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From linear to circular polarized light: Floquet engineering in Kitaev-Heisenberg
materials with Lissajous figures
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This paper discusses Floquet engineering with arbitrary polarization in α-RuCl3. We describe the influence
of arbitrary polarization and the limiting cases of linear and circular polarization. The corresponding model is
derived via perturbation theory up to fourth order. Starting from linear and circular polarization, we bridge the
gap between those two limiting cases. We then study more complex Lissajous figures and general trends arising
for them. In theory these Lissajous figures should inherit effects from both linear and circular polarized light and
therefore yield tuning possibilities not yet explored in the context of candidate Kitaev materials.
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I. INTRODUCTION

Floquet engineering has proven to be a promising tool
for tuning magnetic interactions [1–3]. When light periodic
in time is applied, the system can be described with a
time-independent effective Hamiltonian known as a Floquet
Hamiltonian [4–7]. Light frequency and amplitude then mod-
ify the system’s intrinsic interactions. Therefore, modifying
system properties via light is feasible. It has been shown that
the procedure of an approximate time-independent Hamil-
tonian is, indeed, reasonable for short but experimentally
accessible timescales [8] before the system experiences heat-
ing and the Floquet description breaks down. The timescale
for heating has been found to increase exponentially with
the driving frequency [8–10]. Timescales therefore heavily
depend on the chosen driving frequency. A quantitative de-
scription of heating rates was attempted with the Floquet
Fermi’s golden rule [11] and linear-response theory in a
rotating frame [12]. Mott insulators with strong spin-orbit
coupling, which are assumed to be close to realizing a Kitaev
model [13], seem to be a promising playground for Floquet
engineering. In materials like α-RuCl3, a Kitaev spin liquid
(KSL) was proposed; however, the ground state is likely an
antiferromagnet with a zigzag pattern [14]. Therefore, the idea
of altering the intrinsic interaction parameters arose. There
have been a plethora of attempts [15–27] to tune α-RuCl3
into the KSL phase, the most promising of which to date is
probably applying a magnetic field [18–23].

Most recently, there have been several proposals to tune
Kitaev candidate materials into the sought after KSL via Flo-
quet engineering. The focus here has been on either linearly
polarized light [28,29], where the light angle leads to new
possibilities to manipulate interactions in addition to the light
frequency, or circularly polarized light, which has an isotropic
influence on the system [30]. For circular polarization, an
induced inverse Faraday effect [31], which is found when
ligands are explicitly included via third-order perturbation
theory, has been discussed. This suggests that including lig-
ands leads to novel tuning possibilities [32,33].

Until now the transition from circularly to linearly
polarized light has been lacking in the context of Kitaev-
Heisenberg materials. This is particularly interesting since
circularly polarized light (CPL) and linearly polarized light
(LPL) each break a unique symmetry in their own right.
While LPL induces interaction anisotropies, CPL breaks time
reversal symmetry (TRS). Lissajous figures therefore not only
connect these two special cases but also yield the possibility
to study the effect of broken TRS and anisotropic interactions
in combination. This could lead to unique interactions in the
Kitaev-Heisenberg frame that were not available before and
that may lead to novel ground-state properties. An effective
model to describe arbitrary polarizations was introduced in
[34–37]. Using this as a starting point, there have been propos-
als of tuning, e.g., Cd3As2 via Lissajous figures [38], with the
motivation to influence magnetic symmetries via a bicircular
polarized light. In this paper we want to transfer the meth-
ods of [35,36,38] to candidate Kitaev-Heisenberg models,
specifically to the most promising one, α-RuCl3. Our goal is
to explore new tuning possibilities via Lissajous figures and
to bridge the gap between linearly polarized and circularly
polarized light.

To do so we derive an expression for the Peierls substi-
tution for arbitrary polarizations. From there we obtain an
effective model via perturbation theory up to fourth order to
capture the formerly mentioned inverse Faraday effect, which
also adds other contributions to lower-order terms. Fourth-
order terms are relevant because Kitaev interactions already
have fourth-order contributions in the absence of light [39].
Projecting this effective Hamiltonian onto the j = 1/2 ba-
sis then yields an effective Floquet-Kitaev-Heisenberg model
capturing the influence of arbitrary polarized light. This model
reproduces the results of the LPL [28,29] and CPL Hamil-
tonians [32,33] in the respective limits. We find that third-
and fourth-order perturbation theory not only gives rise to the
additional magnetic field for CPL but also yields additional
interactions for LPL. Proceeding beyond these limiting cases,
we investigate more complex Lissajous figures in order to find
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different pathways for tuning Kitaev-Heisenberg materials.
We try to map out the roles of the multiple variables involved
in the mode, e.g., amplitude, frequency, etc.

This paper is structured as follows: In Sec. II we derive the
effective model for arbitrary polarized light. We first expand
the model in [29] in order to obtain the second-order terms
and then calculate third- and fourth-order terms for arbitrary
polarizations, similar to [32]. We give an expression for all
interactions arising and briefly discuss the their nature. In
Sec. III we analyze the model derived in Sec. II. The focus
is first on light with a phase shift of ε = 0 and ε = π/2 in
Sec. III A. Here we study a frequency multiplicity of N = 1
in (1), representing CPL and LPL at a driving frequency
significantly above any resonances. We compare our results to
the results of [32] in order to confirm the validity of our model.
In Sec. III B we treat the phase shift ε as a free parameter.
Subsequently, we continuously go from CPL to LPL and study
the change in the interaction parameters. Building upon the
results of Sec. III A, we start with the same driving frequency.
In order to assess the influence of driving frequency we also
study the case of driving between resonances of the effective
Floquet Hamiltonian [29]. Last, but not least, in Sec. III C we
investigate the influence of the second Lissajous parameter,
the frequency multiplicity N in (1). We conclude and summa-
rize the results in Sec. IV.

II. THEORY AND METHODS

A. Floquet Hamiltonian

As shown in [29], one can describe the kinetic part
of the Hamiltonian with a Hubbard Hamiltonian in which
the hopping part is modulated via the Peierls substitution
t → t B[ϑ, A(τ )] and therefore depends on the time τ .

Since we want to consider arbitrary polarization, we de-
scribe the vector potential as

A =
(

Ex
ω

sin(ωτ )
Ey

Nω
sin(Nωτ + ε)

)
, (1)

where N is the ratio between the frequency in the x direction
and that in the y direction Nω and ε describes the phase shift
between x and y polarized light. This gives rise to a Peierls
substitution of the form

B(ϑ, A) = exp

[
iA

(
cos(ϑ )
sin(ϑ )

)]
, (2)

with ϑ being the bond angle of the respective nearest-neighbor
bond 〈i j〉. In the honeycomb lattice, there are three different
nearest-neighbor d-d bond types, z (ϑ = 0), x (ϑ = 2π/3),
and y (ϑ = 4π/3). In addition, we have d-p bonds at an angle
of ϑ = ±π/4 to the respective bond. The expression in (2)
captures all possible Lissajous figures via the tuning param-
eters N and ε. Evidently, at E0 = 0 the Peierls substitution
becomes B = 1, and the Hamiltonian describes the system in
the absence of a light field. Fixing N = 1, ε gradually shifts
polarization from circular (ε = π/2) to linear (ε = 0). Choos-
ing N > 1 yields Lissajous figures that have not been inves-
tigated in the context of α-RuCl3 so far. Unlike in [29], we
focus on ϕ = π/4 as angle of LPL, i.e., Ex = E cos(ϕ) = E0

and Ex = E sin(ϕ) = E0. ϕ simply guarantees Ex = Ey in this
paper and therefore has no further influence.

The Hamiltonian for the z bonds can then be written as

Hz
kin(τ ) = −

∑
σ,〈i j〉z

B(0, A)d†
i,σ Tzd j,σ

+ tpd

[
B

(
−π

4
, A

)
(d†

zx,i,σ p1,σ − p†
2,σ dyz, j,σ )

+ B
(

π

4
, A

)
(d†

zx,i,σ p2,σ − p†
1,σ dyz, j,σ ) + H.c.

]
,

(3)

where di,σ (d†
i,σ ) denotes the vector of annihilation (creation)

operators diασ (d†
iασ ) that annihilate (create) an electron in the

d orbital α ∈ [xy, yz, zx] on site i with spin σ . The matrix Tz

contains direct d-d hoppings [29] modified by the Peierls sub-
stitution B(0, A). pi,σ (p†

i,σ ) annihilates (creates) a p electron
on the ligand ion, and tpd is the hopping between d and p
orbitals. The kinetic Hamiltonian in the y and x directions can
be derived by adjusting ϑ and choosing the corresponding
hopping processes Tγ [29,40] as well as tpd . We explicitly
included the hopping processes from the d orbitals to the p
ligand since it has been shown that they cannot be simply be
integrated out [32,33].

The on-site interactions are captured with the Kanamori
Hamiltonian

Hint = U
∑
i,α

niα↑niα↓ + U ′ ∑
i,σ

∑
α<β

niασ niβ −σ

− JH

∑
i,α 	=β

(d†
iα↑diα↓d†

iβ↓diβ↑ − d†
iα↑d†

iα↓diβ↓diβ↑)

+ (U ′ − JH )
∑
i,σ

∑
α<β

niασ niβσ + �
∑
i,σ

p†
iσ piσ , (4)

where U is the intraorbital interaction, interorbital interaction
U ′ = U − 2JH , JH is Hund’s coupling, and niασ is the density.

The complete Hamiltonian is periodic in time. Floquet’s
theorem [41] shows that such Hamiltonians can be described
with a time-independent Floquet Hamiltonian [35]. In our
case, the Hamiltonian takes the form

HF = −
∑
l,n

Hl
kin |n + l〉 〈n| +

∑
l

(Hint + lω) |l〉 〈l| , (5)

where l and n are the number of photons. Hl
kin describes a

hopping process with the absorption of l photons and can be
derived via averaging over time,

Hl
kin = ω

2π

∫ 2π/ω

0
Hkin(τ )e−ilωτ dτ. (6)

The only time-dependent term in Hkin(τ ) (3) is the Peierls
substitution B. Performing the integration for this term yields

Bl (ϑ, A) =
∑

n

Jl−Nn

(
E0

ω
cos(ϑ )

)
Jn

(
E0

Nω
sin(ϑ )

)
eiεn,

(7)

where we used the Jacobi-Anger expansion [7] to simplify the
expression. The Floquet Hamiltonian therefore has the exact
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same hopping processes as the bare Hamiltonian, but with
dressed hopping strengths that now depend on ε, N, E0, ϑ,

and ω.

B. Second-order perturbation theory

α-RuCl3 is considered to be a Mott insulator, where the
Coulomb repulsion U is much larger than the hopping param-
eters Tγ and tpd of HF

kin. Therefore, we can treat the kinetic
part of the Floquet Hamiltonian (5) via perturbation theory.
The conventional approach is to calculate an effective second-
order Hamiltonian

HF
eff =

∑
l,α

H−l
kin

∣∣d
α

〉 〈
d

α

∣∣ Hl
kin

Eα + lω
, (8)

with l being the number of absorbed(emitted) photons, ω

being the driving frequency, and |d
α 〉 being the manifold

of states with a double occupation on one site. Spin-orbit
coupling is considered to be sizable in α-RuCl3, yielding a
hole in a pseudospin j = 1/2 state on each site like for the
materials discussed in [42]. Projecting the effective Kugel-
Khomskii-type Floquet Hamiltonian into the j = 1/2 basis
then gives rise to a Kitaev-Heisenberg model like in [39].

The distinct feature of the Floquet-Kitaev-Heisenberg
Hamiltonian is the dependence of the interaction parameters
on ω and E0 for CPL and, additionally, on ϕ for LPL [29].
In order to obtain the second-order Hamiltonian for arbitrary
polarizations one has to simply exchange the Bessel functions
in [29] with the expression derived in (7). The interaction
parameters obtained are given in Appendix A.

In these calculations the hopping over the p-ligand atoms
is integrated out and is included in the t2 hopping t2 →
t2 + t2

pd/� [29,40]. While this is valid in the case of systems
without driving [39], a light field induces a complex phase
for each hopping (2), which precludes including tpd in the t2
hopping. We therefore have to calculate virtual tpd -hopping
strengths explicitly, necessitating perturbation theory up to
fourth order.

C. Third-order perturbation theory

Third-order perturbation theory considers hopping pro-
cesses in which one d → d process is mediated by a ligand
p atom, i.e., occurs along a d-p-d path. For CPL several

theoretical studies proposed an inverse Faraday effect aris-
ing due to these additional hopping processes [32,33], which
was also supported by recent experimental results [43].
Furthermore, [32] introduced analytic expressions for the
Kitaev-Heisenberg Hamiltonian in third-order perturbation
theory for CPL.

In this section we build on these findings and extend them
to arbitrary polarization, deriving analytic expressions for
third-order correction terms. The third-order contributions to
the effective Floquet Hamiltonian can be calculated via

HF
eff =

∑
l,m

∑
β,α

H−l−m
kin

∣∣d
α

〉 〈
d

α

∣∣ Hm
kin

∣∣ p
β

〉 〈


p
β

∣∣ Hl
kin

[Eα + (m + l )ω](� + lω)
, (9)

where |d
α 〉 (| p

α〉) is the excited-state manifold with an ad-
ditional electron in a d (p) orbital with excitation energies
Eα (�). The possible energies for two electrons in a t2g d shell
are EP = U − 3JH , ED = U − JH , and ES = U + 2JH . In con-
trast to second-order processes, where l photons get absorbed
(emitted) in the first hopping process and emitted (absorbed)
in the second hopping process, in the third-order process l
photons get absorbed (emitted) in the d → p hopping, and an-
other m photons get absorbed (emitted) in the p → d hopping,
which then get collectively emitted (absorbed) in the d → d
process so that no photons are present in the final state.

Using the projections of [32], our calculations for arbitrary
polarization (see more details in Appendix C) give rise to
three more interaction terms in addition to the J , K , and �

terms present in systems without driving. The full third-order
Hamiltonian projected onto the j = 1/2 basis then reads

H3
eff =

∑
γ ,〈i, j〉γ

J3
γ SiS j + K3

γ Sγ
i Sγ

j + �3
γ

(
Sα

i Sβ
j + Sβ

i Sα
j

)

+ D3
γ eγ (Si×S j ) + μ3

γ

(
Sα

i Sα
j − Sβ

i Sβ
j

)+ h3
γ

(
Sγ

i +Sγ
j

)
,

(10)

where γ ∈ [x, y, z] labels the three bond directions in the
honeycomb lattice according to the Kitaev interaction present
on this specific bond and α and β are the remaining two
spin directions, e.g., α = x and β = y for the z bond (γ = z).
h3 is the magnetic field term mentioned above, which arises
from broken time reversal symmetry and induces an inverse
Faraday effect. D and μ break inversion symmetry (IS) and
induce further anisotropies, respectively.

The terms for the z bond are then given as

K3
z =

∑
m,l

t2
pd

� + mω

[
Re

(
B3

l,m + B3
m,l

)12

9

(
t2

ED + (l + m)ω
− t2

EP + (l + m)ω

)

+ Im
(
B3

l,m − B3
m,l

) 8

27

(
t1 − t3

ED + (l + m)ω
+ 2t1 + t3

ES + (l + m)ω
+ 6t2

EP + (l + m)ω

)]
, (11)

�3 =
∑
m,l

t2
pd

� + mω
Re

(
B3

l,m + B3
l,m

)4

9

(
t1 − t3

EP + (l + m)ω
− t1 − t3

ED + (l + m)ω

)
, (12)

μ3
z =

∑
m,l

−t2
pd

� + mω
Re

(
B3

l,m − B3
m,l

)4

9

(
t2

EP + (l + m)ω
+ t2

ED + (l + m)ω

)
, (13)
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D3
z =

∑
m,l

t2
pd

� + mω
Re

(
B3

l,m − B3
m,l

) 8

27

(
2t1 + t3

ES + (l + m)ω
+ t1 − t3

ED + (l + m)ω
+ 3(t1 + t3)

EP + (l + m)ω

)
, (14)

h3
z =

∑
m,l

−t2
pd

� + mω
Im

(
B3

l,m − B3
m,l

)2

9

(
t1 − t3

ED + (l + m)ω
+ t1 − t3

EP + (l + m)ω

)
, (15)

with t1, t2, t3, and t4, the entries of Tz, defined as in [29,40]. Furthermore, we define

B3
l,m = B−l−m(0, A)B∗

−l

(
π

4
, Ã

)
B∗

−m

(
−π

4
, Ã

)
, (16)

where Bl is introduced in (7) and Ã = A/
√

2. It is of note that in third-order perturbation theory there are no contributions to the
Heisenberg term J , in contrast to the findings of [32].1 Results for the x and y bonds can be deduced from (11)–(15) by selecting
ϑ in (16) accordingly.

D. Fourth-order perturbation theory

While the inverse Faraday effect can be fully captured
in third-order perturbation theory, the Kitaev interaction
still lacks significant contributions that arise from fourth-
order contributions. As is evident from the conventional
Kitaev-Heisenberg model [39], (tpd )4 terms, i.e., d-p-d-p-d

processes, are the driving force for a sizable Kitaev term. It
is therefore crucial to include terms in which both d → d
hopping processes are mediated by ligand p atoms explicitly.
This can be done in a fashion similar to that for second-order
[Eq. (8)] and third-order [Eq. (9)] terms. The contributions to
the interaction terms from fourth-order perturbation theory are
then given by

J4 =
∑

n,l,m,k

t4
pd δn,−l−k−m

(
B4

n,l − B4
l,n

)(
B4 ∗

−m,−k − B4 ∗
−k,−m

)
[� + (l + m + k)ω](� + mω)

2

27

(
1

ED + (m + l )ω
+ 3

EP + (l + m)ω
+ 2

ES + (l + m)ω

)
, (17)

K4 =
∑

n,l,m,k

t4
pd δn,−l−k−m

[� + (l + m + k)ω](� + mω)

[
2

3

(
1

EP + (l + m)ω
− 1

ED + (l + m)ω

)(
B4

l,nB
4 ∗
−m,−k + B4

n,lB
4 ∗
−k,−m

)

− 2

27

(
2

ES + (l + m)ω
+ 3

EP + (l + m)ω
+ 4

ED + (l + m)ω

)(
B4

n,l − B4
l,n

)(
B4 ∗

−m,−k − B4 ∗
−k,−m

)]
, (18)

μ4 =
∑

n,l,m,k

t4
pd δn,−l−k−m

(
B4

n,lB
4 ∗
−m,−k − B4

l,nB
4 ∗
−k,−m

)
[� + (l + m + k)ω](� + mω)

2

18

(
1

ED + (l + m)ω
− 1

EP + (l + m)ω

)
, (19)

where l, m, and k are the photons absorbed and emitted in the
virtual hopping process and the fourth-order equivalent of (16)
is given as

B4
n,l = Bn

(
π

4
, Ã

)
Bl

(
− π

4
, Ã

)
. (20)

As expected, for fourth order we have nonzero Kitaev interac-
tions. In addition, there are contributions to the Heisenberg
and μ interactions. The absence of h4 terms explains the
remarkably good agreement of the third-order h term in [32]
with the numerical results.

Summarizing for arbitrary polarization, two types of inter-
actions arise in addition to the formerly known J , K , �, and
h terms which break the IS of the system (D) and induce fur-
ther anisotropies (μ). Additionally, we found that Heisenberg

1We believe the reason for that is that d → d → p→ d processes
appear to be neglected in [32] which lead to the vanishing of J3 and
a finite D3.

interactions do not have third-order but fourth-order contri-
butions. This in combination with Kitaev interactions having
fourth-order contributions makes the inclusion of fourth-order
terms a necessity. To showcase the influence of fourth-order
terms in α-RuCl3, we calculated Kitaev interactions depend-
ing on the driving amplitude E0 in both third and fourth
order. We use the same parameters as [32], i.e., ab initio
results [44] and photoemission [45], in order to compare
our results with [32]. These parameters are used for the
remainder of this paper. The results are shown in Fig. 1.
We notice, as already discussed, a significant difference at
E0 = 0, i.e., the absence of a light field, with Kitaev in-
teractions in fourth order being significantly stronger than
third-order results. For finite E0 the qualitative behavior is
comparable for third- and fourth-order calculations, with a
maximum at E0 ≈ 40 eV/(ed ) and a strong suppression of
Kitaev interactions for E0 > 50 eV/(ed ). However, there is
still a sizable difference in magnitude for finite E0 between
third- and fourth-order results throughout the parameter range
considered. This in combination with the difference at E0 = 0
is clear evidence of the importance of fourth-order terms.
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FIG. 1. Comparison of the Kitaev interaction depending on E0 at
ω = 12.0 eV obtained with the third-order model (purple curve) and
the fourth-order model (dark green curve).

III. RESULTS: FROM LINEAR TO CIRCULAR
POLARIZED LIGHT

A. Limiting cases ε = 0 and ε = π/2

We start our analysis of Lissajous figures with CPL and
LPL, i.e., ε = π/2 and ε = 0. The results for ω = 12.0 eV
are displayed in Figs. 2(a) and 2(b) for LPL and CPL, respec-
tively. E0 = 0 reproduces the results of the Kitaev-Heisenberg
model without driving, which can be seen in (1).

Looking at Fig. 2(a), we immediately note the anisotropic
influence of light on the different bond directions for all in-
teractions as already reported in [29]. In addition, we observe
no induced magnetic field h for any considered amplitudes
E0. Contrary to CPL, LPL does not break TRS and therefore
does not induce a magnetic field. However, the terms D and
μ make finite contributions for a nonzero amplitude E0, and
therefore, IS is broken. These terms were not reported in [29]
because they arise only in third and higher orders, as discussed
in Sec. II C. We therefore find that including third and higher
orders explicitly is essential for arbitrary polarization.

The results for CPL are displayed in Fig. 2(b). Since CPL
affects all bond directions in the same manner, the x, y, and
z interactions coincide. As already reported in [33], there is
a finite induced magnetic field pointing in the n = (1, 1, 1)
direction. Meanwhile, D and μ vanish for CPL light, which
was already evident from (13), (14), and (19). We report
that the results from our analytical expressions (11)–(15) and
(17)–(19), with fourth-order terms and third-order terms, ap-
pear to fit the ED results from [32] far better than the analytical
results of [32].2 Especially, the Kitaev term with sizable pos-
itive values around E0 ≈ 40 eV/(ed ) is remarkably close to
the numerical results. Even our third-order results show good
qualitative agreement with the numerical results, as can be
seen in Fig. 1.

For the two limiting cases of CPL and LPL we find that
linear polarizations induce D and μ. In addition LPL causes

2We attribute the small differences for ω = 12.0 eV to the indices
in (23) in the supplemental material of [32], which are different to
the ones we calculated.

FIG. 2. J , K , �, D, μ, and h interactions in the x, y, and z
directions depending on light amplitude E0 at ω = 12.0 eV. Results
for frequency multiplicity N = 1 are shown.

a bond anisotropy depending on the light angle, which is
discussed in more detail in [29]. CPL breaks TRS and there-
fore induces a magnetic field while keeping bond interactions
isotropic.

B. Elliptical Lissajous figures (N = 1)

In this section we exploit the advantage of the Lissajous
formalism (Sec. II), continuously varying ε between the
limiting cases introduced in Sec. III A. We analyze how in-
teractions depend on ε and E0 for N = 1 and ω = 12.0 eV in
order to compare our results to the CPL results from [32]. The
results for all interactions are displayed in Fig. 3.

As already discussed in Sec. II, interactions are bond
isotropic for CPL. Moving away from CPL, the interactions
become anisotropic immediately; that is, if one desires to tune
all bonds in the same manner, one has to use CPL. For the J ,
K , and � interactions [Fig. 3(a)] one observes a decrease in
interaction strength for E0 > 10 eV/(ed ) accompanied by the
introduction of some sizable anisotropies moving from π/2
to 0. For the z-bond J and K interactions we observe a change
in sign for finite E0. � interactions are mainly suppressed for
sizable E0 at ω = 12.0 eV.

As already reported for CPL D and μ vanish. However,
tuning ε → 0 induces finite values for both D and μ. We
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FIG. 3. Interactions in the x, y, and z directions depending on
light amplitude E0 and phase shift ε at ω = 12.0 eV. Frequency
multiplicity N = 1.

observe that D and μ are anisotropic through the entire pa-
rameter range. Contributions become strong around the limit
of LPL. We note that the z terms of D and μ are antisymmetric
around π/2, while other z-interaction terms are symmetric
around π/2. x and y interactions for D and μ also show a
unique ε dependence. While for the latter x interactions coin-
cide with the y interactions when changing ε → −ε, for D and
μ there is a change in sign for the interactions. We attribute
this behavior to the anisotropic nature of these interactions.

Finally, the magnetic field h, like for J , K , and � inter-
actions, becomes anisotropic moving away from CPL. This
can be interpreted as a change in direction of the induced
magnetic field. While for CPL the direction is n, for π/4 and
E0 ≈ 20 eV/(ed ) the magnetic field points mainly in
the x direction. Increasing the driving amplitude up to
E0 > 40 eV/(ed ), the x and y contributions of the magnetic
field vastly decrease, and we obtain an induced magnetic field
which points mainly out of plane.

For frequencies far above all resonances (EP, ED, and ES)
like ω = 12.0 eV we generally expect light to suppress in-
teraction strengths with increasing E0. On the other hand,
frequencies between the resonances can induce a signifi-
cant increase in interaction strength. This effect was already
reported for both CPL [30,32] and LPL [28,29,33] and ap-
pears to be a promising route to obtain a KSL ground
state. We therefore change the driving frequency to ω =
2.1 eV, which is between the resonances of EP, ES/2, and �

(see Appendix D) and evaluate all interactions.

FIG. 4. Interactions in the x, y, and z directions depending on
light amplitude E0 and phase shift ε at ω = 2.1 eV. Frequency mul-
tiplicity N = 1.

It has to be mentioned that driving between resonances
comes with an increased risk of heating [7,29], and fre-
quencies have to be chosen cautiously. A poor choice of
frequencies might well give misleading results since we
are working in the off-resonance approximation [29] which
diverges around resonances. This is especially true for fourth-
order terms which go with 1/�2; that is, frequencies close to
the � resonance diverge even faster. Results for ω = 2.1 eV
are shown in Figs. 4(a) and 4(b) for non-light-induced (NLI)
interactions J , K , and � and light-induced (LI) interactions h,
D, and μ, respectively.

The NLI interactions are significantly enhanced for finite
E0, compared to the interaction strengths without driving,
throughout the whole considered parameter range of ε. Fur-
thermore, we notice that the degree of enhancement strongly
depends on ε. For the Heisenberg interaction, the largest in-
teractions can be found for LPL. Meanwhile, for K and �

interactions maxima can be found between LPL and CPL
for E0 ≈ 7 eV/(ed ). Increasing Kitaev interactions beyond
the maximal values of CPL and LPL indicates a clear ad-
vantage that complex Lissajous figures have. As discussed
earlier, increasing Kitaev interactions compared to the other
interactions is desirable, and while this is possible via tuning
ε, it comes at the cost of lost isotropy. Hence, the model is no
longer in the ideal Kitaev-Heisenberg picture of [39,42] and
could point more towards a dimerization of the ground state
or a gapped spin liquid [46]. The fact that this is especially
possible between LPL and CPL emphasizes the importance of
going beyond the limiting cases.

035132-6



FROM LINEAR TO CIRCULAR POLARIZED LIGHT: … PHYSICAL REVIEW B 108, 035132 (2023)

FIG. 5. Interactions in the x, y, and z directions depending on
light amplitude E0 and phase shift ε at ω = 2.1 eV. Frequency mul-
tiplicity N = 2.

Looking at the LI interactions, we observe a significant
increase in D and μ contributions. For ω = 12.0 eV both D
and μ are multiple orders smaller than the NLI interactions.
Meanwhile, for ω = 2.1 eV, LPL, and E0 > 4 eV/(ed ) their
contributions increase noticeably, having the same magni-
tude as the NLI interactions. We observe that both Dz and
μz are antisymmetric around π/2, which is the case for
ω = 12.0 eV. The induced magnetic field does not increase
significantly compared to the results of ω = 12.0 eV. Like
for ω = 12.0 eV, we note that the maximal induced magnetic
field in the x and y directions is between LPL and CPL at
ε ≈ π/3.

C. N > 1 Lissajous figures between resonances

After analyzing the influence of both ε and ω we want
to discuss the influence of the frequency multiplicity N in
(16) and (20). As we saw in Sec. III B and [29], driving
between resonances is the most promising pathway to increase
Kitaev interactions. Therefore, we set the driving frequency to
ω = 2.1 eV for the remainder of this section.

We start with N = 2 Lissajous figures. The results for all
interaction terms are displayed in Fig. 5. NLI interactions
[Fig. 5(a)] show a distinct ε and E0 dependency for N = 2.
However, the magnitude of the interactions stays relatively
unaffected. The most notable change is that for K and �

the maximal interaction strength arises for LPL. Furthermore,
for π/2, not all bond interactions are isotropic anymore.
While x and y interactions still obey the same E0 depen-
dence, z interactions clearly differ from that. This is the case

FIG. 6. Interactions in the x, y, and z directions depending on
light amplitude E0 and phase shift ε at ω = 2.1 eV. Frequency mul-
tiplicity N = 5.

because ε = π/2 and N = 2 do not correspond to CPL but
to a more complex Lissajous figure, with some anisotropy
(see Appendix E). The behavior of the Kx and Ky interactions
yields the possibility to switch the signs of the x and y inter-
actions by changing ε from 0 to π at E0 ≈ 7.5 eV/(ed ). For
the � interactions this change suppresses y interactions and
enhances x interactions. For both K and � interactions the z
bond is relatively unaffected by the changes in ε.

In contrast to CPL, LI interactions show nonzero contribu-
tions for ε = π/2 and finite E0. Last, but not least, the induced
magnetic field h has a magnitude comparable to the results in
Fig. 4(b); however, the ε and E0 dependence changes signifi-
cantly. For E0 > 7.5 eV/(ed ) in-plane contributions are more
pronounced compared to the z interactions, which indicates
an induced in-plane magnetic field. For smaller amplitudes
E0 < 7.5 eV/(ed ) we see a tendency for a magnetic field
pointing out of plane.

In order to represent the behavior of the interactions for
large frequency multiplicity N we set N = 5. The NLI inter-
actions, displayed in Fig. 6(a), almost completely decouple
from the parameter ε. This goes hand in hand with an almost
isotropic behavior for the x and y bond interactions, with a dis-
tinct behavior for the z bond. As is evident in (2) an increase
in N reduces the effect of ε, which is why NLI interactions are
barely affected by ε. High N therefore offer the possibility of
tuning one bond direction respective to the others, not only for
ε = 0 but also for 0 < ε < π . For LI interactions [Fig. 6(b)],
we observe a quite distinct behavior for certain interactions.
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The x and y interactions of D and μ are not ε dependent.
Meanwhile the z interaction for both vanishes at ε = π/2 and
has opposite signs for ε = 0 and ε = π . One can therefore
switch the signs of the z interaction while keeping the other
interactions almost unchanged. Finally, the induced magnetic
field vanishes for ε = 0 and ε = π and therefore is clearly
intertwined with ε. Significant magnetic fields just arise for
relatively high amplitudes. This provides the possibility to
turn the magnetic field on and off while keeping the other
interactions intact. The magnetic field can therefore be con-
trolled via the phase shift parameter ε.

IV. SUMMARY AND OUTLOOK

In this paper we derived an effective Floquet-Kitaev-
Heisenberg Hamiltonian up to fourth-order perturbation
theory, capturing the effects of driving the system with arbi-
trary polarization. In addition to known tuning possibilities
[28,29], the relative frequency N and phase ε of x and y polar-
ization become decisive factors for interaction strengths. With
our model we were able to continuously go from LPL to CPL
and investigate the behavior for this transition. In addition, due
to the inclusion of N , we were able to capture the behavior of
the interaction parameters for arbitrary Lissajous figures.

We showed that while CPL induces a magnetic field h due
to TRS breaking, LPL breaks the inversion symmetry and
induces the terms D and μ, which might induce interesting
physical properties. Furthermore, we studied the interaction
terms for different parameter settings, investigating the influ-
ence of ε, E0, and N as well as ω. We showed that in order
to significantly increase Kitaev interactions it is desirable to
drive the system with frequencies between resonances. Mov-
ing away from CPL induces anisotropies but also increases
Kitaev interactions, which might result in a gapped KSL
ground state [29]. For N > 1 we found that N = 2 results
in a behavior quite distinct from N = 1 with sizable contri-
butions for D and μ throughout the whole parameter range
of ε. Furthermore, we found that for higher N we have a
clear tendency of J , K , and � to decouple from ε, while LI
interactions still show an ε dependency to a certain degree.
With this, tuning LI interactions, especially h, while keeping
J , K , and � unchanged seems possible. Including third- and
fourth-order terms in perturbation theory for linear polarized
light is crucial because the terms D and μ appear only in third
and higher orders.

Introducing arbitrary polarization into the Floquet Hamil-
tonian opens the doors for a multitude of yet undiscovered
tuning possibilities via a plethora of parameters, making it
both a very interesting and challenging topic for the future.
From our studies we conclude that states like a gapped KSL
with induced magnetic field could be in the range of possibili-
ties for tuning with complex Lissajous figures. In the future it
would be interesting to analyze possible ground states arising
from the interactions in both isotropic and anisotropic cases.

APPENDIX A: SECOND-ORDER EFFECTIVE
HAMILTONIAN FOR ARBITRARY POLARIZATION

As explained in Sec. II B, the second-order Kitaev-
Heisenberg model under the influence of arbitrary polarized
light can be obtained by replacing the Bessel functions in

FIG. 7. Comparison of the model for CPL (dashed lines) with the
second-order results for arbitrary polarization (A1)–(A3) in the limit
of N = 1 and ε = π/2 (solid lines) at ω = 12.0 eV.

[29] with Bl (ϑ, A) derived in Sec. II A with (7). In (6a)–(6c)
of [32] we set JlJl → B∗

l Bl = |Bl |2. B∗
l here describes the

hopping back to the initial site with an emission of l photons.
Therefore, the interactions J, K, and � become

J2 =
∞∑

l=−∞
|Bl (ϑ, A)|2 4

27

(
6t1(t1 + 2t3)

U − 3JH − lω

+ 2(t1 − t3)2

U − JH − lω
+ (2t1 + t3)2

U + 2JH − lω

)
, (A1)

K2 =
∞∑

l=−∞
|Bl (ϑ, A)|2 4

9
(t1 − t3)2 − 3t2

2

×
(

1

U − 3JH − lω
− 1

U − JH − lω

)
, (A2)

�2 =
∞∑

l=−∞
|Bl (ϑ, A)|2 8

9
t2(t1 − t3)

×
(

1

U − 3JH − lω
− 1

U − JH − lω

)
. (A3)

The term |Bl (ϑ, A)|2 can be written as

|Bl (ϑ, A)|2

=
[∑

n

Jl−Nn

(
E0

ω
cos(ϑ )

)
Jn

(
E0

Nω
sin(ϑ )

)
cos(εn)

]2

+
[∑

n

Jl−Nn

(
E0

ω
cos(ϑ )

)
Jn

(
E0

Nω
sin(ϑ )

)
sin(εn)

]2

.

(A4)

For ε = π/2 and N = 1 Eqs. (A1)–(A3) have to coincide with
(6a)–(6c) of [32]. In Fig. 7 we display the results of CPL and
arbitrary polarization for N = 1 and ε = π/2 at ω = 12.0 eV.
Here we used the same hopping parameters as in the main
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text. The results of the CPL model [30,32] are displayed
by dashed lines, while the results of (A1)–(A3) are shown

by solid lines. As expected, we observe perfect agreement
between the models.

APPENDIX B: CIRCULAR POLARIZED LIGHT

Most studies to date have focused on the influence of CPL on α-RuCL3 due to the induced inverse Faraday effect as well as
the uniform influence of the light on all bonds. In this Appendix we will therefore study circular polarized light as a special case
of third-order [Eqs. (11)–(15)] and fourth-order [Eqs. (17)–(19)] results for arbitrary polarization. In order to describe circular
polarized light we have to set N = 1 and ε = π/2 in (1). With this, expressions for third- and fourth-order terms become
significantly easier to handle.

Starting with third-order terms [(11)–(15)], we obtain

K3 =
∑
m,l

J3
m,l (E0)

t2
pd

� + mω

{
12

9
cos

[
(m − n)

π

4

](
t2

ED + (l + m)ω
− t2

EP + (l + m)ω

)

+ sin

[
(m − n)

π

4

]
8

27

(
6

t1
EP + (l + m)ω

+ t1 − t3
ED + (l + m)ω

+ 2t1 + t3
ES + (l + m)ω

)}
, (B1)

�3 =
∑
m,l

J3
m,l (E0)

t2
pd

� + mω

4

9
cos

[
(m − n)

π

4

](
t1 − t3

EP + (l + m)ω
− t1 − t3

ED + (l + m)ω

)
, (B2)

h3 =
∑
m,l

J3
m,l (E0)

−t2
pd

� + mω

2

9
sin

[
(m − n)

π

4

](
t1 − t3

ED − (l + m)ω
+ t1 − t3

EP + (l + m)ω

)
, (B3)

with J3
m,l (E0) = Jm+l (E0)Jl (Ẽ0)Jm(Ẽ0), where Ẽ0 = E0/

√
2. We observe that both μ and D vanish. Meanwhile, h3, which

breaks time reversal symmetry, prevails. For this reason the terms D and μ were not reported in previous studies on circular
polarized light [32,33,43]. For the absence of light, i.e., E0 = 0, we have only contributions for m = l = 0, which means that
sin[(m − n)π/4] = 0 in (B1)–(B3), while cos[(m − n)π/4] = 1. Therefore, the magnetic field vanishes in the absence of light,
and the contributions of (B1) and (B2) reproduce exactly the result for non-Floquet perturbation theory [39].

Analogous to the third-order results (B1)–(B3), fourth-order terms for CPL [(17)–(19)] yield

J4 =
∑
k,l,m

t4
pd

[� + (l + m + k)ω](� + mω)
J4

m,k,l (E0)
2

27

(
2

ES + (m + k)ω
+ 3

EP + (m + k)ω
+ 1

ED + (m + k)ω

)

×
{

cos

[
(l − k)

π

2

]
− cos

[
(m − l )

π

2

]}
, (B4)

K4 =
∑
k,l,m

t4
pd

[� + (l + m + k)ω](� + mω)
J4

m,k,l (E0)

{
2

3

(
1

EP + (m + k)ω
− 1

ED + (m + k)ω

)
cos

[
(m − l )

π

2

]

− 2

27

(
2

ES + (m + k)ω
+ 3

EP + (m + k)ω
+ 4

ED + (m + k)ω

)(
cos

[
(l − k)

π

2

]
− cos

[
(m − l )

π

2

])}
, (B5)

with J4
m,k,l (E0) = Jk (Ẽ0)Jl (Ẽ0)Jm(Ẽ0)Jm+k+l (Ẽ0). Like for the third-order terms, μ vanishes for CPL, while corrections for

Kitaev and Heisenberg interactions prevail. These correction terms in combination with the left-out third-order processes
discussed in Sec. II C explain the discrepancies between numerical and analytical results in [32]. For E0 = 0 the Heisenberg
interactions vanish, while Kitaev interactions are finite, coinciding with the results of [39].

APPENDIX C: MATRIX ELEMENTS FOR INTERACTIONS

In order to project the effective spin-orbital Hamiltonian
into the j = 1/2 basis we have to calculate the matrix ele-
ments determining all interaction parameters,

J = 2 Re
(〈

1
2 ,− 1

2 | Heff |− 1
2 , 1

2

〉)
, (C1)

D = 2Im
(〈

1
2 ,− 1

2 | Heff |− 1
2 , 1

2

〉)
, (C2)

h = 1
2

(〈
1
2 , 1

2

∣∣ Heff

∣∣ 1
2 , 1

2

〉 − 〈− 1
2 ,− 1

2

∣∣ Heff

∣∣− 1
2 ,− 1

2

〉)
, (C3)

K = 〈
1
2 , 1

2

∣∣ Heff

∣∣ 1
2 , 1

2

〉 + 〈− 1
2 ,− 1

2

∣∣ Heff

∣∣− 1
2 ,− 1

2

〉
− 2

〈− 1
2 , 1

2

∣∣ Heff

∣∣− 1
2 , 1

2

〉 − J, (C4)

� = −2 Im
(〈

1
2 , 1

2

∣∣ Heff

∣∣− 1
2 ,− 1

2

〉)
, (C5)

μ = 2 Re
(〈

1
2 , 1

2

∣∣ Heff

∣∣− 1
2 ,− 1

2

〉)
. (C6)

The results are similar to [32], with the distinction that
calculating the 〈 1

2 ,− 1
2 | Heff |− 1

2 , 1
2 〉 and 〈 1

2 , 1
2 | Heff |− 1

2 ,− 1
2 〉
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FIG. 8. Resonances of the effective Floquet-Kitaev-Heisenberg
model. The resonances attributed to ES , EP, ED, and � are displayed
in blue, purple, red, and green respectively. The driving frequencies
used in the main text are visualized with orange lines.

elements with all hopping processes results in real and imag-
inary contributions. Here the element (C6) yields the �

interactions, and (C1) yields the Heisenberg interaction, just
like in [32]. The contributions (C2) and (C6) cannot be cate-
gorized as either � or J interactions. In order to find a physical
interpretation for these contributions we mapped them back
into the Sx, Sy, Sz basis, yielding

1
2i (S

−
i S+

j − S+
i S−

j ) = Sx
i Sy

j − Sy
i Sx

j = (Si × S j )z, (C7)

1
2 (S+

i S+
j + S−

i S−
j ) = Sx

i Sx
j − Sy

i Sy
j , (C8)

which are the D interactions, breaking IS, and μ interactions,
inducing further anisotropies.

APPENDIX D: RESONANCE FREQUENCIES

The resonance frequencies of the system are integer mul-
tiples of the excitation energies. In addition to ES, ED, and
EP [29] we also have to consider � since we are including
the p ligands explicitly in our calculation. The resonances
for the considered parameter setting of U = 3.0 eV and

N
=

1
N

=
2

N
=

5

FIG. 9. Snapshots of Lissajous figures discussed in the main text.
Displayed are Lissajous figures for ε = 0, π/4, π/2, and π for
N = 1, 2, and 5 in orange. The bond directions are shown in gray.

JH = 0.45 eV arising from the four distinct energies ES , EP,
ED, and � are displayed in Fig. 8 as blue, purple, red,
and green lines, respectively. The driving frequencies chosen
in the main text are visualized as orange lines. The driv-
ing frequency ω = 12.0 eV is clearly above all resonances.
Meanwhile, ω = 2.1 eV lies between the ES/2, ED, and �/2
resonances. ED and �/2 almost coincide, which leads to more
pronounced heating effects [7,29] close to this quasidouble
resonance. In order to work with less pronounced heating
effects, we chose a driving frequency not exactly between
ES/2 and the double resonance but a little bit closer to the
ES/2 resonance.

APPENDIX E: LISSAJOUS FIGURES

Figure 9 displays snapshots from a few Lissajous fig-
ures discussed in the main text. It becomes evident that the
only Lissajous figure with a uniform influence on all bond
directions (gray lines in Fig. 9) is N = 1 and ε = π/2. The
reason for the opposing behaviors of x and y interactions for
N = 1 can be understood by looking at the Lissajous figure for
ε = π and ε = 0. ε = π is LPL rotated by π/2 compared to
ε = 0; this makes the influence of ε = 0 on the x bond the
same as ε = π on the y bond, which results in the behavior
reported in the main text.
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