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Since strong quantum fluctuations are essential for the emergence of quantum spin liquids, there have been
extensive exploration and identification of spin liquid candidates in spin- 1

2 systems, while such activities are
rare in higher spin systems. Here we report an example of non-Abelian chiral spin liquid emerging in a spin- 3

2
Heisenberg model on a square lattice. By tuning Heisenberg exchange interaction and scalar chirality interaction,
we map out a quantum phase diagram enclosing three conventional magnetic orders and a chiral spin liquid based
on density-matrix renormalization group studies. The nature of the spin liquid is identified as a long-sought
bosonic version of the Read-Rezayi state that supports non-Abelian Fibonacci anyonic statistics, identified by
the ground state entanglement spectrum. Significantly, we establish that the non-Abelian chiral spin liquid
emerges through the enlarged local degrees of freedom and enhanced quantum fluctuations near the classical
phase boundaries of competing magnetic orders. Our numerical discovery of an exotic quantum spin liquid in a
spin- 3

2 system suggests a route for discovering fractionalized quantum phases in frustrated higher spin magnetic
compounds.

DOI: 10.1103/PhysRevB.108.035130

I. INTRODUCTION

One main theme in condensed matter physics is to search
and classify various quantum states of matter. While most
quantum phases can be heuristically understood in terms of
the symmetry-breaking paradigm, some strongly correlated
states go beyond the conventional classification by local order
parameter and interesting phenomena may emerge. Quantum
spin liquid (QSL) [1–4], which does not form any conven-
tional magnetic order even down to zero temperature, is
such an example of an exotic state that internally possesses
fractionalized quasiparticles and long-range quantum entan-
glement. Anderson [5] initially envisioned such a quantum
disordered state to be realized in the frustrated triangular
Heisenberg model. Such a possible QSL in the triangular
Heisenberg model was predicted to be a gapped chiral spin liq-
uid (CSL) [6], which breaks time-reversal symmetry as a spin
analogy of the fractional quantum Hall liquid [7–9] exhibiting
a topological order [10]. Recently, using large-scale numer-
ical simulations, CSLs have been unambiguously identified
in local spin- 1

2 models on kagome lattice [11–14], triangular
lattice [15,16], honeycomb lattice [17–19], and square lat-
tice [18,20,21]. The mechanism of the formation of the CSLs
is attributed to the strong interplay of geometric frustration
and quantum fluctuation. The examples of CSLs available so
far all share some common features, i.e., they are produced in
S = 1

2 models where quantum fluctuations are strong and they
are identified as bosonic Laughlin states processing Abelian
topological order.

While the Abelian CSL appears to be common in these
frustrated spin- 1

2 systems, much less is understood regarding
the emergence of CSL that possesses non-Abelian fractional
statistics [22–24] in a realistic local spin model. The Kitaev
model is one remarkable example demonstrating the existence
of such a non-Abelian topological order, relevant to Kitaev
materials [25]. Besides the Kitaev materials, one natural place
to search for such a state is in the systems with larger spin
(S > 1

2 ) [26]. So far, only a few studies on CSLs have been
reported in spin S = 1 systems [27–33], which have identified
the non-Abelian Moore-Read state [34] with quasiparticles
obeying the Ising anyonic statistics. While the Moore-Read
CSL has the potential to realize topological quantum compu-
tation [35], from a practical point of view the Read-Rezayi
state [36] that hosts the non-Abelian Fibonacci anyon has
better performance in topological quantum computation under
a noisy environment due to its universality in quantum com-
puting algorithms [35,37–39]. Although there are rare cases
of Fibonacci anyon that are proposed in the exotic fractional
quantum Hall state [40–44] and Kondo anyons [45], it is
highly desired to search for the emergent non-Abelian CSL
supporting Fibonacci anyonic statistics in general and realis-
tic large spin S > 1 systems. Such systems may be realized
in quasi-two-dimensional antiferromagnets with 3d transition
metals including Ba2CoGe2O7 [46,47].

In this paper, we address the central issue whether the
CSL can arise by suppressing magnetically ordered states in
a higher spin system. Specifically we consider an antiferro-
magnetic Heisenberg model with quantum S = 3

2 spins on
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FIG. 1. (a) Spin- 3
2 J1-J2-Jχ Heisenberg model on the square lat-

tice. (b) Quantum phase diagram by tuning J2 and Jχ (by setting
J1 = 1). CSL, CSS, and QSL* respectively denote chiral spin liquid,
chiral spin state, and possible quantum spin liquid. We also show
classical phase boundaries as dashed lines, which separate three
magnetic ordered phases (labeled by green colored texts).

the square lattice. Using large-scale density-matrix renormal-
ization group (DMRG) calculations [48,49], we establish a
global phase diagram including three conventional magnetic
orders that survive even in the classical limit, and importantly,
among the phase boundaries of magnetically ordered states
there exists a CSL state. This CSL is characterized by ex-
ponentially decaying spin correlation and characteristic level
countings in an entanglement spectrum [50] as a fingerprint of
the non-Abelian Read-Rezayi state [36].

II. MODEL AND METHOD

We study the spin- 3
2 J1-J2-Jχ Heisenberg model on a square

lattice,

H = J1

∑
〈i j〉

Si · S j + J2

∑
〈〈i j〉〉

Si · S j

+ Jχ

∑
i jk∈�

Si · (S j × Sk ),

where Si denotes the SU(2)-symmetric spin- 3
2 operator on site

i. The exchange interactions J1 and J2 run over all nearest-
neighbor bonds 〈i j〉 and next-nearest-neighbor bonds 〈〈i j〉〉,
respectively. The three-spin scalar chiral interaction Jχ runs
over all four triangles within each primitive square plaquette,
and the vertices i jk of each triangle are ordered in a clockwise
manner [see Fig. 1(a)]. This term explicitly breaks time-
reversal symmetry and thus favors long-range chiral orders.
Physically this chiral spin interaction can be deduced from
the extended Hubbard model in a magnetic field, whose large

repulsion U limit at half filling gives rise to Jχ ∝ t2
1 t2
U 2 sin � for

a primitive triangle enclosed by magnetic flux � [51] (t1 and t2
are the nearest- and next-nearest-neighbor electron hoppings,
respectively). In the following we fix J1 = 1 as the unit of
energy scale.

To determine possible quantum phases and quantum phase
diagram, we systematically utilize both finite and infinite
DMRG calculations with U (1) symmetry on cylinder geome-
try [48,52]. Due to the much larger dimension of Hilbert space
compared to the spin S = 1

2 case, we mainly focus our study
on finite and infinite cylinders with circumferences Ly = 4 and

6. We keep the bond dimension of the matrix product state up
to χ = 4000, which allows one to obtain the ground state on
a Ly = 4 (Ly = 6) cylinder with a typical truncation error of
about 10−8 (10−5).

III. PHASE DIAGRAM

Analyzing the classical spin system will give us important
clues on possible quantum phases. The classical Heisenberg
model on the square lattice harbors three magnetically ordered
phases in the J2-Jχ phase diagram [53] including a Néel state
at the small J2 regime, a stripe state at the large J2 regime
and a chiral spin state (CSS) at the larger Jχ regime [see
Fig. 1(b)]. These three states meet at the classical transition
point (J2, Jχ ) = (0.5, 0.25), near which quantum fluctuation
is expected to be strong and may promote a spin disordered
state in the quantum spin systems.

We present a global quantum phase diagram of the
spin- 3

2 J1-J2-Jχ model in Fig. 1(b) using infinite DMRG cal-
culations. When tuning off the chiral term Jχ = 0, we find
the conventional Néel and stripe order at small and large J2,
respectively. Between them we find a quantum disordered
regime near the classical transition point J2 = 0.5, where the
spin-spin and dimer-dimer correlation decays exponentially.
This state does not break lattice translational symmetry nor
time-reversal symmetry and we label it by QSL* in the phase
diagram (see Appendix E). By gradually increasing Jχ , both
of the magnetic phases extend to a finite regime in the phase
diagram. When the chiral term dominates (Jχ � 0.25), a non-
coplanar CSS is observed, which is also a magnetic state that
survives even in the classical limit. In the vicinity of classical
transition boundaries, we discover a finite regime for CSL that
hosts extremely short-ranged spin correlations. The nature of
this CSL state is identified as the bosonic version of the Read-
Rezayi state via the characteristic entanglement spectrum as
we demonstrate below.

IV. MAGNETIC ORDERS

In order to determine magnetic orders, we compute spin
structure factor S(k) = 1

N

∑
i, j 〈Si · S j〉 eik·(ri−r j ), where both

i and j sum over N lattice sites. The structure factors in
different phases are shown in the upper panel of Fig. 2, where
different peak locations specifically correspond to different
magnetic orders. When Jχ is small, we find Bragg peaks at
(π, π ) for small J2 and at (0, π ) for large J2, which are consis-
tent with Néel and stripe magnetic orders, respectively. When
Jχ is large, we find a multi-Q feature in the spin structure
factor, with two peaks at (0, π ) and (π, 0), as well as two
satellite peaks at (±π/2,±π/2), which are consistent with
the spin arrangement of the noncoplanar chiral spin state [53].
As discussed above, these three magnetic orders are also
found in the corresponding classical Heisenberg model. In the
regime in between these three magnetic ordered phases, no
sharp Bragg peak is present, which indicates a nonmagnetic
regime where quantum fluctuation is substantially strong to
destroy long-range orders. In the lower panel of Fig. 2, we
show the profile of spin structure factors at specific momen-
tum locations S(π, π ), S(π, 0), and S(0, π ) in the whole J2-Jχ

035130-2



GLOBAL QUANTUM PHASE DIAGRAM AND NON-ABELIAN … PHYSICAL REVIEW B 108, 035130 (2023)

FIG. 2. Upper panel: Spin structure factor S(k) in the magnetic (a) Néel, (b) stripe, and (c) CSS phases at representative points. Lower
panel: profile of magnetic order parameters (d) S(π, π ), (e) S(π, 0), and (f) S(0, π ) in the J2-Jχ parameter space. The white dashed line marks
the phase boundary.

phase diagram, where large values are observed in the Néel
order phase, stripe order phase, and CSS phase, respectively.
They are consistent with the phase boundaries in Fig. 1(b),
which are also labeled as dashed white lines in Fig. 2 for
comparison.

V. READ-REZAYI NON-ABELIAN CSL

In the vicinity of the boundaries of magnetic phases, the
spin correlation |〈S0 · Sx〉| shows an exponential decay along
the cylinder, much faster than those in magnetic ordered
phases. This is shown in Fig. 4 for the Ly = 4 cylinder (see
results for the Ly = 6 cylinder in Appendix A), where dis-
tinct behaviors of spin correlations are clearly observed in
ordered and disordered phases. We have also checked nearest-
neighbor bond energy in the nonmagnetic regime and find
no lattice translational symmetry breaking consistent with a
uniform state without valence bond order.

The explicit nature of this underlying spin liquid can
be unambiguously revealed by characteristic level countings
of edge excitations. Here we extract a momentum-resolved
entanglement spectrum [50,54] from the matrix product
state representation of the ground state, which is found to
have one-to-one correspondence with the edge spectrum. In
Fig. 3(a), we show the low-lying entanglement spectrum of
the ground state at J2 = 0.5 and Jχ = 0.15 in the Ly = 4
cylinder using finite DMRG calculations. We find that the
quasidegenerate level counting exactly matches the tower
of states of the SU(2)3 Wess-Zumino-Witten theory [55]

in the vacuum sector, which describes edge excitations of
the Read-Rezayi fractional quantum Hall state. As antici-
pated (see Appendix D), the low-lying entanglement spectrum

FIG. 3. Momentum-resolved entanglement spectrum of CSL in
the (a) Ly = 4 cylinder and (b) Ly = 6 cylinder. The low-lying entan-
glement spectrum clearly shows level counting {1, 1, 3, 6, . . . } in the
Sz = 0 sector and {1, 2, 5, . . . } in the Sz = ±1 sectors in both system
sizes.
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FIG. 4. Spin correlation function |〈S0Sx〉| versus distance for dif-
ferent phases at (a) Jχ = 0.15 and (c) Jχ = 0.05. Long-range spin
correlation

√|〈S0Sd 〉| versus J2 for (b) Jχ = 0.15 and (d) Jχ = 0.05.
We set Ly = 4 here.

reveals the characteristic level counting of {1, 1, 3, 6, . . . } in
the Sz = 0 sector and {1, 2, 5, . . . } in the Sz = ±1 sectors.
We also find the same edge countings in the Ly = 6 cylinder,
which is shown in Fig. 3(b). Intuitively these characteristic
countings can also be understood in terms of generalized Pauli
principle [42,56] in the thin-torus limit, which states no more
than three particles in two consecutive orbitals for the bosonic
Read-Rezayi state indicating the importance of a larger local
Hilbert space.

VI. PHASE TRANSITION

The phase boundaries in the phase diagram can be deter-
mined by long-distance spin correlation defined as

√|〈S0Sx〉|,
where x denotes the distance between two spins. In Fig. 4(a),
for two magnetic phases, the spin correlation decays relatively
slowly with distances. They correspond to the Néel order
and stripe order, as indicated by the Bragg peaks in the spin
structure factor in Fig. 2. In Fig. 4(b), the spin correlation
at long distance d = 19 is vanishingly small for 0.48 < J2 <

0.52, Jχ = 0.15, leaving a window for the CSL phase. A sim-
ilar behavior is also observed for small values of Jχ . When
we vary J2 at fixed Jχ = 0.05, we find a similar nonmagnetic
phase for 0.5 � J2 � 0.54 as shown in Figs. 4(c) and 4(d).
In this case, however, the influence of the spin chirality term
is relatively small and we do not observe characteristic edge
countings of the CSL in the entanglement spectrum. For this
reason, we label this quantum disordered regime as QSL*,
whose exact nature is beyond current investigation and will
be left for future studies. For larger Jχ > 0.25 the influence of
the spin chirality term dominates and stabilizes CSS, which is
consistent with classical analysis. The quantum phase diagram
shown in Fig. 1 is obtained in the Ly = 4 system. We have also
checked the phase diagram for Ly = 6 and observe a similar
transition behavior (see Appendix C). We find all the quantum

phases found in the Ly = 4 cylinder persist for the Ly = 6
system.

VII. SUMMARY AND DISCUSSION

We have numerically studied the spin- 3
2 J1-J2-Jχ Heisen-

berg model on the square lattice using unbiased density-
matrix renormalization group calculation. Based on the results
in the Ly = 4 and 6 cylinders shown above, we map out
the global quantum phase diagram that contains three con-
ventional magnetic orders, including a Néel state, a stripe
state, and a chiral spin state. Crucially, among these mag-
netic phases an interesting CSL is uncovered, where the
quantum fluctuations are strongly enhanced near the phase
boundaries of different magnetic ordered phases. The quan-
tum fluctuations destroy conventional long-ranged magnetic
orders and induce a CSL. The nature of this CSL is identi-
fied as a non-Abelian Read-Rezayi state via the characteristic
momentum-resolved entanglement spectrum. Additionally,
we also find another possible quantum spin liquid near
Jχ ∼ 0, whose exact nature deserves future study. Our find-
ings demonstrate the existence of non-Abelian CSL in higher
spin quantum antiferromagnets, which supports the non-
Abelian Fibonacci anyonic statistics and also paves the way
to searching other intriguing QSLs in these higher spin sys-
tems via the mechanism of enhancing quantum fluctuations
through tuning competing interactions. Our model Hamilto-
nian may be realized in the 3d transition metal compound
Ba2CoGe2O7 [46,47] with effective spin- 3

2 antiferromagnetic
Heisenberg exchange, where the effective chiral spin inter-
actions can be induced by an applied out-of-plane magnetic
field.

Last, several remarks are given in order. First, in compar-
ison with the non-Abelian spin liquid with Ising-type anyons
in the S = 1 model [32], the spin liquid in the spin- 3

b2 model
is not only a simple extension, but also another class of exotic
topological orders that will inspire and call for new theoretical
proposals. Another difference is that the Fibonacci anyon does
not have a free-fermion description, in sharp contrast to the
Ising anyon [57]. Second, how to understand the current find-
ings in the spin- 3

2 model and connect the current model with
previous studies in soft-boson models [58] are highly non-
trival. One possible way to think about it is from coupled-wire
construction [59–61] or the projective construction [41,62–
64], where non-Abelian SU(2)k CSLs can be constructed
intuitively. The idea of coupled-wire construction is to build
two-dimensional spin liquids by one-dimensional spin chains.
On the level of wave functions, the projective construction
is equivalent to the symmetrization of three Abelian spin- 1

2
CSLs. However, the effective interactions that allow such a
state to emerge from three coupled spin- 1

2 systems can be-
come another challenging issue demanding future studies.

In the Appendixes, we present more details to support
the conclusion in the main text. Appendix A shows the spin
correlations as a function of bond dimensions, as a consistent
check of the robustness of numerical results. We also show the
spin correlations on the Ly = 6 cylinder. Appendix B presents
the dimer correlations and discusses the possibility of valence
bond solids. In Appendix C, we show the evidence of phase
transitions on a wider cylinder Ly = 6. In Appendix D, we
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FIG. 5. Spin correlation function |〈S0 · Sx〉| versus distance for various bond dimensions. Here we set L = 4, Jχ = 0.05 (upper panel), and
Jχ = 0.15 (lower panel). Please note that the scales in (b) and (e) are different from the others.

list the countings of the effect edge theory of the bosonic
Read-Rezayi state. In Appendix E, we examine the possible
nematicity in the QSL*. In Appendix F, we study quadrupolar
correlations in nomagnetic spin liquid phases.
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APPENDIX A: SPIN CORRELATIONS

In Fig. 5 we show the behavior of spin correlation in
different phases on the Ly = 4 cylinder. In this case spin

correlations have ignorable dependence on the maximum
bond dimension used in the DMRG calculations, indicating
a well converged behavior. For the QSL* state at (0.52,0.05)
and the CSL state at (0.49,0.15), we use a semilogarithmic
plot and clearly find exponentially decaying behavior in all
bond dimensions. On the other hand, the spin correlations in
magnetic phases decay much slower than those in spin liquid
phases, and tend to a power-law behavior in a large bond
dimension limit.

In Fig. 6 we show the behavior of spin correlation in differ-
ent phases on the Ly = 6 cylinder. As in the case of the Ly = 4
cylinder, we also find exponential spin decay in the QSL*
and CSL phases for all studied bond dimensions. In the other
magnetic phases, the spin correlations decay much slower,
as expected. On increasing the bond dimension, we find the
tendency of power-law decay in these magnetic phases.

APPENDIX B: DIMER CORRELATIONS

We examine the dimer-dimer correlation function 〈Dx
0Dx

x〉
in the QSL* phase to see whether a valence bond solid may
exist. The dimer operator is defined by

Dα
x = Sx · Sx+α, (B1)
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FIG. 6. Spin correlation function |〈S0 · Sx〉| versus distance for various bond dimensions. Here we set L = 6, Jχ = 0.05 (upper panel), and
Jχ = 0.15 (lower panel). Please note that the scales in (b) and (e) are different from the others.

where α = x̂ (ŷ) labels the nearest-neighbor site along the
x (y) direction.

As shown in Fig. 7, we find a uniform dimer-dimer corre-
lation in both the Ly = 4 cylinder and the Ly = 6 cylinder. No
signal of “strong-weak” pattern is found. Moreover, we also
show the fluctuation term 〈Dx

0Dx
x〉 − 〈D0〉〈Dx〉. We observe

an exponentially decaying behavior, and the correlation
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FIG. 7. Dimer correlation function 〈D0Dx〉 versus distance for
different phases at (0.52,0.05).

FIG. 8. Spin correlation function |〈S0 · Sx〉| versus distance for
different phases at (a) Jχ = 0.15 and (c) Jχ = 0.05. Long-range spin
correlation

√|〈S0Sd 〉| versus J2 for (b) Jχ = 0.15 and (d) Jχ = 0.05.
We set Ly = 6 here.
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TABLE I. Bosonic RR state root configuration ...303030303 (3n) with edge counting 1,1,3,6,12.

�L = 0 �L = 1 �L = 2 �L = 3 �L = 4

303030303 3030303021 30303030201 303030302001 3030303020001
30303021210 303030212010 3030302120010
30303030120 303021212100 3030212120100

303030211200 3021212121000
303030301110 3030212112000
303030300300 3030302030100

3030302111100
3030301212000
3030302103000
3030303011010
3030303002100
3030303010200

length does not increase if going from Ly = 4 to Ly = 6.
These observations rule out the possibility of valence bond
order.

APPENDIX C: PHASE TRANSITION
ON Ly = 6 CYLINDER

We show phase transitions on the Ly = 6 cylinder at fixed
Jχ = 0.15 and Jχ = 0.05 in Fig. 8. (In Fig. 4 in the main text,
we show the results on Ly = 4.) In both cases, we find Néel
order at small J2 and stripe order at large J2, both of which
possess long-range magnetic order. At intermediate J2 a dis-
ordered regime exists, which corresponds to CSL at Jχ = 0.15
and the QSL* phase at Jχ = 0.05. Based on the calculations
on Ly = 4, 6, we believe the finding of CSL and QSL* in
this J1-J2-Jχ model is robust. Nevertheless, we cannot totally
exclude the finite-size effect beyond Ly > 6, which is out of
reach of our computational capability.

APPENDIX D: EDGE COUNTING
OF READ-REZAYI STATE

Here we list the degeneracy sequences of edge modes in
all topological sectors of the ν = 3

2 bosonic Read-Rezayi (RR)
state. For the details one may consult the Refs. [56,65–67]. We
did not find this information and these results in the literature,
so we list them here.

Starting from a highest density root configuration with
momentum �L = 0, we can enumerate all admissible config-
urations constrained by the generalized Pauli principle, which
states a fractional exclusion statistics that no more than three
bosons are allowed in two consecutive orbitals in this RR
state. These admissible configurations are in one-to-one corre-
spondence with RR edge modes and thus yield the degeneracy
in each momentum sector. The following Tables I–IV list
all possible countings for �L � 4. They correspond to two
root configurations ...303030303... and ...2121212121... with
different number of bosons.

TABLE II. Bosonic RR state root configuration ...303030302 (3n + 2) or ...303030301 (3n + 1) with edge counting 1,2,5,9,18.

�L = 0 �L = 1 �L = 2 �L = 3 �L = 4

303030302 3030303011 30303030101 303030301001 3030303010001
3030302120 30303021110 303030211010 3030302110010

30302121200 303021211100 3030212110100
30303020300 302121212000 3021212111000
30303030020 303021203000 2121212120000

303030121100 3021212030000
303030202100 3030211211000
303030210200 3030212021000
303030300110 3030203030000

3030212102000
3030301210100
3030301121000
3030301202000
3030302020100
3030302012000
3030302101100
3030303001010
3030303000200
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TABLE III. Bosonic RR state root configuration ...2121212121 (3n) or ...212121212 (3n + 2) with edge counting 1,2,5,10,20.

�L = 0 �L = 1 �L = 2 �L = 3 �L = 4

2121212121 21212121201 212121212001 2121212120001 21212121200001
21212121120 212121203010 2121212030010 21212120300010

212121211110 2121203030100 21212030300100
212121121200 2121212021100 21203030301000
212121210300 2121211211100 21212030211000

2121121212000 21212120210100
2121211203000 21212112110100
2121212111010 21211212111000
2121212102100 21121212120000
2121212110200 21211212030000

21212111211000
21212112021000
21212103030000
21212112102000
21212120121000
21212120202000
21212121110010
21212121020100
21212121012000
21212121101100

APPENDIX E: POSSIBLE NEMATICITY
IN SPIN LIQUID PHASES

In our performed DMRG calculations, we notice pos-
sible nematicity in the QSL* phases. The nematic order
can be measured by the difference of bond energies along
the x and y directions as 〈SiSi+x〉 − 〈SiSi+y〉, where i labels
lattice sites in the bulk. Figure 9 shows the tendency of
nematic order on increasing bond dimension χ or cylinder
circumference Ly. Although the nematicity is quite strong
in each case, it quickly reduces by increasing the cylinder
width from Ly = 4 to Ly = 6. Due to the limited system
sizes accessible, we cannot determine whether such nematic
order persists in the thermodynamic limit. If this nematic
order persists in larger system sizes, this indicates the QSL*
phase has a rotational symmetry-breaking nature. Since avail-
able system sizes are limited in DMRG calculations, we
propose to study this possible QSL* phase using other com-
plementary methods such as the variational Monte Carlo
method.

APPENDIX F: QUADRUPOLAR CORRELATIONS
IN SPIN LIQUID PHASES

In higher spin systems, it is also possible to accommodate
the exotic spin nematic state, which breaks spin rotational
symmetry but no magnetic order develops. In order to detect
whether such long-range order exists in the current system,
we here calculated the correlation functions 〈Qα

i Qα
j 〉 of all

five independent components of quadrupolar operator Q [68],
defined as

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

Qxx

Qzz

Qxy

Qyz

Qxz

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Sx )2 − (Sy)2

1√
3
[3(Sz )2 − S(S + 1)]

SxSy + SySx

SySz + SzSy

SxSz + SzSx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (F1)

In the DMRG simulation, we find all five components yield
similar results. As shown in Fig. 10, we find exponentially

FIG. 9. Nematicity in QSL* on increasing bond dimension χ for different cylinder circumferences Ly. We also show the real-space
distribution of nearest-neighbor bond energy on the right side, which corresponds to the QSL* phase at (0.52,0.05) on a 12 × 6 finite cylinder.
The linewidth and color (red/blue for positive/negative) denote the amplitude and sign of corresponding bond energy.
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TABLE IV. Bosonic RR state root configuration ...212121211 (3n + 1) with edge counting 1,3,6,13,24.

�L = 0 �L = 1 �L = 2 �L = 3 �L = 4

212121211 2121212101 21212121001 212121210001 2121212100001
2121211210 21212112010 212121120010 2121211200010
2121212020 21211212100 212112120100 2121121200100

21212111200 211212121000 2112121201000
21212030200 212112112000 1212121210000
21212120110 212121030100 2112121120000

212121111100 2121120301000
212120301100 2121121111000
212030302000 2121112120000
212120212000 2120302120000
212121103000 2030303020000
212121201010 2121121030000
212121200200 2121210300100

2121210211000
2121202111000
2120303011000
2121202030000
2121211110100
2121203010100
2121203002000
2121211021000
2121211102000
2121212010010
2121212001100

decaying quadrupolar correlations in both the nonmagnetic
QSL* phase and the CSL phase, indicating the absence of
such spin quadrupolar/nematic order in the current system.

APPENDIX G: ENTANGLEMENT SPECTRUM IN QSL*

As shown in the main text, the entanglement spectrum of
the CSL state exhibits a characteristic quasidegenerate pattern

FIG. 10. Quadrupolar correlation functions 〈Qα
i Qα

j 〉 versus dis-
tance for the nonmagnetic QSL* and CSL phases on a Ly =
4 cylinder. (a) QSL* phase at (0.52, 0.05). (b) CSL phase at
(0.49, 0.15).

that manifests its underlying topological order. On the con-
trary, the QSL* found at small Jχ does not possess such clear
signature. We show in Fig. 11 the entanglement spectrum of
disordered QSL* at (0.52, 0). The entanglement spectrum in
this extreme case has only two possible momentum quan-
tum numbers due to the real-valued wave function. We can
see clear distinctions between the disordered CSL and QSL*
phases.

FIG. 11. Entanglement spectrum in the QSL* phase at (0.52, 0)
on a Ly = 6 cylinder.
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