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Recently, Song and Bernevig [Phys. Rev. Lett. 129, 047601 (2022)] reformulated magic-angle twisted bilayer
graphene as a topological heavy fermion problem, and used this reformulation to provide a deeper understanding
for the correlated phases at integer fillings. In this work, we generalize this heavy-fermion paradigm to magic-
angle twisted symmetric trilayer graphene, and propose a low-energy f -c-d model that reformulates magic-angle
twisted symmetric trilayer graphene as heavy localized f modes coupled to itinerant topological semimetalic c
modes and itinerant Dirac d modes. Our f -c-d model well reproduces the single-particle band structure of
magic-angle twisted symmetric trilayer graphene at low energies for displacement field E ∈ [0, 300] meV. By
performing Hartree-Fock calculations with the f -c-d model for ν = 0, −1, −2 electrons per Moiré unit cell, we
reproduce all the correlated ground states obtained from the previous numerical Hartree-Fock calculations with
the Bistritzer-MacDonald-type model, and we find additional new correlated ground states at high displacement
field. Based on the numerical results, we propose a simple rule for the ground states at high displacement
fields by using the f -c-d model, and provide analytical derivation for the rule at charge neutrality. We also
provide analytical symmetry arguments for the (nearly) degenerate energies of the high-E ground states at all
the integer fillings of interest, and make experimental predictions of which charge-neutral states are stabilized
in magnetic fields. Our f -c-d model provides a new perspective for understanding the correlated phenomena
in magic-angle twisted symmetric trilayer graphene, suggesting that the heavy fermion paradigm of Song and
Bernevig [Phys. Rev. Lett. 129, 047601 (2022)] should be the generic underpinning of correlated physics in
multilayer moire graphene structures.
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I. INTRODUCTION

Magic-angle twisted bilayer graphene (MATBG) [1]
hosts superconductivity [2–12] and various other interaction-
induced phenomena [13–34]. In the last several years, models
have been constructed (in the real space [35–43], in the mo-
mentum space [44–51], or phenomenologically [52–59]) to
understand the physics observed in MATBG, among other
research efforts [60–124]. Recently a physically relevant and
symmetry-preserving model that separates the correct energy
scales and is convenient for studying the correlated phenom-
ena was proposed in Ref. [125]. It is called the topological
heavy-fermion model. At the single-particle level, the model
proposed in Ref. [125] consists of localized heavy f modes
(of px ± ipy symmetry) and itinerant c modes, where the
nearly flat bands in MATBG are given by coupling f and c
modes (mainly around �M). The model is topological because
the c modes are anomalous in one valley (when the normal-
state particle-hole symmetry is imposed exactly) and have a
double-vortex dispersion akin to that in one of the valleys
of untwisted bilayer graphene, but at the �M point. Using
the topological heavy-fermion model, Ref. [125] finds that
the filling of the system is governed by the heavy fermions,
which in a Hartree-Fock calculation polarize. The Hartree-
Fock calculation can be done efficiently for the correlated

states at integer fillings, and a simple rule for the stability
of the correlated ground-states can be derived analytically
for those correlated states. Furthermore, the hope is that,
using the differentiation of degrees of freedom in local and
itinerant, progress can be made in the hard physics at non-
integer filling, as well as at nonzero temperature. Recently,
the heavy-fermion picture has been used to construct Kondo
lattice model in MATBG [126–129], and has been generalized
to twisted (M + N )-layer graphenes [130] and to a variant of
the kagome lattice [131].

Motivated by Ref. [125], in this work, we generalize
the topological heavy-fermion picture to magic-angle twisted
symmetric trilayer graphene (MATSTG) [132–166], which
has also been experimentally confirmed to host correlated
insulating states and superconductivity [167–175]. Specifi-
cally, we first follow Ref. [125] to construct the heavy f
and itinerant c modes, and then generalize the framework to
include the nonzero displacement field E , which couples f and
c electrons to the relativistic Dirac (d) modes. The resultant
single-particle f -c-d model can reproduce almost identically
the band structure of the Bistritzer-MacDonald-type (BM-
type) model [142] in the energy window [−50 meV, 50 meV]
and for displacement field E ∈ [0, 300] meV. We find that the
f modes dominate the low-energy single-particle physics for
E ∈ [0, 300] meV.
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The interaction in the f -c-d model is obtained by pro-
jecting the Coulomb interaction to the f -c-d basis. Using
this model, we perform the self-consistent Hartree-Fock cal-
culation for the correlated states at fillings ν = 0,−1,−2
per Moiré unit cell. The numerical results of our Hartree-
Fock calculation are generally consistent with the previous
numerical results in Refs. [146,149,151,152,156,175], where
a phase transition to states with zero intervalley coherence at
all ν = 0,−1,−2 fillings exists when increasing the displace-
ment field. Nevertheless, we find more additional correlated
ground states than found in the previous literature at high
displacement fields. We further perform analytical one-shot
Hartree-Fock analysis at the considered integer fillings. At
ν = 0, we provide analytical understanding of the loss of
intervalley coherence for high displacement field, and derive
a simple rule for the ground states at high fields. The same
rule is also derived for ν = −1,−2 under an unrealistic ap-
proximation, but the rule turns out to be consistent with the
self-consistent calculation for ν = −1,−2. We also find a
symmetry reason for the similar energies of the ground states
at high displacement fields at all ν = 0,−1,−2. Finally, we
discuss the experimental implication of our results.

The rest of the paper is organized as follows. In Sec. II, we
review the BM-type model for MATSTG. In Sec. III, we build
the heavy fermion f -c-d model for MATSTG. In Sec. IV, we
perform numerical Hartree-Fock calculations with the f -c-d
model for ν = 0,−1,−2. In Sec. V, we perform analytical
one-shot Hartree-Fock analysis for the correlated states with
ν = 0,−1,−2. In Sec. VI, we conclude the paper and discuss
the experimental predictions. A series of appendices provide
all the technical details of our theory.

II. REVIEW: INTERACTING BM-TYPE MODEL
FOR MATSTG

In this section, we review the interacting BM-type
model of MATSTG, which has been theoretically studied in

Refs. [132–161]. Here the interaction is the Coulomb inter-
action screened by a top gate and a bottom gate, where the
sample is placed in the middle of the two gates. We will only
review the contents that are essential for our later discussions
and are specific to our theory presented in this work; a more
complete and detailed discussion can be found in Ref. [142].

A. Single-Particle BM-type model

In this part, we review the BM-type model for MATSTG
following Refs. [132,142].

MATSTG is constructed from a AAA-stacking trilayer
graphene by rotating the graphene layers alternatively, i.e.,
rotating the top (l = 3) and bottom (l = 1) layers by −θ/2
and rotating middle (l = 2) layer by θ/2, where θ > 0 cor-
responds to the counterclockwise rotation and l = 1, 2, 3 is
the layer index. We label the lattice constant and the Fermi
velocity of the monolayer graphene as aG = 2.46 Å and v0 =
5944 meV Å, respectively. We refer to the unit system in
which Å is the length unit and meV is the energy unit as
the experimental unit system (EUS), since this unit system is
convenient for the comparison to the experiments. However,
EUS is not the most convenient unit system for the theoretical
study of MATSTG. The most convenient unit system is the
following simplified unit system in which

h̄ = 1, ε0 = 1, kθ = 1, v0 = 1, (1)

where kθ = 4π
3aG

2 sin( θ
2 ) and ε0 is the vacuum permittivity.

Throughout the entire work, we will use Eq. (1) unless oth-
erwise (e.g., EUS) is specified.

With the unit system specified by Eq. (1), the single-
particle BM-type model for MATSTG reads

H0 = H0,+ + H0,− . (2)

Here “+” and “−” label two graphene valleys, which are
related by time-reversal (TR) symmetry as

H0,− = T H0,+T −1 . (3)

Specifically, H0,+ reads

H0,+ =
∫

d2r (ψ†
+,r,1 ψ

†
+,r,2 ψ

†
+,r,3)

⎛⎝−iσ · ∇ − E
2 T (r)

T †(r) −iσ · ∇ T †(r)
T (r) −iσ · ∇ + E

2

⎞⎠⊗ s0

⎛⎝ψ+,r,1

ψ+,r,2

ψ+,r,3

⎞⎠ , (4)

where ψ
†
+,r,l = (ψ†

+,r,l,A,↑, ψ
†
+,r,l,A,↓, ψ

†
+,r,l,B,↑, ψ

†
+,r,l,B,↓) is

the vector of creation operators for the + valley and the
lth layer, σ = (σx, σy), and σ0,x,y,z and s0,x,y,z label the Pauli
matrices for the sublattice index σ = A/B and the spin index
s = ↑/↓, respectively. The expression of H0,− can be obtained
via

T ψ
†
+,r,lT

−1 = ψ
†
−,r,lσ0isy. (5)

In Eq. (4), we assume that the twist angle θ is small
enough such that the kinetic terms of order O(θ ) can be
safely neglected. Moreover, T (r) = ∑

j=1,2,3 Tjeir·q j stands
for the interlayer hopping between neighboring layers

with
q1 = (0, 1)T ,

q2 =
(

−
√

3

2
,−1

2

)T

,

q3 =
(√

3

2
,−1

2

)T

, (6)

and

Tj =w0σ0 + w1

[
cos

(
2π

3
( j − 1)

)
σx

+ sin

(
2π

3
( j − 1)

)
σy

]
. (7)
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Here w0 and w1 are the AA and AB interlayer tunnellings,
respectively, with w0 = 88 meV and w1 = 110 meV in EUS.
The values of w0,1 in the unit system specified by Eq. (1)
depend on θ .

In Eq. (4), E is the energy difference generated by the dis-
placement field, i.e., the external electric field perpendicular
to MATSTG. When the displacement field is zero (E = 0),
H0 has a mirror symmetry mz with mirror plane lying in the
middle layer, which is represented as

mzψ
†
η,r,lm

−1
z = −ψ

†
η,r,4−l (8)

with η = ± the graphene valley index. Here the extra minus
sign comes from the fact that ψ

†
η,r,l are constructed from the

pz orbital of graphene. In fact, MATSTG is called symmetric
owing to the presence of mz symmetry for E = 0. mz allows
us to recombine ψ

†
η,r,l into a mz-odd sector

ψ̃†
η,r,t = 1√

2
(ψ†

η,r,3 + ψ
†
η,r,1)

ψ̃
†
η,r,b = ψ

†
η,r,2 (9)

and a mz-even sector

d†
η,r = 1√

2
(ψ†

η,r,3 − ψ
†
η,r,1) . (10)

With the recombination, H0,η can be split into three parts

H0,η = H0,TBG,η + H0,D,η + H0,E,η , (11)

where

H0,TBG,+ =
∫

d2r ψ̃
†
+,r

(
−iσ · ∇ √

2T (r)
√

2T †(r) −iσ · ∇

)
⊗ s0 ψ̃+,r

(12)

is equivalent to the (valley +) BM model of the ordinary TBG
with w0 → √

2w0 and w1 → √
2w1,

H0,D,+ =
∫

d2r d†
+,r(−i)σ · ∇d+,r (13)

is just a Dirac cone, the displacement field term

H0,E,+ =
∫

d2r
E
2

ψ̃
†
+,r,t d+,r + H.c. (14)

becomes the coupling between the TBG modes and the Dirac
modes, and

H0,TBG,− = T H0,TBG,+T −1,

H0,D,− = T H0,D,+T −1,

H0,E,− = T H0,E,+T −1 . (15)

It is clear that H0,TBG,η and H0,D,η commute with mz, while
H0,E,η anticommutes with mz.

H0 has Moiré lattice translation symmetry, which is repre-
sented as

TRψ̃
†
η,r,̃l

T −1
R = ψ̃

†
η,r+R,̃l

e−ηiK l̃ ·R,

TRd†
η,rT

−1
R = d†

η,r+R e−ηiKt ·R , (16)

where l̃ = t, b labels the “layer” of the TBG part, and R is the
Moiré lattice vector with two primitive Moiré vectors being

aM,1 = 4π
3 (0,−1)T and aM,2 = 4π

3 (
√

3
2 , 1

2 )T . In particular, Kt

and Kb in Eq. (16) arise from the graphene valley as shown in
Appendix A, which read

Kt = 1
2 (cot(θ/2),−1)T , Kb = 1

2 (cot(θ/2), 1)T . (17)

To exploit the Moiré lattice translational symmetry of H0, it
is better to transform the Hamiltonian to the momentum space.
To do so, we first transform the basis to the momentum space
as

ψ̃
†
η,p,̃l

= 1√
A

∫
d2reip·rψ̃†

η,r,̃l
,

d†
η,p = 1√

A

∫
d2reip·rd†

η,r , (18)

where p ∈ R2 and A is the area of MATSTG. Then, we define

Q = Q+ ∪ Q− , Q± = bM,1Z + bM,2Z ± q1 (19)

with

bM,1 = q3 − q1 =
(√

3

2
,−3

2

)T

,

bM,2 = q3 − q2 = (
√

3, 0)T , (20)

forming the basis of the Moiré reciprocal lattice. Finally, we
define

ψ̃
†
η,k,Q = ψ̃

†
η,k−Q,̃lηQ

with Q ∈ Q,

d†
η,k,Q = d†

η,k−Q with Q ∈ Qη (21)

with l̃η

Q = t for Q ∈ Qη and l̃η

Q = b for Q ∈ Q−η. With
Eq. (21), the Hamiltonian becomes

H0,TBG,η =
∑

k∈MBZ

∑
Q,Q′∈Q

ψ̃
†
η,k,Q

× [
hD

η,Q(k)δQQ′ +
√

2hI
η,QQ′

]
s0ψ̃η,k,Q′ , (22)

H0,D,η =
∑

k∈MBZ

∑
Q∈Qη

d†
η,k,QhD

η,Q(k)s0dη,k,Q, (23)

and

H0,E,η =
∑

k∈MBZ

∑
Q∈Qη

E
2

ψ̃
†
η,k,Qdη,k,Q + H.c. (24)

Here hD
+,Q(k) = (k − Q) · σ, hI

+,QQ′ = ∑
j Tj (δQ,Q′+q j

+
δQ′,Q+q j

), hD
−,Q(k) = [hD

+,−Q(−k)]∗, hI
−,QQ′ = [hI

+,(−Q)(−Q′ )]
∗,

and MBZ is short for the Moiré Brillouin zone. In this work,
all numerical calculations with H0 are done in the momentum
space by using Eqs. (22)–(24). The numerical band structure
of H0 in the + valley is shown in Figs. 1(a)–1(d) as red lines.
The definitions of various high-symmetry points in MBZ are
illustrated in Fig. 2.

At the end of this part, we list the symmetries of H0 for
generic E . We have discussed TR and Moiré lattice trans-
lations, which are symmetries of H0 for any values of E .
Beside these two, H0 has spin-charge U(2) symmetry in each
valley, the spinless threefold rotation symmetry C3 along z,
C2T symmetry (the combination of the spinless twofold ro-
tation C2 along z and the TR operation), an effective unitary
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ℰ = 0meV ℰ = 100meV ℰ = 200meV ℰ = 300meV

E 
(

Ve
m

)
E

(
Ve

m
)

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1. The single-particle band structures of MATSTG in the + valley for the parameter values in Eq. (44) and Table I. In this figure, we
use EUS. The momentum cutoffs of the BM-type model and the f -c-d model are 2

√
7 and 2

√
3, respectively. (See Appendix B for details

on the f -c-d model.) In (a)–(d), we plot the band structure of the single-particle BM-type model Eq. (2) in red, and the band structure of the
single-particle f -c-d model Eq. (54) in blue. E is the energy difference between the top and bottom layer generated by the displacement field.
In (e)–(h), we replot the band structure of the single-particle BM-type model Eq. (2) in (a)–(d), respectively. The colors of the points show
the (square of the absolute values of) overlaps between the Bloch states and the trial Wannier functions according to the color bar on the right
of (h).

antisymmetry C2xP, and the charge conjugate antisymmetry
C. Here antisymmetry means that the symmmetry operation
anticommutes with the Hamiltonian, i.e., C2xPH0(C2xP)−1 =
−H0 and CH0C−1 = −H0. (See the symmetry representations
in Appendix A.)

B. Coulumb interaction

In this part, we review the Coulomb interaction in the BM-
type model for MATSTG following Refs. [142,149].

FIG. 2. This figure shows MBZ, as well as the q1,2,3 and various
high-symmetry points. Note that K ′

M is equivalent to −KM .

The Coulomb interaction in MATSTG is screened by the
top and bottom gates, which are parallel to the MATSTG
sample. For simplicity, we assume that MATSTG lies in
the middle of two gates, and then the Coulomb interac-
tion between two electrons separated by r has the following
form:

V (r) = 1

A
∑

p

e−ip·rV (p) , (25)

where

V (p) = πξ 2Vξ

tanh(ξ |p|/2)

ξ |p|/2
, (26)

ξ is the distance between two gates, and Vξ = e2

4πεξ
with e the

elementary charge and ε the dielectric constant. Throughout
this work, we choose

ξ = 100 Å and Vξ = 24 meV (27)

in EUS for all numerical calculations, unless specified other-
wise. In Eq. (25), we have included the screening due to the
two gates. It is clear that

V ∗(r) = V (r) and V (gr) = V (r) ∀g ∈ O(2) . (28)

With the form of the Coulomb interaction [Eq. (25)], the
Hamiltonian for the interaction reads

Hint = 1

2

∫
d2rd2r′V (r − r′) : ρ(r) :: ρ(r′) : , (29)
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where ρ(r) = ∑
η,l ψ

†
η,r,lψη,r,l is the electron number den-

sity operator. The normal-ordering is defined as : O := O −
〈G0|O|G0〉 with |G0〉 chosen such that

〈G0|ψ†
η,r,l,σ,sψη′,r′,l ′,σ ′,s′ |G0〉 = 1

2δηη′δ(r − r′)δll ′δσσ ′δss′ .

(30)
The usage of the normal ordering is just to include a

uniform positive charge background that makes half filling
charge-neutral, as discussed in the following. Based on the
form of the interaction [Eq. (29)], (−e : ρ(r) :) should be
the total charge density at r. Since we know −e : ρ(r) :=
−eρ(r) + e〈G0|ρ(r)|G0〉 and −eρ(r) is the electron charge
density, e〈G0|ρ(r)|G0〉 should be the background charge den-

sity. Note that e〈G0|ρ(r)|G0〉 = 12e δ(r = 0) = e
∑

p 2×3×2×2

2A
is nothing but the charge density of a uniform positive charge
background that corresponds to half filling, justifying the
meaning of the normal ordering.

Hint is invariant under TR, C3, C2T , mz, Moiré lattice
translations, C2xP, C, and U(2) × U(2). (See more details in
Appendix A.)

C. Interacting BM-type Hamiltonian and filling

In this part, we review some general properties of
the interacting BM-type model for MATSTG following
Refs. [142,149].

The interacting BM-type Hamiltonian for MATSTG is
the sum of the single-particle BM-type Hamiltonian and the
Coulomb interaction as

H = H0 + Hint . (31)

The total Hamiltonian H has U(2) × U(2), T , C3, C2T and
TR symmetries, as well as mz if combined with the action
E → −E on the electric field. However, due to the opposite
behaviors of Hint and H0 under C2xP and C, H does not
preserve C2xP or C, but it preserves the combination of them,
i.e., CC2xP. Therefore the symmetry properties of the total
Hamiltonian are

[T , H] = [C3, H] = [C2T , H] = [TR, H]

= [CC2xP, H] = [U(2) × U(2), H] = 0

mzHm−1
z = H |E→−E . (32)

Based on the symmetry properties of H [Eq. (32)], we
know that we only need to study E � 0 since the negative E
are related by mz. Furthermore, we also only need to study
the non-positive fillings, owing to CC2xP. To see this, we first
define the filling operator

ν̂ = 1

N

∫
d2r : ρ(r) :, (33)

where N is the number of Moiré unit cells. The eigenvalue ν

of ν̂ is the filling, i.e., the averaged number of electrons per
Moiré unit cell counted from the charge neutrality. Owing to
[ν̂, H] = 0 derived from the charge-U(1) invariance of H , we
can label the energy eigenstates with definite filling ν.

As the filling operator anticommutes with CC2xP as
{ν̂, CC2xP} = 0 (Appendix A), we only need to study ν � 0.
To be more specific, for any many-body energy eigenstate
|ψν,E 〉 of H with filling ν and energy E , CC2xP|ψν,E 〉 is an

energy eigenstate with the same energy E and opposite filling
−ν. Then, if we obtain the set of all othornormal energy
eigenstates {|i, ν, Ei〉} with filling ν, {CC2xP|i, ν, Ei〉} is the set
of all orthonormal energy eigenstates with opposite filling −ν,
and the two energy eiegnstates have the same energy if they
are related by CC2xP. Therefore we only need to diagonalize
H for ν � 0, and we will adopt this simplification in later
calculations.

III. f -c-d MODEL

In this section, we construct the heavy fermion f -c-d
model for MATSTG. We start with the single-particle f -c-d
model, and then project the Coulomb interaction to the heavy
fermion basis to obtain the interacting Hamiltonian.

A. Single-particle f -c-d model

We start with the single-particle f -c-d model.

1. Review: f and c modes

We first discuss the construction of the f and c modes in
the TBG part of the Hamiltonian. As shown in Eq. (12), the
TBG part H0,TBG is just ordinary TBG with a

√
2 scaling of

the interlayer tunneling [142]. Such rescaling can be canceled
by the same rescaling of the energy unit. Thus, given any
statement about the ordinary TBG with twist angle θTBG, the
same statement holds for H0,TBG with θ satisfying sin(θ/2) =√

2 sin(θTBG/2) [142]. When θ is very small (e.g., around
the first magic angle), the condition can be approximated by
θ ≈ √

2θTBG.
According to Ref. [125], in the ordinary TBG, localized

heavy f modes and itinerant c modes can be constructed in
each valley for each spin by mixing the nearly flat bands with
the four lowest (two above and two below the flat bands) re-
mote bands around �M . Owing to the correspondence between
the TBG part H0,TBG of MATSTG and the ordinary TBG, we
are also able to construct such f and c modes from H0,TBG.
In the rest of this part, we follow Ref. [125] to show such
construction. The discussion in this part is the same as that in
Ref. [125], and thus can be viewed as a review of Ref. [125].

First, the f and c modes have the following expressions:

f †
η,k,α,s =

∑
Qσ

ψ̃
†
η,k,Q,σ,s [̃vη, f ,α (k)]Qσ for k ∈ MBZ (34)

and

c†
η,k,β,s =

∑
Qσ

ψ̃
†
η,k,Q,σ,s [̃uη,c,β (k)]Qσ for |k| � �c , (35)

where α = 1, 2; β = 1, 2, 3, 4; and �c is a small momen-
tum cutoff for the c modes (small compared to the length of
the primitive Moiré reciprocal vectors). ṽη, f ,α (k) is a smooth
function of k ∈ R2 while keeping f †

η,k+G,α,s = f †
η,k,α,s with G

the Moiré lattice vector, and ũη,c,β (k) is a smooth function of
k for |k| � �c. Here ṽη, f and ũη,c are all in the eigen-subspace
of the lowest six spinless bands in valley η; ṽη, f belongs to the
subspace for the nearly flat bands (the remote bands) far away
from �M (at �M).
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f modes are exponentially localized functions with phys-
ical symmetry representations (reps). Specifically, we can
define

f †
η,R = 1√

N

∑
k∈MBZ

e−ik·R f †
η,k , (36)

where

f †
η,k = ( f †

η,k,1,↑, f †
η,k,1,↓, f †

η,k,2,↑, f †
η,k,2,↓) . (37)

The smoothness of ṽη, f (k) guarantees the exponential local-
ization, and the symmetry reps in Appendix A suggest that
fη,R creates two spinful p-like orbitals localized at R. This is
why the f modes are localized.

Now we construct the low-energy Hamiltonain of H0,TBG

based on the f modes and c modes. First, note that

ψ̃
†
η,k,Q,σ,s =

∑
α=1,2

f †
η,k,α,s [̃vη, f ,α (k)]∗Qσ +

4∑
β=1

c†
η,k,β,s

× [̃uη,c,β (k)]∗Qσ θ (�c − |k|) + . . . , (38)

where “...” labels the high-energy modes in the subspace
spanned by ψ̃ . Then, we can separate out the low-energy part
of H0,TBG,η (in the f and c basis) as

H0,TBG,η = H0,η, f + H0,η,c + H0,η, f c + . . . , (39)

where H0,η, f c involves both f and c modes, H0,η, f only in-
volves f modes, and H0,η,c only involves c modes. Based on
the symmetry, the expressions of the low-energy terms are

H0,η, f = 0 , (40)

H0,η,c =
|k|��c∑

k

c†
η,k

(
02×2 v�(ηkxτ0 + ikyτz )

v�(ηkxτ0 − ikyτz ) Mτx

)
⊗ s0cη,k , (41)

and

H0,η, f c =
|k|��c∑

k

f †
η,ke− |k|2λ2

2 (γ τ0 + v′
�(ηkxτx + kyτy) v′′

� (ηkxτx − kyτy)) ⊗ s0cη,k + H.c., (42)

where

c†
η,k = (c†

η,k,�3
, c†

η,k,�1�2
),

c†
η,k,�3

= (c†
η,k,1,↑, c†

η,k,1,↓, c†
η,k,2,↑, c†

η,k,2,↓),

c†
η,k,�1�2

= (c†
η,k,3,↑, c†

η,k,3,↓, c†
η,k,4,↑, c†

η,k,4,↓) , (43)

and λ2 is the Wannier spread of the f modes. Here we choose
H0,η, f = 0 because the hopping among f modes is very small
(∼0.1 meV), and we only keep terms up to O(k2) for H0,η,c

and H0,η, f c. Owing to the zero kinetic energy of f modes, they

are heavy. Here the factor e− |k|2λ2

2 is added, since it is the cou-
pling between a wave packet with spread λ2 and an itinerant
electron with momentum k. This factor can be neglected for
small k, but adding it allows us to choose a larger �c in later
numerical calculations.

To determine the values of the parameters, we need to
specify θ . Specifically, we choose

θ = 1.4703◦ , (44)

which is close to the first magic angle of MATSTG. In the rest
of this work, we choose Eq. (44) for all numerical calcula-
tions unless specified otherwise. [We note that the framework
discussed here is not limited to the value of θ in Eq. (44),
as discussed in Appendix A.] Then, by projecting H0,TBG to
the f and c modes, we can get the numerical values for the
parameters in Eqs. (40)–(42), as shown in Table I.

Before moving to other parts of the f -c-d model, we note
that approximate analytic expressions exist for the f modes.

Explicitly, the f modes have general expressions as

f †
η,R,α,s =

∫
d2r

∑
l̃,σ

eiR·�K̃l wηαl̃σ (r − R)ψ̃†
η,̃l,r,σ,s

, (45)

where

�Kt = −q3 , �Kb = q2 , (46)

and

wηαl̃σ (r) = 1

N
√

�

MBZ∑
k

∑
Q∈Qη,̃l

ei(k−Q)·r [̃vη, f ,α (k)]Qσ (47)

with � being the area of the Moiré unit cell, Qη,t = Qη and
Qη,b = Q−η. Symmetry properties of wηαl̃σ (r) are listed in
Appendix A. The approximate expressions of wηαl̃σ (r − R)

TABLE I. Numerical values of the parameters in the single-
particle f -c-d model [Eq. (54)] for the value of θ in Eq. (44).

M γ v� v′
� v′′

�

−0.02678 0.1265 0.7176 0.2711 0.005768

M1 Bγ BM Bv′′ λ

−0.1394 −0.09818 −0.08583 0.08760 1.407
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are

w
approx
+1tA (r) = N0√

2

1√
πλ2

1

e
− |r|2

2λ2
1 e−i π

4 ,

w
approx
+1tB (r) = N1√

2

1√
πλ4

2

e
− |r|2

2λ2
2 (x + iy)e−i 5π

4 , (48)

and other expressions can be obtained by acting with the
symmetries on the basis. With N0 = −0.8193, N1 = −0.5734,
λ1 = 0.7502, and λ2 = 0.8001, we find the overlapping prob-
ability between the numerical f modes and the analytical f
modes is at least 86% as varying momentum, meaning that
the analytical f modes are good approximations. By using
the analytical expressions, we find that the low-energy bands
of MATSTG are dominated by the f modes, as shown in
Figs. 1(e)–1(h).

2. d Modes

The low-energy Dirac modes are just d†
η,p with small mo-

mentum |p| < �d , where �d is the small momentum cutoff
for the d modes. Then, the corresponding low-energy model
of d modes is

H0,d,η =
|p|��d∑

p

d†
η,p(ηpxσx + pyσy) ⊗ s0 dη,p , (49)

where

d†
η,p = (d†

η,p,A,↑, d†
η,p,A,↓, d†

η,p,B,↑, d†
η,p,B,↓) . (50)

3. f -d coupling around ηKM

The displacement field would couple f /c modes to d
modes. The leading-order coupling should happen between f
and d modes around ηKM . This is because, at E = 0, d modes
cross with the nearly flat bands around ηKM in valley η, and
the nearly flat bands around ηKM are purely given by f modes.
[See Figs. 1(a) and 1(e).]

Based on the symmetry reps in Eq. (A24) in Sec. II A, the
leading-order coupling reads

H0,η, f d=
|p|��d∑

p

e− |p|2λ2

2 f †
η,ηKM+p M1E (τ0+ηiτz )s0 dη,p + H.c.,

(51)

where the p-dependent terms are small (and are neglected)
since the rep of H0,E in the original basis is momentum in-
dependent. (See Appendix B 1 for details.) Again, we add

the factor e− |k|2λ2

2 to allow a larger �d in later numerical
calculations, in the same spirit of the factor for the c modes
[125]. By projecting H0,E to f and d at ηKM , we can get the
numerical value of M1 for the θ value in Eq. (44), as shown in
Table I. Interestingly, the value of M1 can also be estimated by
the approximate analytical expressions of f modes in Eq. (48),
resulting in

M1 ≈ N0

2

√
πλ2

1

�
= −0.1397, (52)

which is quite close to the numerical value, suggesting the
good quality of the analytical approximation.

4. f -d and c-d couplings around �M

We did not yet include a c-d coupling, since we focused on
the ηKM , where c does not appear at low energies. To make our
model more precise, we add the c-d (as well as f -d) coupling
around �M . The forms of those couplings are tedious, and
we find that a more convenient way is to include them as
corrections to the low-energy TBG part [i.e., Eqs. (40)–(42)].
Such corrections can be obtained by using the perturbation
theory, since the f -d and c-d couplings are small compared
to the gaps between f /c modes and d modes around �, as
elaborated in Appendix B 2. As H0,E has lower symmetries
than H0,TBG, the correction would bring in terms that break
the extra symmetries of H0,TBG. Nevertheless, we numerically
find that those terms that break extra symmetries can be ne-
glected without affecting the precision too much. As a result,
the correction due to terms that preserve the extra symmetries
can be incorporated by performing the following replacement
in Eqs. (40)–(42)

γ → γ + Bγ E2, v′′
� → v′′

� + Bv′′E2, M → M + BME2.

(53)

We can directly obtain the values of Bγ , Bv′′ , and BM for the θ

value in Eq. (44) from the perturbation methods and show the
results in Table I.

5. Single-particle f -c-d model

Combining Sec. III A 1–III A 4, we arrive at the single-
particle f -c-d model as

H eff
0,η = H0,η, f + H0,η,c + H0,η, f c + H0,η,d + H0,η, f d , (54)

where H0,η, f , H0,η,c, and H0,η, f c are Eq. (40)-(42) with the
replacement in Eq. (53), H0,η,d is in Eq. (49), and H0,η, f d is
in Eq. (51). With the parameter values in Table I, we plot
the band structure of Eq. (54) in valley + in Figs. 1(a)–1(d).
We find that the bands of Eq. (54) match those of the single-
particle BM-type model H0 in Eq. (2) very well for 0 � E �
300 meV and for the energy window [−50 meV, 50 meV] (in
EUS). The details on the numerical calculation can be found
in Appendix B.

Before moving to the interacting part of the f -c-d model,
we comment on the difference between our heavy localied
f modes and the heavy modes mentioned in previous works
[135,176] on MATSTG.

First, we emphasize that our heavy localized f modes are
not the heavy modes mentioned in Ref. [135]. Reference [135]
directly refers to the nearly flat bands in TBG part as the
ultraheavy quasiparticles: however, these cannot be localized
if physical symmetry reps are required due to the nontrivial
topology of the bands. On the other hand, our f modes are
localized, since the Wannier obstruction has been broken by
mixing the nearly flat bands and the remote bands in the
construction.

Second, although the heavy-fermion physics in MAT-
STG was also discussed in Ref. [176], the heavy modes in
Ref. [176] are different from our heavy localized f modes.
In Ref. [176], the dispersionless localized modes are phe-
nomenologically constructed by coupling the TBG nearly flat
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bands to the Dirac modes at a relatively large displacement
field. It is not clear whether their construction can be applied
to small displacement fields, since at zero displacement field,
the TBG nearly flat bands are decoupled from the Dirac cones,
and cannot be directly treated as localized modes due to their
nontrivial topology. Our dispersionless localized f modes are
constructed by combining the TBG flat bands with the remote
bands around �M , which does not rely on the displacement
field. One manifestation of such differences is that the heavy
modes in Ref. [176] have in total four flavors per Moiré unit
cell and couple to dispersive modes around MM, while our
heavy f modes have eight flavors per Moiré unit cell and
couple to dispersive modes around �M (and around ηKM via
the displacement field). Nevertheless, despite the difference, it
is interesting to study (as future works) whether the model in
Ref. [176] and our f -c-d model give qualitatively consistent
phases after including the interaction.

B. Interaction among f , c, and d modes

We now discuss the interaction among f , c, and d modes,
which is derived by projecting the Coulomb interaction to the
f , c, and d modes.

1. Review: interaction among f and c modes

Both f and c modes are constructed solely from the TBG
part of the model. Therefore the interaction among f and c
modes should have the same form as those in Ref. [125],
which we will review in this part. More details can be found
in Appendix C.

First, for the interaction among f modes, the leading-order
term is the density-density interaction, which reads

Hint,U = U1

2

∑
R

: ρ f (R) :: ρ f (R) :

+ U2

2

|R−R′|=|aM,1|∑
R,R′

: ρ f (R) :: ρ f (R′) : , (55)

where ρ f (R) = ∑
η,α,s f †

η,R,α,s fη,R,α,s. The expressions of U1

and U2 can be found in Appendix C. In Eq. (55), we neglect
the density-density interactions of further ranges, as they are
exponentially lower owing to the localized nature of the f
modes.

Second, the interaction among c modes turns out to have
the Coulomb form to the leading order as

Hint,V,c = 1

2

∫
d2rd2r′V (r − r′) : ρc(r) :: ρc(r′) : , (56)

where ρc(r) = ∑
β ρc,β (r), ρc,β (r) = ∑

η,s c†
η,r,β,scη,r,β,s, and

c†
η,r,β,s = 1√

A

|p|��c∑
p

e−ip·rc†
η,p,β,s . (57)

Third, the interaction between f and c modes has two non-
negligible terms. One term is the channel-resolved density-
density interaction as

Hint,W, f c = �
∑
R,β

Wβ : ρ f (R) :: ρc,β (R) : (58)

TABLE II. Numerical values of the parameters in Eq. (63). Val-
ues in the second line of the table is in the unit system specified in
Eq. (1), while those in the third line are in EUS. More details can be
found in Appendix C.

Unit U1 U2 W1 W3 J Wf d

Eq. (1) 0.3523 0.02388 0.3409 0.3761 0.09337 0.3647
EUS (meV) 91.50 6.203 88.54 97.67 24.25 94.71

with W1 = W2 and W3 = W4. The last term is

Hint,J = − J�

2

∑
R

∑
ηαs

∑
η′α′s′

(ηη′ + (−)α+α′
)

: f †
η,R,α,s fη′,R,α′,s′ :: c†

η′,R,α′+2,s′cη,R,α+2,s : . (59)

The interaction only occurs at the Moiré lattice positions,
which is consistent with the fact that f modes are localized
at Moiré lattice positions. The expressions of Wβ and J can be
found in Appendix C.

2. Interaction among d modes

Inherited from the total Coulomb interaction, the interac-
tion among d modes is given by the Coulomb form

Hint,V,d = 1

2

∫
d2rd2r′V (r − r′) : ρd (r) :: ρd (r′) : , (60)

where ρd (r) = ∑
η,σ,s d̃†

η,r,σ,sd̃η,r,σ,s and d̃†
η,r,σ,s =

1√
A
∑|p|��d

p e−ip·rd†
η,p,σ,s, which becomes dη,r,σ,s in the

limit of �d → ∞.

3. f -d and c-d interaction

We find that the interaction between f and d modes and
the interaction between c and d modes are both in the form of
density-density interaction in the leading order, as discussed
in details in Appendix C. Specifically, we find that the leading-
order interaction between f and d modes reads

Hint,W, f d = �Wf d

∑
R

: ρ f (R) :: ρd (R) : , (61)

and the leading-order interaction between c and d modes has
the Coulomb form as

Hint,V,cd =
∫

d2rd2r′V (r − r′) : ρc(r) :: ρd (r′) : . (62)

The expression of Wf d can be found in Appendix C.

4. Total interaction

The total interaction among the f , c and d modes is the
sum of Eqs. (55), (56), (58)–(62), which reads

H eff
int = Hint,U + Hint,V,c + Hint,W, f c + Hint,J

+ Hint,V,d + Hint,V,cd + Hint,W, f d . (63)

We numerically evaluate the values of the interaction pa-
rameters, and the results are listed in Table II. Among the
interaction strengths, we can see that the largest energy scale
is 90–100 meV in EUS. We have W1, W3, Wf d , and U1

at this scale. Unlike Ref. [125], W3 is slightly larger than
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U1 here, since the gate distance is not scaled by 1/
√

2 for
MATSTG compared to that in Ref. [125]. (See more details
in Appendix C.) Moreover, Wf d is also slightly larger than U1

here. Nevertheless, we would expect that the onsite repulsive
interaction U1 among f modes is the dominant interaction
channel at low energies, since U1 only involves the f modes
(which dominate in the low energy), while W1, W3, and Wf d

involve the c and d modes with relatively higher energies.

C. f -c-d model for MATSTG

The f -c-d model for MATSTG is just the sum of the single-
particle part Eq. (54) and the interaction Eq. (63) as

Hf cd =
∑

η

H eff
0,η + H eff

int . (64)

This is the low-energy model that we propose for MAT-
STG with only Coulomb interaction. The single-particle band
structure (Fig. 1) already shows that the f -c-d model well
captures the single-particle physics of MATSTG for E ∈
[−300, 300] meV and for the energy window [−50, 50] meV
in EUS. Since the largest energy scale of the interac-
tion is U1 ∼ 100 meV, the energy window corresponds to
[−U1/2,U1/2], covering the main low-energy modes affected
by the interaction. Therefore we expect the f -c-d model
Eq. (64) to work for the specified E range and energy window
even at the many-body level. We will perform Hartree-Fock
calculations with the model in the following section.

IV. NUMERICAL HARTREE-FOCK CALCULATIONS

With our model [Eq. (64)], we perform numerical Hartree-
Fock calculations for ν = 0,−1,−2. We will not study the
positive fillings since they are related to the negative fillings
by CC2xP as discussed in Sec. II C.

Similar to the TBG case [125], the initial states that we
choose for the Hartree-Fock calculation have the following
general form

|�initial〉 =
∏

R

f †
Rζ1 f †

Rζ2 · · · f †
Rζ4+ν |Fermi Sea〉 , (65)

where

f †
R = ( f †

+,R,1,↑, f †
+,R,1,↓, f †

+,R,2,↑, f †
+,R,2,↓, f †

−,R,1,↑,

f †
−,R,1,↓, f †

−,R,2,↑, f †
−,R,2,↓) , (66)

each of ζ1, . . . , ζ4+ν has eight components, e.g.,

ζ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ζ1)+1↑
(ζ1)+1↓
(ζ1)+2↑
(ζ1)+2↓
(ζ1)−1↑
(ζ1)−1↓
(ζ1)−2↑
(ζ1)−2↓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (67)

f †
Rζ1 =

∑
η,α,s

f †
η,R,α,s(ζ1)ηαs , (68)

and |Fermi Sea〉 is the half-filled Fermi sea of the free c and d
modes. (See the choice of the initial states in Appendix D 2.)
Eq. (65) means that we specify different initial states by spec-
ifying different combinations of the f modes, i.e., specifying

ζ = (ζ1 ζ2 . . . ζ4+ν ). (69)

We can do so because the f modes and its onsite interaction
dominate the low-energy physics as discussed in the last
section. By using Eq. (65), we perform self-consistent
Hartree-Fock calculations for ν = 0,−1,−2, and the results
are summarized below and shown in Fig. 3. (See details in
Appendix D.)

As shown in Figs. 3(a), 3(d) and 3(g), for all the considered
fillings, increasing the displacement field E would lead to a
phase transition, at which the ground states lose intervalley
coherence.

For ν = 0, the low-E ground states are the Kramers-
intervalley-coherent (K-IVC) states, while there are four
types of competing ground states at high E , namely, Chern
states (Ch = ±2), half-Chern states (Ch = ±1), valley-Hall
(VH) states and C2T -invariant states, where “competing”
means that the differences in their ground-state energies are
beyond our numerical resolution, VH refers to the state with
nonzero valley Chern numbers but zero total Chern number,
and Ch stands for the Chern number. The low-E states are
metallic, while the high-E states are insulating. [See Figs. 3(b)
and 3(c).]

For ν = −1, the low-E ground states are a combination of
valley-polarized (VP) and intervalley-coherent (IVC) states,
while there are three types of competing partially valley-
polarized (PVP) ground states at high E , where PVP means
that one valley has one more electron than the other valley
per Moiré unit cell and the state has no intervalley coherence.
PVP is “partial” because the VP state for ν = −1 should have
three more electrons in one valley than in the other. Both the
low-E and high-E states are metallic. [See Figs. 3(e) and 3(f).]

For ν = −2, the low-E ground states are K-IVC states,
while there are four types of competing ground states at high
E—two types of VP states and two types of valley unpolarized
states. Both the low-E and high-E states are metallic. [See
Figs. 3(h) and 3(i).]

All these self-consistent Hartree-Fock results obtained
from our f -c-d model [Eq. (64)] are generally consistent with
previous numerical results in Refs. [149,152,156], verifying
the validity of our f -c-d model. Moreover, our calculation
finds some high-E ground states (like the half-Chern states
for ν = 0) that are missed in Refs. [149,152,156], mean-
ing that our calculation actually refines the previous results
[149,152,156].

In particular, we find that the phase transitions character-
ized by the loss of intervalley coherence [Figs. 3(a), 3(d) and
3(g)] can be qualitatively captured by the one-shot Hartree-
Fock calculation, where “one-shot” means only performing
the first step of the iteration, which is numerically simple
to do compared with the full self-consistent calculation and
can even be done analytically as discussed in the next sec-
tion. Furthermore, we find that the competing energies of
the high-E ground states can be precisely captured in the
one-shot Hartree-Fock calculation. Therefore our choice of
the initial states in Eq. (65) are considerably close to the final
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ℰ = 50meV, K-IVC ℰ = 250meV, Chern

ℰ = 0meV, VP+IVC ℰ = 250meV, PVP

ℰ = 290meV, VP1ℰ = 0meV, K-IVC
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FIG. 3. This figure shows the numerical Hartree-Fock results for MATSTG based on Eq. (64), where [(a)–(c)] are for ν = 0, [(d)–(f)]
are for ν = −1, and [(g)–(i)] are for ν = −2. (a), (d), and (g) shows the intervalley coherence of the Hartree-Fock ground state as E varies,
where the zero (nonzero) value corresponds to the absence (presence) of the intervalley coherence. The solid line is given by the self-consistent
Hartree-Fock calculation, while the dashed is the one-shot result. (b), (c), (e), (f), (h), and (i) are the Hartree-Fock band structures of the ground
state (or one of the competing ground states) at the corresponding filling and E , plotted with the density matrices given by the self-consistent
Hartree-Fock calculation.

Hartree-Fock ground states given by the self-consistent
Hartree-Fock calculation, verifying the fact that the f modes
and their onsite repulsive interaction dominate the low-energy
physics.

We note that our Hartree-Fock calculation is done
only for the translationally invariant initial states listed in
Appendix D 2. It is possible that the true ground state is
beyond our chosen initial states in Appendix D 2 (e.g., beyond
the translationally invairant subspace). We leave a complete
Hartree-Fock study as a future work.

V. ANALYTICAL UNDERSTANDING

In this section, we provide an analytical understanding
for the key numerical results in Sec. IV. As discussed at
the end of Sec. IV, the one-shot Hartree-Fock calculation (i)
can qualitatively capture the phase transition between states
with and without intervalley-coherence [Figs. 3(a), 3(d) and
3(h)] and (ii) can precisely capture the competing energies
of the several found high-E states. Therefore we will use the
analytical one-shot Hartree-Fock Hamiltonian of the f -c-d
model [Eq. (64)] derived from the expression of the initial
states [Eq. (65)] to answer two questions: (i) why the states
without intervalley coherence are favored at high E , and (ii)
why those high-E ground states have nearly the same energies.

Let us start with the first question: why the states without
intervalley coherence are favored at high E . Since we care
about high E , let us consider the limit where E is infinitely

large. The validity of this assumption will be discussed right
beneath proposition 1. The low-energy itinerant modes are
mainly around �M and ±KM . In the following, we will look
at ±KM first and then look at �M .

We want to minimize the total energy of all the occupied
states at KM and −KM , which is labeled by E±KM . To do so, let
us define ζη. We know ζl (with l = 1, 2, . . . , 4 + ν) in Eq. (65)
has eight components as (ζl )ηαs, where η, α and s are indices
of the f modes. We define ζη as a 4 × (4 + ν) matrix such that
(ζη )αs,l = (ζl )ηαs, which means that

ζ =
(

ζ+
ζ−

)
. (70)

Then, as elaborated in Appendix E 2, in the high-E limit, the
one-shot Hartree-Fock Hamiltonian at ηKM of MBZ to the
first order of |U1/E | (up to unitary transformation and total
energy shift) reads⎛⎝ε014×4

ε114×4

ν(U1 + 6U2)14×4

⎞⎠
− U1

⎛⎝ (|χ0,1|2
|χ1,1|2

)
⊗ (

ζηζ
†
η − 1

2

)
ζ−ηζ

†
−η − 1

2

⎞⎠,

(71)
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where (
ν(U1 + 6U2)

√
2M1E√

2M1E Wf dν

)
χγ = εγ χγ , (72)

γ = 0, 1, χγ is real, and

εγ = ν(U1 + 6U2 + Wf d )

2

+ (−)γ

√[
ν(U1 + 6U2 − Wf d )

2

]2

+ 2M2
1E2 . (73)

(See Appendix E 2 for details.) Since the chemical potential
can be estimated as μ ≈ ν(U1 + 6U2) ( f modes give the fill-
ing) as discussed in Appendix E 2 (also in Ref. [125]), the
occupied states of the approximated Hamiltonian in Eq. (71)
are all eigenstates of

[ε1 − ν(U1 + 6U2)]14×4 − U1|χ1,1|2
(
ζηζ

†
η − 1

2

)
(74)

and all negative-energy eigensstates of

−U1
(
ζηζ

†
η − 1

2

)
(75)

for both η = ±, where we have subtracted the chemical po-
tential. The total energy of these occupied states give E±KM to
the first order of |U1/E |.

Now let us minimize E±KM . To express E±KM , we use
λi (i = 1, 2, . . . , 8) to label the eigenvalues of(

ζ+ζ
†
+

ζ−ζ
†
−

)
. (76)

Then, we can choose λ1 � λ2 � · · · � λn � 1/2 � λn+1 �
· · · � λ8 without loss of generality, resulting in

E±KM = 8[ε1 − ν(U1 + 6U2)] − U1|χ1,1|2ν

− U1

n∑
i=1

(
λi − 1

2

)
+ O

(
U 2

1 /E
)
, (77)

where we have used∑
η

Tr[ζηζ
†
η ] = Tr[ζ ζ †] = 4 + ν . (78)

To proceed, we note that λi ∈ [0, 1] and
∑8

i=1 λi = 4 + ν.
Then, we know

E±KM � 8[ε1 − ν(U1 + 6U2)] − U1|χ1,1|2ν

− U1
4 + ν

2
+ O

(
U 2

1 /E
)
. (79)

As elaborated in Appendix E 2, it turns out that the equality
happens if and only if(

ζ+ζ
†
+

ζ−ζ
†
−

)
∼= diag(1, 1, . . . , 1︸ ︷︷ ︸

4+ν

, 0, 0, . . . , 0︸ ︷︷ ︸
4−ν

) , (80)

which is equivalent to ζ+ζ
†
− = 0 (i.e., zero intervalley co-

herence). Here ∼= means being equal up to any unitary
transformations. Therefore we know E±KM is minimized if and
only if the intervalley coherence of the state vanishes.

Now we turn to the �M point. As discussed in Appendix E 2
(and also in Ref. [125]), the main origin of the symmetry

breaking is the J interaction term, which appears in the diago-
nal block of the one-shot Hartree-Fock Hamiltonian for c†

�1�2
,

expressed as νW3 + h�1�2 . In our case, h�1�2 reads

h�1�2 = M̃η0σxs0

− J

2
(ηzσ0s0ζ ζ †ηzσ0s0 + η0σzs0ζ ζ †η0σzs0 − 18×8) ,

(81)

where M̃ = M + BME2. Since we consider the high-E limit,
we have |M̃| � J . Then, the energy difference between dif-
ferent states given by h�1�2 should be of order J , which is
generally much smaller than the energy difference at ±KM

which is of the order U1. Therefore we should only focus on
the states with lowest E±KM , i.e., states with zero intervalley
coherence. In other words, the discussion at ±KM already
suggests that only states without intervalley coherence should
be favored at large E .

To further pick out the high-E ground states among all
states without IVC, let us minimize the energy at �M . Since
we are considering the high-E limit, we have |M̃| � |ν(U1 +
6U2 − W3)|. Then, by minimizing the total energy of all the
occupied states of νW3 + h�1�2 [i.e., states of h�1�2 that are
energetically lower than ν(U1 + 6U2 − W3)] while keeping
the intervalley coherence zero, we find that the energetically
favored states are (and only are) the states whose ζ ζ † [up
to U(2) × U(2)] are also spin-diagonal with 4 + ν diagonal
blocks (labelled by valley and spin) being (σ0 ± σz )/2 and 4 −
ν diagonal blocks being zero. (See details in Appendix E 2.)
Eventually, we arrive at the following rule for the high-E
ground states, which resolves the first question raised at the
beginning of this section.

Proposition 1. For ν = 0,−1,−2, at the one-shot Hartree-
Fock level, a state is energetically favored at high E if and only
if its ζ ζ †, up to U(2) × U(2), is spin-valley diagonal with 4 +
ν diagonal blocks (labelled by valley and spin) being (σ0 ±
σz )/2 and 4 − ν diagonal blocks being zero.

Now let us discuss the validity of the derivation that leads
to proposition 1. We know that the derivation is done in the
limit that E is infinitely large, which seems to contradict
the fact that the f -c-d model is valid within E = 300 meV
(EUS), since |√2M1E | ∼ U1 for E = 300 meV. However, we
show in Appendix E 3 that the derivation should still be valid
for ν = 0 at E = 300 meV, since the quantities required to
be small in the derivation are still small for ν = 0 at E =
300 meV. Although the derivation is not entirely reasonable
for ν = −1,−2, we find that proposition 1 is consistent with
the self-consistent Hartree-Fock calculation for ν = −1,−2.
Specifically, we numerate all initial states that satisfy propo-
sition 1 for ν = 0,−1,−2, and we find that they all become
high-E ground states in the self-consistent Hartree-Fock cal-
culation discussed in Sec. IV.

Before proceeding to the second question raised at the be-
ginning of this section, let us provide an understanding of the
appearance of the phase transition with gradually increasing
E . In the earlier part of this section, we have shown that the
Hartree-Fock Hamiltonian at ±KM should favor states without
intervalley coherence at high E ; on the other hand, Ref. [125]
suggests the TBG part around �M should favor states with
nonzero intervalley coherence. Then, the transition should be
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a result of the competition between �M and ±KM . To make
it concrete, let us consider ν = 0 and treat E perturbatively,
to consider the case where E is gradually increased. We focus
on the competence between K-IVC and Chern states. By using
second-order perturbation, we derive the effective energies for
the two states at ±KM as

EK-IVC,ν=0
±KM

= −4
|p|<�d∑

p

|p|,

ECh,ν=0
±KM

= −4
|p|<�d∑

p

√
|p|2 + 16M4

1E4

U 2
1

(82)

and at �M as

EK-IVC,ν=0
�M

= −
|k|<�c∑

k

[√
U 2

1 + 16(|v′
� p| − |γ̃ |)2

+
√

U 2
1 + 16(|v′

� p| + |γ̃ |)2
]
,

ECh,ν=0
�M

= −
|k|<�c∑

k

∑
z=±

[√
U 2

1 +16|v′
� p|2+z

√
U 2

1 +16γ̃ 2
]
,

(83)

where E is treated perturbatively. (See Appendix E 5 for de-
tails.) Then, the total effective energies are

EK-IVC,ν=0
eff = EK-IVC,ν=0

�M
+ EK-IVC,ν=0

±KM
,

ECh,ν=0
eff = ECh,ν=0

�M
+ ECh,ν=0

±KM
. (84)

As elaborated in Appendix E 5, at E = 0, we have
EK-IVC,ν=0

eff < ECh,ν=0
eff since EK-IVC,ν=0

±KM
= ECh,ν=0

±KM
and

EK-IVC,ν=0
�M

< ECh,ν=0
�M

. Moreover, at E = Ec (≈294.816 meV

in EUS) that satisfies γ + Bγ E2
c = 0, we have EK-IVC,ν=0

eff >

ECh,ν=0
eff since EK-IVC,ν=0

±KM
> ECh,ν=0

±KM
and EK-IVC,ν=0

�M
=

ECh,ν=0
�M

, demonstrating the existence of the transition (as
increasing E from E = 0 to E = Ec).

Combining the low-E with the high-E picture, we arrive
at the following picture. At low E , �M dominates and favors
nonzero intervalley coherence. At high E , ±KM dominate and
favor zero intervalley coherence, and the secondary �M effect
picks out specific states among all states without intervalley
coherence.

Now we turn to the second question: why the numerically
found high-E low-energy states have competing energies. We
answer this question by showing that those high-E states have
exactly the same Hartree-Fock energies at the one-shot level.
At the one-shot level, we find (Appendix E 4) that the Hartree-
Fock Hamiltonian is block diagonalzied in spin and valley for
all the high-E ground states for ν = 0,−1,−2. Interestingly,
the one-shot Hartree-Fock Hamiltnoians for different types of
states are related by performing spinless version of C2T , noted
as C2T , or spinless TR symmetries on certain blocks. Taking
VH and Chern states at ν = 0 as an example, we have

HA,OS = HA,OS
+,↑ + HA,OS

+,↓ + HA,OS
−,↑ + HA,OS

−,↓ − EOS
0 , (85)

where A = VH and Chern, and OS is short for one-shot, EOS
0

depends on the initial states only through the filling, and

HChern,OS is related to HVH,OS as

HChern,OS = HVH,OS
+,↑ + HVH,OS

+,↓ + C2T HVH,OS
−,↑ (C2T )−1

+ C2T HVH,OS
−,↓ (C2T )−1 . (86)

Therefore the one-shot Hartree-Fock energies are exactly the
same for the high-E ground states with the same filling. (See
Appendix E 4 for more details.)

Before concluding the paper, we compare and contrast our
analytic discussion to those in Refs. [152,156,175] Instead of
choosing the f -c-d basis in our work, Refs. [152,156,175]
chose the TBG nearly flat bands and the Dirac cones as basis
for the analytical discussions. As a result, Refs. [152,156,175]
did not give a general simple analytic rule for high-E states
as proposition 1 or simple symmetry argument for competing
energies as ours, indicating the great simplification brought
by our f -c-d model. Furthermore, Refs. [152,156,175] do not
provide an understanding of the appearance of the transition;
the simple picture of the heavy fermion model explains the
transition based on the competition between the energies at
�M and ±KM points.

VI. CONCLUSION AND DISCUSSION

In conclusion, we construct an effective heavy fermionic
f -c-d model for MATSTG with localized heavy f modes
and itinerant c and d modes. Our f -c-d model can repro-
duce the previously obtained single-particle band structure of
MATSTG in the energy window [−50 meV, 50 meV] and
for displacement field E ∈ [0, 300] meV in EUS. Our f -c-d
model can also reproduce and refine the previous numerical
Hartree-Fock results for ν = 0,−1,−2. Remarkably, based
on our f -c-d model at ν = 0,−1,−2, we propose a simple
analytical rule for the high-E ground states, which explains the
general loss of intervalley coherence observed in numerical
results, and we find analytical symmetry arguments that ex-
plain the completing energies of the nearly degenerate high-E
ground states.

For experiments, we predict that at charge neutrality and
high displacement fields, Chern gaps for Ch = ±1,±2 can be
observed by scanning tunneling microscope in the presence
of an out-of-plane magnetic field. In particular, we predict
that Ch = ±2 gaps should be most pronounced, since our
arguments in Appendix F show that the orbital effect of the
magnetic field can lower the energy of the Chern states. More
specifically, the projection of the orbital effect of the mag-
netic field to the two TR-realted Chern states is proportional
to σz, which always lowers the energy of one Chern state
regardless of the sign of the coefficient. We leave a more
detailed study of such prediction for the future. Our work
both generalizes and puts on firmer footing through analyt-
ical reasoning the applicability and the importance of the
topological heavy fermion model in naturally explaining the
emergence of Coulomb interaction-driven correlated phases
in Moiré multilayer graphene systems.
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APPENDIX A: MORE DETAILS ON THE BASIS
OF THE HAMILTONIAN

In this section, we provide more details on the basis of the
Hamiltonian and the furnished symmetry reps.

Let us use ±K to label the two graphene valleys with K =
4π
3aG

(1, 0) in EUS. (Recall that EUS is the unit system in which
Å is the length unit and meV is the energy unit, as discussed at
the beginning of Sec. II.) Given a single graphene, its electron
basis near ±K reads

c†
±K+p,σ,s = 1√

NG

∑
RG

ei(±K+p)·(RG+τσ )c†
RG+τσ ,s , (A1)

where NG is the number of lattice points for graphene, RG

labels the Bravais lattice points of graphene, τσ labels the
vector for the sublattice, and c†

RG+τσ ,s creates an electron with

pz orbital and spin s at RG + τσ . We note that c here is for the
electron basis of the original graphene following the notation
in Ref. [125], not to be confused with the c modes in Eq. (35).

Now we rotate the graphene by a generic angle θ counter-
clockwisely about the out-of-plane axis (denoted as Cθ ) and
shift the graphene along the out-of-plane axis by dz, we have

TdzCθc†
RG+τσ

C−1
θ T −1

dz
= c†

dz,Cθ (RG+τσ )e
−i sz

2 θ (A2)

and

TdzCθc†
±K+p,σC−1

θ T −1
dz

= 1√
NG

∑
Cθ RG

ei(±Cθ K+Cθ p)·(Cθ RG+Cθτσ )c†
dz,Cθ RG+Cθ τσ

e−i sz
2 θ ,

(A3)

where we define

c†
RG+τσ

= (c†
RG+τσ ,↑, c†

RG+τσ ,↓),

c†
±K+p,σ = (c†

±K+p,σ,↑, c†
±K+p,σ,↓) . (A4)

We can then define

c†
dz,θ,±Cθ K+p,σ,s = 1√

NG

∑
Cθ RG

ei(±Cθ K+p)·(Cθ RG+Cθτσ )c†
dz,Cθ RG+Cθτσ ,s,

c†
dz,θ,±Cθ K+p = (c†

dz,θ,±Cθ K+p,A,↑, c†
dz,θ,±Cθ K+p,A,↓, c†

dz,θ,±Cθ K+p,B,↑, c†
dz,θ,±Cθ K+p,B,↓), (A5)

which gives

c†
dz,θ,±Cθ K+Cθ p = TdzCθc†

±K+pC
−1
θ T −1

dz
σ0ei sz

2 θ . (A6)

Based on Eq. (A6), we clearly see that the symmetry reps of
C3, C2, and T symmetries are the same for c†

dz,θ,±Cθ K+p,σ,s and

c†
0,0,±K+p,σ,s, since C3, C2, and T commutes with Cθ and Tdz .

The symmetry reps of mz are also the same, except that dz is
flipped by mz in c†

dz,θ,±Cθ K+p,σ,s. Specifically, we have

C3c†
dz,θ,±Cθ K+pC

−1
3 = c†

dz,θ,±Cθ K+C3 pe±i 2π
3 σz s0,

C2c†
dz,θ,±Cθ K+pC

−1
2 = c†

dz,θ,∓Cθ K−pσxs0,

T c†
dz,θ,±Cθ K+pT

−1 = c†
dz,θ,∓Cθ K−pσ0isy,

mzc
†
dz,θ,±Cθ K+pm−1

z = c†
−dz,θ,±Cθ K+p(−σ0s0) . (A7)

(Recall that C3, C2, and mz are defined to be spinless opera-
tors.) The lattice translations for c†

dz,θ,±Cθ K+p,σ now becomes

TCθ RG c†
dz,θ,±Cθ K+pT −1

Cθ RG
= c†

dz,θ,±Cθ K+pe−i(±Cθ K+p).Cθ RG .

(A8)
Now we take the continuum limit, i.e., treating the

graphene lattice as a continuous media. Then, CθRG → r with
r taking continuous values in R2, ±Cθ K and σ become inter-
nal degrees of freedom, and p now also takes values in R2.

Specifically, we have

c†
dz,θ,±Cθ K+p,σ,s → c†

dz,θ,±Cθ K,p,σ,s . (A9)

Symmetric reps of c†
dz,θ,±Cθ K,p,σ,s and c†

dz,θ,±Cθ K+p,σ,s are ex-
actly the same as Eq. (A7) for C3, C2, T , and mz. The
translation operation of c†

dz,θ,±Cθ K,p,σ,s becomes continuous as

Trc
†
dz,θ,±Cθ K,p,σ,sT

−1
r = c†

dz,θ,±Cθ K,p,σ,se
−i(±Cθ K+p)·r . (A10)

ψ
†
η,r,l,σ,s in Eq. (4) is defined as

ψ
†
η,r,l,σ,s = c†

dz,l ,θl ,ηCθl K,r,σ,s , (A11)

where θl is the twist angle for the lth layer, dz,l is the position
of the lth layer along the out-of-plane axis, and

c†
dz,θ,±Cθ K,r,σ,s = 1√

A
∑

p

e−ir·pc†
dz,θ,±Cθ K,p,σ,s . (A12)

Then, we have

Tr0ψ
†
η,r,l,σ,sT

−1
r0

= ψ
†
η,r+r0,l,σ,se

−iη(Cθl K )·r0 . (A13)

Eventually, based on Eq. (9), we know that Kt/b in Eq. (16)
are determined by Kt = C−θ/2K and Kb = Cθ/2K , since we
choose θ1 = θ3 = −θ/2 and θ2 = θ/2.

We define

ψ
†
η,r,l = (ψ†

η,r,l,A,↑, ψ
†
η,r,l,A,↓, ψ

†
η,r,l,B,↑, ψ

†
η,r,l,B,↓) , (A14)

035129-13



YU, XIE, BERNEVIG, AND DAS SARMA PHYSICAL REVIEW B 108, 035129 (2023)

and define ψ̃
†
η,r,̃l

and d†
η,r by Eqs. (9) and (10). Then, C3 is

represented as

C3ψ̃
†
η,r,̃l

C−1
3 = ψ̃

†
η,C3r,̃l

eηiσz
2π
3 s0,

C3d†
η,rC

−1
3 = d†

η,C3r eηiσz
2π
3 s0 ; (A15)

C2T is represented as

C2T ψ̃
†
η,r,̃l

(C2T )−1 = ψ̃
†
η,−r,̃l

σxisy,

C2T d†
η,r(C2T )−1 = d†

η,−r σxisy ; (A16)

we can define an effective C2x as

C2xψ̃
†
η,r,̃l

(C2x )−1 =
∑

l̃ ′

ψ̃
†
η,C2xr,̃l ′

(−σx )s0

(
0 1
1 0

)
l̃ ′̃l

,

C2xd†
η,r(C2x )−1 = d†

−η,C2xr σxs0 , (A17)

we can also define an effective P as

Pψ̃
†
η,r,̃l

P−1 =
∑

l̃ ′

ψ̃
†
η,−r,̃l ′

η

(
0 −1
1 0

)
l̃ ′̃l

,

Pd†
η,rP

−1 = ηd†
−η,−r , (A18)

then C2xP is represented as

C2xPψ̃
†
η,r,̃l

(C2xP)−1 = ψ̃
†
η,−C2xr,̃l

(−1)̃lη(−σx )s0,

C2xPd†
η,r(C2xP)−1 = d†

η,−C2xr ησxs0 (A19)

with (−1)t = −(−1)b = 1 and C2xr = (x,−y)T ; the rep of TR

is in Eq. (16); T is represented as

T ψ̃
†
η,r,̃l

T −1 = ψ̃
†
−η,r,̃l

σ0isy,

T d†
η,rT −1 = d†

−η,r σ0isy ; (A20)

C is represented as

Cψ̃
†
η,r,̃l

C−1 = ψ̃T
η,r,̃l

, Cd†
η,rC−1 = dT

η,r (A21)

with C2 = 1. The symmetry reps in the momentum space can
be naturally obtained by using Eq. (21).

The symmetry properties of : ρ(r) : are

T : ρ(r) : T −1 =: ρ(r) :

C3 : ρ(r) : C−1
3 =: ρ(C3r) :

C2T : ρ(r) : (C2T )−1 =: ρ(−r) :

mz : ρ(r) : m−1
z =: ρ(r) :

TR : ρ(r) : T −1
R =: ρ(r + R) :

C2xP : ρ(r) : (C2xP)−1 =: ρ(−C2xr) :

C : ρ(r) : (C)−1 = − : ρ(r) : . (A22)

Combined with the fact that ρ(r) is invariant under the spin
charge U(2) in each valley, we have

[T , Hint] = [C3, Hint] = [C2T , Hint] = [mz, Hint]

= [TR, Hint] = [C2xP, Hint] = [C, Hint]

= [U(2) × U(2), Hint] = 0 . (A23)

The symmetry reps of f and c are particularly important for
deriving the low-energy effective model. The relevant high-
symmetry points in MBZ for H0,TBG are �M , KM , and MM

(shown in Fig. 2). Based on the origin of the f modes, we
know that the symmetry reps of f should carry the symmetry
reps of the nearly flat bands at KM and MM, and carry one 2D
irreducible rep (irrep) of the remote bands at �M . According
to Eq. (34), the symmetry rep of f is determined by the form
of ṽη, f ,α (k). Then, we require ṽη, f to guarantee the following
the rep of f

C2T f †
+,k(C2T )−1 = f †

+,kτxisy,

C3 f †
+,k(C3)−1 = f †

+,C3keiτz
2π
3 s0,

C2x f †
+,kC−1

2x = f †
+,C2xkτxs0,

P f †
+,kP−1 = f †

+,−kiτzs0,

TR f †
+,kT −1

R = f †
+,ke−i(Kb+q2+k)·R,

f †
−,k = T f †

+,−kT
−1τ0(−isy) . (A24)

The spinlesss parts of the reps here are the same as those of
f in Ref. [125], except the extra e−i(Kb+q2 )·R factor in the rep
of translation, which will be discussed carefully below. Fur-
thermore, to guarantee the exponential decay of the Wannier
functions of f modes, we have to require ṽη, f to be smooth
while keeping

[̃vη, f ,α (k + G)]Qσ = [̃vη, f ,α (k)]Q−Gσ . (A25)

The existence of such smooth ṽη, f is numerically verified in
Ref. [125]. Note that the 2D irrep carried by f+,�M is just
the spinless �3 if we only consider D3 (spanned by C3 and
C2x) [177].

Now we show that the extra e−i(Kb+q2 )·R factor of f modes
under Moiré lattice translations [shown in Eq. (A24)] can be
safely neglected for any values of angle, similar to Ref. [125].
First, we show under certain special values of the angles, we
can make Kb + q2 a Moiré reciprocal lattice vector, and thus
e−i(Kb+q2 )·R becomes 1. Combined with Eqs. (6), (17), and
(20), we have

Kb + q2 ∈ bM,1Z + bM,2Z

⇔ 1

2
(cot(θ/2) −

√
3, 0)

∈
{(√

3

2
n1 +

√
3n2,−3

2
n1

)∣∣∣∣∣n1, n2 ∈ Z

}

⇔ 1

2
cot(θ/2) − 1

2

√
3 ∈

√
3Z . (A26)

Therefore we can choose θ to satisfy

1

2
cot

(
θ

2

)
−

√
3

2
= 0 mod

√
3 (A27)

such that e−i(Kb+q2 )·R becomes 1. Second, even if θ does not
satisfy Eq. (A27), we can define an operation as

YR f †
η,kY −1

R = f †
η,keiη(Kb+q2 )·R , (A28)

where YR belongs to the valley U(1), which is obeyed
by the system. Then, we can redefine YRTR as the new
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lattice translation, which does not has the e−i(Kb+q2 )·R factor
in Eq. (A24). This is what was done in Ref. [125]. For the
convenience of the derivation in this study, we simply choose
θ to have the value in Eq. (44), which approximately satisfies
Eq. (A27). Nevertheless, Eq. (44) is not required for omitting
the e−i(Kb+q2 )·R factor of the lattice translation in Eq. (A24).

At �M , the remote bands have one remaining 2D irrep (also
corresponding to �3 of D3) of the remote bands at �M , and the
near-flat bands have two 1D irreps (corresponding to �1 and
�2 of D3). They should be carried by the c modes. As a result,
the reps furnished by the c modes are

C2T c†
+,k(C2T )−1 = c†

+,k

(
τx

τx

)
isy,

C3c†
+,k(C3)−1 = c†

+,C3k

(
eiτz

2π
3

τ0

)
s0,

C2xc†
+,kC−1

2x = c†
+,C2xk

(
τx

τx

)
s0,

Pc†
+,kP−1 = c†

+,−k

(−iτz

−iτz

)
s0,

TRc†
+,kT −1

R = c†
+,ke−i(Kb+q2+k)·R,

c†
−,k = T c†

+,−kT
−114(−isy) , (A29)

where c†
η,k = (c†

η,k,�3
, c†

η,k,�1�2
), c†

η,k,�3
= (c†

η,k,1, c†
η,k,2), and

c†
η,k,�1�2

= (c†
η,k,3, c†

η,k,4). Note that τ0,x,y,z carries the index

α for f †
η,k and carries the index β for c†

η,k,�3
and c†

η,k,�1�2
.

According to Eq. (35), Eq. (A29) is guaranteed by choosing
a special ũη,c,β (k) with |k| < �c. Furthermore, in order to
guarantee the resultant effective Hamiltonian to have a smooth
matrix rep, we need to require ũη,c,β (k) to be smooth. Such
required ũη,c,β (k) always exists for |k| < �c. The reason is
that ũη,c,β (k) is effectively defined on an open manifold in-
stead of a torus, as we do not impose any relation between

ũη,c,β (k) and ũη,c,β (k + G) if both k and k + G have magni-
tudes smaller than �c.

We would like the compare the lattice translations of the f ,
c and d modes after considering Eq. (A27), which read

TR f †
η,kT −1

R = f †
η,ke−ik·R,

TRc†
η,kT −1

R = c†
η,ke−ik·R,

TRd†
η,pT −1

R = d†
η,pe−i(ηKt +p)·R

= d†
η,pe−i(ηKb+ηq2+(p+ηKM ))·R

= d†
η,pe−i(p+ηKM )·R , (A30)

where we used Eqs. (A24), (A29), (6), (16)–(18) and Fig. 2.
According to Eq. (A30), c†

η,k and f †
η,k transforms in the same

way under the Moiré lattice translations. It means that c†
η,k is

around the �M point of the f †
η,k modes for small k. On the other

hand, according to Eq. (A30), d†
η,k−ηKM

and f †
η,k transforms in

the same way under the Moiré lattice translations, i.e., k in
d†

η,k−ηKM
is the same as k in f †

η,k. Thus d†
η,p with small p are

around the ηKM point of the f modes.
Symmetry properties of wηαl̃σ (r) [defined in Eq. (47)] are

listed below.

w−αl̃σ (r) = w∗
+αl̃σ

(r),

w+1tA
(
C−1

3 r
) = w+1tA(r),

w+1tB
(
C−1

3 r
) = w+1tB(r)e−i2π/3,

w+1tσ (r) = −iw∗
+1tσ

(
C−1

2x r
)
,

w+1bσ (r) = −w∗
+1tσ

(−C−1
2x r
)
,

w+2̃lσ (r) = w∗
+1̃lσ

(−r), (A31)

where σ = A/B for σ = B/A.

APPENDIX B: MORE DETAILS ON THE SINGLE-PARTICLE f -c-d MODEL

1. More details on the f -d coupling around ηKM

In general, the f -d coupling reads

H0,η, f d =
∑

k∈MBZ

|p|<�d∑
p

f †
η,kh̃η, f d (k, p) ⊗ s0dη,p + H.c., (B1)

where we have used U(2) × U(2) to rule out the intervalley coupling and the spin-orbit coupling, and h̃η, f d (k + G, p) =
h̃η, f d (k, p) for any Moiré reciprocal lattice vector G. H0,η, f d preserves the Moiré lattice translation TR, C2T , C3, C2xP, TR,
and the combination of mz and E → −E . Then, according to Eqs. (A24) and (16), TR gives

TRH0,η, f d T −1
R = H0,η, f d ∀R

⇔ h̃η, f d (k, p)e−i(ηq2+ηq3+k−p)·R = h̃η, f d (k, p) ∀R

⇔ h̃η, f d (k, p) =
∑

G

δp,k−ηKM+Gh̃η, f d (k, k − ηKM + G)

⇔ H0,η, f d =
∑

k∈MBZ

|p|<�d∑
p

f †
η,k

∑
G

δp,k−ηKM+Gh̃η, f d (k, k − ηKM + G) ⊗ s0dη,p + H.c.
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⇔ H0,η, f d =
∑

p′

|p|<�d∑
p

f †
η,p′δp,p′−ηKM h̃η, f d (p′, p′ − ηKM ) ⊗ s0dη,p + H.c.

⇔ H0,η, f d =
|p|<�d∑

p

f †
η,p+ηKM

hη, f d (p) ⊗ s0dη,p + H.c., (B2)

where hη, f d (p) = h̃η, f d (p + ηKM , p). Since we are considering the coupling around ηKM , we only consider p to the first order.
Then, C2T and C3 give

{C2T : τxh∗
+, f d (p)τx = h+, f d (p)

C3 : eiτz2π/3h+, f d (p)e−iτz2π/3 = h+, f d (C3 p)

⇔ h+, f d (p) = M̃1τ0 + iM̃ ′
1τz + v1(px + ipy)(τx − iτy) + v′

1(px − ipy)(τx + iτy) + O(p2) , (B3)

where M̃1, M̃ ′
1 are real and v1, v

′
1 are complex. Furthermore, C2xP gives

τyh+, f d (p)τx = −h+, f d (C2y p) ⇔ M̃1 = M̃ ′
1 & v1 = v′∗

1 = |v1|ei π
4 . (B4)

Therefore we have

h+, f d (p) = M̃1(τ0 + iτz ) + v f d,1[eiπ/4(px + ipy)(τx − iτy) + e−iπ/4(px − ipy)(τx + iτy)] + O(p2) , (B5)

where the combination of mz and E → −E requires that M̃1 and v f d,1 are odd in E . To further simplify h+, f d (p), we project
H0,E,+ in Eq. (24) to the f and d basis at KM . Explicitly, we have

H0,E,+ =
∑

k∈MBZ

∑
Q∈Q+

∑
σ,s

E
2

ψ̃
†
+,k,Q,σ,sd+,k,Q,σ,s + H.c.

=
∑

k∈MBZ

∑
Q∈Q+

∑
σ,s

E
2

∑
α

f †
+,k,α,s [̃v+, f ,α (k)]∗Qσ d+,k,Q,σ,s + H.c. + . . .

=
|p|<�d∑

p

∑
σ,s

E
2

∑
α

f †
+,p+KM ,α,s

∑
Q∈Q+

[̃v+, f ,α (p + KM )]∗Qσ d+,p+KM−Q,σ,s + H.c. + . . .

=
|p|<�d∑

p

∑
σ,s

∑
α

f †
+,p+KM ,α,s

E
2

[̃v+, f ,α (p + KM )]∗Q=KM ,σ d+,p,σ,s + H.c. + . . . , (B6)

where we have used Eq. (38) for the second equality, and . . . contains high-energy modes. By comparing Eq. (B6) to Eq. (B2),
we arrive at

[h+, f d (p)]ασ = E
2

[̃v+, f ,α (p + KM )]∗Q=KM ,σ ≈ E
2

[̃v+, f ,α (KM )]∗Q=KM ,σ , (B7)

where we neglect the momentum dependence of ṽη, f ,α (k) in the last step since Ref. [125] shows the momentum dependence of
ṽη, f ,α (k) should be small as the f modes have small Wannier spread and have Wannier center at 1a position. Owing to Eqs. (B7)
and (B5), we get

M̃1 = M1E, v f d,1 = 0 (B8)

with the value of M1 in Table I. Therefore combined with the T symmetry and the extra exponential decay factor, we have
Eq. (51) as the leading-order term of the f -d coupling around ηKM .

2. More details on f -d and c-d couplings around �M

In this part, we provide more details on the how we project out the f -d and c-d couplings around �M . We will focus on the
+ valley, since the Hamiltonian at the − valley can be obtained by the TR symmtry.

According to Eq. (23), the d modes with lowest energies at �M in the + valley are d†
+,0,q1

, d†
+,0,q2

and d†
+,0,q3

, which gives
energies ±1 owing to Eq. (6). Then, we consider the following f -d and c-d couplings around �:

(c†
+,k,�3

c†
+,k,�1�2 f †

+,k)

(
h+,c−d,�

h+, f −d,�

)
⊗ s0

⎛⎝d+,k,q1

d+,k,q2

d+,k,q3

⎞⎠, (B9)
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where f and c are defined in Eqs. (34) and (35), respectively, h+, f −d,� is a 2 × 6 matrix, and h+,c−d,� is a 4 × 6 matrix. Here we
neglect the momentum dependence of the f -d and c-d coupling away from �M since the matrix rep of Eq. (24) is momentum
independent. To obtain the forms of h+, f −d,� and h+,c−d,� , we use Eq. (38) to project Eq. (24) to the low-energy modes around
�M :

H0,E,+ =
∑

k∈MBZ

∑
Q∈Q+

∑
σ,s

E
2

ψ̃
†
+,k,Q,σ,sd+,k,Q,σ,s + H.c.

=
|k|<�c∑

k

∑
Q∈Q+

∑
σ,s

E
2

⎛⎝∑
α

f †
+,k,α,s [̃vη, f ,α (k)]∗Qσ d+,k,Q,σ,s +

∑
β

c†
+,k,β,s [̃uη, f ,β (k)]∗Qσ d+,k,Q,σ,s

⎞⎠+ H.c. + . . .

=
|k|<�c∑

k

∑
Q=q1,q3,q3

∑
σ,s

⎛⎝∑
α

f †
+,k,α,s

E
2

[̃vη, f ,α (k)]∗Qσ d+,k,Q,σ,s +
∑

β

c†
+,k,β,s

E
2

[̃uη, f ,β (k)]∗Qσ d+,k,Q,σ,s

⎞⎠+ H.c. + . . .

=
|k|<�c∑

k

∑
Q=q1,q3,q3

∑
σ,s

⎛⎝∑
α

f †
+,k,α,s

E
2

[̃vη, f ,α (0)]∗Qσ d+,k,Q,σ,s +
∑

β

c†
+,k,β,s

E
2

[̃uη, f ,β (0)]∗Qσ d+,k,Q,σ,s

⎞⎠+ H.c. + . . . ,

(B10)

where we neglect the momentum dependence of ṽη, f ,α (k) and ũη, f ,β (k) again, and . . . contains high-energy modes. By
comparing Eq. (B10) to Eq. (B9), we can get the forms of h+, f −d,� and h+,c−d,� , which read

h+, f −d,� = E
2

(
[̃v+, f ,1(0)]q1,A [̃v+, f ,1(0)]q1,B [̃v+, f ,1(0)]q2,A [̃v+, f ,1(0)]q2,B [̃v+, f ,1(0)]q3,A [̃v+, f ,1(0)]q3,B

[̃v+, f ,2(0)]q1,A [̃v+, f ,2(0)]q1,B [̃v+, f ,2(0)]q2,A [̃v+, f ,2(0)]q2,B [̃v+, f ,2(0)]q3,A [̃v+, f ,2(0)]q3,B

)∗
(B11)

and

h+,c−d,� = E
2

⎛⎜⎜⎝
[̃u+,c,1(0)]q1,A [̃u+,c,1(0)]q1,B [̃u+,c,1(0)]q2,A [̃u+,c,1(0)]q2,B [̃u+,c,1(0)]q3,A [̃u+,c,1(0)]q3,B

[̃u+,c,2(0)]q1,A [̃u+,c,2(0)]q1,B [̃u+,c,2(0)]q2,A [̃u+,c,2(0)]q2,B [̃u+,c,2(0)]q3,A [̃u+,c,2(0)]q3,B

[̃u+,c,3(0)]q1,A [̃u+,c,3(0)]q1,B [̃u+,c,3(0)]q2,A [̃u+,c,3(0)]q2,B [̃u+,c,3(0)]q3,A [̃u+,c,3(0)]q3,B

[̃u+,c,4(0)]q1,A [̃u+,c,4(0)]q1,B [̃u+,c,4(0)]q2,A [̃u+,c,4(0)]q2,B [̃u+,c,4(0)]q3,A [̃u+,c,4(0)]q3,B

⎞⎟⎟⎠
∗

. (B12)

On the other hand, according to Eqs. (40)–(42), the f and c block without the f -d and c-d corrections [i.e., the f and c block
that comes from H0,TBG in Eq. (22)] reads

(
c†
+,k,�3

c†
+,k,�1�2 f †

+,k

)
h+,0(k) ⊗ s0

⎛⎝ c+,k,�3

c+,k,�1�2

f+,k

⎞⎠ (B13)

with

h+,0(k) =
⎛⎝ 02×2 v�(kxτ0 + ikyτz ) γ τ0 + v′

�(kxτx + kyτy)
v�(kxτ0 − ikyτz ) Mτx v′′

� (kxτx − kyτy)
γ τ0 + v′

�(kxτx + kyτy) v′′
� (kxτx − kyτy) 02×2

⎞⎠. (B14)

Based on Eq. (23), the Hamiltonian for the low-energy d modes around � reads

(
d†

+,k,q1
d†

k,q2
d†

+,k,q3

)
h+,1(k) ⊗ s0

⎛⎝d+,k,q1

d+,k,q2

d+,k,q3

⎞⎠ (B15)

with

h+,1(k) =
⎛⎝(k − q1) · σ 02×2 02×2

02×2 (k − q2) · σ 02×2

02×2 02×2 (k − q3) · σ

⎞⎠ . (B16)

Now we show it is reasonable for us to treat h+, f −d,� and h+,c−d,� as perturbations, and then we will project out the d modes
around �. Since h+, f −d,� and h+,c−d,� depend linearly on E , we choose E = 300 meV (EUS) and find that the absolute values
of the matrix elements of h+, f −d,� and h+,c−d,� are no larger than 0.22, while the gaps between the levels of h+,0(0) and the
levels of h+,1(0) are no smaller than 0.87. Therefore we can treat h+, f −d,� and h+,c−d,� as perturbations. Then, according to the
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second-order perturbation theory, we may project out the d modes. Explicitly, we have⎛⎜⎜⎝ h+,0(k)

(
h+,c−d,�

h+, f −d,�

)
(

h+,c−d,�

h+, f −d,�

)†

h+,1(k)

⎞⎟⎟⎠⊗ s0 (B17)

as the effective Hamiltonian around �M , and by treating h+, f −d,� and h+,c−d,� as perturbations, h+,0(k) gains the following
correction according to the second-order perturbation theory [178]:(

h+,c−d,�

h+, f −d,�

)
1

h+,0(k) − h+,1(k)

(
h+,c−d,�

h+, f −d,�

)†

. (B18)

To the first order of k, Eq. (B18) brings in many different corrections. By comparing the resultant band structure of the f -c-d
model to that of the BM model, we find the most important three corrections are those in Eq. (53). Specifically, the correction
to M accounts for the increasing gap of the nearly flat bands at �M when increasing E , the correction to γ accounts for the
decreasing gap of the remote bands at �M when increasing E , and the correction to v′′

� accounts for the change of the band
structure along �M-MM due to E . The values of B parameters of Eq. (53), which are shown in Table I are also directly given by
Eq. (B18).

3. More details on the band structure calculation

In this part, we present more details on how the numerical calculations for Fig. 1 are carried out. Owing to the exponentially
decayed factor in H0,η, f d and H0,η, f c, we are allowed to extend �c and �d to outside MBZ [125]. Then, we can reexpress c†

η,p and

d†
η,p in Eq. (54) as c†

η,k−G and d†
η,k−Q, respectively, where k ∈ MBZ, G is the reciprocal lattice vector, and Q ∈ Qη. In this case,

the original definitions of �c and �d require |k − G| � �c and |k − Q| � �d . For the convenience of numerical calculation, we
alter the definitions, and instead require |G| � �c and |Q| � �d , while keeping k running over the entire MBZ. As a result, the
terms in the single-particle f -c-d model in Eq. (54) become

H0,η, f = 0 , (B19)

H0,η,c =
∑

k∈MBZ

∑
|G|��c

c†
η,k−G

(
02×2 v�(η(kx − Gx )τ0 + i(ky − Gy)τz )

v�(η(kx − Gx )τ0 − i(ky − Gy)τz ) (M + BME2)τx

)
s0cη,k−G , (B20)

H0,η, f c =
∑

k∈MBZ

∑
|G|��c

e− |k−G|2λ2

2 [ f †
η,k[(γ + Bγ E2)τ0 + v′

�(k − G) · (ητx, τy)]s0cη,k−G,�3

+ f †
η,k(v′′

� + Bv′′E2)(k − G) · (ητx,−τy)s0cη,k−G,�1�2 ] + H.c. (B21)

with c†
η,k−G,�3

= (c†
η,k−G,1, c†

η,k−G,2) and c†
η,k−G,�1�2

= (c†
η,k−G,3, c†

η,k−G,4),

H0,η,d =
∑

k∈MBZ

|Q|��d∑
Q∈Qη

d†
η,k−Q(η(kx − Qx )σx + (ky − Qy)σy)s0 dη,k−Q , (B22)

and

H0,η, f d =
∑

k∈MBZ

|Q|��d∑
Q∈Qη

e− |k−Q|2λ2

2 f †
η,k M1E (τ0 + ηiτz )s0 dη,k−Q + H.c. (B23)

Figure 1 is plotted by choosing �c = �d = 2
√

3, Eq. (44) and Table I.

APPENDIX C: MORE DETAILS ON THE INTERACTION AMONG f , c AND d MODES

In this section, we provide more details on the interaction among f , c and d modes, which is derived by projecting the
gate-screened Coulomb interaction Eq. (29) to the f -c-d basis. Throughout this section, we assume �c and �d to be small, i.e.,
�c,�d � 1. Owing to the assumption that �c is small, we, just for the convenience, formally define

[̃uη,c,β (k + G)]Qσ = [̃uη,c,β (k)]Q−Gσ for k < �c, only when �c � 1 , (C1)

where ũη,c,β is defined in Eq. (35), and G is any Moiré reciprocal lattice vector. Note that if �c becomes large such that
there exists k and k + G with |k|, |k + G| < �c, then Eq. (C1) cannot be used anymore, since we want c†

k to be independent
from c†

k+G.
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As the density operator ρ(r) can be split into two parts as

ρ(r) = ρ̃(r) + ρD(r) (C2)

with

ρ̃(r) =
∑
η,̃l

ψ̃
†
η,r,̃l

ψ̃η,r,̃l for the TBG block and ρD(r) =
∑

η

d†
η,rdη,r , (C3)

the interaction Eq. (29) can be split into three parts as

Hint = HTBG
int + HTBG-D

int + HD
int , (C4)

where

HTBG
int = 1

2

∫
d2rd2r′V (r − r′) : ρ̃(r) :: ρ̃(r′) :,

HTBG-D
int =

∫
d2rd2r′V (r − r′) : ρ̃(r) :: ρD(r′) :,

HD
int = 1

2

∫
d2rd2r′V (r − r′) : ρD(r) :: ρD(r′) : . (C5)

Before discussing each part in Eq. (C5), we derive the following expressions for the convenience of the latter evaluation of
the normal ordering. Based on the choice of |G0〉 in Eq. (30), we have

〈G0|ψ†
η,p,l,σ,sψη′,p′,l ′,σ ′,s′ |G0〉 = 1

2δηη′δpp′δll ′δσσ ′δss′ . (C6)

Then, combined with Eqs. (9), (10), (18), and (21), we have

〈G0|ψ̃†
η,k,Q,σ,sψ̃η′,k′,Q′,σ ′,s′ |G0〉 = 1

2δηη′δkk′δQQ′δσσ ′δss′ ,

〈G0|ψ̃†
η,k,Q,σ,sdη′,p,σ ′,s′ |G0〉 = 0,

〈G0|d†
η,p,σ,sdη′,p′,σ ′,s′ |G0〉 = 1

2δηη′δpp′δσσ ′δss′ . (C7)

Then, combined with Eqs. (34) and (35), we have

〈G0| f †
η,k,α,s fη′,k′,α′,s′ |G0〉 = 1

2δηη′δkk′δαα′δss′,

〈G0| f †
η,k,α,scη′,k′,β ′,s′ |G0〉 = 0,

〈G0|c†
η,k,β,scη′,k′,β ′,s′ |G0〉 = 1

2δηη′δkk′δββ ′δss′,

〈G0| f †
η,k,α,sdη′,p′,σ ′,s′ |G0〉 = 0,

〈G0|c†
η,k,β,sdη′,p′,σ ′,s′ |G0〉 = 0 . (C8)

In the following, we will discuss how we project the three parts in Eq. (C5) onto the f , c and d modes. All the numerical
evaluations throughout this section are done with the parameter values in Table I and Eq. (27).

1. Review on HTBG
int

We discuss HTBG
int in Eq. (C5) first. Since HTBG

int only depends on ψ̃ , its projection onto the f and c modes should have the
same form as the interaction terms in the ordinary MATBG as discussed Ref. [125]. This subsection is a review of the interaction
in Ref. [125], except that we use the parameter values for MATSTG.

To do the projection, we first need to figure out the projection of ψ̃
†
η,r,̃l,σ,s

to f † and c†. Combining Eq. (38) with

ψ̃
†
η,r,̃l

= 1√
A
∑

p

e−ip·rψ̃†
η,p,̃l

= 1√
A

MBZ∑
k

∑
Q∈Qη,̃l

e−i(k−Q)·rψ̃†
η,k−Q,̃lηQ

= 1√
A

MBZ∑
k

∑
Q∈Qη,̃l

e−i(k−Q)·rψ̃†
η,k,Q , (C9)

we have

ψ̃
†
η,r,̃l,σ,s

= 1√
A

MBZ∑
k

∑
Q∈Qη,̃l

e−i(k−Q)·r ∑
α=1,2

f †
η,k,α,s [̃vη, f ,α (k)]∗Qσ

+ 1√
A

|k|<�c∑
k

∑
Q∈Qη,̃l

e−i(k−Q)·r ∑
β=1,...,4

c†
η,k,β,s [̃uη,c,β (k)]∗Qσ + . . . , (C10)
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where “. . . ” means the high-energy modes. Combined with Eqs. (36) and (57), we get

ψ̃
†
η,r,̃l,σ,s

= 1√
NA

∑
α=1,2

∑
R

f †
η,R,α,s

MBZ∑
k

∑
Q∈Qη,̃l

e−i(k−Q)·(r−R)eiQ·R[̃vη, f ,α (k)]∗Qσ +
∑

β=1,...,4

c†
η,r,β,s

∑
Q∈Qη,̃l

eiQ·r [̃uη,c,β (k)]∗Qσ + . . . ,

(C11)

where f †
η,R,α,s is defined in Eq. (36), and c†

η,r,β,s is defined in Eq. (57). By defining

gηβ l̃σ (r) =
∑

Q∈Qη,̃l

eiQ·r [̃uη,c,β (0)]Qσ (C12)

and using �K̃l defined in Eq. (46), we eventually get

ψ̃
†
η,r,̃l,σ,s

≈
∑

α=1,2

∑
R

f †
η,R,α,se

−iη�K̃l ·Rwηαl̃σ (r − R)∗ +
∑

β=1,...,4

c†
η,r,β,sg

∗
ηβ l̃σ

(r) , (C13)

where we use Eq. (47) and

e−iη�K̃l ·R = eiη(−)̃l q1·R = eiQ·R for Q ∈ Qη,̃l , (C14)

and (−)t = −(−)b = 1. With Eq. (C13), we can derive the projection of ρ̃(r) to f and c modes, resulting in

ρ̃(r) =
∑

η,̃l,σ,s

ψ̃
†
η,r,̃l,σ,s

ψ̃η,r,̃l,σ,s

≈
∑

η,̃l,σ,s

⎡⎣∑
α=1,2

∑
R

f †
η,R,α,se

−iη�K̃l ·Rw∗
ηαl̃σ

(r − R) +
∑

β=1,...,4

c†
η,r,β,sg

∗
ηβ l̃σ

(r)

⎤⎦
×
⎡⎣ ∑

α′=1,2

∑
R′

fη,R′,α′,se
iη�K̃l ·R′

wηα ′̃lσ (r − R′) +
∑

β ′=1,...,4

cη,r,β ′,sgηβ ′̃lσ (r)

⎤⎦
=
∑

η,̃l,σ,s

⎧⎨⎩∑
α=1,2

∑
R

∑
α′=1,2

∑
R′

f †
η,R,α,s fη,R′,α′,se

−iη�K̃l ·R+iη�K̃l ·R′
w∗

ηαl̃σ
(r − R)wηα ′̃lσ (r − R′)

+
⎡⎣ ∑

β=1,...,4

∑
α=1,2

∑
R

c†
η,r,β,sg

∗
ηβ l̃σ

(r) fη,R,α,se
iη�K̃l ·Rwηαl̃σ (r − R) + H.c.

⎤⎦
+

∑
β=1,...,4

∑
β ′=1,...,4

c†
η,r,β,scη,r,β ′,sg

∗
ηβ l̃σ

(r)gηβ ′̃lσ (r)

⎫⎬⎭ . (C15)

At the single particle level, we mentioned that it is legitimate to neglect the hopping among f modes due to the extreme
localization of the Wannier functions, meaning that we can adopt the following approximation:

wηαl̃σ (r − R)w∗
η′α ′̃l ′σ ′ (r − R′) ≈ 0 if R �= R′ . (C16)

With this approximation, we have

ρ̃(r) ≈
∑

η,̃l,σ,s

⎧⎨⎩∑
α=1,2

∑
R

∑
α′=1,2

f †
η,R,α,s fη,R,α′,sw

∗
ηαl̃σ

(r − R)wηα ′̃lσ (r − R)

+
⎡⎣ ∑

β=1,...,4

∑
α=1,2

∑
R

c†
η,r,β,sg

∗
ηβ l̃σ

(r) fη,R,α,se
iη�K̃l ·Rwηαl̃σ (r − R) + H.c.

⎤⎦
+

∑
β=1,...,4

∑
β ′=1,...,4

c†
η,r,β,scη,r,β ′,sg

∗
ηβ l̃σ

(r)gηβ ′̃lσ (r)

⎫⎬⎭ . (C17)
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Furthermore, according to the symmetry properties of the Wannier functions Eq. (A31), we have

w+2̃lσ (r) = w∗
+1̃lσ

(−r) = [(−)̃l iw+1̃lσ (r)]∗ = (−)̃l iw∗
+1̃lσ

(r),

w−αl̃σ (r) = w∗
+αl̃σ

(r) (C18)

with l̃ = t/b for l̃ = b/t and σ = A/B for σ = B/A, just as Ref. [125]. Then, we have∑
l̃σ

w+1̃lσ (r − R)w∗
+2̃lσ

(r − R) = −i
∑
l̃σ

w+1̃lσ (r − R)(−)̃lw+1̃lσ (r − R) = 0 , (C19)

resulting in ∑
l̃σ

wηαl̃σ (r − R)w∗
ηα ′̃lσ (r − R) = 0 for α �= α′. (C20)

This expression brings simplification to the projection of ρ̃(r) as

ρ̃(r) ≈
∑

η,̃l,σ,s

⎧⎨⎩∑
α=1,2

∑
R

f †
η,R,α,s fη,R,α,sw

∗
ηαl̃σ

(r − R)wηαl̃σ (r − R)

+
⎡⎣ ∑

β=1,...,4

∑
α=1,2

∑
R

c†
η,r,β,sg

∗
ηβ l̃σ

(r) fη,R,α,se
iη�K̃l ·Rwηαl̃σ (r − R) + H.c.

⎤⎦
+

∑
β=1,...,4

∑
β ′=1,...,4

c†
η,r,β,scη,r,β ′,sg

∗
ηβ l̃σ

(r)gηβ ′̃lσ (r)

⎫⎬⎭ . (C21)

Furthermore, Eq. (C18) shows that
∑

l̃σ |wηαl̃σ (r)|2 is independent of η and α, and then we can define

n f (r) =
∑
l̃σ

|wηαl̃σ (r)|2. (C22)

Then, we have

ρ̃(r) ≈
∑

R

ρ f (R)n f (r − R) +
∑
η,s

⎡⎣ ∑
β=1,...,4

∑
α=1,2

∑
R

c†
η,r,β,s fη,R,α,s

∑
l̃σ

g∗
ηβ l̃σ

(r)eiη�K̃l ·Rwηαl̃σ (r − R) + H.c.

⎤⎦
+
∑
η,s

∑
β=1,...,4

∑
β ′=1,...,4

c†
η,r,β,scη,r,β ′,s

∑
l̃σ

g∗
ηβ l̃σ

(r)gηβ ′̃lσ (r) , (C23)

where ρ f (R) is defined under Eq. (55). By further defining

ρ f f (r) =
∑

R

ρ f (R)n f (r − R),

ρcc(r) =
∑
η,s

∑
β=1,...,4

∑
β ′=1,...,4

c†
η,r,β,scη,r,β ′,s

∑
l̃σ

g∗
ηβ l̃σ

(r)gηβ ′̃lσ (r),

ρc f (r) =
∑
η,s

∑
β=1,...,4

∑
α=1,2

∑
R

c†
η,r,β,s fη,R,α,s

∑
l̃σ

g∗
ηβ l̃σ

(r)eiη�K̃l ·Rwηαl̃σ (r − R),

ρ f c(r) = ρ
†
c f (r) , (C24)

we eventually arrive at

ρ̃(r) ≈ ρ f f (r) + ρcc(r) + ρc f (r) + ρ f c(r) . (C25)

With Eq. (C25), the expanded HTBG
int becomes

HTBG
int ≈ 1

2

∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρ f f (r′) :

+ 1

2

∫
d2rd2r′V (r − r′) : ρcc(r) :: ρcc(r′) :
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+
∫

d2rd2r′V (r − r′) : ρ f f (r) :: ρcc(r′) :

+
[

1

2

∫
d2rd2r′V (r − r′) : ρc f (r) :: ρc f (r′) : +H.c.

]
+
[

1

2

∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρc f (r′) : +H.c.

]
+
[

1

2

∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρ f c(r′) : +H.c.

]
+
[

1

2

∫
d2rd2r′V (r − r′) : ρcc(r) :: ρc f (r′) : +H.c.

]
+
[

1

2

∫
d2rd2r′V (r − r′) : ρcc(r) :: ρ f c(r′) : +H.c.

]
+ 1

2

∫
d2rd2r′V (r − r′)[: ρc f (r) :: ρ f c(r′) : + : ρ f c(r) :: ρc f (r′) :] . (C26)

In the following, we will discuss each term in Eq. (C26), as were discussed in Ref. [125].

a. 1
2

∫
d2rd2r′V (r − r′ ) : ρ f f (r) :: ρ f f (r′ ) :

To simplify this term, we first evaluate the Fourier transformation of n f (r) as

n f (p) =
∫

d2r n f (r)eip·r =
∫

d2r
∑
l̃σ

|w+1̃lσ (r)|2eip·r = 1

N

∑
k∈MBZ

U †
+, f ,1(k + p)U+, f ,1(k) , (C27)

where Eq. (47) is used. Based on Eq. (A31), we can derive useful symmetry properties of n f (r) and n f (p) as⎧⎪⎪⎨⎪⎪⎩
n f (r) = n∗

f (−r)
n f (r) = n f (C3r)
n f (r) = n f (C2xr)
n f (r) = n f (−r)

and

⎧⎪⎪⎨⎪⎪⎩
n f (p) = n∗

f (p)
n f (p) = n f (C3 p)
n f (p) = n f (C2x p)
n f (p) = n f (−p)

. (C28)

With the definition of n f (p), we have

1

2

∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρ f f (r′) : = 1

2

∑
R,R′

∫
d2rd2r′V (r − r′)n f (r − R)n f (r′ − R′) : ρ f (R) :: ρ f (R′) :

= 1

2

∑
R,R′

: ρ f (R) :: ρ f (R′) : U (R − R′) , (C29)

where

U (R − R′) =
∫

d2rd2r′V (r − r′)n f (r − R)n f (r′ − R′)

=
∫

d2rd2r′V (r − r′)n f (r)n f (r′ − R′ + R)

=
∫

d2rd2r′ 1

A3

∑
p1

n f (p1)e−ip1·r
∑

p

V (p)e−ip·(r−r′ )
∑

p2

n f (p2)e−ip2·(r−R′+R)

= 1

A
∑

p

n∗
f (p)V (p)n f (p)e−ip·(R−R′ ) . (C30)

Numerically, we find

U (0) = 91.50 meV, U (a1) = 5.387 meV, U (a1 − a2) = 0.5079 meV (C31)

in EUS, which shows that U (R) decays very as |R| increases. Therefore we only keep the terms up to the nearest-neighboring
terms and get

1

2

∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρ f f (r′) := Hint,U , (C32)
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where Hint,U is defined in Eq. (55). In Eq. (55), we have

U1 = U (0) (C33)

and

U2 = 1

6

∑
R �=0

U (R) . (C34)

Since U (R) decays very fast as |R| increases, U2 is dominated by the |R| = |a1| contribution. The reason for choosing an
expression of U2 that is not equal to U (a1) is that such choice can reduce the error in calculating the interaction-induced chemical
potential shift, as discussed in Ref. [125]. The numerical values of U1 and U2 are in Table II.

b. 1
2

∫
d2rd2r′V (r − r′ ) : ρcc(r) :: ρcc(r′ ) :

To simplify this term, we first derive the expression of
∑

l̃σ g∗
ηβ l̃σ

(r)gηβ ′̃lσ (r) as∑
l̃σ

gηβ l̃σ (r)g∗
ηβ ′̃lσ (r) =

∑
l̃σ

∑
Q∈Qη,̃l

e−iQ·r [̃uη,c,β (0)]Qσ

∑
Q′∈Qη,̃l

eiQ′ ·r [̃uη,c,β ′ (0)]∗Q′σ

=
∑
l̃σ

∑
Q∈Qη,̃l

∑
G

e−iG·r [̃uη,c,β ′ (0)]∗Q−Gσ [̃uη,c,β (0)]Qσ

=
∑
Q∈Q

∑
σ

∑
G

e−iG·r [̃uη,c,β ′ (G)]∗Qσ [̃uη,c,β (0)]Qσ

=
∑

G

e−iG·rũ†
η,c,β ′ (G )̃uη,c,β (0) (C35)

where Eqs. (C1) and (C12) are used. Then, we have∑
l̃σ

g∗
ηβ l̃σ

(r)gηβ ′̃lσ (r) =
∑

G

e−iG·rũ†
η,c,β (G )̃uη,c,β ′ (0) . (C36)

Then,

1

2

∫
d2rd2r′V (r − r′) : ρcc(r) :: ρcc(r′) :

= 1

2

∫
d2rd2r′V (r − r′)

∑
η,s

∑
β

∑
β ′

: c†
η,r,β,scη,r,β ′,s :

∑
l̃σ

g∗
ηβ l̃σ

(r)gηβ ′̃lσ (r)

×
∑
η1,s1

∑
β1

∑
β ′

1

: c†
η1,r′,β1,s

cη1,r′,β ′
1,s1 :

∑
l̃1σ1

g∗
η1β1 l̃1σ1

(r′)gη1β
′
1 l̃1σ1

(r′)

= 1

2

∫
d2rd2r′V (r − r′)

∑
η,s

∑
β,β ′

∑
η1,s1

∑
β1,β

′
1

: c†
η,r,β,scη,r,β ′,s :: c†

η1,r′,β1,s1
cη1,r′,β ′

1,s1 :

×
∑

G

e−iG·rũ†
η,c,β (G )̃uη,c,β ′ (0)

∑
G′

e−iG′ ·r′
ũ†

η,c,β1
(G′ )̃uη,c,β ′

1
(0)

= 1

2

1

A

MBZ∑
k

∑
G,G′,G′′

V (k + G′′)
∑
η,s

∑
β,β ′

∑
η1,s1

∑
β1,β

′
1

∫
d2r : c†

η,r,β,scη,r,β ′,s : e−i(k+G′′+G)·r

×
∫

d2r′ : c†
η1,r′,β1,s

cη1,r′,β ′
1,s1 : e−i(−k−G′′+G′ )·r′

ũ†
η,c,β (G )̃uη,c,β ′ (0)U †

η1,c,β1
(G′)Uη1,c,β ′

1
(0) . (C37)

Owing to small �c � |q1| = 1, we have∫
d2r : c†

η,r,β,scη,r,β ′,s : e−i(k+G′′+G)·r = 0 if G′′ + G �= 0 . (C38)
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Then, we have

1

2

∫
d2rd2r′V (r − r′) : ρcc(r) :: ρcc(r′) : = 1

2

1

A

MBZ∑
k

∑
G

V (k + G)
∑
η,s

∑
β,β ′

∑
η1,s1

∑
β1,β

′
1

∫
d2r : c†

η,r,β,scη,r,β ′,s : e−ik·r

×
∫

d2r′ : c†
η1,r′,β1,s1

cη1,r′,β ′
1,s1 : eik·r′

ũ†
η,c,β (−G )̃uη,c,β ′ (0)U †

η1,c,β1
(G)Uη1,c,β ′

1
(0) .

(C39)

Furthermore, we numerically find that∑
G

V (k + G )̃u†
η,c,β (−G)Uη1,c,β ′ (0)̃u†

η,c,β1
(G)Uη1,c,β ′

1
(0) ≈ V (k)δββ ′δβ1β

′
1

(C40)

with only 8% error. Then, we have

1

2

∫
d2rd2r′V (r − r′) : ρcc(r) :: ρcc(r′) :

≈ 1

2

∫
d2r

∫
d2r′ 1

A

MBZ∑
k

V (k)e−ik·(r−r′ )
∑
η,s

∑
β

∑
η1,s1

∑
β1

: c†
η,r,β,scη,r,β,s :: c†

η1,r′,β1,s
cη1,r′,β1,s1 : . (C41)

Again owing to small �c, we can extend the summation of k from MBZ to R2, leading to

1

2

∫
d2rd2r′V (r − r′) : ρcc(r) :: ρcc(r′) :

≈ 1

2

∫
d2r

∫
d2r′ 1

A
∑

p

V (p)e−ip·(r−r′ )
∑
η,s

∑
β

∑
η1,s1

∑
β1

: c†
η,r,β,scη,r,β,s :: c†

η1,r′,β1,s
cη1,r′,β1,s1 : , (C42)

resulting in

1

2

∫
d2rd2r′V (r − r′) : ρcc(r) :: ρcc(r′) :≈ Hint,V,c , (C43)

where Hint,V,c is defined in Eq. (56).

c.
∫

d2rd2r′V (r − r′ ) : ρ f f (r) :: ρcc(r′ ) :

First, by using Eqs. (C36) and (C28), we have∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρcc(r′) := 1

A
∑

R

: ρ f (R) :
∑
η,s

∑
ββ ′

MBZ∑
k

e−ik·R

×
∑
G,G′

∫
d2r′ei(k+G′−G)·r′

ũ†
η,c,β (G )̃uη,c,β ′ (0)V (k + G′)n f (k + G′) : c†

η,r′,β,scη,r′,β ′,s : .

(C44)

Then, by using Eq. (C38) derived from the small �c, we get∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρcc(r′) := 1

A
∑

R

: ρ f (R) :
∑
η,s

∑
ββ ′

MBZ∑
k

e−ik·R

×
∫

d2r′eik·r′
: c†

η,r′,β,scη,r′,β ′,s :
∑

G

ũ†
η,c,β (G )̃uη,c,β ′ (0)V (k + G)n f (k + G) . (C45)

Again owing to small �c, we can choose k = 0 in V (k + G)n f (k + G) as a good approximation, resulting in∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρcc(r′) :≈ 1

A
∑

R

: ρ f (R) :
∑
η,s

∑
ββ ′

MBZ∑
k

e−ik·R
∫

d2r′eik·r′
: c†

η,r′,β,scη,r′,β ′,s : [Xη]ββ ′ , (C46)

where

[Xη]ββ ′ =
∑

G

ũ†
η,c,β (G )̃uη,c,β ′ (0)V (G)n f (G) . (C47)
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Based on with Eqs. (A29) and (C28), we have

X+ =
(

e−i 2π
3 σz

σ0

)
X+

(
ei 2π

3 σz

σ0

)
=
(

σx

σx

)
X+

(
σx

σx

)
=
(

σx

σx

)
X ∗

η

(
σx

σx

)
=
(

σz

σz

)
X+

(
σz

σz

)
=X ∗

−

(C48)

resulting in

Xη = �

(
W1σ0

W3σ0

)
(C49)

with W1,W3 ∈ R. Then, combined with the fact that small �c allows us to extend the summation of k to R2, we arrive at∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρcc(r′) : ≈ 1

A
∑

R

: ρ f (R) :
∑
η,s

∑
ββ ′

MBZ∑
k

e−ik·R
∫

d2r′eik·r′
: c†

η,r′,β,scη,r′,β ′,s : �Wβδββ ′

= �
∑

R

: ρ f (R) :
∑
η,s

∑
β

1

A
∑

p

e−ip·R
∫

d2r′eip·r′
: c†

η,r′,β,scη,r′,β,s : Wβ

= Hint,W, f c , (C50)

where Hint,W, f c is defined in Eq. (58).

d. 1
2

∫
d2rd2r′V (r − r′ )[: ρc f (r) :: ρ f c(r′ ) : + : ρ f c(r) :: ρc f (r′ ) :]

To simplify this term, first note that∑
l̃σ

g∗
ηβ l̃σ

(r)eηi�K̃l ·Rwηαl̃σ (r − R) =
∑

l̃σ

∑
Q∈Qη,̃l

e−iQ·r [̃uη,c,β (0)]∗Qσ eηi�K̃l ·R 1

N
√

�

MBZ∑
k

∑
Q′∈Qη,̃l

ei(k−Q′ )·r [̃vη, f ,α (k)]Q′σ

= 1

N
√

�

∑
l̃σ

MBZ∑
k

eik·(r−R)
∑

Q,Q′∈Qη,̃l

ei(Q−Q′ )·r [̃uη,c,β (0)]∗Qσ [̃vη, f ,α (k)]Q′σ

= 1

N
√

�

MBZ∑
k

∑
G

ei(k−G)·(r−R)
∑
Q,σ

[̃uη,c,β (0)]∗Qσ [̃vη, f ,α (k)]Q+Gσ

= 1

N
√

�

∑
p

eip·(r−R)ũη,c,β (0)†ṽη, f ,α (p) , (C51)

where we use Eqs. (47), (C12), (A25), and (C14). With Eqs. (C51) and (C16), we have

1

2

∫
d2rd2r′V (r − r′) : ρc f (r) :: ρ f c(r′) :

≈ 1

2

1

A2N

∫
d2rd2r′∑

η,s

∑
βαR

: c†
η,r,β,s fη,R,β,s :

∑
η′,s′

∑
β ′α′

: f †
η′,R,α′,s′cη′,r′,β ′,s′ :

×
∑

p,p1,p2

eip1·r−ir′·p2−ip1·R+ip2·RV (p)̃u†
η,c,β (0)̃vη, f ,α (p1 + p)̃v†

η′, f ,α′ (p2 + p)̃uη′,c,β ′ (0) . (C52)

Here p1 and p2 are carried by the c modes, and thus we can set them to be zero in ũ†
η,c,β (0)̃vη, f ,α (p1 + p)̃v†

η′, f ,α′ (p2 + p)̃uη′,c,β ′ (0)
as a good approximation, resulting in

1

2

∫
d2rd2r′V (r − r′) : ρc f (r) :: ρ f c(r′) :

≈ 1

2

1

A2N

∫
d2rd2r′∑

η,s

∑
βαR

: c†
η,r,β,s fη,R,β,s :

∑
η′,s′

∑
β ′α′

: f †
η′,R,α′,s′cη′,r′,β ′,s′ :

×
∑

p,p1,p2

eip1·r−ir′ ·p2−ip1·R+ip2·RV (p)̃u†
η,c,β (0)̃vη, f ,α (p)̃v†

η′, f ,α′ (p)̃uη′,c,β ′ (0)

= �

2

∑
η,s

∑
αβR

: c†
η,R,β,s fη,R,α,s :

∑
η′,s′

∑
α′β ′

: f †
η,′R,α′,s′cη′,R,β ′,s′ : J∗

ηαβ,η′α′β ′ , (C53)
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where

Jηαβ,η′α′β ′ = 1

A
∑

p

V (p)̃v†
η, f ,α (p)̃uη,c,β (0)̃uη′,c,β ′ (0)̃v†

η′, f ,α′ (p) (C54)

which satisfies

Jηαβ,η′α′β ′ = J∗
η′α′β ′,ηαβ . (C55)

Similarly, we have

1

2

∫
d2rd2r′V (r − r′) : ρ f c(r) :: ρc f (r′) : = 1

2

∫
d2rd2r′V (r − r′) : ρ f c(r′) :: ρc f (r) :

≈ �

2

∑
R

∑
η,s,α,β

∑
η′,s′,α′β ′

: f †
η′,R,α′,s′cη′,R,β ′,s′ :: c†

η,R,β,s fη,R,α,s : J∗
ηαβ,η′α′β ′ . (C56)

As a result, we have

1

2

∫
d2rd2r′V (r − r′)[: ρc f (r) :: ρ f c(r′) : + : ρ f c(r) :: ρc f (r′) :]

≈ −�
∑

R

∑
η,s,α,β

∑
η′,s′,α′β ′

Jηαβ,η′α′β ′ : f †
η,R,α,s fη′,R,α′,s′ :: c†

η′,R,β ′,s′cη,R,β,s : +const. (C57)

Numerically, we find the biggest components of Jηαβ,η′α′β ′ are equal to Jη13,η13, Jη24,η24, Jη24,−η13, and Jη13,−η24, whose
magnitudes are 24.25 meV in EUS. The next biggest components of Jηαβ,η′α′β ′ have magnitudes being 6.478 meV in EUS,
which are roughly a quarter of those of the biggest components. Therefore we only keep the biggest components of Jηαβ,η′α′β ′ .
Furthermore, based on Eqs. (A24) and (A29), we find [125] that

Jη13,η13 = Jη24,η24 = −Jη24,−η13 = −Jη13,−η24, (C58)

which is independent of η. Then, we define

J = J+13,+13 , (C59)

leading to

1

2

∫
d2rd2r′V (r − r′)[: ρc f (r) :: ρ f c(r′) : + : ρ f c(r) :: ρc f (r′) :] ≈ Hint,J + const. , (C60)

where Hint,J is defined in Eq. (59).

e. 1
2

∫
d2rd2r′V (r − r′ ) : ρc f (r) :: ρc f (r′ ) : +H.c.

By using Eq. (C51) and Eq. (C16), the term can be simplfied to

1

2

∫
d2rd2r′V (r − r′) : ρc f (r) :: ρc f (r′) : +H.c.

≈ 1

2

|k1|��c∑
k1

|k2|��c∑
k2

∑
η,s

∑
αβR

c†
η,k1,β,s fη,R,α,s

∑
η′,s′

∑
α′β ′

c†
η′,k2,β ′,s′ fη′,R,α′,s′

× 1

N
e−ik1·Re−ik2·R 1

A
∑

p

V (p)(̃u†
η,c,β (0)̃vη, f ,α (p + k1))(̃u†

η′,c,β ′ (0)̃vη′, f ,α′ (−p + k2)) + H.c. (C61)

Then, due to the small �c, we can set k1 = 0 and k2 = 0 in (̃u†
η,c,β (0)̃vη, f ,α (p + k1))(̃u†

η′,c,β ′ (0)̃vη′, f ,α′ (−p + k2)), resulting in

1

2

∫
d2rd2r′V (r − r′) : ρc f (r) :: ρc f (r′) : +H.c. ≈ Hint,J̃ , (C62)

where

Hint,J̃ = �

2

∑
R

∑
η,s,α,β

∑
η′,s′,α′,β ′

J−η′β ′α′,ηβαc†
η,R,β,sc

†
η′,R,β ′,s′ fη′,R,α′,s′ fη,R,α,s + H.c. (C63)
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f. [ 1
2

∫
d2rd2r′V (r − r′ ) : ρ f f (r) :: ρc f (r′ ) : +H.c.] & [ 1

2

∫
d2rd2r′V (r − r′ ) : ρ f f (r) :: ρ f c(r′ ) : +H.c.]

With Eqs. (25), (C16), (C24), (C27), and (C51), we can get

1

2

∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρc f (r′) : +H.c. ≈ 1

2

∑
R

: ρ f (R) :
∫

d2r′∑
η′,s′

∑
β ′,α′

c†
η′,r′,β ′,s′ fη′,R,β ′,s′

1

A
∑

p

V (p)n f (−p)

× 1√
�N

∑
p2

eip2·r′
e−ip2·Rũ†

η′,c,β ′ (0)̃vη′, f ,α′ (p2 − p) + H.c. (C64)

Since p2 is carried by c modes and thus is small due to the small �c, we can set p2 = 0 in ũ†
η′,c,β ′ (0)̃vη′, f ,α′ (p2 − p) as a good

approximation, resulting in

1

2

∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρc f (r′) : +H.c. ≈ 1

2

∑
R

: ρ f (R) :
∑
η′,s′

∑
β ′,α′

c†
η′,R,β ′,s′ fη′,R,β ′,s′ [Ỹη′]β ′α′ + H.c. , (C65)

where

Ỹη′ = 1√
�N

∑
p

V (p)n f (p)̃u†
η′,c(0)̃vη′, f (p) . (C66)

Based on Eqs. (A24), (A29), and (C28), we find

Ỹ+ =
(

e−i 2π
3 σz

σ0

)
Ỹ+ei 2π

3 σz =
(

σx

σx

)
Ỹ+σx = −

(
σz

σz

)
Ỹ+σz = Ỹ ∗

− , (C67)

leading to

Ỹη = 0 ⇒ 1

2

∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρc f (r′) : +H.c. ≈ 0 . (C68)

Similarly, we have

1

2

∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρ f c(r′) : +H.c. ≈ 0 . (C69)

g. [ 1
2

∫
d2rd2r′V (r − r′ ) : ρcc(r) :: ρc f (r′ ) : +H.c.] + [ 1

2

∫
d2rd2r′V (r − r′ ) : ρcc(r) :: ρ f c(r′ ) : +H.c.]

By using Eqs. (25), (C24), (C36), and (C51), we can get[
1

2

∫
d2rd2r′V (r − r′) : ρcc(r) :: ρc f (r′) : +H.c.

]
+
[

1

2

∫
d2rd2r′V (r − r′) : ρcc(r) :: ρ f c(r′) : +H.c.

]
= 1

2

∫
d2rd2r′V (r − r′){: ρcc(r) : , : ρc f (r′) :} + H.c.

= 1

2

∫
d2rd2r′∑

η,s

∑
β,β ′

∑
η1,s1,β1,α1

∑
R

{: c†
η,r,β,scη,r,β ′,s : , c†

η1,r′,β1,s1
fη1,R,α1,s1}

×
√

�

A2

∑
p

∑
G

∑
p1

e−ir·pV (p − G )̃u†
η,c,β (G )̃uη,c,β ′ (0)eir′ ·pe−i(p1−p)·RU †

η1,c,β1
(0)Uη1, f ,α1 (p1 − p + G) . (C70)

Clearly, both p and p1 are carried by c modes, and are small due to the small �c. Then, we can set p = p1 = 0 in
U †

η1,c,β1
(0)Uη1, f ,α1 (p1 − p + G) as a good approximation, resulting in[

1

2

∫
d2rd2r′V (r − r′) : ρcc(r) :: ρc f (r′) : +H.c.

]
+
[

1

2

∫
d2rd2r′V (r − r′) : ρcc(r) :: ρ f c(r′) : +H.c.

]
≈ Hint,K , (C71)

where

Hint,K = 1

2
�3/2

∑
η,s

∑
β,β ′

∑
η1,s1,β1,α1

∑
R

{: c†
η,R,β,scη,R,β ′,s :, c†

η1,R,β1,s1
fη1,R,α1,s1}Kηββ ′,η1β1α1 + H.c. (C72)

and

Kηββ ′,η1β1α1 = 1

�

∑
G

V (G )̃u†
η,c,β (G )̃uη,c,β ′ (0)U †

η1,c,β1
(0)̃vη, f ,α1 (G) . (C73)

Numerically, we find the biggest components of Kηββ ′,η1β1α1 have magnitudes being 7.054 meV in EUS.
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h. In sum

In sum, we have

HTBG
int ≈ Hint,U + Hint,V,c + Hint,W, f c + Hint,J + Hint,J̃ + Hint,K + const. , (C74)

where the definitions of Hint,U , Hint,V,c, Hint,W, f c, Hint,J , Hint,J̃ , and Hint,K can be found in Eqs. (55), (56), (58), (59), (C63), and
(C72), respectively. Among all these terms, only Hint,J̃ and Hint,K do not preserve the number of f modes. Moreover, according
to Table II, the strengths of Hint,J̃ and Hint,K are small compared to the onsite interaction among f modes in Hint,U , as |J| ∼ U1/4
and |Kηββ ′,η1β1α1 | < U1/10. Therefore we neglect Hint,J̃ and Hint,K . We can also neglect the const . in HTBG

int , since it is just a shift
in the total energy, leading to

HTBG
int ≈ Hint,U + Hint,V,c + Hint,W, f c + Hint,J , (C75)

At the end of this part, we address the issue of the
√

2 scaling. As discussed in Sec. III A 1, the parameters values of the
single-particle TBG block of MATSTG are

√
2 scaled compared to those of the ordinary MATBG discussed in Ref. [125].

As shown in Table II, the same
√

2 scaling does not necessarily occur to the interaction strengthes in HTBG
int of the MATSTG

compared to those in Ref. [125]. It is because we choose the gate distance [Eq. (27)] for MATSTG to be the same as that for
MATBG, since there is no obvious reason for us to decrease the gate distance by a factor of

√
2 when switching MATBG to

MATSTG. Therefore the relative ratios among the interaction strenghes in HTBG
int of the MATSTG are not the same as those in

Ref. [125], allowing W1 and W3 to be slightly larger than U1. Nevertheless, we should still expect U1 dominates the low-energy
physics since W1 and W3 involve c modes with relatively higher energies, while U1 only involves the low-energy f modes.

2. Details on HTBG-D
int and HD

int

Now we turn to the other two terms in Eq. (C5), i.e., HTBG-D
int and HD

int , which are not covered in Ref. [125]. First note that

d†
η,r,σ,s = 1√

A
∑

p

e−ip·rd†
η,p,σ,s = 1√

A

|p|��d∑
p

e−ip·rd†
η,p,σ,s + · · · = d̃†

η,r,σ,s + . . . , (C76)

where d̃†
η,r,σ,s is defined under Eq. (60), and “. . . ” represents the higher-energy d modes. Then, we know

ρD(r) = ρd (r) + . . . , (C77)

where ρd (r) is defined under Eq. (60). Combined with Eq. (C25), we have

HTBG-D
int =

∫
d2rd2r′V (r − r′) : ρ̃(r) :: ρD(r′): ≈

∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρd (r′) :

+
[∫

d2rd2r′V (r − r′) : ρc f (r) :: ρd (r′) : +H.c.

]
+
∫

d2rd2r′V (r − r′) : ρcc(r) :: ρd (r′) : . (C78)

Furthermore, we have

HD
int = 1

2

∫
d2rd2r′V (r − r′) : ρD(r) :: ρD(r′): ≈ 1

2

∫
d2rd2r′V (r − r′) : ρd (r) :: ρd (r′) := Hint,V,d (C79)

with Hint,V,d defined in Eq. (60).
In the following, we will discuss each term in Eq. (C26).

a.
∫

d2rd2r′V (r − r′ ) : ρ f f (r) :: ρd (r′ ) :

With Eqs. (25), (C24), and (C27), we have∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρd (r′) :

=
∫

d2rd2r′V (r − r′)
∑

R

: ρ f (R) : n f (r − R) : ρd (r′) :

=
∫

d2rd2r′ 1

A
∑

p

e−ip·(r−r′ )V (p)
∑

R

: ρ f (R) :
1

A
∑

p1

n f (p1)e−ip1·(r−R) : ρd (r′) :

=
∑

R

: ρ f (R) :
∫

d2r′ 1

A
∑

p

eip·r′
V (p)n f (−p)e−ip·R : ρd (r′) : . (C80)
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Since p is carried by d modes here and �d is small, we can adopt V (p)n f (−p) ≈ V (p = 0)n f (p = 0). This approximation is
rather good since if we choose p = q3

6 with q3 defined in Eq. (6), the error is less than 6%, i.e.,

V
( q3

6

)
n f
(− q3

6

)
V (p = 0)n f (p = 0)

> 94% . (C81)

Then, by defining

Wf d = 1

�
V (p = 0)n f (p = 0) , (C82)

we have∫
d2rd2r′V (r − r′) : ρ f f (r) :: ρd (r′): ≈

∑
R

: ρ f (R) :: ρd (R) : V (p = 0)n f (p = 0)=�
∑

R

: ρ f (R) :: ρd (R) : Wf d =Hint,W, f d ,

(C83)

where Hint,W, f d is defined in Eq. (61). The numerical value of Wf d is listed in Table II.

b.
∫

d2rd2r′V (r − r′ ) : ρc f (r) :: ρd (r′ ) : +H.c.

With Eqs. (25), (C24), and (C51), we can get∫
d2rd2r′V (r − r′) : ρ f c(r) :: ρd (r′) : +H.c.

=
∫

d2rd2r′ 1

A
∑

p

e−ip·(r−r′ )V (p)
∑
η,s

∑
β,α,R

: c†
η,r,β,s fη,R,α,s :

1

N
√

�

∑
p1

eip1·(r−R)ũ†
η,c,β (0)̃vη, f ,α (p1) : ρd (r′) : +H.c.

=
∫

d2rd2r′
√

�

A2

∑
η,s

∑
β,α,R

: c†
η,r,β,s fη,R,α,s :

∑
p,p1

ei(p1−p)·rV (p)e−ip1·Rũ†
η,c,β (0)̃vη, f ,α (p1)eip·r′

: ρd (r′) : +H.c.

=
∫

d2rd2r′
√

�

A2

∑
η,s

∑
β,α,R

: c†
η,r,β,s fη,R,α,s :

∑
p,p1

eip1·rV (p)e−i(p1+p)·Rũ†
η,c,β (0)̃vη, f ,α (p1 + p)eip·r′

: ρd (r′) : +H.c. (C84)

As p1 is carried by c modes and p is carried by d modes, both of them are small, and we can adopt

ũ†
η,c,β (0)̃vη, f ,α (p1 + p) ≈ ũ†

η,c,β (0)̃vη, f ,α (0) = 0 (C85)

as a good approximation, where the second equality comes from the orthogonality of ũ and ṽ at the same momentum. Then, we
know ∫

d2rd2r′V (r − r′) : ρc f (r) :: ρd (r′) : +H.c. ≈ 0 . (C86)

c.
∫

d2rd2r′V (r − r′ ) : ρcc(r) :: ρd (r′ ) :

With Eqs. (25), (C24), and (C36), we can get∫
d2rd2r′V (r − r′) : ρcc(r) :: ρd (r′) :

=
∫

d2rd2r′ 1

A
∑

p

e−ip·(r−r′ )V (p)
∑

η,s,β,β ′
: c†

η,r,β,scη,r,β ′,s :
∑

G

e−iG·rũ†
η,c,β (G )̃uη,c,β ′ (0) : ρd (r′) :

=
∫

d2rd2r′ 1

A
∑

G

∑
p

e−i(p+G)·rV (p)
∑

η,s,β,β ′
: c†

η,r,β,scη,r,β ′,s : eip·r′
ũ†

η,c,β (G )̃uη,c,β ′ (0) : ρd (r′) : . (C87)

As p + G is carried by c modes and p is carried by d modes, both of them should be small, and thus we should only keep G = 0
in summation, resulting in∫

d2rd2r′V (r − r′) : ρcc(r) :: ρd (r′) : =
∫

d2rd2r′ 1

A
∑

p

e−ip·rV (p)
∑

η,s,β,β ′
: c†

η,r,β,scη,r,β ′,s : eip·r′
ũ†

η,c,β (0)̃uη,c,β ′ (0) : ρd (r′) :

=
∫

d2rd2r′ 1

A
∑

p

e−ip·(r−r′ )V (p)
∑
η,s,β

: c†
η,r,β,scη,r,β,s :: ρd (r′) :

=
∫

d2rd2r′V (r − r′) : ρc(r) :: ρd (r′) := Hint,V,cd , (C88)

where Hint,V,cd is defined in Eq. (62).
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d. In sum

In sum, we have

HTBG-D
int ≈ Hint,W, f d + Hint,V,cd , (C89)

where Hint,W, f d is defined in Eq. (61), and Hint,V,cd is defined in Eq. (62). Furthermore, we have

HD
int ≈ Hint,V,d (C90)

with Hint,V,d defined in Eq. (60).

APPENDIX D: MORE DETAILS ON THE NUMERICAL HARTREE-FOCK CALCULATIONS

In this section, we provide more details on the numerical Hartree-Fock Calculations.

1. Hartree-Fock Hamiltonian

We first present more details for the Hartree-Fock Hamiltonian. In general, given an interacting Hamiltonian of the form

H =
∑
i, j

ψ
†
i ψ jti j + 1

2

∑
i1,i2,i3,i4

Ui1,i2,i3,i4ψ
†
i1
ψ

†
i2
ψi3ψi4 (D1)

with some generic fermion annihilation operator ψi. The Hartree-Fock approximation is to choose the ground state as a single
Slater determinant:

|�〉 = a†
1a†

2a†
3 . . . a†

N |0〉 , (D2)

where a†
n = ∑

i ψ
†
i (ζn)i and ζ1, ζ2,..., ζN are orthonormal vectors. Then, the Hartree-Fock Hamiltonian is derived as

HHF =
∑
i, j

ψ
†
i ψ jti j + 1

2

∑
i1,i2,i3,i4

Ui1i2i3i4

(
ψ

†
i1
ψi4 Oi2i3 + ψ

†
i2
ψi3 Oi1i4 − ψ

†
i2
ψi4 Oi1i3 − ψ

†
i1
ψi3 Oi2i4

)− E0 , (D3)

where Oi1i2 = 〈�|ψ†
i1
ψi2 |�〉 = ∑N

n=1(ζ ∗
n ζ T

n )i j and

E0 = 1

2

∑
i1,i2,i3,i4

Ui1i2i3i4

(
Oi1i4 Oi2i3 − Oi1i3 Oi2i4

)
. (D4)

HHF satisfies 〈�|HHF|�〉 = 〈�|H |�〉. Note that HHF has the same form as the mean-field Hamiltonian; in fact, the Hartree-Fock
approximation is equivalent to the mean-field approximation. Oi1i2 is called the order parameter or the density matrix. 〈�|HHF|�〉
is also called the Hartree-Fock energy.

Now we come back to MATSTG. We only consider the states that are invariant under the Moiré lattice translations. Moreover,
similar to Ref. [125], we only care about the following averaged density matrices for simplicity

O f f
η1α1s1,η2α2s2

= 1

N

∑
R

〈
f †
η1,R,α1,s1

fη2,R,α2,s2

〉
,

Occ
η1β1s1,η2β2s2

= 1

N

|p|��c∑
p

〈
c†
η1,p,β1,s1

cη2,p,β2,s2

〉− n�c

2
δη1η2δβ1β2δs1s2 ,

Odd
ησ1s1,ησ2s2

= 1

N

|p|��d∑
p

〈
d†

η,p,σ1,s1
dη,p,σ2,s2

〉− n�d

2
δσ1σ2δs1s2 ,

Odd
ηβ1s1,−ηβ2s2

= 1

3N

|p|��d∑
p

|p′|��d∑
p′

∑
n=0,1,2

δp−p′,Cn
3 ηq1

〈
d†

η,p,σ1,s1
d−η,p′,σ2,s2

〉
,

Oc f
η1β1s1,η2α2s2

= 1

N

|p|��c∑
p

〈
c†
η1,p,β1,s1

fη2,p,α2,s2

〉
,

O f c = [Oc f ]†,

035129-30



MAGIC-ANGLE TWISTED SYMMETRIC TRILAYER … PHYSICAL REVIEW B 108, 035129 (2023)

Odf
η1σ1s1,η2α2s2

= 1

N

|p|��c∑
p

〈
d†

η1,p,σ1,s1
fη2,p+η1KM ,α2,s2

〉
,

O f d = [Odf ]†,

Ocd
η1β1s1,η2σ2s2

= 1

3N

∑
n=0,1,2

|p|��c&|p−η2Cn
3 q1|��d∑

p

〈
c†
η1,p,β1,s1

dη2,p−η2Cn
3 q1,σ2,s2

〉
,

Odc = [Ocd ]† , (D5)

where 〈. . . 〉 is the expectation done with respect to Hartree-Fock ground state, n�c = 1
N

∑|p|��c
p , and n�d = 1

N

∑|p|��d
p . We note

that the expressions O f f , Occ, O f c and Oc f are the same as those in Ref. [125]. We also note that for d†
η,p,σ1,s1

and d−η,p′,σ2,s2 in

Odd
ηβ1s1,−ηβ2s2

, p and p′ must be different in order to preserve the Moiré lattice translations, owing to the fact that d†
+,p and d†

−,p
are around KM and −KM points, respectively, as discussed in and below Eq. (A30). Because of the same reason, we choose the
d and f modes in Odf

η1σ1s1,η2α2s2 as d†
η1,p,σ1,s1

and fη2,p+η1KM ,α2,s2 to preserve the Moiré lattice translations.
Then, combining Eq. (64) with Eqs. (D5) and (D3), the Hartree-Fock Hamiltonian reads

HHF =
∑

η

H eff
0,η + HU + HV,c + HV,d + HV,cd + HW, f c + HW, f d + HJ

− (EU + EV,c + EV,d + EV,cd + EW, f c + EW, f d + EJ ) + const. , (D6)

where H eff
0,η is in Eq. (54), “const.” stands for a scalar that is independent of the ground state, and the rest of the terms are discussed

in the following. Before going in to details, we define f †
k = (. . . , f †

η,k,α,s, . . . ), f †
R = (. . . , f †

η,R,α,s, . . . ), c†
p = (. . . , c†

η,p,β,s, . . . ),
and d†

p = (. . . , d†
η,p,σ,s, . . . ).

First, we go over HU , HV,c, HW, f c, HJ , EU , EV,c, EW, f c, and EJ , which are the same as the corresponding Hartree-Fock terms
in Ref. [125] since they only involve the f and c modes derived from the TBG part. For more details, one can refer to Ref. [125].

HU =
∑

R

{
ρ f (R)[U1(Tr[O f f ] − 3.5) + 6U2(Tr[O f f ] − 4)] − U1 f †

R[O f f ]T fR
}

, (D7)

EU = N

2
Tr[O f f ]2(U1 + 6U2) − U1

N

2
Tr[O f f O f f ] , (D8)

HV,c = 1

�
V (p = 0)

|p|��c∑
p

c†
pcp Tr[Occ] , (D9)

and

EV,c = N

2�
V (p = 0)(Tr[Occ]2 + 16n�c Tr[Occ]) . (D10)

Here we neglect the Fock channels for HV,c and EV,c, same to Ref. [125], since otherwise the Hartree-Fock calculations would
heavily depend on the cutoff �c due to the simplified density matrices chosen in Eq. (D5).

HW, f c =
∑

k∈MBZ

f †
k fk Tr

[
Occ

(
W1η0τ0s0

W3η0τ0s0

)]
−

|p|��c∑
p

c†
p

(
W1η0τ0s0

W3η0τ0s0

)
[O f c]T fp

−
|p|��c∑

p

f †
p [Oc f ]T

(
W1η0τ0s0

W3η0τ0s0

)
cp +

|p|��c∑
p

c†
p

(
W1η0τ0s0

W3η0τ0s0

)
cp(Tr[O f f ] − 4) , (D11)

η0,x,y,z are Pauli matrices for the valley index, and

EW, f c = N Tr[O f f ] Tr

[
Occ

(
W1η0τ0s0

W3η0τ0s0

)]
+ 2Nn�c

⎛⎝∑
β

Wβ

⎞⎠(Tr[O f f ] − 4)

− N Tr

[
Oc f O f c

(
W1η0τ0s0

W3η0τ0s0

)]
. (D12)
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HJ = −J

2

∑
k∈MBZ

f †
k

[
ηzτ0s0

(
Occ

�1�2,�1�2

)T
ηzτ0s0 + η0τzs0

(
Occ

�1�2,�1�2

)T
η0τzs0

]
fk

+ J

2

|p|��c∑
p

c†
p,�1�2

[
ηzτ0s0 Tr

[
O f c

(
08×8

ηzτ0s0

)]
+ η0τzs0 Tr

[
O f c

(
08×8

η0τzs0

)]]
fp

+ J

2

|p|��c∑
p

f †
p

[
ηzτ0s0 Tr

[
O f c

(
08×8

ηzτ0s0

)]∗
+ η0τzs0 Tr

[
O f c

(
08×8

η0τzs0

)]∗]
cp,�1�2

− J

2

|p|��c∑
p

c†
p,�1�2

[ηzτ0s0(O f f )T ηzτ0s0 + η0τzs0(O f f )T η0τzs0 − η0τ0s0]cp,�1�2 , (D13)

and

EJ = −JN

2

∑
ηη′

∑
αα′ss′

O f f
ηαs,η′α′s′Occ

η′(α′+2)s′,η(α+2)s(ηη′ + (−1)α+α′
) − JNn�c

Tr[O f f ]

2

+ JN

2

∑
ηη′,ss′,αα′

Oc f
η(α+2)s,ηαsO

f c
η′α′s′,η′(α′+2)s′ (ηη′ + (−1)α+α′

) , (D14)

where Occ
�1�2,�1�2

is the 8 × 8 diagonal block of Occ that correspond to c†
η,k,β=3,4,s.

Now we move onto the terms that are not covered in Ref. [125]. First, Hint,V,d in Eq. (60) can be rewritten as

Hint,V,d = 1

2

∫
d2rd2r′V (r − r′) : ρd (r) :: ρd (r′) :

= 1

2

∫
d2rd2r′V (r − r′)

(
ρd (r) − 4

�
n�d

)(
ρd (r′) − 4

�
n�d

)
= 1

2

∫
d2rd2r′V (r − r′)

[
ρd (r)ρd (r′) − 4

�
n�d (ρd (r) + ρd (r′))

]
+ const.

= 1

2

1

A
∑

p

�d∑
p1 p2 p3 p4

δp4,p+p1
δp2,p+p3

V (p)
∑
ησ s

∑
η′σ ′s′

d†
η,p1,σ,sd

†
η′,p2,σ

′,s′dη′,p3,σ
′,s′dη,p4,σ,s

+ 1

2

1

A

�d∑
p1 p

V (p1 − p)
∑
ησ s

d†
η,p,σ,sd

†
η,p,σ,s − 4n�d

�
V (p = 0)

�d∑
p

∑
ησ s

d†
η,p,σ,sd

†
η,p,σ,s , (D15)

which leads to the following Hartree-Fock HV,d

HV,d = 1

2

1

A
∑

p

�d∑
p1 p2 p3 p4

δp4,p+p1
δp2,p+p3

V (p)
∑
ησ s

∑
η′σ ′s′

[
d†

η,p1,σ,sdη,p4,σ,s
〈
d†

η′,p2,σ
′,s′dη′,p3,σ

′,s′
〉

− d†
η,p1,σ,sdη′,p3,σ

′,s′
〈
d†

η′,p2,σ
′,s′dη,p4,σ,s

〉− d†
η′,p2,σ

′,s′dη,p4,σ,s
〈
d†

η,p1,σ,sdη′,p3,σ
′,s′
〉

+ d†
η′,p2,σ

′,s′dη′,p3,σ
′,s′
〈
d†

η,p1,σ,sdη,p4,σ,s
〉]+ 1

2

1

A

�d∑
p1 p

V (p1 − p)
∑
ησ s

d†
η,p,σ,sd

†
η,p,σ,s

− 4n�d

�
V (p = 0)

�d∑
p

∑
ησ s

d†
η,p,σ,sd

†
η,p,σ,s

neglecting Fock channel−−−−−−−−−−−−→ 1

�
V (p = 0)

�d∑
p

d†
pdp Tr[Odd ] , (D16)

where we have used Eq. (D5). Similarly, we get EV,d as

EV,d = N

2�
V (p = 0)(Tr[Odd ]2 + 8n�d Tr[Odd ]) . (D17)
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Second, Hint,V,cd in Eq. (62) can be rewritten as

Hint,V,cd =
∫

d2rd2r′V (r − r′)
(

ρc(r) − 8

�
n�c

)(
ρd (r′) − 4

�
n�d

)
=
∫

d2rd2r′V (r − r′)
[
ρc(r)ρd (r′) − 8

�
n�cρd (r′) − 4

�
n�d ρc(r)

]
+ const.

= 1

A
∑

p

�c∑
p1 p2

�d∑
p3 p4

δp2,p+p1
δp3,p+p4

V (p)
∑
ησ s

∑
η′σ ′s′

c†
η,p1,β,sd

†
η′,p3,σ

′,s′dη′,p4,σ
′,s′cη,p2,β,s

− 8n�c

�
V (p = 0)

�d∑
p

d†
pdp − 4n�d

�
V (p = 0)

�c∑
p

c†
pcp + const. , (D18)

which leads to the following Hartree-Fock Hint,V,cd :

HV,cd = 1

A
∑

p

�c∑
p1 p2

�d∑
p3 p4

δp2,p+p1
δp3,p+p4

V (p)
∑
ησ s

∑
η′σ ′s′

[c†
η,p1,β,scη,p2,β,s

〈
d†

η′,p3,σ
′,s′dη′,p4,σ

′,s′
〉

+ 〈
c†
η,p1,β,scη,p2,β,s

〉
d†

η′,p3,σ
′,s′dη′,p4,σ

′,s′ − 〈
c†
η,p1,β,sdη′,p4,σ

′,s′
〉
d†

η′,p3,σ
′,s′cη,p2,β,s

− c†
η,p1,β,sdη′,p4,σ

′,s′
〈
d†

η′,p3,σ
′,s′cη,p2,β,s

〉
]

− 4n�c

�
V (p = 0)

�d∑
p

d†
pdp − 4n�d

�
V (p = 0)

�c∑
p

c†
pcp + const.

Neglecting Fock channel−−−−−−−−−−−−→ 1

�
V (p = 0)

|p|��c∑
p

c†
pcp Tr[Odd ] + 1

�
V (p = 0)

|p|��d∑
p

d†
pdp Tr[Occ] , (D19)

Similarly, we get EV,cd as

EV,cd = N

2�
V (p = 0)(2 Tr[Odd ] Tr[Occ] + 8n�d Tr[Occ] + 16n�c Tr[Odd ]) (D20)

Third, Hint,W, f d in Eq. (61) can be rewritten as

Hint,W, f d = �Wf d

∑
R

(ρ f (R) − 4)

(
ρd (R) − 4

�
n�d

)
= �Wf d

∑
R

ρ f (R)ρd (R) − 4�Wf d

∑
R

ρd (R) − 4n�dWf d

∑
R

ρ f (R) + const.

= Wf d

N

∑
ηαs

∑
η′σ s′

MBZ∑
k1k4

�d∑
p2 p3

∑
G

δk1+p2,p3+k4+G f †
η,k1,α,sd

†
η′,p2,σ

′,s′dη′,p3,σ
′,s′ fη,k4,α,s

− 4Wf d

�d∑
p

d†
pdp − 4n�dWf d

MBZ∑
k

f †
k fk + const. , (D21)

which leads to the following Hartree-Fock Hint,W, f d

HW, f d = Wf d

N

∑
ηαs

∑
η′σ s′

MBZ∑
k1k4

�d∑
p2 p3

∑
G

δk1+p2,p3+k4+G
[

f †
η,k1,α,s fη,k4,α,s

〈
d†

η′,p2,σ
′,s′dη′,p3,σ

′,s′
〉

+ 〈
f †
η,k1,α,s fη,k4,α,s

〉
d†

η′,p2,σ
′,s′dη′,p3,σ

′,s′ − 〈
f †
η,k1,α,sdη′,p3,σ

′,s′
〉
d†

η′,p2,σ
′,s′ fη,k4,α,s

− f †
η,k1,α,sdη′,p3,σ

′,s′
〈
d†

η′,p2,σ
′,s′ fη,k4,α,s

〉]− 4Wf d

�d∑
p

d†
pdp − 4n�dWf d

MBZ∑
k

f †
k fk

= Wf d Tr[Odd ]
∑

R

f †
R fR + Wf d (Tr[Odd ] − 4)

|p|��d∑
p

d†
pdp − Wf d

⎛⎝|p|��d∑
p

∑
ηη′

d†
η′,p

[
O f d

ηη′
]T

fη,p+η′KM + H.c.

⎞⎠, (D22)
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FIG. 4. The edge of the MBZ is shown in (a) as the black solid
line, where the cornors are excluded. The corners of the MBZ are
shown in (b) as the black dots. Only half of the edge in (a) belongs
to MBZ, and only one third of the corners in (b) belongs to MBZ.

where we have used Eq. (D5). Similarly, we get EW, f d as

EW, f d = NWf d (Tr[Odd ] Tr[O f f ] + 4n�d (Tr[O f f ] − 4))

− NWf d Tr[Odf O f d ]. (D23)

Comparing Eq. (D22) to Eq. (D11), we can see d†
η,p couples

to fη′,p+ηKM , while c†
p couples to fp, showing that d modes are

around the ηKM points and c modes are around the �M point.
For the calculation of Hartree-Fock density matrices,

we choose �c = �d = √
3 [|bM,1| = |bM,2| = √

3 accord-
ing to Eq. (21) as a comparison], and the iteration for the
self-consistent calculation stops when the error of the Hartree-
Fock ground state energy is smaller than 10−4 meV in EUS.
The initial Hartree-Fock density matrices are given by the
initial states, which are specified below. To rule out the sym-
metry breaking induced by the artificial cutoffs, we address

the momentum points in MBZ in a symmetric way. Specifi-
cally, when we need to sum k over MBZ for determining the
density matrices in Eq. (D5), instead of actually summing k
over MBZ, we sum k over the completion of MBZ, i.e., the
union of MBZ with its all edges and corners (shown in Fig. 4),
and include a factor of 1/2 for terms with k on the edge and
1/3 for terms with k at the corners.

The Hartree-Fock band structures are plotted for �c =
�d = 2

√
3, in order to compare with the single-particle band

structure.

2. Initial states

Now we specify the initial states for the self-consistent
Hartree-Fock calculations for ν = 0,−1,−2. The choice of
the initial states are inspired by the numerical results in
Ref. [149], which show that (i) the ground state at low-E
is similar to TBG, and (ii) the ground states at high-E have
zero intervalley coherence. Therefore, for all the considered
fillings, we will include all the initial states that correspond
to those used in the study of TBG in Ref. [125] and include
representative states without intervalley coherence.

Recall that we choose the initial states to have the form of
Eq. (65), where |Fermi Sea〉 stands for the hall-filled Fermi
sea of the free c and d modes. For the initial states without
intervalley coherence, the filling in each valley is well-defined
and can be evaluated as νη = Tr[ζηζ

†
η ] − 2 for the η valley,

where ζη is defined in Eq. (70); we have ν+ + ν− = ν. Then,
we choose certain representative initial states without interval-
ley coherence for all combinations of (ν+, ν−) with ν+ � ν−,
since the ν+ < ν− subspace is related to the ν+ > ν− subspace
by the TR symmetry. The initial states that we choose for the
self-consistent calculations at ν = 0 are

∣∣VPν=0
0

〉 = ∏
R

f †
+,R,1,↑ f †

+,R,1,↓ f †
+,R,2,↑ f †

+,R,2,↓|Fermi Sea〉 , (D24)

∣∣IVCν=0
0

〉 = ∏
R

1

4
( f †

+,R,1,↑ − i f †
−,R,2,↑)( f †

+,R,1,↓ − i f †
−,R,2,↓)(−i f †

−,R,1,↑ + f †
+,R,2,↑)(−i f †

−,R,1,↓ + f †
+,R,2,↓)|Fermi Sea〉 , (D25)

∣∣K-IVCν=0
0

〉 = ∏
R

1

4
( f †

+,R,1,↑ + f †
−,R,2,↑)( f †

+,R,1,↓ + f †
−,R,2,↓)(− f †

−,R,1,↑ + f †
+,R,2,↑)(− f †

−,R,1,↓ + f †
+,R,2,↓)|Fermi Sea〉 , (D26)∣∣PVP1,ν=0

0

〉 = ∏
R

f †
+,R,1,↑ f †

+,R,1,↓ f †
+,R,2,↓ f †

−,R,1,↓|Fermi Sea〉 , (D27)∣∣PVP2,ν=0
0

〉 = ∏
R

f †
+,R,1,↑ f †

+,R,1,↓ f †
+,R,2,↑ f †

−,R,2,↓|Fermi Sea〉 , (D28)∣∣VHν=0
0

〉 = ∏
R

f †
+,R,1,↑ f †

+,R,1,↓ f †
−,R,1,↑ f †

−,R,1,↓|Fermi Sea〉 , (D29)∣∣Chernν=0
0

〉 = ∏
R

f †
+,R,1,↑ f †

+,R,1,↓ f †
−,R,2,↑ f †

−,R,2,↓|Fermi Sea〉 , (D30)∣∣half-Chernν=0
0

〉 = ∏
R

f †
+,R,1,↑ f †

+,R,1,↓ f †
−,R,1,↓ f †

−,R,2,↑|Fermi Sea〉 , (D31)

and ∣∣C2T -invariantν=0
0

〉 = ∏
R

f †
+,R,1,↓ f †

+,R,2,↑ f †
−,R,1,↓ f †

−,R,2,↑|Fermi Sea〉 . (D32)

Here |VPν=0
0 〉, |IVCν=0

0 〉 and |K-IVCν=0
0 〉 are chosen because the corresponding states are used in Ref. [125] for TBG. |VPν=0

0 〉
is also a representative state without intervalley coherence for (ν+, ν−) = (2,−2). We choose |PVP1,ν=0

0 〉 and |PVP2,ν=0
0 〉 as
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the representative states without intervalley coherence for (ν+, ν−) = (1,−1). We choose |VHν=0
0 〉, |Chernν=0

0 〉, |half-Chernν=0
0 〉

and |C2T -invariantν=0
0 〉 as the representative states without intervalley coherence for (ν+, ν−) = (0, 0). The initial states that we

choose for the self-consistent calculations at ν = −1 are∣∣VPν=−1
0

〉 = ∏
R

f †
+,R,1,↑ f †

+,R,1,↓ f †
+,R,2,↑|Fermi Sea〉 , (D33)

∣∣IVCν=−1
0

〉 = ∏
R

1

2
√

2
( f †

+,R,1,↑ − i f †
−,R,2,↑)( f †

+,R,1,↓ − i f †
−,R,2,↓)(−i f †

−,R,1,↑ + f †
+,R,2,↑)|Fermi Sea〉 , (D34)

∣∣VP+IVCν=−1
0

〉 = ∏
R

1

2
( f †

+,R,1,↑ + f †
−,R,2,↑)(− f †

−,R,1,↑ + f †
+,R,2,↑) f †

+,R,1,↓|Fermi Sea〉 , (D35)∣∣PVP1,ν=−1
0

〉 = ∏
R

f †
+,R,1,↑ f †

+,R,1,↓ f †
−,R,1,↓|Fermi Sea〉 , (D36)∣∣PVP2,ν=−1

0

〉 = ∏
R

f †
+,R,2,↑ f †

+,R,2,↓ f †
−,R,1,↓|Fermi Sea〉 , (D37)

and ∣∣PVP3,ν=−1
0

〉 = ∏
R

f †
+,R,1,↓ f †

+,R,2,↑ f †
−,R,1,↓|Fermi Sea〉 . (D38)

Here |VPν=−1
0 〉, |IVCν=−1

0 〉 and |VP+IVCν=−1
0 〉 are chosen because the corresponding states are used in Ref. [125] for

TBG. |VPν=−1
0 〉 is also a representative state without intervalley coherence for (ν+, ν−) = (1,−2). We choose |PVP1,ν=−1

0 〉,
|PVP2,ν=−1

0 〉, and |PVP3,ν=−1
0 〉 as the representative states without intervalley coherence for (ν+, ν−) = (0,−1).

The initial states that we choose for the self-consistent calculations at ν = −2 are∣∣K-IVCν=−2
0

〉 = ∏
R

1

2
( f †

+,R,1,↑ + f †
−,R,2,↑)( f †

−,R,1,↑ − f †
+,R,2,↑)|Fermi Sea〉 , (D39)

∣∣IVCν=−2
0

〉 = ∏
R

1

2
( f †

+,R,1,↑ − i f †
−,R,2,↑)(−i f †

−,R,1,↑ + f †
+,R,2,↑)|Fermi Sea〉 , (D40)∣∣VPν=−2

0

〉 = ∏
R

f †
+,R,1,↑ f †

+,R,2,↑|Fermi Sea〉 , (D41)∣∣VP1,ν=−2
0

〉 = ∏
R

f †
+,R,1,↓ f †

+,R,2,↑|Fermi Sea〉 , (D42)∣∣VP2,ν=−2
0

〉 = ∏
R

f †
+,R,1,↑ f †

+,R,1,↓|Fermi Sea〉 , (D43)∣∣valley-unpolarized1,ν=−2
0

〉 = ∏
R

f †
+,R,1,↑ f †

−,R,1,↑|Fermi Sea〉 , (D44)

and ∣∣valley-unpolarized2,ν=−2
0

〉 = ∏
R

f †
+,R,1,↑ f †

−,R,2,↓|Fermi Sea〉 . (D45)

Here |K-IVCν=−2
0 〉, |IVCν=−2

0 〉 and |VPν=−2
0 〉 are chosen because the corresponding states are used in Ref. [125] for TBG. We

choose |VP1,ν=−2
0 〉 and |VP2,ν=−2

0 〉 (as well as |VPν=−2
0 〉) as the representative states without intervalley coherence for (ν+, ν−) =

(0,−2). We choose |valley-unpolarized1,ν=−2
0 〉 and |valley-unpolarized2,ν=−2

0 〉 as the representative states without intervalley
coherence for (ν+, ν−) = (−1,−1).

APPENDIX E: MORE DETAILS ON ANALYTICAL UNDERSTANDING

In this section, we provide more details on the analytical understanding.

1. One-shot Hartree-Fock Hamiltonian

We develop the analytical understanding by using the one-shot Hartree-Fock Hamiltonian, which is derived as the follows.
First, based on the initial state Eq. (65), we can derive the initial density matrices as

O f f
ini = ζ ∗ζ T ,[

Occ
ini

]
ηβs,η′β ′s′ = δηη′ [Zη]ββ ′δss′ with [Zη]ββ = 0 ,
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Odd
ini = 0 ,

Oc f
ini = 0 , O f c

ini = 0,

Odf
ini = 0 , O f d

ini = 0,

Ocd
ini = 0 , Odc

ini = 0 , (E1)

where Zη is a 4 × 4 matrix. Then, we can substitute Eq. (E1) into the Hartree-Fork Hamiltonian Eq. (D6), and the resultant
Hartree-Fock Hamiltonian is the one-shot Hartree-Fock Hamiltonian, which reads

HHF,OS =
∑

η

H eff
0,η + HU,OS + HV,c,OS + HW, f c,OS + HJ,OS + HV,d,OS + HV,cd,OS + HW, f d,OS − EOS

0 + const. , (E2)

where H eff
0,η is in Eq. (54),

EOS
0 = EU,OS + EV,c,OS + EW, f c,OS + EJ,OS + EV,d,OS + EV,cd,OS + EW, f d,OS, (E3)

HU,OS =
∑

R

f †
RhU fR , (E4)

hU = 1

2
U1 + νU1 + 6νU2 − U1ζ ζ † , (E5)

EU,OS = N

2
(4 + ν)2(U1 + 6U2) − U1

N

2
(4 + ν) , (E6)

HV,c,OS = 0 , (E7)

EV,c,OS = 0 , (E8)

HW, f c,OS =
|p|��c∑

p

c†
phW, f ccp , (E9)

hW, f c =
(

νW1η0τ0s0

νW3η0τ0s0

)
, (E10)

EW, f c,OS = 2Nνn�c (2W1 + 2W3) + const. , (E11)

HJ,OS =
|p|��c∑

p

c†
phJcp , (E12)

hJ =
(

08×8

ηzτ0s0ζ ζ †ηzτ0s0 + η0τzs0ζ ζ †η0τzs0 − η0τ0s0

)
, (E13)

EJ,OS = −J

2
νNn�c + const. (E14)

HV,d,OS = HV,cd,OS = 0 , (E15)

EV,d,OS = const. EV,cd,OS = const., (E16)

HW, f d,OS = Wf dν

|p|��d∑
p

d†
pdp , (E17)

and

EW, f d,OS = 4νNWf d n�d + const. (E18)

Here “const.” consists of scalar terms that do not depend on the density matrices. It is clear that the dependence of EOS
0 on the

ground state is only through the filling ν, which is solely determined by the f modes at the one-shot level. Therefore the energy
difference for different states with the same filling only comes from the operator part, which we will focus on in the following.

2. Simple rule for high-E states: high-E limit

Now we provide more details on the analytical understanding of the simple rule for high-E states, under the high-E limit.
Here high-E limit mean that we choose |E | to be infinitely large compared with all other energy quantities. We also approximate
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the chemical potential as

μ = ν(U1 + 6U2) , (E19)

which is the correction of the chemical potential due to the density-density interaction of f modes [125]. The validity of these
simplifications will be discussed in Appendix E 3. In Appendix E 3, we will demonstrate the validity of those approximations
for ν = 0.

Throughout this part, we choose ν ∈ {0,−1,−2}. As an effective theory, we will focus on the Hartree-Fock Hamiltonian at
±KM and �M . We will first consider ±KM and then consider �M .

a. ±KM

The one-shot Hartree-Fock Hamiltonain around ±KM reads

HηKM
HF,OS =

|p|<�d∑
p

( f †
+,ηKM+p, f †

−,ηKM+p, d†
η,p)hηKM

HF,OS(p)

⎛⎝ f+,ηKM+p

f−,ηKM+p

dη,p

⎞⎠, (E20)

hKM
HF,OS(p) =

⎛⎝ 1
2U1 + ν(U1 + 6U2) − U1ζ ζ † M1E (τ0 + iτz )s0

04×4

M1E (τ0 − iτz )s0 04×4 Wf dν + (pxσx + pyσy)s0

⎞⎠, (E21)

and

h−KM
HF,OS(p) =

⎛⎝ 1
2U1 + ν(U1 + 6U2) − U1ζ ζ † 04×4

M1E (τ0 − iτz )s0

04×4 M1E (τ0 + iτz )s0 Wf dν + (−pxσx + pyσy)s0

⎞⎠ . (E22)

By performing d†
η,p → d†

η,pe−iτz
π
4 s0, we have

hKM
HF,OS(p) → h̃KM

HF,OS(p) =
⎛⎝ 1

2U1 + ν(U1 + 6U2) − U1ζ ζ †

√
2M1Eτ0s0

04×4√
2M1Eτ0s0 04×4 Wf dν + (−pxσy + pyσx )s0

⎞⎠ (E23)

and

h−KM
HF,OS(p) → h̃−KM

HF,OS(p) =
⎛⎝ 1

2U1 + ν(U1 + 6U2) − U1ζ ζ † 04×4√
2M1Eτ0s0

04×4

√
2M1Eτ0s0 Wf dν + (−pxσy − pyσx )s0

⎞⎠ , (E24)

which are convenient to use.
Since we focus on ±KM in this part, we only consider p = 0 for f †

+,ηKM+p, f †
−,ηKM+p and d†

η,p. To proceed, let us define the
following two unitary matrices:

Ũ+KM =
⎛⎝χ0,1 χ1,1

1
χ0,2 χ1,2

⎞⎠⊗ 14×4 and Ũ−KM =
⎛⎝ 1

χ0,1 χ1,1

χ0,2 χ1,2

⎞⎠⊗ 14×4 , (E25)

where (
ν(U1 + 6U2)

√
2M1E√

2M1E Wf dν

)
χγ = εγ χγ , (E26)

γ = 0, 1, χγ = (χγ ,1, χγ ,2) is real, and

εγ = ν(U1 + 6U2 + Wf d )

2
+ (−)γ

√[
ν(U1 + 6U2 − Wf d )

2

]2

+ 2M2
1E2 . (E27)

Then, we use ŨηKM to unitarily transformation h̃ηKM
HF,OS(0) to

Ũ †
ηKM

h̃ηKM
HF,OS(0)ŨηKM

=
⎛⎝ε014×4

ε114×4

ν(U1 + 6U2)14×4

⎞⎠− U1

⎛⎜⎝
( |χ0,1|2 χ∗

0,1χ1,1

χ∗
1,1χ0,1 |χ1,1|2

)
⊗ (

ζηζ
†
η − 1

2

) χ∗
0,1ζηζ

†
−η

χ∗
1,1ζηζ

†
−η

χ0,1ζ−ηζ
†
η χ1,1ζ−ηζ

†
η ζ−ηζ

†
−η − 1

2

⎞⎟⎠ . (E28)

We perform the transformation in Eq. (E28) because (i) it gives a block-diagonal term (i.e., the first term) that has the three blocks
with energies ε0, ε1 and ν(U1 + 6U2), and (ii) the gaps among ε0, ε1 and ν(U1 + 6U2) are of order |E | according to Eq. (E27),
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which is much larger than U1 in the high-E limit. Therefore, in Eq. (E28), the elements (of the second term) that couple different
blocks in the first term can only change the eigenvalues at the order of O(|U1/E |).

In the following, we will neglect all corrections to the energies that are of order O(|U1/E2|).
Then, we only need to consider the following Hamiltonian:

Ũ †
ηKM

h̃ηKM
HF,OS(0)ŨηKM

≈

⎛⎜⎝ε014×4 − U1|χ0,1|2
(
ζηζ

†
η − 1

2

)
ε114×4 − U1|χ1,1|2

(
ζηζ

†
η − 1

2

)
ν(U1 + 6U2)14×4 − U1

(
ζ−ηζ

†
−η − 1

2

)
⎞⎟⎠ . (E29)

Recall that ε1 < ν(U1 + 6U2) < ε0 and the gaps between them are of order O(|E |), which is much larger than U1. Then, based
on the expression of the chemical potential in Eq. (E19), the ε0 block should be fully empty, while the ε1 block should be fully
occupied. Eventually, we know that the occupied states of Eq. (E29) are all eigenstates of

[ε1 − ν(U1 + 6U2)]14×4 − U1|χ1,1|2
(
ζηζ

†
η − 1

2

)
for both η = ±, (E30)

and all negative-energy states of

−U1
(
ζηζ

†
η − 1

2

)
for both η = ±. (E31)

We have subtracted the chemical potential in Eqs. (E30) and (E31) compared to the corresponding block in Eq. (E29). We label
the total energy of all those occupied states as E±KM .

We want to minimize E±KM . Recall that Eq. (E30) should be fully occupied for both η = ±. To express the remaining
contribution to E±KM , we use λi (i = 1, 2, . . . , 8) to label the eight eigenvalues of(

ζ+ζ
†
+

ζ−ζ
†
−

)
, (E32)

since all negative-energy states of Eq. (E31) are all negative-energy states of

−U1

[(
ζ+ζ

†
+

ζ−ζ
†
−

)
− 1

2

]
. (E33)

We choose λ1 � λ2 � · · · � λ8 without loss of generality, and choose n to be the largest integer that gives λn � 1/2. Then,
according to Eqs. (E30) and (E31), we have

E±KM = 8[ε1 − ν(U1 + 6U2)] − U1|χ1,1|2
∑

η

Tr

[
ζηζ

†
η − 1

2

]
− U1

n∑
i=1

(
λi − 1

2

)
+ O(|U1|2/|E |)

= 8[ε1 − ν(U1 + 6U2)] − U1|χ1,1|2ν − U1

n∑
i=1

(
λi − 1

2

)
+ O(|U1|2/|E |) , (E34)

where we have used ∑
η

Tr[ζηζ
†
η ] = Tr[ζ ζ †] = 4 + ν . (E35)

To proceed, let us derive the constraints on λi. First, as (
ζ+ζ

†
+

ζ−ζ
†
−

) is positive semi-definite, λi � 0. Second, λi � 1. To

see this, recall that ζ defined in Eq. (69) is a 8 × (4 + ν) matrix whose columns (ζ1, . . . , ζ4+ν) are orthonormal. Then, there
exists 4 − ν 8-component vectors, ζ̄1,...,ζ̄4−ν , such that ζ1, . . . , ζ4+ν and ζ̄1,...,ζ̄4−ν form an orthonormal basis of C8. Let us
define the ζ̄ = (ζ̄1 . . . ζ̄4−ν ) as a 8 × (4 − ν) matrix, whose columns are orthonormal and which satisfies ζ̄ †ζ = 0 and
ζ ζ † + ζ̄ ζ̄ † = 18×8. Then, we have(

ζ+ζ
†
+ ζ+ζ

†
−

ζ−ζ
†
+ ζ−ζ

†
−

)
+
(

ζ̄+ζ̄
†
+ ζ̄+ζ̄

†
−

ζ̄−ζ̄
†
+ ζ̄−ζ̄

†
−

)
= 18×8 ⇒ ζηζ

†
η + ζ̄ηζ̄

†
η = 14×4 . (E36)

Combined with the fact that ζ̄ηζ̄
†
η is also positive semidefinite, we can get λi � 1. Third,

8∑
i=1

λi =
∑

η

Tr[ζηζ
†
η ] = 4 + ν . (E37)

In sum, we know λi ∈ [0, 1] and
∑8

i=1 λi = 4 + ν.
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With the constraints on λi, we have
n∑

i=1

λi = 4 + ν � 4 + ν

2
. (E38)

To see this, we first consider n > 4 + ν, which gives

n∑
i=1

(
λi − 1

2

)
=

n∑
i=1

λi − n

2
�

8∑
i=1

λi − n

2
= 4 + ν − n

2
= 4 + ν

2
+ 4 + ν − n

2
<

4 + ν

2
. (E39)

For n < 4 + ν, we have
n∑

i=1

(
λi − 1

2

)
�

n∑
i=1

1

2
<

4 + ν

2
. (E40)

For n = 4 + ν, we have
n∑

i=1

(
λi − 1

2

)
=

n∑
i=1

λi − n

2
�

n∑
i=8

λi − n

2
= 4 + ν

2
. (E41)

Therefore we proved Eq. (E38) and we know the equality in Eq. (E38) only happens when n = 4 + ν.
Equations (E38) and (E34) give

E±KM � 8[ε1 − ν(U1 + 6U2)] − U1|χ1,1|2ν − U1
4 + ν

2
+ O(|U1|2/|E |) . (E42)

Then, we know that the lowest E±KM is achieved if and only if
∑n

i=1 λi = 4 + ν, which only appears for n = 4 + ν. Owing to∑8
i=1 λi = 4 + ν, we have

n∑
i=1

λi = 4 + ν

⇔
n∑

i=1

λi = 4 + ν and n = 4 + ν

⇔ λ1 = λ2 = · · · = λ4+ν = 1

⇔ λ1 = λ2 = · · · = λ4+ν = 1 and λ4+ν+1 = λ4+ν+2 = · · · = λ8 = 0 . (E43)

Therefore the lowest E±KM is achieved if and only if(
ζ+ζ

†
+

ζ−ζ
†
−

)
∼= diag(1, 1, . . . , 1︸ ︷︷ ︸

4+ν

, 0, 0, . . . , 0︸ ︷︷ ︸
4−ν

) , (E44)

where ∼= stands for matrix similarity defined by unitary transformations in U(8). Equation (E44) suggests that (ζ+ζ
†
+

ζ−ζ
†
−
) is a

projection matrix. Then, we know

Tr

[(
ζ+ζ

†
+

ζ−ζ
†
−

)(
ζ+ζ

†
+

ζ−ζ
†
−

)]
= Tr

[(
ζ+ζ

†
+

ζ−ζ
†
−

)]
= Tr[ζ ζ †] = Tr[ζ ζ †ζ ζ †] , (E45)

which results in

Tr[ζ+ζ
†
+ζ+ζ

†
+] + Tr[ζ−ζ

†
−ζ−ζ

†
−] = Tr[ζ+ζ

†
+ζ+ζ

†
+] + Tr[ζ−ζ

†
−ζ−ζ

†
−] + Tr[ζ+ζ

†
−ζ−ζ

†
+] + Tr[ζ−ζ

†
+ζ+ζ

†
−] , (E46)

which results in

Tr[ζ+ζ
†
−ζ−ζ

†
+] = 0 ⇒ ζ+ζ

†
− = 0 . (E47)

Combined with

ζ+ζ
†
− = 0 ⇒

(
ζ+ζ

†
+

ζ−ζ
†
−

)
= ζ ζ † ⇒

(
ζ+ζ

†
+

ζ−ζ
†
−

)
∼= diag(1, 1, . . . , 1︸ ︷︷ ︸

4+ν

, 0, 0, . . . , 0︸ ︷︷ ︸
4−ν

) , (E48)

we know ζ+ζ
†
− = 0 is equivalent to Eq. (E44). Therefore, in the high-E limit, the lowest E±KM is achieved if and only if ζ+ζ

†
− = 0

(i.e., the intervalley coherence is zero), if we neglect all corrections to the energies that are of order O(|U1/E2|).
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b. �M

Now let us turn to the �M point. The one-shot Hartree-Fock Hamiltonian at �M reads⎛⎝ 1
2U1 + ν(U1 + 6U2) − U1ζ ζ † γ̃18

γ̃18 νW1

νW3 + h�1�2

⎞⎠, (E49)

where γ̃ = γ + Bγ E2,

h�1�2 = M̃η0σxs0 − J

2

(
ηzσ0s0ζ ζ †ηzσ0s0 + η0σzs0ζ ζ †η0σzs0 − 18

)
, (E50)

and M̃ = M + BME2. Owing to

1

2
U1 + ν(U1 + 6U2) − U1ζ ζ † ∼=

((− 1
2U1 + ν(U1 + 6U2)

)
1(4+ν) (

1
2U1 + ν(U1 + 6U2)

)
1(4−ν)

)
, (E51)

the eigenvalues of (
1
2U1 + ν(U1 + 6U2) − U1ζ ζ † γ̃18

γ̃18 νW1

)
(E52)

does not depend on the ζ as long as ν is given. Therefore we will focus on h�1�2 .
Since we consider the high-E limit, we have |M̃| � J . Then, the energy difference between different states given by h�1�2

should be of order J , which is generally much smaller than the energy difference at ±KM which is of the order U1. Therefore we
should only focus on the states with lowest E±KM , i.e., states with zero intervalley coherence. In other words, the discussion at
±KM already suggests that only states without intervalley coherence are favored at large E .

Now we show that h�1�2 further picks out the favored high-E states among all states without intervalley coherence. Since we
now only care about the states without intervalley coherence (i.e., ζ+ζ

†
− = 0), we have

ζ ζ † =
(

ζ+ζ
†
+

ζ−ζ
†
−

)
. (E53)

In general, ζηζ
†
η has the following form:

ζηζ
†
η =

∑
μν∈{0,x,y,z}

(
yη

)
μν

σμsν , (E54)

where (yη )μν are the real coefficients. Owing to the spin-charge U(2) symmetries in each valley, namely, U(2) × U(2), we
can always first rotate

∑
ν∈{0,x,y,z}(yη )zνσzsν to

∑
ν∈{0,z}(yη )zνσzsν , and then rotate

∑
ν∈{0,x,y,z}(yη )0νσ0sν to

∑
ν∈{0,x,z}(yη )0νσ0sν .

Therefore we have

(yη )zx = (yη )zy = (yη )0y = 0 (E55)

up to U(2) × U(2). With this observation, we have the following expression:

ζηζ
†
η = a0,η + aησ0sz + cησ0sx + b2−η + b3−η

2
σzs0 + b2−η − b3−η

2
σzsz +

∑
μ∈{0,z},ν∈{0,x,y,z}

(yη )μνσμsν (E56)

up to U(2) × U(2). Then,

h�1�2 =
(

h̃+
h̃−

)
(E57)

up to U(2) × U(2), where

h̃η = M̃σxs0 − J

[
a0,η + aησ0sz + cησ0sx + b2−η + b3−η

2
σzs0 + b2−η − b3−η

2
σzsz

]
+ J

2
. (E58)

According to Eq. (E49), the eigenstates of h�1�2 with energies lower than ν(U1 + 6U2 − W3) are occupied. Before proceeding,
we list some useful constraints derived from ζ ζ † being a projection matrix of rank 4 + ν. First, ζηζ

†
η ζηζ

†
η = ζηζ

†
η gives

a0,η = mη

4
, a2

0,η + a2
η + c2

η + b2
2−η + b2

3−η

2
+

∑
μ∈{0,z},ν∈{0,x,y,z}

(yη )2
μν = mη

4
, (E59)
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where mη = Tr[ζηζ
†
η ] ∈ Z and m+ + m− = 4 + ν. Then, owing to the fact that the diagonal elements of ζηζ

†
η are in [0,1], we

have

a0,η + aη + b2−η, a0,η + aη − b2−η, a0,η − aη + b3−η, a0,η − aη − b3−η ∈ [0, 1]

⇒
{

aη + b2−η ∈ [− mη

4 , 1 − mη

4

]
& aη − b2−η ∈ [− mη

4 , 1 − mη

4

]
−aη + b3−η ∈ [− mη

4 , 1 − mη

4

]
& − aη − b3−η ∈ [− mη

4 , 1 − mη

4

]
⇒
{

aη ∈ [− mη

4 , 1 − mη

4

]
& ± b2−η ∈ [− mη

4 − aη, 1 − mη

4 − aη

]
aη ∈ [− 1 + mη

4 ,
mη

4

]
& ± b3−η ∈ [− mη

4 + aη, 1 − mη

4 + aη

]
⇒ |aη| ∈

[
0, min

(mη

4
, 1 − mη

4

)]
& |b2−η| ∈

[
0, min

(mη

4
+ aη, 1 − mη

4
− aη

)]
& |b3−η|

∈
[
0, min

(mη

4
− aη, 1 − mη

4
+ aη

)]
. (E60)

Then, since we only care about ν ∈ {−4,−3,−2,−1, 0}, we have

|aη| = |b2−η| = |b3−η| = 0, for mη = 0;

|aη| ∈
[
0,

mη

4

]
, |b2−η| ∈

[
0,

mη

4
+ aη

]
, |b3−η| ∈

[
0,

mη

4
− aη

]
, for mη = 1;

|aη| ∈
[

0,
1

2

]
, |b2−η| ∈

[
0,

1

2
− |aη|

]
, |b3−η| ∈

[
0,

1

2
− |aη|

]
, for mη = 2;

|aη| ∈
[
0, 1 − mη

4

]
, |b2−η| ∈

[
0, 1 − mη

4
− aη

]
, |b3−η| ∈

[
0, 1 − mη

4
+ aη

]
, for mη = 3;

|aη| = |b2−η| = |b3−η| = 0 , for mη = 4 , (E61)

which leads to

b2
2−η + b2

3−η � min
(mη

4
, 1 − mη

4

)
. (E62)

In sum, the constraints that we will use are summarized as

a0,η = mη

4
, mη ∈ Z�0 , m+ + m− = 4 + ν;

a2
0,η + a2

η + c2
η + b2

2−η + b2
3−η

2
+

∑
μ∈{0,z},ν∈{0,x,y,z}

(yη )2
μν = mη

4
;

|aη| ∈
[
0, min

(mη

4
, 1 − mη

4

)]
, |b2−η| ∈

[
0, min

(mη

4
+ aη, 1 − mη

4
− aη

)]
,

|b3−η| ∈
[
0, min

(mη

4
− aη, 1 − mη

4
+ aη

)]
; b2

2−η + b2
3−η � min

(mη

4
, 1 − mη

4

)
. (E63)

We label the four eigenvalues of h̃η as E�M
η,1 � E�M

η,2 � E�M
η,3 � E�M

η,4 . Owing to |M̃| � J , we can solve the eigenvalues

perturbatively to O(M−2
J ), where MJ = |M̃/J|. To do so, we use the following unitary matrix:

Ũη = 1√
2

(
1 1
1 −1

)
⊗ s0 , (E64)

Ũ †
η

h̃η

J
Ũη = 2 − mη

4
+

⎛⎜⎜⎝−MJ − aηsz − cηsx

(−b2−η

−b3−η

)
(−b2−η

−b3−η

)
MJ − aηsz − cηsx

⎞⎟⎟⎠ , (E65)

where we used the fact that M̃ < 0 and J > 0. Then, we can project the off-diagonal b2−η and b3−η terms to the diagonal block,

and get two effective Hamiltonians from Ũ †
η

h̃η

J Ũη as

2 − mη

4
± MJ − aηsz − cηsx ± 1

2MJ

(−b2−η

−b3−η

)2

+ O
(
M−2

J

)
(E66)
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leading to

E�M
η,i /J = 2 − mη

4
+ (−1)�i/2�

[
MJ + 1

4

(
b2

2−η + b2
3−η

)
M−1

J

]
+ (−1)i

[√
a2

η + c2
η + O

(
M−1

J

)]+ O
(
M−2

J

)
, (E67)

where i = 1, 2, 3, 4 and �i/2� is the smallest interger that is no smaller than i/2. Since we have |M̃| � |ν(U1 + 6U2 − W3)| in
the high-E limit, E�M

η,i with i = 1, 2 are the only occupied levels, leading to

E�M /J = −4MJ − 1
2

(
b2

1 + b2
2 + b2

3 + b2
4

)
M−1

J + Eν,�M /J + O
(
M−2

J

)
, (E68)

where Eν=0,�M contains the other contribution that does not rely on ζ as long as ν is fixed. To lower E�M , we just need to
maximize b2

1 + b2
2 + b2

3 + b2
4. In the following, we will do it for ν = 0,−1,−2, separately.

For ν = 0, we have three cases distinguished by the values of m±, i.e., there exists η0 ∈ {+,−} such that (mη0 , m−η0 ) =
(4, 0), (3, 1), (2, 2), which respectively leads to∑

η

min
(mη

4
, 1 − mη

4

)
= 0,

1

2
, 1 . (E69)

Owing to Eq. (E63), we then have

E�M /J � −4MJ − 1
2 M−1

J + Eν=0,�M /J + O
(
M−2

J

)
. (E70)

Then, by exploiting Eq. (E63),

E�M /J = −4MJ − 1

2
M−1

J + Eν=0,�M /J + O
(
M−2

J

)
, i.e., minimizing E�M for ν = 0 states without intervalley coherence

⇔
{

m+ = m− = 2
b2

1 + b2
2 + b2

3 + b2
4 = 1

⇔
{

m+ = m− = 2
b2

1 + b2
2 = b2

3 + b2
4 = 1

2

⇔
⎧⎨⎩

m+ = m− = 2
|b1| = |b2| = |b3| = |b4| = 1

2
a2

η + c2
η +∑

μ∈{0,z},ν∈{0,x,y,z}(yη )2
μν = 0 ∀η ∈ {+,−}

. (E71)

Then, combined with Eqs. (E63) and (E54), it means that E�M is minimized if and only if ζ ζ † is [up to U(2) × U(2)] spin-
diagonal with each of the 4 valley-spin blocks being 1

2 (1 ± σz ).
For ν = −1, we have two cases distinguished by the values of m±, i.e., there exists η0 ∈ {+,−} such that (mη0 , m−η0 ) =

(3, 0), (2, 1), which respectively leads to ∑
η

min
(mη

4
, 1 − mη

4

)
= 1

4
,

3

4
. (E72)

Owing to Eq. (E63), we then have

E�M /J � −4MJ − 3
8 M−1

J + Eν=−1,�M /J + O
(
M−2

J

)
. (E73)

Then, by exploiting Eq. (E63),

E�M /J = −4MJ − 3

8
M−1

J + Eν=0,�M /J + O
(
M−2

J

)
, i.e., minimizing E�M for ν = −1 states without intervalley coherence

⇔
{

mη0 = 2, m−η0 = 1
b2

1 + b2
2 + b2

3 + b2
4 = 3

4

⇔
{

mη0 = 2, m−η0 = 1
b2

2−η0
+ b2

3−η0
= 1

2 , b2
2+η0

+ b2
3+η0

= 1
4

⇔
{

mη0 = 2 , |b2−η0 | = |b3−η0 | = 1
2 , a2

η0
+ c2

η0
+∑

μ∈{0,z},ν∈{0,x,y,z}(yη0 )2
μν = 0

m−η0 = 1 , |a−η0 | ∈ [0, 1
4 ] , 1

4 � ( 1
4 + aη0 )2 + ( 1

4 − a−η0 )2 , b2
2+η0

+ b2
3+η0

= 1
4

⇔
{

mη0 = 2 , |b2−η0 | = |b3−η0 | = 1
2 , a2

η0
+ c2

η0
+∑

μ∈{0,z},ν∈{0,x,y,z}(yη0 )2
μν = 0

m−η0 = 1 , a−η0 = ± 1
4 , |b2−η0 | = a−η0 + 1

4 , |b3−η0 | = −a−η0 + 1
4 , c2

−η0
+∑

μ∈{0,z},ν∈{0,x,y,z}(y−η0 )2
μν = 0

.

(E74)

Then, combined with Eqs. (E63) and (E54), it means that E�M is minimized if and only if ζ ζ † is [up to U(2) × U(2)] spin-
diagonal with 1 valley-spin block being zero and each of the remaining three valley-spin blocks being 1

2 (1 ± σz ).
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For ν = −2, we have two cases distinguished by the values of m±, i.e., there exists η0 ∈ {+,−} such that (mη0 , m−η0 ) =
(2, 0), (1, 1), which both leads to ∑

η

min
(mη

4
, 1 − mη

4

)
= 1

2
. (E75)

Owing to Eq. (E63), we then have

E�M /J � −4MJ − 1
4 M−1

J + Eν=−2,�M /J + O
(
M−2

J

)
. (E76)

Then, by combining Eq. (E63) with the discussions for ν = 0 and ν = −1, we can get that E�M is minimized if and only if ζ ζ †

is [up to U(2) × U(2)] spin-diagonal with two valley-spin blocks being zero and each of the remaining two valley-spin blocks
being 1

2 (1 ± σz ).
Therefore we obtain the statement that for states without intervalley coherence, E�M is the lowest if and only of ζ ζ † [up to

U(2) × U(2)] has a spin-valley diagonal form with 4 + ν blocks being (σ0 ± σz )/2 and 4 − ν blocks being zero.

c. In sum

Let us summarize the whole procedure. In the high-E limit and given ν ∈ {0,−1,−2}, we require the ground states to first
minimize the total energy of the occupied levels of Eq. (E29), which make them have zero intervalley-coherence, and then
minimize the total energy of the occupied levels of Eq. (E49). Then, we arrive at the proposition 1.

We numerate all initial states that satisfy proposition 1 for ν = 0,−1,−2. All the states we found are [up to the symmetries
of the total interacting Hamiltonian Eq. (32)] included in Appendix D 2.

Explicitly, at ν = 0, the states that satisfy proposition 1 are |VHν=0
0 〉, |Chernν=0

0 〉, |half-Chernν=0
0 〉, |C2T -invariantν=0

0 〉 and
their symmetry-related states.

At ν = −1, the states that satisfy proposition 1 are |PVP1,ν=−1
0 〉, |PVP2,ν=−1

0 〉 and |PVP3,ν=−1
0 〉 and their symmetry-related

states.
At ν = −2, the states that satisfy proposition 1 are |VP1,ν=−2

0 〉, |VP2,ν=−2
0 〉, |valley-unpolarized1,ν=−2

0 〉,
|valley-unpolarized2,ν=−2

0 〉 and their symmetry-related states.
According to Sec. IV, these inital states, after performing the self-consistent calculations, give the high-E low-energy states

with very similar energies (similar for a fixed ν).

3. Simple rule for high-E states: E = 300 meV in EUS

(Recall that EUS is the unit system in which Å is the length unit and meV is the energy unit, as discussed at the beginning of
Sec. II.)

In Appendix E 2, we analytically derive proposition 1 by looking at ±KM and �M in the high-E limit, i.e., assuming an
infinitely large E . Furthermore, we assume μ = ν(U1 + 6U2). However, as shown in Fig. 1, we can only claim the validity of the
f -c-d model in E ∈ [0, 300 meV] (EUS). Therefore, in this part, we will discuss the validity of Appendix E 2 for E = 300 meV
(EUS).

First, we note that |M̃| � |ν(U1 + 6U2 − W3)| need to hold in order to use Eq. (E68). For E = 300 meV (EUS), we have |M̃| ≈
0.14. However, for ν = −1, we have |ν(U1 + 6U2 − W3)| ≈ 0.12, which is close to |M̃|; for ν = −2, we have |ν(U1 + 6U2 −
W3)| ≈ 0.24, which is larger than |M̃|. On the other hand, the same issue does not occur for ν = 0 since |ν(U1 + 6U2 − W3)| = 0.
Therefore the simplifications in Appendix E 2 are not all valid for ν = −1,−2.

Now let us focus on ν = 0, for which μ = ν(U1 + 6U2) = 0 is exactly correct. We discuss ±KM first. We have εγ =
(−)γ |√2M1E | and χγ = 1√

2
(1, (−)γ sgn(M1E )) according to Eq. (E27). Then, Eq. (E28) becomes

Ũ †
ηKM

h̃ηKM
HF,OS(0)ŨηKM =

⎛⎝ε014×4

ε114×4

014×4

⎞⎠− U1

⎛⎜⎜⎝
(

1
2

1
2

1
2

1
2

)
⊗ (

ζηζ
†
η − 1

2

) 1√
2
ζηζ

†
−η

1√
2
ζηζ

†
−η

1√
2
ζ−ηζ

†
η

1√
2
ζ−ηζ

†
η ζ−ηζ

†
−η − 1

2

⎞⎟⎟⎠ . (E77)

Since Pii ∈ [0, 1] and |Pi �= j | ∈ [0, 1
2 ] for any hermitian projectoin matrix P, the elements that couple different ε014×4, ε114×4

and 014×4 blocks have amplitudes no larger than 1
2
√

2
U1, while the gaps among those blocks are no smaller than |√2M1E |. The

energy contributions of the elements that couple different ε014×4, ε114×4 and 014×4 blocks are of the order | U1
4M1E |2 ≈ 0.3, which

can be neglected. Then, it is legitimate to only consider the Eq. (E29), which eventually leads to the fact that only states without
intervalley coherent should be considered.

Now turn to �M . In Eq. (E67), the terms that we neglect compared to the largest-order term are of order M−3
J ≈ 0.29, which

is also reasonable. Then, the later derivation based on Eq. (E67) in Appendix E 2 should all be valid, leading to proposition 1.
Therefore the derivation in Appendix E 2 should be valid for ν = 0 even if E = 300 meV (EUS).
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TABLE III. This table shows the energies of the occupied levels of the one-shot Hamiltonian at ±KM and �M for the initial states in
Appendix D 2 at ν = 0 and E = 300 meV (EUS). The first column specifies the initial states. The second, third, and fourth columns specifies
the energies of the occupied levels of the one-shot Hamiltonian at �M , KM , and −KM , respectively. The fifth column shows the total of the
second, third, and fourth columns. The states with the lowest total are the lowest four, which are the high-E ground states found in the numerical
calculations described in Appendix D.

Initial States �M KM −KM Total

|K-IVCν=0
0 〉 −1.30093 −1.15152 −1.15152 −3.60397

|IVCν=0
0 〉 −1.27088 −1.15152 −1.15152 −3.57392

|VPν=0
0 〉 −1.27088 −1.32885 −1.32885 −3.92858

|PVP1,ν=0
0 〉 −1.28591 −1.32885 −1.32885 −3.9436

|PVP2,ν=0
0 〉 −1.28591 −1.32885 −1.32885 −3.9436

|VHν=0
0 〉 −1.30093 −1.32885 −1.32885 −3.95863

|Chernν=0
0 〉 −1.30093 −1.32885 −1.32885 −3.95863

|half-Chernν=0
0 〉 −1.30093 −1.32885 −1.32885 −3.95863

|C2T -invariantν=0
0 〉 −1.30093 −1.32885 −1.32885 −3.95863

The numerical evidence for the validity for ν = 0 and E = 300 meV (EUS) is that if we only compare the energies of the
occupied levels of the one-shot Hamiltonian at ±KM and �M for the initial states in Appendix D 2 at ν = 0 and E = 300 meV
(EUS), we can get the right ground states, as shown in Table III.

4. One-shot Hartree-Fock energies for high-E states

The competing energies of the high-E Hartee-Fock ground states with fixed ν can also be understood analytically at one-shot
level. At ν = 0, the one-shot Hartree-Fock Hamiltonains for different high-E initial states are related with each other:

HVH,OS = HVH,OS
+,↑ + HVH,OS

+,↓ + HVH,OS
−,↑ + HVH,OS

−,↓ − EOS
0 , (E78)

HChern,OS = HVH,OS
+,↑ + HVH,OS

+,↓ + C2T HVH,OS
−,↑ (C2T )−1 + C2T HVH,OS

−,↓ (C2T )−1 − EOS
0 , (E79)

Hhalf-Chern,OS = HVH,OS
+,↑ + HVH,OS

+,↓ + C2T HVH,OS
−,↑ (C2T )−1 + HVH,OS

−,↓ − EOS
0 , (E80)

HC2T -invaraint,OS = C2T HVH,OS
+,↑ (C2T )−1 + HVH,OS

+,↓ + C2T HVH,OS
−,↑ (C2T )−1 + HVH,OS

−,↓ − EOS
0 , (E81)

where

HVH,OS
η,s = H0,η,s +

(
−1

2
U1

)∑
RM

f †
η,RM ,sτz fη,RM ,s +

(
−J

2

) �c∑
k

c†
η,k,�1�2,s

τzcη,k,�1�2,s , (E82)

H0,η,s is the spin-s part of H0,η which is specified in Eq. (54), and T is the spinless time-reversal symmetry.
At ν = −1, the one-shot Hartree-Fock Hamiltonians for different high-E initial states are related:

HPVP1,OS = HPVP1,OS
+,↑ + HPVP1,OS

+,↓ + HPVP1,OS
−,↑ + HPVP1,OS

−,↓ − EOS
0 , (E83)

HPVP2,OS = C2T HPVP1,OS
+,↑ (C2T )−1 + C2T HPVP1,OS

+,↓ (C2T )−1 + HPVP1,OS
−,↑ + HPVP1,OS

−,↓ − EOS
0 , (E84)

HPVP3,OS = C2T HPVP1,OS
+,↑ (C2T )−1 + HPVP1,OS

+,↓ + HPVP1,OS
−,↑ + HPVP1,OS

−,↓ − EOS
0 , (E85)

where

HPVP1,OS
+,↑ = H0,+,↑ +

∑
RM

f †
+,RM ,↑

(
−1

2
U1 − 6U2 − 1

2
U1 + 1

2
U1τz

)
f+,RM ,↑ + (−W1)

�c∑
k

c†
+,k,�3,↑τzc+,k,�3,↑

+
�c∑
k

c†
+,k,�1�2,↑

(
−W3 + J

2
τz

)
c+,k,�1�2,↑ + (−Wf d )

�d∑
p

d†
+,p,↑d+,p,↑ , (E86)

HPVP1,OS
+,↓ = H0,+,↓ +

∑
RM

f †
+,RM ,↓

(
−1

2
U1 − 6U2 − 1

2
U1 + 1

2
U1τz

)
f+,RM ,↓ + (−W1)

�c∑
k

c†
+,k,�3,↓τzc+,k,�3,↓
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+
�c∑
k

c†
+,k,�1�2,↓

(
−W3 + J

2
τz

)
c+,k,�1�2,↓ + (−Wf d )

�d∑
p

d†
+,p,↓d+,p,↓ , (E87)

HPVP1,OS
−,↑ = H0,−,↑ +

∑
RM

f †
−,RM ,↑

(
−1

2
U1 − 6U2

)
f−,RM ,↑ + (−W1)

�c∑
k

c†
−,k,�3,↑τzc−,k,�3,↑

+
�c∑
k

c†
−,k,�1�2,↑

(
−W3 + J

2

)
c−,k,�1�2,↑ + (−Wf d )

�d∑
p

d†
−,p,↑d−,p,↑ , (E88)

and

HPVP1,OS
−,↓ = H0,−,↓ +

∑
RM

f †
−,RM ,↓

(
−1

2
U1 − 6U2 − 1

2
U1 − 1

2
U1τz

)
f−,RM ,↓ + (−W1)

�c∑
k

c†
−,k,�3,↓τzc−,k,�3,↓

+
�c∑
k

c†
−,k,�1�2,↓

(
−W3 − J

2
τz

)
c−,k,�1�2,↓ + (−Wf d )

�d∑
p

d†
−,p,↓d−,p,↓ . (E89)

At ν = −2, the one-shot Hartree-Fock Hamiltonains for different high-E initial states are related:

HVP1,OS = HVP1,OS
+,↑ + HVP1,OS

+,↓ + HVP1,OS
−,↑ + HVP1,OS

−,↓ − EOS
0 , (E90)

HVP2,OS = C2T HVP1,OS
+,↑ (C2T )−1 + HVP1,OS

+,↓ + HVP1,OS
−,↑ + HVP1,OS

−,↓ − EOS
0 , (E91)

HVUP1,OS = C2T HVP1,OS
+,↑ (C2T )−1 + T HVP1,OS

−,↓ T −1 + T HVP1,OS
+,↑ T −1 + HVP1,OS

−,↓ − EOS
0 , (E92)

HVUP2,OS = C2T HVP1,OS
+,↑ (C2T )−1 + T HVP1,OS

−,↓ T −1 + HVP1,OS
−,↑ + C2HVP1,OS

+,↓ C−1
2 − EOS

0 , (E93)

where

HVP1,OS
+,↑ = H0,+,↑ +

∑
RM

f †
+,RM ,↑

(
−3

2
U1 − 12U2 − 1

2
U1 + 1

2
U1τz

)
f+,RM ,↑ + (−2W1)

�c∑
k

c†
+,k,�3,↑τzc+,k,�3,↑

+
�c∑
k

c†
+,k,�1�2,↑

(
−2W3 + J

2
τz

)
c+,k,�1�2,↑ + (−2Wf d )

�d∑
p

d†
+,p,↑d+,p,↑ , (E94)

HVP1,OS
+,↓ = H0,+,↓ +

∑
RM

f †
+,RM ,↓

(
−3

2
U1 − 12U2 − 1

2
U1 − 1

2
U1τz

)
f+,RM ,↓ + (−2W1)

�c∑
k

c†
+,k,�3,↓τzc+,k,�3,↓

+
�c∑
k

c†
+,k,�1�2,↓

(
−2W3 − J

2
τz

)
c+,k,�1�2,↓ + (−2Wf d )

�d∑
p

d†
+,p,↓d+,p,↓ , (E95)

HVP1,OS
−,↑ = H0,−,↑ +

∑
RM

f †
−,RM ,↑

(
−3

2
U1 − 12U2

)
f−,RM ,↑ + (−2W1)

�c∑
k

c†
−,k,�3,↑τzc−,k,�3,↑

+
�c∑
k

c†
−,k,�1�2,↑

(
−2W3 + J

2

)
c−,k,�1�2,↑ + (−2Wf d )

�d∑
p

d†
−,p,↑d−,p,↑ , (E96)

and

HVP1,OS
−,↓ = H0,−,↓ +

∑
RM

f †
−,RM ,↓

(
−3

2
U1 − 12U2

)
f−,RM ,↓ + (−2W1)

�c∑
k

c†
−,k,�3,↓τzc−,k,�3,↓

+
�c∑
k

c†
−,k,�1�2,↓

(
−2W3 + J

2

)
c−,k,�1�2,↓ + (−2Wf d )

�d∑
p

d†
−,p,↓d−,p,↓ . (E97)

Combined with the fact that the dependence of EOS
0 on the states is only through the filling ν, all the listed high-E initial states

with same ν have exactly the same Hartree-Fock energies. The exact degeneracy will be broken in the self-consistent calculation.
It is because the density matrix obtained from the self-consistent calculation will have nonzero O f c [defined in Eq. (D5)], while
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O f c = 0 for the initial states shown in Eq. (E1). To be concrete, let us consider the VH state and the Chern state for ν = 0, whose
exact same energies at one-shot level require

HVH,OS
+,↑ + HVH,OS

+,↓ = HChern,OS
+,↑ + HChern,OS

+,↓ (E98)

according to Eq. (E79), which further requires

Tr

[
O f c

VH

(
08×8

ηzτ0s0

)]
= Tr

[
O f c

Chern

(
08×8

ηzτ0s0

)]
(E99)

according to Eq. (D13). As Tr[O f c
VH( 08×8

ηzτ0s0
)] is not necessarily equal to Tr[O f c

Chern( 08×8
ηzτ0s0

)] beyond one-shot level, the energies of the
VH state and the Chern state for ν = 0 are not necessarily the same in the self-consistent calculation. However, the self-consistent
calculation shows that the degeneracy breaking effect is very small.

5. Treating E as a perturbation at ν = 0

In this part, we will treat E perturbatively at ν = 0 in order to analytically answer two questions: (i) why there is a phase
transition as we gradually increase E? (ii) and what are the Chern numbers for the high-E ground states?

Let us discuss (i) first. To answer this question, we again try to develop effective models at ±KM and at �M . Since we consider
E as a perturbation, the low-energy modes at ±KM should be the d modes, since the f modes have energies ± 1

2U1 at ηKM . Then,
based on Eqs. (E23) and (E24), we can project E to the d modes via the second-order perturbation and get the following effective
Hamiltonian at ηKM :

8M2
1E2

U1

(
ζηζ

†
η − 1

2
14

)
− pxσys0 + ηpyσxs0 . (E100)

The effective energy at ±KM is given by occupying the lowest 4 bands in each valley. Then, by using Eqs. (D26) and (D30), the
effective energy at ±KM reads

EK-IVC,ν=0
±KM

= −4
�d∑
p

|p| for the K-IVC state,

ECh,ν=0
±KM

= −4
�d∑
p

√
|p|2 + 16M4

1E4

U 2
1

for the Chern state. (E101)

We mention that our Eq. (E100) is similar to Eq. (29) in Ref. [156], though Ref. [156] was only able to derive their Eq. (29) for
Chern-diagonal states.

On the other hand, around �M , the matrix form of the one-shot Hartree-Fock Hamiltonian in the basis ( f †
p , c†

p,�3
, c†

p,�1�2
) reads

hOS
�M

(k) =
⎛⎝ 1

2U1 − U1ζ ζ † γ̃ + v′
�(pxηzτxτ0 + pyη0τys0)

H.c. 018×8 v(kxηzτ0s0 + kyiη0τzs0)
H.c. M̃η0τxs0 − J

2 [ηzτ0s0ζ ζ †ηzτ0s0 + η0τzs0ζ ζ †η0τzs0 − η0τ0s0]

⎞⎠ ,

(E102)

where f †
k = (. . . , f †

η,k,α,s, . . . ), c†
p,�3

= (. . . , c†
η,p,β,s, . . . ) with β = 1, 2, c†

p,�1�2
= (. . . , c†

η,p,β,s, . . . ) with β = 3, 4, γ̃ = γ +
Bγ E2, M̃ = M + BME2, and we neglect v′′

� and Bv′′E2 since v′′
� is small and we consider a perturbative E . Note that

U (θ )hOS
�M

(k)U †(θ ) = hOS
�M

(k)|ζ→UĀ(θ )ζ when v′
� = 0 , (E103)

where U (θ ) is a chiral U(4) operation [125] with the form

U (θ ) =
⎛⎝UĀ(θ )

UĀ(θ )
UB̄(θ )

⎞⎠ with UĀ(θ ) = exp

⎡⎣i
∑
μν

θμνĀμν

⎤⎦ and UB̄(θ ) = exp

⎡⎣i
∑
μν

θμνB̄μν

⎤⎦ , (E104)

and

Āμν = (η0τ0sν, ηxτxsν, ηyτxsν, ηzτ0sν )μ,

B̄μν = (η0τ0sν,−ηxτxsν,−ηyτxsν, ηzτ0sν )μ . (E105)

Since eiηyτxs0
π
4 ζK-IVC,ν=0 = ζVH,ν=0 derived from the initial states in Appendix D 2 and we know VH and Ch states have the same

energies at the one-shot level, the energy difference between Ch and K-IVC states around �M relies on v′
�. Then, we focus on(

1
2U1 − U1ζ ζ † γ̃ + v′

�(pxηzτxτ0 + pyη0τys0)
H.c. 018×8

)
. (E106)
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Filling the lowest eight bands would give the effective energy at �M , resulting in

EK-IVC,ν=0
�M

= −
�c∑
k

[√
U 2

1 + 16(|v′
� p| − |γ̃ |)2 +

√
U 2

1 + 16(|v′
� p| + |γ̃ |)2

]
for the K-IVC state,

ECh,ν=0
�M

= −
�c∑
k

∑
z=±

∣∣√U 2
1 + 16|v′

� p|2 + z
√

U 2
1 + 16γ̃ 2

∣∣ for the Chern state. (E107)

Then, we know EK-IVC,ν=0
�M

� ECh,ν=0
�M

, since√
a2 + (b − c)2+

√
a2 + (b + c)2 � 2

√
a2 + b2

= |
√

a2 + b2 −
√

a2 + c2| + |
√

a2 + b2 +
√

a2 + c2| for a > 0 and b � c � 0 (E108)

derived from

∂

∂c
(
√

a2 + (b − c)2 +
√

a2 + (b + c)2) =
√

1 − a2

a2 + (b + c)2
−
√

1 − a2

a2 + (b − c)2
> 0 ∀a > 0, b � c > 0 . (E109)

In sum, the total effective energy is

EK-IVC,ν=0
eff = EK-IVC,ν=0

�M
+ EK-IVC,ν=0

±KM
, ECh,ν=0

eff = ECh,ν=0
�M

+ ECh,ν=0
±KM

. (E110)

Clearly, at E = 0, we have EK-IVC,ν=0
eff < ECh,ν=0

eff since EK-IVC,ν=0
�M

< ECh,ν=0
�M

and EK-IVC,ν=0
±KM

= ECh,ν=0
±KM

. Moreover, at E =
Ec (≈294.816 meV in EUS) that satisfies γ + Bγ E2

c = 0, we have EK-IVC,ν=0
eff > ECh,ν=0

eff since EK-IVC,ν=0
�M

= ECh,ν=0
�M

and

EK-IVC,ν=0
±KM

> ECh,ν=0
±KM

, demonstrating the existence of the transition (as increasing E from E = 0 to E = Ec). Now we turn to
the question (ii). Before answering the question, let us first specify our convention for the Berry connection. Given a isolated
band with the cell-periodic part of its Bloch state being |uk〉, the Berry connection is defined as

A(k) = −i〈uk|∇k|uk〉 . (E111)

The berry curvature is just the curl of the Berry connection.
With the convention specified, let us answer the question (ii). As discussed in Appendix E 2, |VHν=0

0 〉, |Chernν=0
0 〉,

|half-Chernν=0
0 〉, |C2T -invariantν=0

0 〉 and their symmetry-related states are the ν = 0 states that are energetically favored at high
E . If we plot the Hartree-Fock band structures of |VHν=0

0 〉, |Chernν=0
0 〉, |half-Chernν=0

0 〉 and |C2T -invariantν=0
0 〉, we find that their

Hartree-Fock band structures remain gapped even for small E . Therefore we are allowed to use determine the Chern numbers
of |VHν=0

0 〉, |Chernν=0
0 〉, |half-Chernν=0

0 〉 and |C2T -invariantν=0
0 〉 at small E Since the one-shot Hartree-Fock Hamiltonians of

|VHν=0
0 〉, |Chernν=0

0 〉, |half-Chernν=0
0 〉 and |C2T -invariantν=0

0 〉 are related with each other, let us consider the VH state first.
Recall that the one-shot Hartree-Fock Hamiltonian of VH state is spin-valley diagonal as shown in Eq. (E78). Moreover, owing
to the U(2) × U(2) symmetry and TR symmetry of the VH state, we have

HVH,OS
+,↓ = HVH,OS

+,↑
∣∣
flipping spin

, HVH,OS
−,s = T HVH,OS

+,s T −1
, (E112)

where T is the spinless TR operation. Thus we only need to study the Chern number of HVH,OS
+,↑ at small E .

Since we are considering the small E , we can study the TBG part and the d modes separately. We first determine the Chern
number of the TBG part of HVH,OS

+,↑ , following Ref. [125]. The TBG part of HVH,OS
+,↑ has the following matrix form:⎛⎜⎜⎝

− 1
2U1τz γ + v′

�(pxτx + pyτy)

H.c. 012×2 v(kxτ0 + kyiτz )

H.c. M̃τx − J
2 τz

⎞⎟⎟⎠ (E113)

in the basis ( f †
p , c†

p,�3
, c†

p,�1�2
), where f †

k = (. . . , f †
η,k,α,s, . . . ), c†

p,�3
= (. . . , c†

η,p,β,s, . . . ) with β = 1, 2, and c†
p,�1�2

=
(. . . , c†

η,p,β,s, . . . ) with β = 3 and 4. By projecting the f modes to c modes via second order perturbation (which is allowed
since f modes have high energies (±U1/2) and are topologically trivial), we get(

2
U1

γ 2τz v(kxτ0 + kyiτz )

H.c. M̃τx − J
2 τz

)
, (E114)

where we have neglected the k2 term. Since the gap stays open as we tune ( 2
U1

γ 2,− J
2 , M ) to (m > 0,−m, 0) based on Tables I

and II, we can determine its Chern number by (
mτz v(kxτ0 + kyiτz )
H.c. −mτz

)
, (E115)

which gives Ch = 1 owing to v > 0.
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Now we turn to the d modes. Around KM , HVH,OS
+,↑ has the following matrix form:(

1
2U1σz M1(τ0 + iσz )E

M1(τ0 − iσz )E pxσx + pyσy

)
. (E116)

Again, by projecting the f modes to d modes via second order perturbation, we get

4

U1
M1E2σz + pxσx + pyσy , (E117)

giving Ch = −1/2. Therefore we have Ch = 1/2 for HVH,OS
+,↑ . Owing to the U(2) × U(2) symmetry and TR symmetry of the VH

state, we have

Ch = 1
2η for HVH,OS

η,s . (E118)

The Chern number is not an integer for HVH,OS
η,s because HVH,OS

η,s is built from three Dirac cones of at η valley. If such up
both valleys (and include the trivial high-energy completion), we should have well-defined interger Chern numbers. By using
the relations between different high-E states below Eq. (E78), we have

Ch = 1
2 + 1

2 − 1
2 − 1

2 = 0 for
∣∣VHν=0

0

〉
,

Ch = 1
2 + 1

2 + 1
2 + 1

2 = 2 for
∣∣Chernν=0

0

〉
,

Ch = 1
2 + 1

2 + 1
2 − 1

2 = 1 for
∣∣C2T -invariantν=0

0

〉
,

Ch = − 1
2 + 1

2 + 1
2 − 1

2 = 0 for
∣∣C2T -invariantν=0

0

〉
. (E119)

If we include the symmetry related states, we have

Ch = 0 for VH states,

Ch = ±2 for Chern states,

Ch = ±1 for half-Chern states,

Ch = 0 for C2T -invariant states . (E120)

APPENDIX F: LOCAL TR-ODD C2-even
U(2) × U(2)-INVARIANT PERTURBATION

ON HIGH-E STATES AT ν = 0

In this section, we present general symmetry arguments
on how local TR-odd and C2-even perturbations affect high-E
states at ν = 0 to the leading order. We also assume the local
perturbation to preserve U(2) × U(2) symmetry.

For the VH states, if we keep the tensor-product nature of
the states, we have the symmetry rep as

|VH〉 = (|VH, 1〉, |VH, 2〉) (F1)

with

C2|VH〉 = |VH〉σx, T |VH〉 = |VH〉, (F2)

leading to

〈VH|Hδ|VH〉 = 0. (F3)

For the Chern states, if we keep the tensor-product nature
of the states, we have the symmetry rep as

|Chern〉 = (|Chern, 1〉, |Chern, 2〉) (F4)

with

C2|Chern〉 = |Chern〉,
T |Chern〉 = |Chern〉σx , (F5)

leading to

〈Chern|Hδ|Chern〉 = bσz. (F6)

For the half Chern states, if we keep the tensor-product
nature of the states, we have the symmetry rep as

|half-Chern〉 = (|half-Chern, 1〉, |half-Chern, 2〉,
|half-Chern, 3〉, |half-Chern, 4〉) (F7)

with

C2|half-Chern〉 = |half-Chern〉τxσ0,

T |half-Chern〉 = |half-Chern〉τ0σx , (F8)

leading to

〈half-Chern|Hδ|half-Chern〉 = b1τ0σz + b2τxσz . (F9)

For the C2T -invariant states, if we keep the tensor-product
nature of the states, we have the symmetry rep as

|C2T -invariant〉 = (|C2T -invariant, 1〉, |C2T -invariant, 2〉
(F10)

with

C2|C2T -invariant〉 = |C2T -invariant〉σx,

T |C2T -invariant〉 = |C2T -invariant〉σx , (F11)
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leading to

〈C2T -invariant|Hδ|C2T -invariant〉 = 0 . (F12)

Here among the four types of states (i.e., VH, Chern, half-
Chern and C2T ), we neglect the mixing between different

types of states induced by Hδ , since it is exponentially small
due to the local nature of the perturbation Hδ . Moreover, the
off-diagonal terms in Eq. (F9) are exponentially small for the
same reason. As a result, we see that Hδ can shift the energy
of certain Chern states by −|b| energy, favoring it.
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