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Disorder in interacting quasi-one-dimensional systems: Flat and dispersive bands
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We use the density-matrix renormalization group method to investigate the superconductor-insulator transition

(SIT) in disordered quasi-one-dimensional systems. Focusing on the case of an interacting spinful Hamiltonian
at quarter filling, we contrast the differences arising in the SIT when the parent noninteracting model features
flat or dispersive bands. Furthermore, we unveil the critical disorder amplitude that triggers insulating behavior
by comparing disorder distributions that preserve or not SU(2) symmetry. While scaling analysis suggests the
transition be of a Berezinskii-Kosterlitz-Thouless type for all models (two lattices and two disorder types),
only in the flat-band model with Zeeman-like disorder is the critical disorder nonvanishing. In this sense, the
flat-band structure does strengthen superconductivity in the presence of attractive interactions. For both flat-
and dispersive-band models, (i) in the presence of SU(2)-symmetric random chemical potentials, the disorder-
induced transition is from superconductor to insulator of singlet pairs; (ii) for the Zeeman-type disorder, the
transition is from superconductor to insulator of unpaired fermions. In all cases, our numerical results suggest

no intermediate disorder-driven metallic phase.

DOLI: 10.1103/PhysRevB.108.035131

I. INTRODUCTION

Band dispersion naturally affects the physics of quan-
tum systems. Compared to regular dispersive bands, systems
exhibiting flat bands support abundant phenomena such as
topological insulating and superconducting physics, various
edge states, and exotic superfluid phases. In the noninteracting
case, a purely flat band has constant energy as a function of
quasimomentum. For a particle loaded in a flat band, the high
degeneracy causes it to localize in a compact form within
a few sites whose geometry depends on the details of the
Hamiltonian [1-4]. Any finite interaction will be much larger
than the bandwidth, leading to rich strongly correlated physics
at any value of the interaction strength.

Among the many interesting aspects of such systems, one
of the interests lies in the interplay of the flat-band structure
and superconductivity [5—13]. Studies on topological models
suggest that the isolated flat bands have much higher super-
conducting transition temperatures [5—7]. In lattice models
with flat bands, the preformed pairs dominate transport even
above the critical temperature of the transition to a superfluid
state [8]. Compared to a standard two-leg fermionic ladder,
recent work argues that the Creutz lattice [14] exhibiting a flat
dispersion in the noninteracting regime has a longer-ranged
pairing correlation function, suggesting a more robust pairing
and superconductivity [9].
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One way to further probe whether pairing and supercon-
ductivity are enhanced in systems with flat dispersion is to
estimate their robustness against disorder. In the absence of
interactions, disorder generically localizes all single-particle
eigenstates and induces Anderson localization [15]; in flat-
band systems, such localization phenomenon still occurs but
with characteristic critical exponents that depend on specific
details [16,17], including the existence of coupling to disper-
sive bands [18].

At high energies, the interplay between disorder and in-
teractions can lead to disorder-free flat-band localization at
weak disorder and conventional disorder-induced many-body
localization in the strong-disorder regime [19-23]. Turning to
the low-energy but yet interacting scenario, sufficient disorder
destroys the phase coherence associated with superfluid or
superconducting order, leading to a superconductor-insulator
transition (SIT) [24]. However, whether the route to insu-
lating behavior proceeds through the direct localization of
Cooper pairs [25] or via the destruction of Cooper pairing
then followed by the standard localization of single electrons
is still unsettled [26,27]. Although disorder-induced ground-
state transitions have been extensively studied for either spin
or bosonic lattices [28-31], the transition type and the univer-
sality class of the disorder-driven SIT in the presence of both
charge and spin degrees of freedom remain elusive.

In this work, we aim to systematically investigate the
disorder-induced SIT in a fully interacting setting from the
perspective of how robust is the pairing and superconductiv-
ity against disorder in systems with either flat or dispersive
bands. Additionally, we are also interested in details of the
SIT, including its universality class, via proper finite-size
scaling from numerically exact calculations of systems with
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different sizes. Specifically, we focus on the attractive Fermi-
Hubbard model on the Creutz lattice with flat dispersion in
the noninteracting regime, and we carefully examine the pair-
ing and superconductivity via energies, superfluid densities,
and correlation functions. We benchmark our results with a
regular two-leg ladder with dispersive bands to study how
band dispersion affects pairing and superconductivity under
the influence of disorder.

The rest of the paper is organized as follows. In Sec. II, we
introduce the Hamiltonian on two lattice types with different
dispersions, two types of disorder, and also our numerical
method. Section III is devoted to the finite-size scaling of the
superfluid weight, where we discuss the universality class of
the disorder-induced SIT. In Sec. IV, we further analyze the
ground-state phase transition and corresponding phases via
correlation functions. The summary of the results is presented
in Sec. V.

II. MODEL AND METHOD

We first consider the attractive Hubbard model on the
Creutz lattice described by the Hamiltonian
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where é"." (%) creates (annihilates) a fermion with spin
o =% and N on the jth unit cell with chain index « = A and B
[see cartoon in Fig. 1(a)]; ¢ 67'(, A‘;G is the corresponding
number-density operator. For comparison, we also examine
the attractive Hubbard model on the regular two-leg ladder:
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where a schematic representation is shown in Fig. 1(b). For
both models, the linear lattice size is L, and the hopping am-
plitudes are proportional to ¢. (In the Creutz lattice, intrachain
hoppings gain a phase, being purely imaginary.) The interac-
tions are attractive, U < 0, wherein fermions with opposite
spins form pairs to lower the total energy, further condensing
to form a superfluid state, provided the parent state is metallic.

The Creutz lattice features a flat dispersion in the noninter-
acting case (U = 0), and the two-leg ladder has, on the other
hand, dispersive bands. An immediate question that arises is
how the interaction affects the band structure, which can be
inferred by the pair-excitation spectrum (i.e., the chemical
potential to introduce a singlet pair) obtained from many-body
numerical calculations, as shown in Fig. 1 (direct comparison
of single-particle excitations is given in Appendix A). For
the Creutz lattice, there are two highly degenerated bands
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FIG. 1. Pair  excitation  spectrum, Ey(N; +1,N, +1) —
Ey(Ny, Ny), in the presence of the negative U for (a) the Creutz
lattice and (b) a regular two-leg ladder. Here Ey(N;,N,) stands
for the ground-state energy in a system with N, spin-up and N,
spin-down fermions. Insets show the lattice geometry: The red
ellipse denotes a unit cell labeled by j, and A and B label two legs.
For the Creutz lattice, the arrows depict the sign of the hopping in
the intrachain bonds. For the regular two-leg ladder, all hoppings
are real without extra phases. Here the results are obtained from
numerical calculations of systems with L = 64 with open boundary
conditions.

at £4¢ (£2¢ in the single-particle picture), each with zero
bandwidth at U = 0. Their bandwidth grows in the presence
of finite interactions, but the two bands are still relatively
narrow. On the contrary, the bandwidth of the two-leg ladder
is much larger. Therefore, we assume that the difference in
the band structure in the noninteracting case would also affect
the pairing and the superconductivity in the presence of inter-
actions. Notice that the model on both lattices at half-filling
displays a vanishing superfluid weight D;; we focus on filling
(ny = Zj,a,{,(ﬁ"‘c)/ZL = 1/4, to ensure we start from a ro-
bust superfluid state. Besides that, in what follows, we fix the
interaction strength at U = —8 (¢t = 1 sets the energy scale),
at which D; for the Creutz lattice is close to its maximum in
clean cases [9].

The robustness of the superconductivity is estimated by
examining the critical disorder to break the pairing coherence
and the corresponding superconducting state. We first con-
sider the spin-independent random chemical potentials which
do not break local singlet pairs:

Hy= i, 3)

where i labels a single site and u; € [—W, W] is taken from an
uncorrelated, uniform distribution with disorder strength W.
Alternatively, random Zeeman-like fields introduce another
kind of disorder,

= s, 4)

with h; € [-W, W] and S; = #i; 4 — #; . The latter breaks
SU(2) symmetry and tends to disassemble pairs (local or not).
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FIG. 2. Pairing binding energy E}, as a function of disorder W for
(a) the Creutz lattice and (b) the regular two-leg ladder with different
L. Here the disorder is introduced by the random chemical potentials.

To solve Egs. (1) and (2) in the presence of disorder, we
numerically employ the density matrix renormalization group
(DMRG) [32,33] method, which is extremely powerful in
(quasi-)one-dimensional systems, to obtain the ground state
of different lattices, including under disordered settings. The
two Hamiltonians have U(1) symmetry with conserved total
particle number N, = ). {#; ») for spin species o even in the
presence of disorder; thus, we perform DMRG calculations in
the sector with fixed good quantum numbers N, . Observables
such as superfluid weight, pair binding energy, and correlation
functions are computed to characterize the ground-state prop-
erties. In calculations aiming to obtain the superfluid weight,
twisted boundary conditions are used; in the rest of the simula-
tions, we implement open boundary conditions to reduce the
computational cost. Up to 2000 DMRG kept states are used
in all calculations, and the largest truncation error is about
10~°. For disordered cases, all observables are obtained from
the average over calculations of many disorder samples as
indicated in what follows. (See Appendix B for a benchmark
against exact results in small systems.)

III. BKT SCALING OF DRUDE WEIGHT

The pairing of electrons is one of the necessary pre-
conditions of superconductivity, which is a macroscopically
coherent state of pairs. We estimate the pair formation via the
singlet-pair binding energy

E, =Eo(Ny +1,N, + 1)+ Eo(Ny, Ny)
— 2Ey(Ny + 1, N)). (5)

A negative Ej, in the thermodynamic limit denotes that the
energy cost for adding two interacting particles (or holes,
depending on the filling) with opposite spins is lower than that
of two noninteracting ones. As a result, the system exhibits a
tendency toward the singlet-pair formation to lower the total
energy. We first display the pairing binding energy in the
presence of random chemical potentials in Fig. 2. In this case,
the binding energy E}, is negative at zero disorder and remains
so with W > 0, for both the Creutz lattice and the regular
two-leg ladder. Therefore, from the energetic consideration,
fermions in the presence of random chemicals still tend to
form pairs, despite the inclusion of disorder.

Whereas being useful to characterize singlet pair forma-
tion, the binding energy cannot quantify the coherence of such
pairs, being thus unable to discern the superconducting state.
For that, we examine the superfluid weight, which in one-
dimension (1D) is equivalent to the Drude weight [34—40]:

9%2Eo(P
L o(P)

Ds=m 5
od =0

, (6)

where Ey(®P) is the ground state in the presence of a threaded
magnetic flux, %Cb [41,42]. Such flux is equivalent to the
introduction of twisted boundary conditions [43] via the
replacement ¢, — €%/¢;,, where ¢ = ®/L is the phase
gradient per unit cell. In actual calculations, we use the ap-
proximant Dy &~ 2x L[Ey(6P) — EO(O)]/((SCIJ)2 [29], choosing
8® = /2 to minimize the numerical error. Thus, the super-

fluid weight is obtained by
8L
D, ~ ;[Eo(ﬂ/2) — Eo(0)]. (N

The approximation in Eq. (7), while seemingly crude for
such a large § @, has been numerically confirmed in the clean
case, resulting in an absolute error of the order of 1073 (see
Appendix C).

In either 1D or quasi-1D lattices, the quantum phase tran-
sition between the Mott-insulating phase and the superfluid
phase at fixed commensurate lattice filling is known to be of
the Berezinskii-Kosterlitz-Thouless (BKT) type [28,44-46].
In the case of disordered systems, such scaling form persists
for bosonic systems when transitioning from a superfluid to a
Bose glass [46,47]. A low-energy effective theory (bosoniza-
tion) has also been developed for the superfluid-disordered
insulating transition in the case of fermionic two-leg lad-
ders [48-50], suggesting a BKT-type phase transition for the
dispersive model. In particular, we notice that the attractive
Hubbard model displays the formation of increasingly local
Cooper pairs when |U| >> 1, which are mimicked by hardcore
bosons in this limit [51-53]. Moreover, we recall that in the
clean case, the results of the superfluid weight at the strong,
attractive interactions we use, U = —8, steadily approach the
ones for the corresponding bosonic model [9], lending further
support for the same type of transition similarly occurring here
[54]. Thus, assuming a BKT scaling form for the supercon-
ductor to the disorder-induced insulator transition (whether
the bands are dispersive or not), the disorder-dependent cor-
relation length scales as [55-59]

b } )

VIW =W

Here W, is the critical disorder in the thermodynamic limit,
and by (b_) is a nonuniversal parameter for W > W (W <
W.). For numerical convenience, we make the approximation
that b, = b_ = b. Then the critical disorder and the parame-
ter b can be determined by the best data collapse of Dy(L, W)
as a function of L/£.

We first consider the disorder introduced by random chem-
ical potentials; the corresponding results of the superfluid
weight and its scaling are displayed in Fig. 3. The data
collapse of the D, (L) versus L/& indicates that the critical dis-
order W, = 0% in the thermodynamic limit for both the Creutz
lattice and the regular two-leg ladder, within system sizes

=]
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FIG. 3. Data collapse of the superfluid weight D, as a function
of L/§ (—L/& if W < W,) for (a) the Creutz lattice and (b) the
regular two-leg ladder with random chemical potentials. Each inset
shows D; as a function of the disorder W for different lattice lengths
L. The optimal parameters b and W, in Eq. (8) are determined by
minimizing a cost function of the data collapse (see Appendix D
for detailed information). Numerical results for L = 12, 16, 20, and
24 are obtained by the average over 320, 256, 160, and 96 disorder
realizations.

amenable to our calculations. In this sense, the lattice geome-
try and the band dispersion do not qualitatively affect the (lack
of) robustness of the superconductivity against this SU(2)-
symmetric disorder. Moreover, the superconducting state is
so fragile that an infinitesimal disorder strength destroys the
superconductivity. On the other hand, since random chemical
potentials do not necessarily break pairs but rather their phase
coherence, the system is an (interacting) Anderson insulator
of singlet pairs in the disordered phase.

In contrast to the SU(2)-symmetric random chemical po-
tential, the random magnetic field can break the singlet pairs
induced by the local attraction U. In this case, the introduc-
tion of random Zeeman fields with growing disorder strength
results in the amplitude of E, gradually decreasing to zero
with growing W, regardless of the lattice geometry used, as
shown in Fig. 4. While this result immediately points out the
differences arising from the symmetry-type of disorder used
on the pair robustness (see Fig. 2 for a comparison), it does
not make it clear if pairs are more resilient if contrasting dis-
persive or dispersionless systems under . Owing to the lack
of a proper and systematic scaling procedure for £}, extracting
the critical disorder that breaks pairs only from the binding

10 5 10

%O’lj
S

FIG. 4. Pairing binding energy E) as a function of disorder W for
(a) the Creutz lattice and (b) the regular two-leg ladder with different
L. Here the disorder is introduced by the random Zeeman field.

energy is challenging. Consequently, the results in Fig. 4 do
not conclude whether the singlet pair is more robust against
disorder in the Creutz lattice with flat bands than a regular
lattice with dispersive bands.

To solve this question, we again resort to the superfluid
weight, which further probes the phase coherence of the
formed pairs. The finite-size scaling of the superfluid weight
Dy is reported in Fig. 5. Here, the Creutz lattice and the
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FIG. 5. Data collapse of the superfluid weight D, versus L/&
(—L/& it W < W,) for (a) the Creutz lattice and (b) the regular
two-leg ladder with random Zeeman fields. Other parameters are the
same as those in Fig. 3.
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regular two-leg ladder results are qualitatively different under
this type of random Zeeman-like disorder. In contrast to the
case with random chemical potentials, the superconducting
state survives in the Creutz lattice up until disorder strengths
of W, >~ 4.8, as shown in Fig. 5(a). However, the supercon-
ductivity is still fragile and destroyed by an arbitrarily small
disorder in the regular two-leg ladder, as shown in Fig. 5(b).
In this sense, the flat dispersion has dramatically enhanced
the robustness of the superfluidity, even in the presence of
substantial disorder.

IV. CORRELATION FUNCTIONS

The scaling of superfluid weight suggests a BKT transition
from the superconducting state to the insulating state for both
lattice geometries and disorder types. However, the physical
characteristics of the disordered phase can be, in principle,
different. For example, a large disorder can lead to an Ander-
son insulator of singlet pairs or even of unpaired fermions. In
this section, we calculate the correlation functions to charac-
terize these states further. Specifically, we compute the pairing
correlation function,

G, = (A7AG), ©

where A# = ¢/ ¢4 annihilates a local singlet pair on the
ith unit cell with the chain index A, and the single-particle
Green’s function,

Gy = (ef,eih). 10
Computing correlations along one of the chains is sufficient
since both lattices have mirror symmetry across the rungs.
As mentioned before, we use open boundary conditions for
calculations of correlation functions to reduce the computa-
tional cost. In this case, for a generic two-point correlation
function X;; between sites i and j, one can extract the averaged
correlation decay as a function of distance as [60,61]

1
X = > Xy, (11)

li=jl=r

where A is the total number of pairs {i, j} satisfying
|i — j| =r. Based on this, we define the average pair-
ing correlation function [single-particle Green’s function]
as P(r) [G(r)].

For the clean case, the system described by the attractive
Hubbard model on both lattices features superconductivity,
with power-law decaying of pair correlations denoting quasi-
long-range order. When the disorder is sufficiently strong,
the system is in an Anderson-insulating ground state, and
the corresponding pairing correlation function decays expo-
nentially. Compared to the Creutz lattice with the flat band,
P(r) decays slightly faster in the regular two-leg ladder [9].
However, the differences in pairing correlation responses to
disorder between the two lattices are marginal when random
chemical potentials are introduced, as shown in Fig. 6. In
this case, P(r) turns to an exponential decay as soon as a
minor disorder appears for both lattices, in agreement with
the scaling of superfluid weight in Sec. III.

Those results are not fortuitous, as they are precisely
aligned with analytic ones from Refs. [48-50], using

— xr® ,,%,,

o W =000 ¥- W=02  -—f- W=045

107!
1072
=
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757 | ) I |
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FIG. 6. Pairing correlation functions P(r) versus distance r for
(a) the Creutz lattice and (b) the regular two-leg ladder. The solid
lines give an estimation of a power-law fitting oc r* extracted for the
clean case that guides the interpretation (note the log-log scale). Here
the lattice length L = 128 and the disorder is introduced via random
chemical potentials 7—ALM.

bosonization. The Tomonaga-Luttinger exponent of the sym-
metric charge mode K,; describes the stability of the
superconducting phase upon inclusion of (nonmagnetic)
disorder. In particular, when K, > 3/2 (K, < 3/2) the su-
perconducting phase is stable (unstable) to W. The singlet
pair-pair correlations have a general power-law decay of the
form P(r) o r~% = r~1/2Ko+ [62]. In the clean case, the fit-
tings in Fig. 6 are compatible with K, ~ 1.1 and 0.65, for the
Creutz lattice and the regular ladder, respectively. As a result,
they both fall into the regime of unstable superconducting be-
havior towards including an arbitrarily small disorder, as seen
in the results of the superfluid weight (Fig. 3) and predicted in
Refs. [48-50] for dispersive bands.

Differences between the results of the two lattices are
much more prominent when random Zeeman fields introduce
the disorder, and in this case, no-analytical results stemming
from a bosonization analysis exist for such type of magnetic
disorder. As shown in Fig. 7, while P(r) decays exponentially
in the presence of a weak disorder strength in the regular
two-leg ladder, the pairing correlation function in the Creutz
lattice preserves a power-law form even at very large values
of W ~ 6, for the same system size. Notice that although
one cannot directly compare the critical disorder from cor-
relation functions at a finite system size with the scaling
result of superfluid weights in the thermodynamic limit, these
results show qualitatively the same conclusion: The flat-band
dispersion dramatically enhances the robustness of the super-
conductivity against spin-dependent disorder.

Besides the universality class of the disorder-induced SIT
in fermion-Hubbard models, there has been another long-
standing question on this topic, that is, whether the route to
insulating behavior proceeds through the direct localization
of Cooper pairs or by a two-step process in which the Cooper
pairing is first destroyed and then followed by the standard
localization of single electrons [26]. Alternatively, an interme-
diate (poor) metallic state exists where the disorder destroys
the pairing coherence, but localization does not yet occur. We
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FIG. 7. Similar to Fig. 6 but for disorder introduced via random
Zeeman fields #{;,. The pairing correlation functions P(r) roughly
keep their power-law up decay at W < 6 for the Creutz lattice (a);
the regular ladder (b) shows a much less resilient power-law depen-
dence of P(r). As before, the lattice length is L = 128 and the solid
line gives an estimation of a power-law fitting o< r* that guides the
interpretation.

try to answer this question by examining the single-particle
Green’s function, distinguishing the metallic phase from other
phases with gapped single-particle excitations, such as the
superconducting state and the insulating states.

As previously mentioned, the random chemical potential
does not break (local) singlet pairs. Thus, the SIT transition
ought to be direct from the superconducting state to the pair
localization state. In that case, the single-particle Green’s
function would decay exponentially as the disorder strength
W grows, indicating that the single-particle gap remains open
throughout the transition. This picture is confirmed in Fig. 8,
which displays the G(r) decaying profile for both lattices with
random chemical potentials. In contrast, the disorder intro-
duced by the random Zeeman fields can destroy singlet pairs.
However, such a disorder also destroys the coherence of pairs

W=025 -
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o W =000 ¥
4= W =0.15

107°F . .
\ (a) Ho+ Hy

®
10712

S

10726,

10-33 JL 3
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10740 P %& . PR I T E RS S S R

FIG. 8. Single-particle Green’s functions G(r) versus distance r
for (a) the Creutz lattice and (b) the regular two-leg ladder, respec-
tively. Here lattice length L = 128 and the disorder is introduced by
random chemical potentials 731,1; note the vertical log-scale.
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FIG. 9. The same as Fig. 8 but for the case of disorder introduced
by random Zeeman fields 7L, Note the robust exponential decay for
a wide range of disorder amplitudes even if significantly far from the
critical value W, extracted from the scaling of D;.

according to our numerical results for the superfluid weight
Dy. In Fig. 9, we find no clue of an intermediate metallic
state with algebraic decay single-particle Green’s function for
both lattices with different band dispersions (see Appendix E
for energetic analysis of excitations supporting these results).
Finally, as an addendum, we note that a true uncorrelated
Anderson insulator also exhibits gapless single-particle ex-
citations. The fact that we observe gapped single-particle
excitations across a wide range of disorder values, even sub-
stantially far from the SIT, indicates that correlation effects
are still significantly relevant. If there is a transition (possibly
a crossover) to such a regime, this occurs at values of W where
the interaction strength |U | is an irrelevant perturbation.

V. SUMMARY AND DISCUSSION

We systematically investigate the disorder-induced SIT of
the attractive Hubbard model in two lattices, the Creutz lattice
with noninteracting flat bands and the regular two-leg ladder
with noninteracting dispersive bands. Two disorder types have
been considered, random chemical potentials, which do not
break local singlet pairs, and random Zeeman fields, which
do break pairs in general. The finite-size scaling of numeri-
cally obtained superfluid weights suggests a BKT-type phase
transition for both lattices and disorder types. For the situation
of nonmagnetic disorder (i.e., introduced by random chemical
potentials), an infinitesimal disorder drives the superconduct-
ing state to a correlated Anderson insulator of singlet pairs
for both lattice geometries. For the case of the regular ladder,
these results are in line with the ones obtained by a low-energy
theory of the model in the regime in which the attractive
interactions are sufficiently large [48-50].

For the disorder introduced by the random Zeeman fields,
the superconductivity is more robust when the noninteracting
lattice has flat bands: It requires a significant disorder strength
to break the superconducting state in the Creutz lattice; in
contrast, the critical disorder is zero in the regular two-leg
ladder. The conclusion is that the flat dispersion can enhance
the superconducting state’s resilience (in the presence of
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attractive interactions), confirmed by the pairing correlation
function calculations.

One aspect that can make this comparison of results be-
tween the two types of ladders elusive is that the coordination
number is not the same (z = 3 for the regular ladder, and
z = 4 for the Creutz ladder), which can significantly impact
the resilience of the superfluidity to disorder in both cases.
A minimal analysis that can take this difference into account
is to normalize the critical disorder W, by the total (including
gaps) noninteracting bandwidth (4¢ in the Creutz lattice and 6¢
for the regular ladder). As stated, the only case in which there
is a difference between W, obtained in the Creutz lattice and
the regular ladder is when Zeeman disorder is introduced. But
here, however, WE =~ 4.8t with WL ~ 0, such that no (small)
deviation in the band-structure widths can account for the
different results observed. Nonetheless, we remark that this
is certainly not the case for certain repulsive models, in which
the inclusion of the extra hopping terms can fundamentally
change the fate of pairing [63,64], but mainly in a scenario of
competing orders [65], absent in our investigation.

Turning back to the original model, we also try to an-
swer the long-standing question in the disorder-induced SIT
about whether this transition is direct or a two-step process
by carefully examining the single-particle Green’s function.
Our results suggest no intermediate metallic state during the
SIT process for all parameters involved in this work. Lastly,
it is worth noting that the Hamiltonian of a Creutz ladder
has already been emulated with ultracold fermionic atoms via
optical potentials [66,67], which makes our protocol possible
for experimental verification in future investigations.

An outstanding question refers to the generality of the
universality class of disorder-driven SITs in such models.
While we find a clear indication of BKT-type phase transition,
further supported by results in related bosonic systems [46,47]
and in the case of dispersive bands for fermions [48-50], this
contrasts with SITs in clean systems using similar attractive
Hubbard Hamiltonians [68,69], which exhibit second-order
phase transitions [(d + 1) — XY universality class]. Whether
this difference carries over to different dimensionalities is a
question that warrants future investigation.
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APPENDIX A: SINGLE-PARTICLE EXCITATIONS:
CLEAN CASE

In the main text, we contrast the pair excitation spectrum
of both the Creutz lattice and the two-leg ladder to infer that
the flatness of the Bloch bands at U = O still influences the
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FIG. 10. The heat map of the single-particle spectral function
Ay, 1+ (w) for the Creutz lattice (a) and the two-leg ladder (b), in an
L = 12 lattice with Hubbard interaction U = —8 without disorder
(W =0). A smaller number of dispersive features in panel (a) is
indicative of the influence of flat-band physics in this case, even for
substantially large interactions.

regime of strong interactions we investigate. Here we make
a direct assessment, by computing the single-particle spectral
function

Ao (@)= [($al] ,1¥0) |8l — (Ea — Eo)]
+ Y [(Baléy o 1V0) |8l + (Ea — Eo)l.  (Al)

In this expression, |y) is the ground-state of either Eq. (1) or
Eq. (2) at filling (/1) = 1/4, and the excited eigenstates states
|¢o) are the ones from the sectors with an added (removed)
particle, N, + 1 (N, — 1). The operator in momentum space
is defined as ézm = \/LZ > iy etk 6;70 which has considered
the summation of the chain index y = A and B.

Those are directly computed by means of a Krylov-
Schur-based diagonalization method [70,71], which we use
to compute 400 eigenpairs (E,, |/4)) in the low-lying spec-
trum of the corresponding sector, effectively truncating the
summation (A1l). Moreover, since the number of inequivalent
k-points is L, we further improve the statistics by averaging
each momentum value among a set of 20 equidistant twisted
boundary conditions. As mentioned in the main text, these can
be equivalently interpreted as threading a flux ® on the ring
ladder and can be used to mitigate finite-size effects when
averaging over many values ® € [0, 2) [43,72].

We report in Fig. 10 the result for this quantity in the
clean case (W = 0), contrasting both Hamiltonians at U =
—8, for a lattice with L = 12, and taking into account o =%
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FIG. 11. Comparison between ED and DMRG results for (a) the
Creutz lattice and (b) the regular two-leg ladder in the presence of
random chemical potentials. Here we use 30 disorder realizations for
the benchmark.

[c = results are the same owing to the SU(2) symmetry].
A superconducting gap is clearly seen for both cases, while
significant broadening of the bands occurs due to the pres-
ence of the interactions. We notice, however, that significant
weight is accumulated around the k, = 0 excitation momen-
tum with a flatter momentum dispersion for the Creutz ladder
in comparison to the two-leg ladders, indicating the influence
of the flat-band physics in this Hamiltonian type even with
substantial interactions. Larger lattices (finer resolution in
momentum) can potentially improve this contrast.

APPENDIX B: BENCHMARK OF DMRG RESULTS

The arguments in this work are mainly based on numerical
calculations using DMRG, which is one of the most powerful
methods in solving quantum many-body systems, especially
in 1D and quasi-1D quantum lattices. However, in the case
of periodic boundary conditions, which is precisely the case
when computing the superfluid weights, DMRG meets much
larger truncation errors. In other words, achieving the same
precision of calculations with open boundary conditions takes
a much more expensive computational effort. Moreover, when
the strong disorder breaks the lattice homogeneity, the DMRG
procedure is likely to be trapped in local minima, even if
using an optimized strategy specially designed for disordered
lattices [73]. These difficulties, accompanied by the fact that
extracting information from disordered systems requires re-
peating calculations for various disorder samples, restrict our
investigations to relatively small system sizes. To be more
rigorous, we also perform exact diagonalization (ED) calcu-
lations as a benchmark. As shown in Fig. 11, the two methods
provide precisely the same results, therefore confirming the
reliability of the numerical results illustrated in this work.

APPENDIX C: APPROXIMATION OF D,

In the absence of disorder, the ground-state energy Ey(®P)
is a quadratic function of ® in the range ® € [0, 7 /2], as
shown in Fig. 12(a). Therefore, the superfluid weight D, of
the form in Eq. (6) can be obtained by the following proce-
dure: First, do a second-order polynomial fitting of several

—76.905F " H M T
F— ar’+br+c 0.0010r b
L \Q 4
15 |
= o)

163 0.0008 1

12 (b)

12 , 8
10.0006F N
I \C\)
0.0 0.5

0 /m

FIG. 12. (a) The ground-state energy Ey(®) versus the twisted
angle @ for the Creutz lattice in the clean case. The solid blue line
denotes a second-order polynomial fitting. (b) The absolute error
between the superfluid weight D; obtained from Eq. (6) and the ap-
proximation D; A 2w L[Ey(8®) — E((0)]/(8®)? using different §®
in Eq. (7). Here results are from DMRG calculation of L = 32.

Eo(®) with different twisted @, and then compute the D, by
the second-order derivative of the previously obtained poly-
nomial. However, this procedure is rather time-consuming,
especially in the disorder case, which requires many disorder
realizations.

In practice, we adopt the approximation D, =~
2w L[Ey(8P) — Eg(0)]/(8®P)*> [29], from which one can
extract Dy from a single value of Ey(®). We display the
absolute error from these two procedures in Fig. 12(b),
where the error is overall small (~107%) and decreases as
the phase twist ® increases to 7 /2. In this work, we choose
® = /2 and use the approximation in Eq. (7) to compute the
superfluid weight D;. Note that the above test has been done
in the clean case, and the situation can be more complicated in
the presence of a finite disorder strength. As long as Ey(®P) is
monotonic in the range [0, 7 /2], the extracted D; still likely
constitutes a good approximation. Nevertheless, the results
from the approximation appear promising and self-consistent
in our investigation.

APPENDIX D: COST FUNCTION MINIMIZATION

The key for obtaining a performant data collapse and scal-
ing of the superfluid weight is to extract the best critical W,
and b in Eq. (8), which can be determined by minimizing the
cost function [58,59,74]

> X — X

Cx = max{X;} — min{X;} -L (DD

where X is the jth element of the collection for all Dy(L, W)
values in the parameter space {L, W}. Here the data collection
X has been sorted in a nondecreasing way with X; < X

The cost function Cy is close to zero for a perfectly smooth
and continuous data collection. In practice, for each pair of
fitted parameter values, one obtains a parameter-dependent
cost function Cx (b, W,.). By repeating this procedure within
proper ranges in the two-dimensional parameter space {b, W.},
one can extract the minimum of Cx and find the best fitting.
As shown in Fig. 13, the cost function of the Creutz lattice
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FIG. 13. The cost function Cx in the two-dimensional parameter
space {b, W.} for the Creutz lattice with random chemical potentials
as an example. The red star marks the position (W, = 0, b = 2.3) of
the minimum Cy.

with random chemical potentials is a unimodal function in
{b, W.}. Therefore, it is not hard to obtain the unambiguous
minimum of Cyx and the corresponding data collapse in Fig. 3
in the main text. Similar analysis carries over for the other
lattice geometry and disorder type used.

APPENDIX E: ONE- AND TWO-PARTICLE
EXCITATION GAPS

On top of the observables discussed in the main text,
further characterization of the different phases across the
SIT can be made by examining the charge excitation energy
[69,75,76]. In particular, the m-particle excitation gap can be
defined as [69]

8m = Eo(N +m) + Eog(N —m) — 2Eo(N).  (El)

Here Ey(N) is the ground state of N = Ny + N, particles,
as defined in the main text. Our interest in the present work
lies in the spin-balanced sector {N; = N} for the case of
pair excitations. In actual calculations, (N £ 1) [(N £ 2)] is
explicitly regarded as (Ny = 1,N)) [(Ny £1, N, £ 1)]. The
one- and two-particle excitations of a small system size with
L = 12 are displayed in Fig. 14.

T T T T
G S B------ - -©
4+ 4+ % . (b) i
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2? Ho+H, 4 64 e, 4
i NSRS | S S TSig ]
S ‘ o
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I (d)
L \@\ "
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1 1 n n | 1
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FIG. 14. The m-particle excitation gaps §,, (see text for defini-
tion) for (a) [(b)] the Creutz lattice with random chemical potentials
(Zeeman fields) and (c) [(d)] the regular two-leg ladder with random
chemical potentials (Zeeman fields). Here results are from DMRG
calculations with L = 12.

With disorder induced by random chemical potentials
[Figs. 14(a) and 14(c)], the one-particle excitation gap §; is
finite in the whole range of disorder strengths investigated,
irrespective of the lattice geometry (or, equivalently, the band
structure). On the other hand, the two-particle excitation gap
8, slowly grows with W, denoting the onset of insulating
behavior. Remarkably, since 8, < §;, pair excitations are fa-
vored within this regime. In the main text, we refer to it as an
Anderson-insulating phase of singlet pairs; in other contexts,
this is also dubbed as a Bose insulator [68,69,75-78]. In pass-
ing, we note that this analysis also makes clear the inexistence
of an intermediate disorder-induced metallic phase.

Such a scenario changes in the presence of the disorder
induced by the random Zeeman fields [Figs. 14(b) and 14(d)].
Now, the single-particle (two-particle) excitation gap substan-
tially decreases (slightly increases) as W grows. While having
both quantities finite is a precondition for driving insulating
behavior, at disorder values of W 2> 10 the imminent crossing
of §, and 8; marks the crossover from a Bose insulator to a
Fermi insulator [68,69,76], where single-particle excitations
are favored instead. This change of character of the insulator
phase has been seen in other contexts for clean SITs [68,69].
While finite-size effects likely quantitatively impact the re-
sults, they support the main findings in the main text.

[1] W. Maimaiti, A. Andreanov, H. C. Park, O. Gendelman,
and S. Flach, Compact localized states and flat-band gen-
erators in one dimension, Phys. Rev. B 95, 115135
(2017).

[2] M. Rontgen, C. V. Morfonios, and P. Schmelcher, Compact
localized states and flat bands from local symmetry partitioning,
Phys. Rev. B 97, 035161 (2018).

[3] W. Maimaiti, S. Flach, and A. Andreanov, Universal d = 1 flat
band generator from compact localized states, Phys. Rev. B 99,

125129 (2019).

[4] S. M. Zhang and L. Jin, Compact localized states and local-
ization dynamics in the dice lattice, Phys. Rev. B 102, 054301
(2020).

[5] N. B. Kopnin, T. T. Heikkild, and G. E. Volovik, High-
temperature surface superconductivity in topological flat-band
systems, Phys. Rev. B 83, 220503(R) (2011).

[6] S. Peotta and P. Térmé, Superfluidity in topologically nontrivial
flat bands, Nat. Commun. 6, 8944 (2015).

[7]1 E. W. Huang, M.-S. Vaezi, Z. Nussinov, and A. Vaezi, En-
hanced correlations and superconductivity in weakly interacting

035131-9


https://doi.org/10.1103/PhysRevB.95.115135
https://doi.org/10.1103/PhysRevB.97.035161
https://doi.org/10.1103/PhysRevB.99.125129
https://doi.org/10.1103/PhysRevB.102.054301
https://doi.org/10.1103/PhysRevB.83.220503
https://doi.org/10.1038/ncomms9944

LIANG, YANG, CHENG, AND MONDAINI

PHYSICAL REVIEW B 108, 035131 (2023)

partially flat-band systems: A determinantal quantum Monte
Carlo study, Phys. Rev. B 99, 235128 (2019).

[8] M. Tovmasyan, S. Peotta, L. Liang, P. Térm4, and S. D. Huber,
Preformed pairs in flat Bloch bands, Phys. Rev. B 98, 134513
(2018).

[9] R. Mondaini, G. G. Batrouni, and B. Grémaud, Pairing and
superconductivity in the flat band: Creutz lattice, Phys. Rev. B
98, 155142 (2018).

[10] B. Grémaud and G. G. Batrouni, Pairing and Pair Super-
fluid Density in One-Dimensional Two-Species Fermionic and
Bosonic Hubbard Models, Phys. Rev. Lett. 127, 025301 (2021).

[11] S. M. Chan, B. Grémaud, and G. G. Batrouni, Pairing and
superconductivity in quasi-one-dimensional flat-band systems:
Creutz and sawtooth lattices, Phys. Rev. B 105, 024502 (2022).

[12] S. M. Chan, B. Grémaud, and G. G. Batrouni, Designer flat
bands: Topology and enhancement of superconductivity, Phys.
Rev. B 106, 104514 (2022).

[13] V. L. Iglovikov, F. Hébert, B. Grémaud, G. G. Batrouni, and
R. T. Scalettar, Superconducting transitions in flat-band sys-
tems, Phys. Rev. B 90, 094506 (2014).

[14] M. Creutz, End States, Ladder Compounds, and Domain-Wall
Fermions, Phys. Rev. Lett. 83, 2636 (1999).

[15] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[16] S. Flach, D. Leykam, J. D. Bodyfelt, P. Matthies, and
A. S. Desyatnikov, Detangling flat bands into Fano lattices,
Europhys. Lett. 105, 30001 (2014).

[17] D. Leykam, J. D. Bodyfelt, A. S. Desyatnikov, and S. Flach,
Localization of weakly disordered flat band states, Eur. Phys. J.
B 90, 1 (2017).

[18] D. Leykam, S. Flach, O. Bahat-Treidel, and A. S. Desyatnikov,
Flat band states: Disorder and nonlinearity, Phys. Rev. B 88,
224203 (2013).

[19] Y. Kuno, T. Orito, and I. Ichinose, Flat-band many-body lo-
calization and ergodicity breaking in the Creutz ladder, New J.
Phys. 22, 013032 (2020).

[20] C. Danieli, A. Andreanov, and S. Flach, Many-body flatband
localization, Phys. Rev. B 102, 041116(R) (2020).

[21] Y. He, R. Mao, H. Cai, J.-X. Zhang, Y. Li, L. Yuan, S.-Y. Zhu,
and D.-W. Wang, Flat-Band Localization in Creutz Superradi-
ance Lattices, Phys. Rev. Lett. 126, 103601 (2021).

[22] T. Orito, Y. Kuno, and I. Ichinose, Interplay and competition
between disorder and flat band in an interacting Creutz ladder,
Phys. Rev. B 104, 094202 (2021).

[23] T. Orito, Y. Kuno, and I. Ichinose, Deformation of localized
states and state transitions in systems of randomly hopping
interacting fermions, Phys. Rev. B 105, 094201 (2022).

[24] SIT can also occur in clean systems through the tuning of
Hamiltonian parameters that govern the single-particle disper-
sion, e.g., see Refs. [68,69,76,79].

[25] M. V. Feigel’'man, L. B. loffe, V. E. Kravtsov, and E. A.
Yuzbashyan, Eigenfunction Fractality and Pseudogap State near
the Superconductor-Insulator Transition, Phys. Rev. Lett. 98,
027001 (2007).

[26] B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer, M. Ovadia,
D. Shahar, M. Feigel’man, and L. Ioffe, Localization of pre-
formed Cooper pairs in disordered superconductors, Nat. Phys.
7,239 (2011).

[27] K. Bouadim, Y. L. Loh, M. Randeria, and N. Trivedi, Single-
and two-particle energy gaps across the disorder-driven

superconductor-insulator transition, Nat.
(2011).

[28] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Boson localization and the superfluid-insulator transition, Phys.
Rev. B 40, 546 (1989).

[29] N. Laflorencie and H. Rieger, Scaling of the spin stiffness in
random spin—% chains, Eur. Phys. J. B 40, 201 (2004).

[30] F. Crépin, N. Laflorencie, G. Roux, and P. Simon, Phase di-
agram of hard-core bosons on clean and disordered two-leg
ladders: Mott insulator—Luttinger liquid—Bose glass, Phys. Rev.
B 84, 054517 (2011).

[31] C. Meldgin, U. Ray, P. Russ, D. Chen, D. M. Ceperley, and
B. DeMarco, Probing the Bose glass-superfluid transition using
quantum quenches of disorder, Nat. Phys. 12, 646 (2016).

[32] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[33] S. R. White, Density-matrix algorithms for quantum renormal-
ization groups, Phys. Rev. B 48, 10345 (1993).

[34] W. Kohn, Theory of the insulating state, Phys. Rev. 133, A171
(1964).

[35] X. Zotos, P. Prelovek, and 1. Sega, Single-hole effective masses
in the 7-J model, Phys. Rev. B 42, 8445 (1990).

[36] B. S. Shastry and B. Sutherland, Twisted Boundary Conditions
and Effective Mass in Heisenberg-Ising and Hubbard Rings,
Phys. Rev. Lett. 65, 243 (1990).

[37] R. M. Fye, M. J. Martins, D. J. Scalapino, J. Wagner, and W.
Hanke, Drude weight, optical conductivity, and flux proper-
ties of one-dimensional Hubbard rings, Phys. Rev. B 44, 6909
(1991).

[38] D. J. Scalapino, S. R. White, and S. C. Zhang, Superfluid
Density and the Drude Weight of the Hubbard Model, Phys.
Rev. Lett. 68, 2830 (1992).

[39] D. J. Scalapino, S. R. White, and S. Zhang, Insulator, metal, or
superconductor: The criteria, Phys. Rev. B 47, 7995 (1993).

[40] C. A. Hayward, D. Poilblanc, R. M. Noack, D. J. Scalapino, and
W. Hanke, Evidence for a Superfluid Density in ¢-J Ladders,
Phys. Rev. Lett. 75, 926 (1995).

[41] Q. Niu, D. J. Thouless, and Y.-S. Wu, Quantized Hall con-
ductance as a topological invariant, Phys. Rev. B 31, 3372
(1985).

[42] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[43] D. Poilblanc, Twisted boundary conditions in cluster calcu-
lations of the optical conductivity in two-dimensional lattice
models, Phys. Rev. B 44, 9562 (1991).

[44] G. G. Batrouni, R. T. Scalettar, and G. T. Zimanyi, Quantum
Critical Phenomena in One-Dimensional Bose Systems, Phys.
Rev. Lett. 65, 1765 (1990).

[45] R. T. Scalettar, G. G. Batrouni, and G. T. Zimanyi, Localization
in Interacting, Disordered, Bose Systems, Phys. Rev. Lett. 66,
3144 (1991).

[46] M. Gerster, M. Rizzi, F. Tschirsich, P. Silvi, R. Fazio, and S.
Montangero, Superfluid density and quasi-long-range order in
the one-dimensional disordered Bose-Hubbard model, New J.
Phys. 18, 015015 (2016).

[47] T. Giamarchi and H. J. Schulz, Anderson localization and in-
teractions in one-dimensional metals, Phys. Rev. B 37, 325
(1988).

[48] E. Orignac and T. Giamarchi, Effects of weak disorder on two
coupled Hubbard chains, Phys. Rev. B 53, R10453 (1996).

Phys. 7, 884

035131-10


https://doi.org/10.1103/PhysRevB.99.235128
https://doi.org/10.1103/PhysRevB.98.134513
https://doi.org/10.1103/PhysRevB.98.155142
https://doi.org/10.1103/PhysRevLett.127.025301
https://doi.org/10.1103/PhysRevB.105.024502
https://doi.org/10.1103/PhysRevB.106.104514
https://doi.org/10.1103/PhysRevB.90.094506
https://doi.org/10.1103/PhysRevLett.83.2636
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1209/0295-5075/105/30001
https://doi.org/10.1140/epjb/e2016-70551-2
https://doi.org/10.1103/PhysRevB.88.224203
https://doi.org/10.1088/1367-2630/ab6352
https://doi.org/10.1103/PhysRevB.102.041116
https://doi.org/10.1103/PhysRevLett.126.103601
https://doi.org/10.1103/PhysRevB.104.094202
https://doi.org/10.1103/PhysRevB.105.094201
https://doi.org/10.1103/PhysRevLett.98.027001
https://doi.org/10.1038/nphys1892
https://doi.org/10.1038/nphys2037
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1140/epjb/e2004-00258-x
https://doi.org/10.1103/PhysRevB.84.054517
https://doi.org/10.1038/nphys3695
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRev.133.A171
https://doi.org/10.1103/PhysRevB.42.8445
https://doi.org/10.1103/PhysRevLett.65.243
https://doi.org/10.1103/PhysRevB.44.6909
https://doi.org/10.1103/PhysRevLett.68.2830
https://doi.org/10.1103/PhysRevB.47.7995
https://doi.org/10.1103/PhysRevLett.75.926
https://doi.org/10.1103/PhysRevB.31.3372
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevB.44.9562
https://doi.org/10.1103/PhysRevLett.65.1765
https://doi.org/10.1103/PhysRevLett.66.3144
https://doi.org/10.1088/1367-2630/18/1/015015
https://doi.org/10.1103/PhysRevB.37.325
https://doi.org/10.1103/PhysRevB.53.R10453

DISORDER IN INTERACTING QUASI-ONE-DIMENSIONAL ...

PHYSICAL REVIEW B 108, 035131 (2023)

[49] E. Orignac and T. Giamarchi, Effects of disorder on two
strongly correlated coupled chains, Phys. Rev. B 56, 7167
(1997).

[50] E. Orignac and T. Giamarchi, Anderson localization in Hubbard
ladders, Phys. B: Condens. Matter 259-261, 1058 (1999).

[51] V. J. Emery, Theory of the quasi-one-dimensional electron
gas with strong “on-site” interactions, Phys. Rev. B 14, 2989
(1976).

[52] K. B. Efetov and A. I. Larkin, Correlation functions in one-
dimensional systems with a strong interaction, Zh. Eksp. Teor.
Fiz. 69, 764 (1975) [Sov. Phys. JETP 42, 390 (1975)].

[53] R. Micnas, J. Ranninger, and S. Robaszkiewicz, Superconduc-
tivity in narrow-band systems with local nonretarded attractive
interactions, Rev. Mod. Phys. 62, 113 (1990).

[54] Similar arguments are valid for clean SIT transitions [68,69].
There, on the other hand, the transition is of second order
[(d + 1) — XY universality class], and the fermionic transition
shares the same scaling properties of the corresponding mapped
bosonic model [80,81].

[55] A. Goremykina, R. Vasseur, and M. Serbyn, Analytically Solv-
able Renormalization Group for the Many-Body Localization
Transition, Phys. Rev. Lett. 122, 040601 (2019).

[56] P. T. Dumitrescu, A. Goremykina, S. A. Parameswaran, M.
Serbyn, and R. Vasseur, Kosterlitz-Thouless scaling at many-
body localization phase transitions, Phys. Rev. B 99, 094205
(2019).

[57] A. Morningstar and D. A. Huse, Renormalization-group study
of the many-body localization transition in one dimension,
Phys. Rev. B 99, 224205 (2019).

[58] J. guntajs, J. Bonca, T. Prosen, and L. Vidmar, Ergodicity break-
ing transition in finite disordered spin chains, Phys. Rev. B 102,
064207 (2020).

[59] A. S. Aramthottil, T. Chanda, P. Sierant, and J. Zakrzewski,
Finite-size scaling analysis of the many-body localization tran-
sition in quasiperiodic spin chains, Phys. Rev. B 104, 214201
(2021).

[60] C. Cheng, R. Mondaini, and M. Rigol, Singlet pairing and
superconductivity in z-J ladders with Mott insulating stripes,
Phys. Rev. B 98, 121112(R) (2018).

[61] Y.-F. Yang, J. Chen, C. Cheng, and H.-G. Luo, Enhanced super-
conductivity and various edge modes in modulated 7-J chains,
Phys. Rev. B 105, 165123 (2022).

[62] T. Giamarchi, Quantum Physics in One Dimension, Interna-
tional Series of Monographs on Physics (Clarendon, Oxford,
2004).

[63] M. Qin, C.-M. Chung, H. Shi, E. Vitali, C. Hubig, U.
Schollwock, S. R. White, and S. Zhang (Simons Collaboration
on the Many-Electron Problem), Absence of Superconductivity
in the Pure Two-Dimensional Hubbard Model, Phys. Rev. X 10,
031016 (2020).

[64] H. Xu, C.-M. Chung, M. Qin, U. Schollwock, S. R.
White, and S. Zhang, Coexistence of superconductivity
with partially filled stripes in the Hubbard model,
arXiv:2303.08376.

[65] E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Colloquium:
Theory of intertwined orders in high temperature superconduc-
tors, Rev. Mod. Phys. 87, 457 (2015).

[66] S.-L. Zhang and Q. Zhou, Shaping topological properties of the
band structures in a shaken optical lattice, Phys. Rev. A 90,
051601(R) (2014).

[67] J. H. Kang, J. H. Han, and Y. Shin, Creutz ladder in a res-
onantly shaken 1D optical lattice, New J. Phys. 22, 013023
(2020).

[68] R. Mondaini, P. Nikoli¢, and M. Rigol, Mott-insulator—to—
superconductor transition in a two-dimensional superlattice,
Phys. Rev. A 92, 013601 (2015).

[69] X. Jin, Y. Liu, R. Mondaini, and M. Rigol, Charge excitations
across a superconductor-insulator transition, Phys. Rev. B 106,
245117 (2022).

[70] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P.
Brune, K. Buschelman, E. Constantinescu, L. Dalcin, A. Dener,
V. Eijkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac,
P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong
et al., PETSc/TAO Users Manual, Techical Report ANL-21/39,
Revision 3.19, Argonne National Laboratory, 2023, https://
petsc.org/.

[71] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable
and flexible toolkit for the solution of eigenvalue problems,
ACM Trans. Math. Software 31, 351 (2005).

[72] J. Li, C. Cheng, T. Paiva, H.-Q. Lin, and R. Mondaini, Giant
Magnetoresistance in Hubbard Chains, Phys. Rev. Lett. 121,
020403 (2018).

[73] J. C. Xavier, J. A. Hoyos, and E. Miranda, Adaptive density ma-
trix renormalization group for disordered systems, Phys. Rev. B
98, 195115 (2018).

[74] R. Mondaini, S. Tarat, and R. T. Scalettar, Universality and
critical exponents of the fermion sign problem, Phys. Rev. B
107, 245144 (2023).

[75] D. Sherman, B. Gorshunov, S. Poran, N. Trivedi, E. Farber, M.
Dressel, and A. Frydman, Effect of Coulomb interactions on the
disorder-driven superconductor-insulator transition, Phys. Rev.
B 89, 035149 (2014).

[76] T. Hazra, N. Trivedi, and M. Randeria, Spectral functions across
an insulator to superconductor transition, arXiv:2011.06598.

[77] P. Nikoli¢ and Z. TeSanovi¢, Cooper pair insulators and the-
ory of correlated superconductors, Phys. Rev. B 83, 064501
(2011).

[78] P. Nikoli¢, Unitarity in periodic potentials: A renormalization
group analysis, Phys. Rev. B 83, 064523 (2011).

[79] Y. L. Loh, M. Randeria, N. Trivedi, C.-C. Chang, and R.
Scalettar, Superconductor-Insulator Transition and Fermi-Bose
Crossovers, Phys. Rev. X 6, 021029 (2016).

[80] I. Hen and M. Rigol, Superfluid to Mott insulator transition
of hardcore bosons in a superlattice, Phys. Rev. B 80, 134508
(2009).

[81] I. Hen, M. Iskin, and M. Rigol, Phase diagram of the hard-
core Bose-Hubbard model on a checkerboard superlattice, Phys.
Rev. B 81, 064503 (2010).

035131-11


https://doi.org/10.1103/PhysRevB.56.7167
https://doi.org/10.1016/S0921-4526(98)00775-3
https://doi.org/10.1103/PhysRevB.14.2989
http://jetp.ras.ru/cgi-bin/e/index/e/42/2/p390?a=list
https://doi.org/10.1103/RevModPhys.62.113
https://doi.org/10.1103/PhysRevLett.122.040601
https://doi.org/10.1103/PhysRevB.99.094205
https://doi.org/10.1103/PhysRevB.99.224205
https://doi.org/10.1103/PhysRevB.102.064207
https://doi.org/10.1103/PhysRevB.104.214201
https://doi.org/10.1103/PhysRevB.98.121112
https://doi.org/10.1103/PhysRevB.105.165123
https://doi.org/10.1103/PhysRevX.10.031016
http://arxiv.org/abs/arXiv:2303.08376
https://doi.org/10.1103/RevModPhys.87.457
https://doi.org/10.1103/PhysRevA.90.051601
https://doi.org/10.1088/1367-2630/ab61d7
https://doi.org/10.1103/PhysRevA.92.013601
https://doi.org/10.1103/PhysRevB.106.245117
https://petsc.org/
https://doi.org/10.1145/1089014.1089019
https://doi.org/10.1103/PhysRevLett.121.020403
https://doi.org/10.1103/PhysRevB.98.195115
https://doi.org/10.1103/PhysRevB.107.245144
https://doi.org/10.1103/PhysRevB.89.035149
http://arxiv.org/abs/arXiv:2011.06598
https://doi.org/10.1103/PhysRevB.83.064501
https://doi.org/10.1103/PhysRevB.83.064523
https://doi.org/10.1103/PhysRevX.6.021029
https://doi.org/10.1103/PhysRevB.80.134508
https://doi.org/10.1103/PhysRevB.81.064503

