-
dimensional (2D) π -flux square lattice model, a special case
of the Hofstadter model [31] that preserves time-reversal sym-
metry (it is thus also a special case of the TR-symmetric
Hofstadter model [32]). The relevant symmetry is a magnetic
translation symmetry (MTS) that acts as sublattice symme-
try in real space and as a translation by Q = (0, π ) in the

magnetic Brillouin zone (BZ), which guarantees the nesting
condition εk = ε−k+Q. The reconstruction of the Fermi sur-
face due the large π -flux per unit cell thus enables Cooper
pairing with finite momentum [33], stabilizing a new class of
(magnetic-translation) symmetry-protected PDWs.

The focus of earlier studies on the π -flux lattice has been
on Dirac fermions at half filling, notably (but not exclusively)
in the context of flux phases in cuprates [34–36], quan-
tum Hall transitions [37], electron fractionalization [38–40]
in 2D lattices, and uniform SC and charge-density wave
(CDW) instabilities [41,42]. Here we instead consider the
Van Hove singularities (VHS) of this system that occur at
the less explored 1/4 and 3/4 fillings as the driving micro-
scopic mechanism of the PDW instability. At the VHS the
Fermi surfaces have an addition nesting in the spin-density
wave (SDW) channel, which together with diverging density
of states (DOS) near the VHSs enhances spin fluctuations
that open the door to unconventional electronic pairing [43],
recently shown to lead to uniform singlet d-wave-like super-
conductor driven by on-site repulsive Hubbard interaction in
the π -flux lattice [44].

Our main result is the identification of a weak-coupling
instability towards a triplet PDW ground state in the π -flux
lattice when moderate nearest neighbor attractive interactions
are added to the onsite repulsive Hubbard interaction. We
establish the existence of the PDW state using mean-field
theory and confirm its stability with renormalization group
(RG) methods that rule out alternative competing phases (SC,
CDW, and SDW), while also establishing the stability of the
PDW against small detuning from perfect nesting in the SDW
channel which, in contrast to the PDW nesting, can occur
due to symmetry-allowed perturbations. The MTS-protected
triplet PDW represents a new class of unconventional pairing
that is of particular interest in light of the realization of Hofs-
tadter bands in moiré lattices [45–49] and recent experimental
advances towards their realization using synthetic gauge fields
in optical lattices [50–52]. The recently fabricated twisted
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FIG. 1. (a) The square π -flux lattice. Sublattices marked as blue
(s = 0) and red (s = 1). (b) The two bands of the π -flux lattice
dispersion defined on the MBZ. There are two Dirac nodes on the
MBZ boundary at ±(π/2, π/2). (c) Fermi surface and VHS in the
MBZ.

double-layer copper-oxides are another promising platform
where the π -flux model may be relevant [53,54].

II. THE π-FLUX LATTICE MODEL

The π -flux square lattice Hamiltonian is

H0 = −t
∑
〈rr′〉σ

(−1)(ry−r′
y )rx c†

rσ cr′σ + H.c. − μ
∑
rσ

c†
rσ crσ ,

(1)
where crσ are fermion annihilation operators at site r of the
square lattice with spin σ =↑,↓, t is the nearest-neighbor
hopping amplitude that we set to 1, and μ is the chemical
potential. We take rx, ry to be integer multiples of the lattice
constant a = 1 and consider μ = ±2t corresponding to en-
ergy of the VHSs. See Fig. 1(a).

The symmetries of the π -flux model will play an important
role in our analysis below. H0 possesses TRS and inversion
symmetry, as well as magnetic translation symmetries T̂y = Ty

and T̂x = (−1)ry Tx generating the magnetic translation group
(MTG), where Tx and Ty are ordinary lattice translations. In
particular, the translation Tx is broken by H0, so that there
are two sites per unit cell along the x direction which we

label with a sublattice index s = 0, 1 as shown in Fig. 1(a).
In addition, H0 has a fourfold magnetic rotation symmetry
Ĉ4 = (−1)rxryC4 which is a combination of the regular C4

symmetry with a gauge transformation that correspondingly
rotates the magnetic vector potential; see Appendix A (other
crystalline symmetries of the square lattice have similar mag-
netic versions).

H0 is partially diagonalized by the momentum-space op-
erators cksσ = 1√

N

∑
R e−ik·(sx̂+R)csx̂+R,σ where R defines the

lattice with the extended unit cell and N is the number of
extended sites. The momentum k is thus restricted to the
magnetic Brillouin zone (MBZ) with ky ∈ (−π, π ] and kx ∈
[−π/2, π/2], such that the original Brillouin zone (BZ) is
folded along the kx direction [see Figs. 1(b) and 1(c)]. In
momentum space, the single-body Hamiltonian can be written
as H0 = ∑

kσ c†
kσH0(k)ckσ where ckσ = (ck,0,σ , ck,1,σ )T and

H0(k) = 2 t cos kx τ x − 2 t cos ky τ z − μ, with τ j being Pauli
matrices acting on sublattice indices. H0(k) is diagonalized
by operators

dkασ =
∑

s

αs

√
2

√
1 + α(−1)s cos ky

E (k)
cksσ , (2)

where E (k) = (cos2 kx + cos2 ky)1/2 and α = ±1 labels the
Hofstadter bands with energies εα (p) = 2tαE (k) − μ. The
two bands meet at zero energy at two Dirac nodes located at
the MBZ boundary at k = ±(π/2, π/2), see Fig. 1(b). In this
work we investigate electronic states near 1/4 and 3/4 fillings
at which the bottom and top bands, respectively, have four
VHSs, as shown in Fig. 1(c).

Extended Hubbard interactions and irreducible representa-
tions. To investigate interaction effects, we add to Eq. (1) an
extended Hubbard interaction:

HI = U
∑

r

nr↑ nr↓ + V
∑

〈rr′〉σσ ′
nrσ nr′σ ′, (3)

where nrσ = c†
rσ crσ is the electron-density operator, and U

and V are the on-site and nearest-neighbor density-density
interaction strengths, respectively. We consider both positive
(repulsive) and negative (attractive) values of U and V . Fol-
lowing the approach in Ref. [44], we project the interactions
onto the Hofstadter band α crossing the chemical potential
tuned to the VHS. This is done by replacing the crσ operators
in Eq. (3) with the band basis dkα operators from Eq. (2), and
restricting the α index to a single value.

We further decompose the interactions into pairing chan-
nels corresponding to the different irreducible representations
(irreps) of the symmetries of the π -flux lattice. The relevant
irreps of the MTG symmetries for arbitrary rational flux have
been classified in Ref. [33]. The key observation for construct-
ing the irreps is that the operator T̂xT̂yT̂ −1

x T̂ −1
y corresponding

to a loop operator going around a single unit cell of the square
lattice is a U (1) transformation under which the electrons pick
up an Aharonov-Bohm phase equal to the encircled flux, a
phase of π on the π -flux lattice. A pair of electrons, on the
other hand, picks up a trivial phase, such that the action of T̂x

and T̂y on the pairing gap function commutes. As a result, we
can classify the gap functions according to it being even or odd
under the MTG symmetries, with all four combinations being
possible. These correspond to four one-dimensional irreps of
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the MTG that we label (	x, 	y) with 	 j = 0, 1 corresponding
to Cooper pairs with momenta π (	x, 	y) and picking up a
phase of (−1)	 j under T̂j . The uniform SC state corresponds
to 	x = 	y = 0, and the other three irreps are PDW orders.

In addition, the electrons can form either singlet or triplet
pairs [the irreps of spin rotation symmetry, unbroken by the
spin-conserving interactions Eq. (3)]. We thus label the gap
functions as 
(	x	yν), with ν = 0 corresponding to singlet and
ν = x, y, z corresponding to the three triplet components. Fi-
nally, when 	x = 	y, the Cooper pair momentum is invariant
under Ĉ4 and the gap function can thus be even or odd under
Ĉ4, which we refer to as s-wave or d-wave pairing respec-
tively and label the corresponding gap functions as 
(	x	yν;s)

and 
(	x	yν;d ). When 	x 	= 	y, since Ĉ4 interchanges the ac-
tion of T̂x and T̂y, the gap functions necessarily break the
Ĉ4 symmetry, implying that there are at least two degenerate
ground states of the system. In particular, 
(01ν) and 
(10ν),
which correspond to pairs with total momenta Q̄ = (π, 0)
and Q = (0, π ), respectively, are mapped to each other under
Ĉ4. This means that although they form two 1D irreps of
the MTG taken separately [33], taken together they form two
components of a 2D irrep of the MTG combined with Ĉ4.

The crystalline symmetry relations above determine the
space group irreps describing the PDW order parameters [55],
which are direct products of the irrep of the little point group
(the subgroup of the point group that keeps the total momen-
tum of the pair fixed) and the star of the total momentum of the
pair (i.e., the collection of all momenta mapped to each other
by the point-group symmetries). All the irreps and representa-
tive gap functions are summarized in Table I, with the relevant
little point groups being the trivial group for channels with the
star Q∗ = {Q, Q̄} and C4h otherwise (the smallest point group
containing inversion and Ĉ4 symmetry).

Having identified the irreps, the interactions projected onto
the band α can be decomposed into the corresponding chan-
nels as

H (	x	yν)
int,α = 1

2

∑
kpσ1σ

′
1

σ2σ
′
2

g(	x	yν)(p; k)(σ ν iσ y)∗σ1σ
′
1
(σ ν iσ y)σ2σ

′
2

× d†
p+	xQ,ασ1

d†
−pασ ′

1
d−kασ2 dk+	xQ,ασ ′

2
, (4)

where g(	x	yν)(p; k) = ∑
m g

(	x	yν)
m �

(	x	yν)
m (p)�(	x	yν)

m (k) with

g
(	x	yν)
m being the coupling constants, m = 0, 1, . . . labeling

terms belonging to the same irrep and �
(	x	yν)
m (p) being basis

functions; g
(	x	yν)
m and �

(	x	yν)
m (p) obtained from the extended

Hubbard interactions are summarized in Table I. Note that the
projections in this case do not depend on the band index α,
which we therefore henceforth omit.

III. MEAN-FIELD ANALYSIS

The mean-field pairing Hamiltonian reads

H
 =
∑
	xνp


(	xν)(p)(σ ν iσ y)σσ ′d†
p+	xQ,σ

d†
−pσ ′ + H.c., (5)

with 
(	xν)(p) being the gap functions, which,
near the phase transition at the critical temperature
Tc, satisfy the linearized gap equation 
(	xν)(p) =

TABLE I. Basis functions �
(	x	yν )
m (k) for gap functions and in-

teractions arising in the extended Hubbard model. First column:
space group irrep composed of the little point-group irrep times
the star of the momentum of the order. If only the point group is
shown, the momentum star is trivial. The nontrivial momentum star
is Q∗ = {(0, π ), (π, 0)}, for which the little point group is trivial.
We label the momentum star Q∗

s and Q∗
t to distinguish singlet and

triplet channels. The second column shows (	x	yν ) labels defined

in the main text. Third column: �
(	x	yν )
m (k), with multiple rows in

a single channel corresponding to different values of m, meaning
either several functions belong to the same 1D irrep or they from
two components of the 2D irreps. Fourth column: coupling constants
giving rise to the corresponding channels, with leading channels
shown as boxed.

Space group
irrep (	x	yν ) �

(	x	yν )
m (k) g

(	x	yν )
m

Ag (00s; s) 1 U/2

(cos2 ky + cos2 kx )/E (k) V

Bg (00s; d ) (cos2 ky − cos2 kx )/E (k) V

Q∗
s (01s) cos ky/E (k) U/2

cos ky V
(10s) cos kx/E (k) U/2

cos kx V

Eg (10s) sin ky cos kx/E (k) V
sin kx cos ky/E (k) V

Eu (00t ) sin ky cos ky/E (k) V
sin kx cos kx/E (k) V

Q∗
t (01t ) sin ky V

(10t ) sin kx V

Au (11t ) cos kx cos ky/E (k) V

−∑
	y,k g(	x	yν)(p; k)�	xQ(k)
(	xν)(k) where �	xQ(k) =

tanh( εα (k)
2T )/εα (k) is the pairing susceptibility. Observe

that the susceptibility has a logarithmic divergence and is
independent of 	x, which is a direct consequence of the T̂x

symmetry that identifies states at k and k + Q. We emphasize
that this means that the weak-coupling PDW instability is
symmetry protected in the π -flux model along with the usual
uniform SC instability.

The solutions of the linearized gap equation take the
form 
(	x	yν)(p) = ∑

m D
(	x	yν)
m �

(	x	yν)
m (p) where D

(	x	yν)
m are

coefficients satisfying D
(	x	yν)
m = −∑

m′ g
(	x	yν)
m′ �̃

(	x	yν)
mm′ D

(	x	yν)
m′

(see Appendix B). This is a matrix equation with �̃
(	x	yν)
mm′ =∑

k �0(k)�(	x	yμ)
m (k)�(	x	yν)

m′ (k). We solve this equation nu-
merically to obtain the phase diagram shown in Fig. 2(a). The
mean-field analysis uncovers three regimes. When both U and
V are positive, i.e., there are only repulsive interactions, we
find that there is no pairing instability, so the system remains
a metal. For negative (attractive) U , the (00s; s) uniform SC
channel in the Ag irrep always has the highest Tc irrespective
of the sign of V . However, an interesting situation arises
for positive U and negative (attractive) V , where we iden-
tify the triplet PDW channels (01t ) and (10t ) as the leading
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FIG. 2. Phase diagrams for the square π -flux lattice with ex-
tended Hubbard interactions in the parameter space of U (on-site)
and V (nearest-neighbor) density-density interaction strengths (units
are arbitrary), obtained using (a) mean-field and (b) patch RG calcu-
lations. In both cases on-site attraction (U < 0) results in a uniform
s-wave SC belonging to the Ag irrep in Table I, while nearest-
neighbor attraction with on-site repulsion (V < 0, U > 0) results in
a triplet PDW in the Q∗

t irrep in Table I. In the latter case nodal
unidirectional and fully gapped bidirectional PDW ground states are
degenerate. The difference in the RG analysis is that a d-wave uni-
form SC phase in the Bg irrep is realized even when all interactions
are repulsive, as well as for −0.21U < V < 0, whereas in mean field
the system stays in the normal state (NS).

instabilities with the same highest Tc. That is, the two solu-
tions are degenerate and form two components of the 2D irrep
Q∗

t of the space group, being mapped to each other by the
Ĉ4 symmetry. This means that any linear combination of the
solutions 
(01t ) and 
(10t ) satisfy the linearized gap equation.

This degeneracy is lifted by the fourth-order terms in the
free energy, which in our case is similar to the one considered
in Ref. [56]. Within our model, we compute the fourth-order
term to be (omitting the ν = t index for clarity)

F (4) = β0(|D(01)|2 + |D(10)|2)2 + 2β1|D(01)|2|D(10)|2

− β1[(D(01)D(10)∗)2 + c.c.]. (6)

with β0, β1 > 0 (see Appendix C). The free energy is sym-
metric under Ĉ4 that takes D(01) → D(10) → −D(01). The
minimum of the free energy is degenerate between a unidi-
rectional PDW in which only one of D(01) or D(10) is nonzero
(breaking the Ĉ4 symmetry), and bidirectional combinations
with D(01) = ±D(10); in both cases TRS is preserved. Ad-
ditional terms neglected in our model may favor either the
unidirectional or bidirectional combinations. See Fig. 3 that
shows the corresponding real-space order parameters. The
triplet PDW gap functions have the form 
(01t ) ∝ sin py and

(10t ) ∝ sin px, resulting in a nodal fermionic excitation spec-
trum in the unidirectional phase, but a fully gapped spectrum
in the bidirectional case. Note that, for the 	x = 1 unidirec-
tional and the bidirectional phases, the MBZ is further folded
along the py direction, with py ∈ (−π/2, π/2]. Although T̂x

is broken in that case, the ground states still have a Z2 sym-
metry that is a combination of MTG symmetries and a U (1)
transformation, resulting in a twofold degenerate excitation
spectrum.

FIG. 3. Triplet PDW order parameters in real space obtained
from minimizing the fourth-order free energy (6). Panels (a) and
(b) show the two nodal unidirectional PDW phases, 
(01t ) and 
(10t )

respectively. Panels (c) and (d) show the two fully gapped bidirec-
tional PDW phases that are linear combinations of the nodal phases.

IV. RENORMALIZATION GROUP ANALYSIS

A limitation of the self-consistent mean-field analysis is
that it does not consider all possible instabilities of the sys-
tem, including possible charge (CDW) and spin-density wave
(SDW) instabilities. To confirm that the phases found above
are true ground states of the system we therefore carry out
an additional patch RG analysis following [44] that extended
the standard VHS patch RG framework used in the context of
cuprates [57,58] and doped graphene [59] to the Hofstadter-
Hubbard model with on-site interactions. Here we use the
same framework extended to include nearest-neighbor inter-
actions (see Appendix D).

In this framework we consider the values of the gap func-
tions and the interactions only in the vicinity of the saddle
points that give rise to the VHS (see Fig. 1), since the density
of states diverges at these points. As a result the patch RG
has a limitation in juxtaposition to the mean-field analysis as
it only determines the gap function at the VHS points. As
one consequence, we find that in RG the triplet PDW channel
is further degenerate with the (11s) singlet PDW that is odd
with respect to both T̂x and T̂y, and further transforms as a 2D
irrep Eg of the point group. However, the mean-field analysis
shows that this degeneracy is lifted already at the level of the
linearized gap equation in favor of the triplet PDW channel.
The two methods therefore complement each other.

The resulting RG phase diagram is shown in Fig. 2(b). The
main difference from the mean-field phase diagram is the ap-
pearance of a d-wave (00s; d ) uniform SC channel belonging
to the Bg irrep when all interactions are repulsive, consis-
tent with the results in Ref. [44]. The d-wave SC moreover
competes with the triplet PDW phase for negative V , but the
PDW remains the winning instability as long as 0.21U < −V ,
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within numerical accuracy. We verified that imperfect nest-
ing in the SDW channel, which can occur due to additional
hopping terms or slight shifts in the chemical potential, does
not significantly alter the phase diagram. Importantly, the RG
analysis rules out the CDW and SDW instabilities and estab-
lishes that the triplet PDW is indeed the leading instability in
a large portion of the phase diagram.

V. DISCUSSION

In this work we showed that a symmetry-protected triplet
PDW is realized at weak-coupling in the π -flux lattice with
repulsive on-site interactions and moderate nearest-neighbor
attraction. The symmetries that protect this PDW are the
magnetic translation symmetries that are characteristic of
Hofstadter systems. In particular, the triplet PDW is therefore
robust to any perturbations that do not break these symmetries,
including additional hopping terms, small shifts in the chem-
ical potential, etc. As any logarithmic instability, it is also
reasonably robust against perturbations that do break some
of these symmetries, such as translation-symmetry disorder,
as long the symmetry breaking is weak; in such cases the
critical temperature will most likely be reduced, but the PDW
phase will not be immediately destroyed as long as the energy
scale of the perturbation (e.g., inverse scattering time τ−1 for
disorder) is small compared with Tc computed in the absence
of the perturbation. We emphasize that the robustness of the
triplet PDW is due to the presence of the symmetry protected
logarithm in the pairing susceptibility, which is absent in
earlier weak-coupling theories of PDWs where the logarithm
is not protected by any symmetry.

This finding opens interesting new research directions to
pursue other phenomena that emerge from PDW states. For
instance, it will be important to investigate the nature of

induced, vestigial, and intertwined orders associated with this
new triplet PDW phase, and to draw comparisons with the
class of PDW states introduced as a way to explain cuprate
phase diagrams [7,60]. These can interact in nontrivial ways
with PDW vortices which may be fractional [56] or give rise to
exotic charge-4e condensates [61]. Extensions of the present
model may uncover mechanisms that lift the degeneracy be-
tween the gapless unidirectional and gapped bidirectional
PDWs, which may include disorder or effects associated with
the gapless fermionic excitations that may be gapped out by
additional interactions [62]. We leave these open questions for
future studies.
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APPENDIX A: INTERACTION PROJECTIONS

Here we go over some details of the projection of the
interactions in Eq. (3). In momentum space in the sublattice
basis

cksσ = 1√
N

∑
R

e−ik·(sx̂+R)csx̂+R,σ , (A1)

the on-site interaction Hamiltonian is

HU = U
∑

k,p,qsσ

c†
p+q,sσ c†

−ps,−σ c−ks,−σ ck+q,sσ , (A2)

while the nearest-neighbor interaction Hamiltonian is

HV = 2V
∑

k,p,qsσσ ′
[cos(py − ky)c†

p+q,sσ c†
−psσ ′c−ksσ ′ck+q,sσ + cos (px − kx )c†

p+q,sσ c†
−p,s+1,σ ′c−k,s+1,σ ′ck+q,sσ ]. (A3)

In the basis Eq. (2), the operators cks are

cks = 1√
2

⎡
⎣(−1)s

√
1 − (−1)s cos ky

E (k)
dk+ +

√
1 + (−1)s cos ky

E (k)
dk−

⎤
⎦. (A4)

To project the interactions, we insert Eq. (A4) into the interac-
tion Hamiltonian and restrict α to a single value for the desired
band, i.e.,

cks → (−α)s

√
2

√
1 − α(−1)s cos ky

E (k)
dkα (A5)

and sum over s.

We are interested in the q = 0 and q = Q = π ŷ cases
corresponding to the 	x = 0, 1 pairing channels, which in the
band basis are

H (	)
int,α =

∑
kpσσ ′

g(	;α)(p; k)d†
p+	Q,ασ d†

−pασ ′d−kασ ′dk+	Q,ασ .

(A6)
The relevant projections for 	x = 0 are

∑
s

c†
psσ c†

−psσ ′c−ksσ ′cksσ → 1

4

∑
s

(
1 − α(−1)s cos py

E (p)

)(
1 − α(−1)s cos ky

E (k)

)
d†

pασ d†
−pασ ′d−kασ ′dkασ

= 1

2

(
1 + cos py

E (p)

cos ky

E (k)

)
d†

pασ d†
−pασ ′d−kασ ′dkασ , (A7)
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∑
s

c†
psσ c†

−p,s+1,σ ′c−k,s+1,σ ′cksσ → 1

4

∑
s

√
1 − cos2 py

E2(p)

√
1 − cos2 ky

E2(k)
d†

pασ d†
−pασ ′d−kασ ′dkασ

= 1

2

cos px

E (p)

cos kx

E (k)
d†

pασ d†
−pασ ′d−kασ ′dkασ . (A8)

For 	x = 1, the projections are

∑
s

c†
p+Q,sσ c†

−psσ ′c−ksσ ′ck+Q,sσ → 1

4

∑
s

√
1 − cos2 py

E2(p)

√
1 − cos2 ky

E2(k)
d†

pασ d†
−pασ ′d−kασ ′dkασ

= 1

2

| cos px|
E (p)

| cos kx|
E (k)

d†
pασ d†

−pασ ′d−kασ ′dkασ , (A9)

∑
s

c†
p+Q,sσ c†

−p,s+1,σ ′c−k,s+1,σ ′ck+Q,sσ → 1

4

∑
s

(
1 + α(−1)s cos py

E (p)

)(
1 + α(−1)s cos ky

E (k)

)
d†

pασ d†
−pασ ′d−kασ ′dkασ

= 1

2

(
1 + cos py

E (p)

cos ky

E (k)

)
d†

pασ d†
−pασ ′d−kασ ′dkασ . (A10)

Note that none of the form factors depend on the band index α, which we therefore drop from now on.
Next, we switch from the charge and spin decomposition of the interactions to the singlet and triplet pairing decomposition

using the Pauli matrix completeness relation

2δσ1σ
′
2
δσ ′

1σ2 =
∑

ν

σ ν
σ1σ

′
1
σ ν

σ2σ
′
2
=

∑
ν

(σ ν iσ y)∗σ1σ
′
1
(σ ν iσ y)σ2σ

′
2
, (A11)

where ν = 0, x, y, z with 0 corresponding to singlet and the rest to triplet pairing channels; this puts the projected interactions
into the following form:

H (	xν)
int = 1

2

∑
kpσ1σ

′
1σ2σ

′
2

g(	xν)(p; k)(σ ν iσ y)∗σ1σ
′
1
(σ ν iσ y)σ2σ

′
2
d†

p+	xQ,ασ1
d†

−pασ ′
1
d−kασ2 dk+	xQ,ασ ′

2
. (A12)

The anticommutation relations then imply

g(	xν)(p; k) = (−1)νg(	xν)(−p − 	xQ; k) = g(	xν)(−p − 	xQ; −k − 	xQ) (A13)

[with (−1)ν = −1 for ν = x, y, z], which implies that g(	xν)(p; k) is even or odd under p → −p + 	xQ for singlet and triplet
channels, respectively.

We further split the projected interactions into
g(	x	yν)(p; k) = (−1)	y g(	x	yν)(p + Q; k) according to
channels even and odd under T̂x, which we know from
the irrep analysis must decouple. Finally, the (00s) channel
splits into a Ĉ4 even and odd parts (i.e., “s-” and “d-wave”
channels) that we refer to as (00s; s) and (00s; d ). The Ĉ4

symmetry acts as

Ĉ4cp+	xQ,sσĈ†
4 = 1

2

∑
s′	′

x

(−1)ss′+	xs′+	′
xscp̄+	′

xQ,s′σ . (A14)

Using the fact that cos(pj − k j ) = cos p j cos k j +
sin p j sin k j , we find that the projected interactions for
each channel are

g(00s;s)(p; k) = U

2
+ V

(cos2 py + cos2 px )(cos2 ky + cos2 kx )

E (p)E (k)
,

g(00s;d )(p; k) = V
(cos2 py − cos2 px )(cos2 ky − cos2 kx )

E (p)E (k)
,

g(01s)(p; k) = U

2

cos py cos ky

E (p)E (k)
+ V cos py cos ky,

g(10s)(p; k) = U

2

cos px cos kx

E (p)E (k)
+ V cos px cos kx,

g(11s)(p; k) = V
sin py cos px sin ky cos kx

E (p)E (k)

+ V
sin px cos py sin kx cos ky

E (p)E (k)
, (A15)

g(00t )(p; k) = V
sin py cos py sin ky cos ky

E (p)E (k)

+ V
sin px cos px sin kx cos kx

E (p)E (k)
,

g(01t )(p; k) = V sin py sin ky,

g(10t )(p; k) = V sin px sin kx,

g(11t )(p; k) = V
cos px cos py cos kx cos ky

E (p)E (k)
.
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From these we obtain Table I. Observe that π ŷ and π x̂ are
mapped to each other by Ĉ4 (since it exchanged T̂x and T̂y),
which implies that (01ν) and (10ν) channels form two com-
ponents of the same space group irrep; the little point group is
trivial in this case since Ĉ4 symmetry is broken. The irreps
of (00ν) and (11ν), on the other hand, have a trivial star
but a nontrivial little point group, and are therefore classified
according to the irreps of D4h (since inversion symmetry is
also present). In particular, the (00s; s) channel corresponds
to the trivial irrep A1g, (00s; d ) to the B1g irrep, (11s) to
the Eg irrep, (00t ) to the Eu irrep, and (11t ) to the A1u

irrep.
An astute reader may notice that the g(10ν) and g(11ν) are

discontinuous on the MBZ due to factors of cos kx, which
evaluate to ±1 for kx = ±π/2, respectively, on the MBZ
boundary. However, this is only an apparent discontinuity
that is due to the discontinuity of the dkα , a consequence
of the presence of Dirac nodes in the system that im-
ply an existence of a branch cut in the wave function.
Note in particular that the operator ck1 has a branch cut
at the kx = ±π/2 because, as follows from the definition
in Eq. (A1),

ck+π x̂,s = e−ikxscks, (A16)

so that technically c(π/2,ky ),1 = −c(−π/2,ky ),1. For that reason
we need to consider kx = π/2 and kx = −π/2 as dis-
tinct points. The operators dkα can be made continuous for
α cos ky < 0 if we take

dkα = 1√
2

√
1 + α

cos ky

E (k)
ck0

+ α sgn[cos kx]√
2

√
1 − α

cos ky

E (k)
ck1, (A17)

so that dk+π x̂,α = dkα for α cos ky < 0. For α cos ky > 0, how-
ever, we then get

d(π/2,ky )α = α sgn[cos(π/2)]c(π/2,ky )1

= −α sgn[cos(π/2)]c(−π/2,ky )1

= − sgn[cos(π/2)]

sgn[cos(−π/2)]
d(−π/2,ky )α.

To be consistent, one is forced to take d(π/2,ky )α = −d(−π/2,ky )α

for α cos ky > 0, with the coefficients in Eq. (A17) being
continuous.

Taking this into account, we note that, while anticommu-
tation relations typically imply that triplet interaction must
vanish when p = −p + 	xQ, one has to be careful in the case
px = ±π/2 because of the fact that d(π/2,ky )α = −d(−π/2,ky )α

for α cos ky > 0. This makes no difference for 	x = 0 since
the minus signs cancel, but for 	x = 1 there is an additional
minus sign that means that

g(1ν)((π/2, ky); k) = −(−1)νg(1ν)((π/2, ky); k), (A18)

i.e., it is the singlet projected interactions that must vanish
while the triplet interaction does not, consistent with our
results.

APPENDIX B: SOME DETAILS OF THE GAP EQUATION

Here we provide a few details about solving the gap
equation (9). In most cases, there is a single component
m = 0, and we simply evaluate the integral on the right-
hand side (RHS). The only nontrivial cases are for the
(00s; s), (01s), and (10s) channels, for which the reduced gap
equation becomes a 2 × 2 matrix equation admitting two so-
lutions in each channel. In particular, for the (00s; s) channel
we have(

D(00s;s)
0

D(00s;s)
1

)
= −

(
U�̃

(00s;s)
00 /2 U�̃

(00s;s)
01 /2

V �̃
(00s;s)
01 V �̃

(00s;s)
11

)(
D(00s;s)

0

D(00s;s)
1

)
.

(B1)
The matrix has eigenvalues

γ
(00s;s)
± = 1

4

[
U�̃

(00s;s)
00 + 2V �̃

(00s;s)
11 ∓

√(
U�̃

(00s;s)
00 − 2V �̃

(00s;s)
11

)2 + 8UV
(
�̃

(00s;s)
01

)2
]
, (B2)

with eigenstates that determine the relative weights of D(00s;s)
0 and D(00s;s)

1 :(
D(00s;s)

0,±
D(00s;s)

1,±

)
∝

⎛
⎝U�̃

(00s;s)
00 + 2V �̃

(00s;s)
11 ∓

√(
U�̃

(00s;s)
00 − 2V �̃

(00s;s)
11

)2 + 8UV
(
�̃

(00s;s)
01

)2

4V �̃
(00s;s)
01

⎞
⎠ (B3)

(note that the linearized gap equation does not fix the magni-
tude of the D

(	x	yν)
m coefficients). The equations are similar for

the (01s) and (10s) channels, which are degenerate because
they belong to the same space group irrep.

In the end we thus obtain the self-consistency relations

1 = −γ (	x	yν)(T ), (B4)

which is an equation for Tc since the RHS is a function of
temperature T . At the phase transition, the instability happens
only for the channels with the highest Tc, and we can ignore

the rest. In particular, since γ
(00s;s)
+ < γ

(00s;s)
− , the γ

(00s;s)
− chan-

nel always gives a lower Tc and it can be ignored; we thus only
keep the + solution and can drop the ± index. To obtain the
mean-field phase diagram, we select the channel with largest
eigenvalue (numerically we observe that which eigenvalue is
largest appears to be independent of the temperature).

APPENDIX C: FOURTH-ORDER FREE ENERGY

When the winning irrep is 2D, in order to determine the
symmetries of the ground state it is necessary to go to the
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fourth order in the free energy. The Ginzburg-Landau free
energy for Hofstadter superconductors with arbitrary flux has
been derived in Ref. [33], here we summarize the simplified
case for π flux. Defining the matrix gap function 
̂(p) via

HSC =
∑


̂		′;σσ ′ (p)d†
p,	,σ d†

p,	,σ ′ , (C1)

with p restricted to the reduced MBZ, the fourth-order term in
the free energy can be computed as

F (4) =
∑

k

β(p)Tr[
̂†(p)
̂(p)
̂†(p)
̂(p)], (C2)

with the trace taken over both the magnetic patch indices and
the spin indices, and where

β(p) =
∑

n

1[
ω2

n + ε2(p)
]2 = T tanh

(
ε

2T

) − εsech2
(

ε
2T

)
8ε3T 2

.

(C3)
Note that, in the case of interest (for the Q∗

t triplet PDW irrep),


̂ =
(


(01)(p) 
(10)(p)


(10)(p) −
(01)(p)

)
, (C4)

and the trace evaluates to

Tr[
̂†(p)
̂(p)
̂†(p)
̂(p)] = 1
4 [(|
(01)|2 + |
(10)|2)2 + 2|
(01)|2|
(10)|2 − (

(

(01))2(
(10)∗)2 + c.c.)] (C5)

After the sum over momentum, the free energy is written in terms of the order parameters D(	,±) in Eq. (8) as

F (4) = β0
(|D(01)|2 + |D(10)|2)2 + 2β1|D(01)|2|D(10)|2 − β1

((
D(01))2(

D(10)∗)2 + c.c.
)
. (C6)

The minimum of the free energy is degenerate between uni-
directional combinations in which only one of D(01) or D(10)

is nonzero (breaking TRS and Ĉ4 symmetry), and bidirec-
tional combinations where D(01) = ±D(10). Additional terms
neglected in our model may favor unidirectional or bidirec-
tional combinations.

APPENDIX D: DETAILS OF RENORMALIZATION-GROUP
CALCULATION

We use the RG flow equations we derived in Ref. [44] (see
Supplemental Material of that reference), which we reproduce
here for the special case of the π -flux lattice. In the patch
RG formalism we consider states close to the VHS points
K	x,v = ((1 + v)π

2 , v π
2 ) + 	xQ where we introduce the VHS

index v = 0, 1 (for simplicity we set 	x = 	 defined modulo
two and we omit the subscript). Corresponding to these states
we define operators dp	vασ = dp+K	,v,α,σ with p being a small
momentum expanded around a patch centered at K	,v. For
bookkeeping purposes it will also be convenient to introduce
a redundant VHS index v = −1, with K	,−1 = K	−1,1. We
similarly consider the interactions in the vicinity of these
patches:

Hint → 1

2

∑
	mn

uvw,σσ ′

g(	,u)
m,v;n,wd†

	+n,u+w,α,σ d†
−n,−w,α,σ ′

× d−m,−v,α,σ ′d	+m,u+v,α,σ , (D1)

where 	, m, n = 0, 1 are magnetic flavor indices, u, v, w =
0,±1 are additional VHS indices.

In the pairing channel we have g(	,0)
m,v;n,w =

g(	;α)(Km,v; Kn,w), and there are additional g(	,1)
m,v;n,w

interactions in the particle-hole channel corresponding
to interactions between pairs with total momentum
(π/2, π/2) + 	Q. We group the interactions according

to their VHS indices as follows:

g(	)1
mn = g(	,0)

m,0;n,0, g(	)1′
mn = g(	,0)

m,1;n,1,

g(	)2
mn = g(	,1)

m,0;n,0, g(	)3
mn = g(	,1)

m,0;n,−1,

g(	)4
mn = g(	,0)

m,0;n,1, (D2)

The corresponding Feynman diagrams are shown in Fig. 4.
Note that some of the diagrams are redundant due to Hermitic-
ity and commutation relations. In particular,

g(	)1
mn = g(	),1∗

nm = g(	)1
−	−m,−	−n,

g(	)1′
mn = g(	),1′∗

nm = g(	)1′
−1−	−m,−1−	−n,

g(	)2
mn = g(	),2∗

nm = g(	)2′
−	−m,−	−n, (D3)

g(	)3
mn = g(	),3∗

−	−n,−	−m = g(	)3′
−	−m,−	−n,

g(	)4
mn = g(	),4

−	−m,−	−n−1 = g(	)4′∗
nm .

FIG. 4. Feynman diagrams corresponding to interactions in
Eq. (D1). The colors indicate the VHS indices for the intrapatch
processes gj (green lines correspond to v = 0, red to v = 1 and blue
to v = −1). The colorless diagram shows the interpatch indices with
	 labeling the total momentum of the incoming and outgoing pairs,
and m and n labeling the relative momenta of incoming and outgoing
pairs, respectively.
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These are in addition to the MTG-imposed relation g(	), j
mn =

g(	), j
m−1,n−1 and TRS that implies that all coupling constants

are real, so that in total there are 16 independent coupling
constants.

The basic building blocks of RG are the particle-particle
bubble, which also serves as the RG time t = �(0)

pp ,

�(v)
pp = −iT

∑
ω

∫
Gn,v(iω, p)G	−n,v(−iω,−p)

d2 p

(2π )2

= ν0 log2 �

E
, (D4)

and the particle-hole bubble is

�
(v)
ph = iT

∑
ω

∫
Gn,v(iω, p)G	+n,v+1(iω, p)

d2 p

(2π )2

= ν0 log2 �

E
(D5)

(neither of the bubbles depends on the choice of n and 	 by
MTG symmetry), where

Gn,v(iω, p) = 1

iω − εn,v(p)
(D6)

is the Green’s function for the patch around Kn,v, and
E is the energy scale down to which the high-energy
modes have been integrated out to. The dispersion ex-

panded around the VHS points is ε	,v(p) ≈ ±(−1)v p2
x−p2

y

2m −
μ (with ± for upper and lower bands), and the extra log-
arithm comes from the diverging DOS at the VHSs. We
further define d (v)

pp = d�(v)
pp /d�(0)

pp ≈ �(v)
pp /�(0)

pp and d (v)
ph =

d�
(v)
ph /d�(0)

pp ≈ �
(v)
ph /�(0)

pp . Note that due to the Ĉ4 sym-

metry d (0)
pp = d (1)

pp = 1 and d (0)
ph = d (1)

ph . We thus drop the
superscripts.

We then obtain the standard 1-loop RG flow equation using
the diagrams in Fig. 5, plugging in the magnetic flavor indices
from Fig. 6, yielding the RG flow equations:

ġ(	)1
mn = −g(	)1

mk g(	)1
kn − g(	)4

mk g(	)4∗
nk ,

ġ(	)1′
mn = −g(	)1′

mk g(	)1′
kn − g(	)4∗

km g(	)4
kn ,

ġ(	)2
mn = dph

(
g(	+n−k)2

mk g(	+m−k)2
kn + g(	+n−k)4∗

k,m−1 g(	+m−k)4
k,n−1

)
,

ġ(	)3
mn = 2dphg(	+m+n+k)3

−n−k,−m−k

(
g(k)2

m,−n−k − g(k)3
mn

) + dphg(	+m+n+k)4
−n−k,−m−k

(
g(k)4∗

n,−m−k − 2g(k)4∗
n,m−1

) + dphg(	+m+n+k)4
−n−k,−n−	−1g(k)4∗

n,m−1, (D7)

ġ(	)4
mn = −g(	)1

mk g(	)4
kn − g(	)4

mk g(	)1′
kn + dph

(
g(	+n−k)2

k−	−m−n,−	−ng(	+m−k)4
kn + g(	+n−k)4

mk g(	+m−k−1)2
k+1,n+1

)
+ dphg(	+m+n+k)4

−n−k,−m−k

(
g(k−1)2

−m−k+1,n+1 − 2g(k−1)3
1−k−m,−k−n

) + dphg(	+m+n+k)4
−n−k,−n−	−1g(k−1)3

1−k−m,−k−n

+ dphg(	+m+n+k)3
−n−k,−m−k g(k)4

−m−k,n + dph
(
g(	+m+n+k),2

−n−k,−n−	
− 2g(	+m+n+k)3

−n−k,−m−k

)
g(k)4

mn .

We then study this flow equation with the bare coupling con-
stants obtained from the projection as the initial condition.

1. Vertices

To determine which instability is realized under the RG
flow, we study the flow of the associated susceptibilities and
vertices. The relevant vertex Hamiltonians are

HSC = 
(	)
m;viσ y

σσ ′d
†
	+m,v,σ d†

−m,−v,σ ′ + H.c.,

HCDW = ρ[	]
m;vd†

	+m,−v,σ dm,1+v,σ , (D8)

HSDW = M[	]
m;v · σσσ ′d†

	+m,−v,σ dm,1+v,σ ′

(summation over the indices is implied). 
(	)
m;v = 
(	)(Km,v) is

the SC or PDW vertex, while ρ[	]
m;v, and M[	]

m;v are the CDW, and
SDW vertices with momentum transfers (π, π )/q + 	Q. We

use the notation M[	, j]
m;v to denote the jth component of M[	, j]

m;v ,
including CDW as a special case with j = 0, ρ[	] = M[	,0].

The vertex RG flow is obtained using the diagrams shown
in Figs. 7 and 8, which yields


̇
(	)
m;0 = −g(	)1

nm 

(	)
n;0 − g(	)4∗

mn 

(	)
n;1,


̇
(	)
m;1 = −g(	)4

nm 

(	)
n;0 − g(	)1′

nm 

(	)
n;1,

ρ̇
[	]
m;0 = dph

(
g(	+m−n)2

n−m,0 − 2g(	−m+n)3
0,−	

)
ρ

[	]
n;0

+ dph
(
g(	+m−n)4∗

0,n−m−1 − 2g(	+m−n)4∗
0,−	

)
ρ

[	]
n;1,

ρ̇
[	]
m;1 = dph

(
g(	+m−n)4

n−m,−1 − 2g(	−m+n)4
0,−	

)
ρ

[	]
n;0 (D9)

+ dph
(
g(	+m−n−1)2

1−	,1−	+n−m − 2g(	+m−n−1)3
1−	,0

)
ρ

[	]
n;1,

Ṁ[	]
m;0 = dph

(
g(	+m−n)2

n−m,0 M[	]
n;0 + g(	+m−n)4∗

0,n−m−1 M[	]
n;1

)
,

Ṁ[	]
m;1 = dph

(
g(	+m−n)4

n−m,−1 M[	]
n;0 + g(	+m−n−1)2

1−	,1−	+n−mM[	]
n;1

)
.
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FIG. 5. The VHS index structure of the 1-loop RG flow diagrams.

FIG. 6. Magnetic patch structure of 1-loop RG Feynman diagrams.

To identify the leading instability, we consider the suscepti-
bilities χI with I = 
(	)

m;v, ρ̃
[	]
k;v, M̃[	]

k;v. The susceptibilities flow
as χ̇I = dI |I (t )/I (0)|2 with d
 = 1 and dI = dph, and with
χI (0) = 0. The fastest diverging susceptibility corresponds to
the leading instability. Solving the flow equations numerically
we obtain the phase diagram Fig. 2(b). See Fig. 9 for a sample
RG vertex flow. See Ref. [44] for additional details.

FIG. 7. Magnetic flavor structure of the 1-loop Feynman dia-
grams contributing to vertex flow.
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FIG. 8. VHS index structure of the 1-loop Feynman diagrams
contributing to the vertex flow (green for v = 0, red or blue for v =
±1, respectively). SDW diagrams are the same as CDW diagrams
with M instead of ρ.

FIG. 9. Susceptibility RG flow for U = 1, V = −0.5, dph = 1.
The triplet Q∗

t PDW with (0, π ) and (0, π ) (light blue curve) sus-
ceptibility diverges fastest. Other susceptibilities do not renormalize
strongly on the relevant scale, indicating that the system is effectively
described by the mean-field approximation.
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