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Thermal bath effects in quantum quenches within quantum critical regimes
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We address the out-of-equilibrium dynamics arising from quantum-quench (QQ) protocols (instantaneous
changes of the Hamiltonian parameters) in many-body systems within their quantum critical regime and in
contact with (homogeneously coupled) thermal baths. We consider two classes of QQ protocols. In one of them,
the thermal bath is used to prepare the initial finite-temperature Gibbs state; then, after quenching, the thermal
bath is removed and the dynamics of the system is unitary. We also address a more complex QQ protocol where
the thermal bath is not removed after quenching, thus the quantum evolution is also driven by the interaction
with the bath, which may be described by appropriate master equations for the density matrix of the system,
where a further relevant time scale, or inverse decay rate, characterizes the system-bath coupling. Under these
QQ protocols, the critical system develops out-of-equilibrium scaling behaviors, which extend those for isolated
critical systems, by introducing further scaling variables proportional to the temperature of the thermal bath
and the decay rate of the system-bath interactions. These out-of-equilibrium scaling behaviors are checked by
analyzing QQ protocols within fermionic Kitaev wires, or equivalently quantum Ising chains, supplemented
with a particular modelization of thermal bath that guarantees the asymptotic thermalization within the Lindblad
master equation for the dynamics of open systems.
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I. INTRODUCTION

Thanks to the recent experimental progress in the real-
ization and control of the dynamics of quantum many-body
systems, see, e.g., Refs. [1,2], the out-of-equilibrium quantum
dynamics of many-body systems has become an important
theoretical issue. In particular, out-of-equilibrium phenomena
have been addressed within the critical regimes of many-body
systems at continuous quantum transitions (CQTs) [3–5],
where collective behaviors give rise to zero-temperature sin-
gularities in the equilibrium low-energy properties of the
system, and the universal critical behaviors are determined by
a limited number of relevant features, such as the global sym-
metry, the symmetry-breaking pattern, dimensionality, etc..
Within critical regimes and in the appropriate thermodynamic
or finite-size scaling (FSS) limits, one can achieve a com-
plete characterization of the complex dynamics of many-body
systems by controlling a limited number of renormalization-
group (RG) perturbations. The universal scaling behaviors at
CQTs extend beyond the equilibrium conditions [5]. Indeed
dynamic protocols entailing out-of-equilibrium evolutions de-
velop scaling behaviors as well, in the appropriate limits,
related to the universality class of the CQT. For example, out-
of-equilibrium scaling behaviors emerge when analyzing the
quantum evolutions arising from a quantum quench (QQ), see,
e.g., Refs. [5–11], or from slow changes of the Hamiltonian
parameters across the transition point, such as the protocols
associated with the so-called quantum Kibble-Zurek (KZ)
problem, see, e.g., Refs. [5,12–23].

These out-of-equilibrium issues at quantum transitions
have been mostly addressed within isolated many-body

systems, unitarily driven by their Hamiltonian and the
Schrödinger equation. In this paper, we extend such studies to
investigate how the interaction with a thermal bath, coupled
homogeneously to the system, affects the out-of-equilibrium
dynamics of many-body systems within the critical regime
of a zero-temperature quantum transition, such as that arising
from a QQ or a slow crossing of the quantum critical regime.

The role of the temperature within the equilibrium critical
behavior at a CQT is generally associated with one of the
relevant RG perturbations at the stable fixed point of the RG
flow controlling the quantum criticality [3–5,24]. Therefore
the quantum scaling behavior can be only observed in the
zero-temperature limit. More precisely, the quantum scaling
limit requires that the zero-temperature critical point is ap-
proached keeping the ratio T/� fixed, where � is the gap at
the quantum critical point, which is generally power-law sup-
pressed. For example, in the FSS limit the gap is suppressed as
� ∼ L−z at the critical point, where L is the size of the system
and z > 0 is the universal dynamic exponent associated with
universality class of the CQT. Within the equilibrium criti-
cal regime the temperature enters the asymptotic FSS laws
through a further dependence of the scaling functions on the
scaling variable � ≡ T Lz ∼ T/�.

The role of the temperature becomes less definite when
we consider out-of-equilibrium behaviors, because the tem-
perature of the system is an equilibrium concept. However,
one may consider the effects of thermal baths in contact
with the system during its out-of-equilibrium dynamics. The
main feature of a thermal bath is that it eventually drives
the system toward thermalization at its temperature T , in the
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large-time limit of the evolution of the system in contact with
the thermal bath. The thermalization process must somehow
introduce a further timescale τ in the problem, characterizing
the approach of the system to the thermal state when it is put
in contact with the thermal bath. Such timescale is expected
to play an inportant role in the out-of-equilibrium critical
dynamics of the system in contact with the thermal bath. In
this paper, we investigate these issues within the simplest dy-
namic protocols giving rise to out-of-equilibrium behaviors,
i.e., those entailing instantaneous QQs of the Hamiltonian
parameters starting from equilibrium thermal conditions.

A quench protocol is generally performed by suddenly
varying a parameter within a family of Hamiltonians, such as

Ĥ (w) = Ĥc + wĤp, (1)

where Ĥc and Ĥp are independent of the parameter w, and
[Ĥc, Ĥp] �= 0. In a standard QQ protocol for closed sys-
tems, one usually starts from the ground state |�0,wi〉 of
the Hamiltonian Ĥ (wi) associated with an initial value wi

of the parameter w, with corresponding density matrix ρi =
|�0,wi〉〈�0,wi|. At a given time, t = 0 say, the Hamilto-
nian parameter is suddenly changed from wi to w �= wi,
and the subsequent quantum evolution is supposed to be
unitarily driven by the Hamiltonian Ĥ (w), that is |�(t )〉 =
e−iĤ (w)t |�0,wi〉 (hereafter we set h̄ = 1). Several interesting
issues have been investigated within QQ dynamic protocols.
They include the long-time relaxation and the consequent
spreading of quantum correlations and entanglement, the
statistics of the work, localization effects due to the mu-
tual interplay of interactions and disorder, dynamical phase
transitions, the dynamic scaling close to quantum transitions,
effects of dissipation or of measurements due to interactions
with an environment (see, e.g., Refs. [5,9,25–78]).

To focus on the out-of-equilibrium dynamics close to a
quantum transition, we assume that the Hamiltonian Ĥc in
Eq. (1) is critical, thus w = wc = 0 represents a quantum
critical point. We recall that the critical behavior around the
CQT point wc = 0 is characterized by a diverging length scale
ξ ∼ |w|−ν of the quantum critical modes, and the power-
law suppression � ∼ ξ−z of the gap. The out-of-equilibrium
dynamics at CQTs develops scaling behaviors controlled by
the universality class of the quantum transition, for example,
when the Hamiltonian parameters are slowly varied across the
critical regime [5,21,23], and in the case of soft QQ protocols
when both the initial and final values of the quenching param-
eters are such to maintain the system within the critical regime
[5,9,59]. In particular, soft QQs require that the energy scale
of the QQ [i.e., the difference of the energy 〈�(t )|Ĥ (w)|�(t )〉
of the evolving state |�(t )〉 for t > 0 and the ground state of
Ĥ (w)] is sufficiently small, i.e., comparable with the energy
gap � ∼ L−z of the spectrum at the transition point in finite-
size systems.

To study the effects of a thermal bath in the out-of-
equilibrium behavior arising from a QQ within the critical
regime, we consider two protocols where the thermal baths
are involved in different ways.

(i) Within the first protocol the thermal bath is used to pre-
pare the system in a finite-temperature Gibbs state, described
by the thermal density matrix (hereafter we set the Boltzmann

constant kB = 1)

ρt (wi, T ) =
∑

n

e−En (wi )/T |�n,wi〉〈�n,wi|, (2)

where |�n,wi〉 are the eigenstates of Ĥ (wi). Then the quan-
tum evolution after the quench of the Hamiltonian parameters
at t = 0 is unitary and driven by the Hamiltonian Ĥ (w) only,
i.e., the thermal bath is removed during the quantum evolution
for t > 0. Therefore the evolution of the density matrix is
driven by the equation

∂tρ(t ) = −i[Ĥ (w), ρ(t )], ρ(t = 0) = ρt (wi, T ). (3)

(ii) In the second protocol, the starting point is the same,
i.e., the Gibbs state (2), but the thermal bath is not removed
after quenching. Therefore the out-of-equilibrium quantum
evolution for t > 0 is not unitary anymore, but it is also driven
by the interaction with the thermal bath. Under some condi-
tions, discussed in Refs. [5,79–84], the nonunitary evolution
arising from the thermal baths can be described by a Lindbald
master equation governing the time evolution of the density
matrix of the system, which can be written as

∂tρ = L[ρ] ≡ −i[Ĥ (w), ρ] + γ DT [ρ], (4)

where L is a Liouvillian superoperator, and DT is a dissipative
driving whose strength is controlled by the homogeneous cou-
pling γ , playing the role of the decay rate (inverse timescale)
associated with the interactions between the system and the
bath. The operator DT is assumed to be such that the Lindbald
master equation (4) drives the system toward an equilibrium
Gibbs state at temperature T in the large-time limit.

We argue that, for both types of protocols and suffi-
ciently small temperatures of the thermal baths, the out-of-
equilibrium time evolution within the critical regime develop
a nontrivial out-of-equilibrium FSS (OFSS) limit, with pe-
culiar scaling behaviors, similar to those arising for closed
systems. The effects of the thermal baths can be taken into
account by appropriate extensions of the out-of-equilibrium
zero-temperature scaling laws describing soft quantum QQs
within the critical regime of isolated systems, already put
forward by earlier works [5,9]. As a theoretical laboratory
to check our extended OFSS laws, we consider the quantum
Ising chain [4], or the equivalent fermionic Kitaev wire [85],
supplemented with a particular modelization of the thermal
bath that guarantees the asymptotic thermalization within the
Lindblad formulation of the dynamics of open systems with
quadratic Hamiltonians [84,86], such as the fermionic Kitaev
wire. In our study, we focus on fermionic Kitaev wires within
their quantum critical regime, where they develop notable
equilibrium and out-of-equilibrium scaling behaviors. We in-
vestigate the effects arising from the contact with thermal
baths, as described by the Lindblad master equation, and
identify the conditions under which they can be still casted
within an out-of-equilibrium scaling framework controlled by
the universality class of the CQT.

Our analyses are developed within FSS frameworks, which
generally simplify the study of the universal features of criti-
cal behaviors, with respect to studies in the thermodynamic
limit. In the FSS limit the general requirement of a large
length scale ξ of the critical correlations is not subject to
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further conditions on the system size L. It only requires that
ξ ∼ L, while critical behaviors in the thermodynamic limit
requires ξ � L. Therefore much larger systems are necessary
to probe analogous length scales ξ in the thermodynamic
limit. Equilibrium and out-of-equilibrium FSS behaviors are
often observed for systems of moderately large size, see, e.g.,
Refs. [5,9,57,87,88]. Thus FSS behaviors should be more
easily accessed by numerical computations and experiments
where the quantum dynamics can be monitored for a limited
number of particles or spins, such as experiments with quan-
tum simulators in laboratories, e.g., by means of trapped ions
[89,90], ultracold atoms [91,92], or superconducting qubits
[93,94].

The paper is organized as follows. In Sec. II, we present
the fermionic Kitaev wire, equivalent to the quantum Ising
chain, and the model of thermal bath that we use as theoretical
laboratory for our study; we also outline the QQ protocols
that we consider and define the observables to monitor the
quantum evolution after quenching. In Sec. III, we outline the
out-of-equilibrium scaling scenarios that are expected to be
developed under the dynamic QQ protocols considered, and
support them by numerical computations for the fermionic
Kitaev wires in contact with the thermalizing bath. Finally,
in Sec. IV, we summarize, draw our conclusions, and add
some remarks on the extension of this study to the dynamic
KZ protocols slowly crossing quantum critical regimes. The
Appendix reports some details on the numerical computations
for the QQ protocols within fermionic Kitaev wires in contact
with a thermal bath.

II. KITAEV FERMIONIC WIRES AND THERMAL BATHS

A. The fermionic Kitaev chain

We consider fermionic Kitaev wires of L sites with open
boundary conditions, whose quantum unitary dynamics is
driven by the Hamiltonian [85]

ĤK = −J
L−1∑
x=1

(ĉ†
x ĉx+1 + ĉ†

x ĉ†
x+1 + H.c.) − μ

L∑
x=1

n̂x, (5)

where ĉx is the fermionic annihilation operator associated
with the site x of the chain, n̂x ≡ ĉ†

x ĉx is the particle density
operator. In the following, we assume J as the energy scale,
thus we set J = 1.

The Hamiltonian (5) can be mapped into a quantum Ising
chain, by means of the Jordan-Wigner transformation, see,
e.g., Ref. [4]. The corresponding spin model is the quantum
Ising chain with open boundary conditions, i.e.,

ĤIs = −
L−1∑
x=1

σ̂ (1)
x σ̂

(1)
x+1 − g

L∑
x=1

σ̂ (3)
x , (6)

σ̂ (k)
x being the Pauli matrices and g = −μ/2. In the following,

we prefer to stick with the Kitaev quantum wire, because
the thermal baths and observables that we consider are best
defined within the fermionic model. However, the general
scaling scenarios that will emerge apply to both models.

The Kitaev model undergoes a CQT at μ = μc = −2
(corresponding to g = gc = 1 in the quantum Ising chain),
between a disordered quantum phase for μ < μc (correspond-

ing to g > 1) and an ordered quantum phase for |μ| < |μc|
(corresponding to |g| < 1). Thus we define

w = μ − μc = μ + 2, (7)

so that one can easily see the correspondence between the Ki-
taev Hamiltonian (5) and the generic one reported in Eq. (1),
i.e., Ĥc corresponds to the Hamiltonian (5) for μ = μc, and
Ĥp = −∑L

x=1 n̂x. The continuous transition at w = wc be-
longs to the two-dimensional Ising universality class [4,5],
characterized by the length-scale critical exponent ν = 1, re-
lated to the RG dimension yw = 1/ν = 1 of the Hamiltonian
parameter w. This implies that, approaching the critical point,
the length scale ξ of the critical quantum fluctuations diverges
as ξ ∼ |w|−ν . The dynamic exponent z = 1 associated with
the unitary quantum dynamics can be obtained from the power
law � ∼ ξ−z of the vanishing gap with increasing ξ . More-
over, the RG dimension of the fermionic operators ĉ j and ĉ†

j at
the CQT is yc = 1/2, and that of the particle density operator
n̂x is yn = 1 [4,5].

B. Modelization of the thermal bath

In our study, we consider a modelization of interaction with
a thermal bath within the Lindblad master equation (4), whose
asymptotic large-time behavior leads to a Gibbs density ma-
trix at a given finite temperature T . In particular, we consider
the proposal developed in Ref. [84] which applies to quantum
models described by quadratic Hamiltonians, such as that of
the fermionic Kitaev wires. This provides a relatively simple
modelization of a thermal bath leading to thermalization in
the large-time limit of the corresponding Lindblad master
equation for the density matrix of the system.

The Kitaev Hamiltonian (5) with open boundary conditions
can be diagonalized in the Nambu field space by a Bogoliubov
transformation, see, e.g., Refs. [84,95,96], so that we can
rewrite it as

ĤK =
L∑

k=1

ωk b̂†
k b̂k, (8)

where ωk are values of the spectrum of the Bogoliubov eigen-
operators b̂k (we are neglecting an irrelevant constant term).
Note that both ωk and b̂k depend on the Hamiltonian param-
eter μ. The relation between the fermionic operators ĉx and
the Bogoliubov eigenoperators b̂k can be generally written as
[84,95,96]

ĉx =
L∑

k=1

Axk b̂k + Bxk b̂†
k, (9)

where A and B are appropriate L × L matrices depending on
μ. Following Refs. [84,86], we write the dissipator DT [ρ] in
the Lindblad master equation (4) in terms of the Bogoliubov
eigenoperators as

DT [ρ] =
∑

k

[1 − f (ωk, T )](2 b̂k ρ b̂†
k − {b̂†

kb̂k, ρ})

+
∑

k

f (ωk, T )(2 b̂†
k ρ b̂k − {b̂k b̂†

k, ρ}), (10)
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where {Â, B̂} indicates the anticommutator, and

f (ωk, T ) = (1 + eωk/T )−1. (11)

When using this homogeneous dissipator term, the Lindblad
master equation (4) ensures the asymptotic large-time ther-
malization [84]. Therefore

lim
t→∞ ρ(t ) = ρt (w, T ), (12)

ρt (w, T ) =
∑

n

e−En (w)/T |�n,w〉〈�n,w|, (13)

where ρt (w, T ) is the density matrix representing the thermal
state, En(w) and |�n,w〉 are the eigenvalues and eigenstates
of Ĥ (w). The asymptotic approach to the thermal distribution
is controlled by the decay-rate parameter γ [84]. Indeed the
Liouvillian gap �L that controls the exponential approach
to the asymptotic stationary state of the Lindblad equation is
proportional to the decay rate γ , i.e.,

�L ∼ γ . (14)

The above modelization of thermal baths provides a useful
theoretical laboratory to investigate issues related to the out-
of-equilibrium dynamics in the presence of thermal baths. Its
derivation has been thoroughly discussed in Ref. [84]. We also
mention that it has been employed in Refs. [86,97]. Some
details of the computations using the Lindblad master equa-
tion (4) with the dissipator (10) are reported in the Appendix.

C. Quantum-quench protocols

As already anticipated in Sec. I, we consider two protocols,
differing for the absence or presence of the contact with the
thermal bath during the quantum evolution after quenching,
giving respectively rise to unitary or dissipative dynamics
after quenching. We call them unitary and dissipative QQ
protocols, respectively.

(i) Unitary QQ protocol. In this simplest QQ protocol, the
role of the thermal bath is limited to that of preparing the ini-
tial Gibbs state ρt (wi, T ) at t = 0, reported in Eq. (2). This can
be obtained by keeping the thermal bath in contact with the
system for a sufficiently long time tth, i.e., tth 
 γ −1. Then at
t = 0 the Hamiltonian parameter is instantaneously quenched
from wi < 0 to w � 0 and the thermal bath is removed, so
that the subsequent time evolution is that of a closed fermionic
wire, i.e., it is unitary and only driven by the Hamiltonian of
the system, cf. Eq. (3).

(ii) Dissipative QQ protocol. The quantum evolution starts
from the same initial Gibbs state ρt (wi, T ), but the thermal
bath is maintained in contact with the system after the QQ
from wi < 0 to w � 0, at t = 0. Therefore the quantum evo-
lution for t > 0 is driven by the Lindblad master equation (4)
with the dissipator term (10). Note that this dynamic protocol
entails a further timescale τ = γ −1, characterizing the asymp-
totic exponential approach to the large-time stationary Gibbs
state associated with the Hamiltonian Ĥ (w) and temperature
T .

D. Observables monitoring the time evolution

To characterize the dynamic properties of the quantum
evolution after the QQ at t = 0, we consider the subtracted

particle-density average

ns(t, L) = 1

L
Tr

[
ρ(t )

L∑
x=1

n̂x

]
− nc(L), (15)

where nc(L) is the ground-state particle density of the Kitaev
wire of size L at the critical point wc = 0 (in the infinite-size
limit nc = 1/2 − 1/π [95]). Note that the particle density
operator n̂x and the transverse spin component σ̂ (3)

x of the
quantum Ising chain (6) are trivially related, indeed σ̂ (3)

x =
2n̂x. In the definition of ns, the subtraction of nc(L) simplifies
the scaling behavior of ns(t, L) within the critical regime,
canceling the leading analytical behavior [5,24]. To monitor
the spatial correlations, we also consider

P(x, y, t ) = Tr[ρ(t ) (ĉ†
x ĉ†

y + ĉyĉx )], (16)

C(x, y, t ) = Tr[ρ(t ) (ĉ†
x ĉy + ĉ†

y ĉx )]. (17)

Some details on the computation of the above quantities
during the time evolution of the QQ protocols are reported
in the Appendix. We finally mention that the above choice
of observables to monitor the QQ dynamics is essentially
motivated by the numerical convenience, to achieve the most
accurate evidences of the validity of the out-of-equilibrium
scaling behaviors allowing for the thermal baths, put forward
below. Indeed, the equations for the correlation functions P
and C within the Lindblad framework, see Appendix, allow
us to obtain results for relatively large systems.

III. OUT-OF-EQUILIBRIUM SCALING

We now discuss the out-of-equilibrium behaviors arising
from the QQ protocols outlined in Sec. II C. We show that
they develop OFSS behaviors where the effects of the thermal
baths are taken into account by appropriate extensions of the
out-of-equilibrium zero-temperature scaling laws describing
soft QQs in closed systems within their critical regime, al-
ready put foward by earlier works [5,9].

The OFSS behaviors that we put forward for QQ protocols
considered are verified by numerical computations for the
fermionic Kitaev wire up to relatively large sizes. See the
Appendix for details on such calculations.

As a preliminary example of out-of-equilibriun QQ behav-
iors that we want to address, in Fig. 1 we show some results
for the quantum evolution of the subtracted particle density
(15) along the dissipative protocol outlined in Sec. II C, af-
ter quenching a fermionic Kitaev wire of size L = 60, from
wi = −0.01 to w = 0, in the presence of a thermal bath at
a temperature T = 2, and various values of the decay rate
γ . The quantum evolution turns out to have a significant
dependence on the decay-rate parameter γ that characterized
the interactions between the system and the thermal bath.
Indeed, the curves of the substracted particle density ap-
pear to approach its equilibrium value ns,eq(w = 0, T = 2) ≈
0.0004601 . . . (while at t = 0 we have ns,eq(w = wi, T =
2) ≈ 0.126598 . . . ), faster and faster with increasing γ , ac-
tually exponentially as exp(−t/τ ) with τ ∼ γ −1, conferming
the role of decay rate of the parameter γ within the Lindblad
master equation, cf. Eq. (14). Analogous results are obtained
for other observables, such as fermionic correlation functions
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FIG. 1. The quantum evolution of the subtracted particle den-
sity ns(t ), cf. Eq. (15), for the dissipative QQ protocol entailing
a dissipative dynamics after the QQ at t = 0 of the Hamiltonian
parameter w, describing the persistent interaction with the thermal
bath, cf. Eqs. (4) and (10). These curves refer to a system of size
L = 60, temperature T = 2 of the thermal bath, quenching from
wi = −0.01 to w = 0, and various values of the decay rate γ (the
case γ = 0 corresponds to the evolution of the close system). We plot
the difference ns(t, L, T ) − ns,eq(L, T ) which is expected to vanish in
the large-time limit. In this figure and in the following ones, the unity
that we use are such that h̄ = 1, kB = 1, and J = 1.

defined in Sec. II D. In the following we put forward an
out-of-equilibrium scaling theory for these out-of-equilibrium
phenomena within the quantum critical regime.

A. Zero-temperature scaling in quantum quenches

We now provide a brief summary of the out-of-equilibrium
scaling theory for close systems, describing QQ protocols
within the critical regime [5,9]. The initial state is the ground
state associated with an initial value wi < 0, and, after the
instantaneous quench at t = 0 from wi to w, the quantum
evolution is driven by the Schrödinger equation.

Out-of-equilibrium scaling laws can be obtained by ex-
tending those valid at equilibrium, allowing for a time
dependence essentially controlled by the time scaling variable
� ∼ t �, which is obtained by assuming that the relevant
timescale of the critical modes is proportional to the inverse
energy difference � of the lowest states. We refer to Ref. [5]
for a through presentation of the scaling arguments leading to
the asymptotic OFSS behaviors.

Let us consider the out-of-equilibrium evolution (after
quenching) of generic observables, such as the expectation
value O at time t of a local operator Ô(x) and its fixed-time
correlations GO = 〈Ô(x)Ô(y)〉. The general working hypothe-
sis underlying out-of-equilibrium FSS frameworks is that the
expectation value of Ô(x) and its correlation functions obey
asymptotic homogeneous scaling laws [5], such as

O(t, x, L,wi,w) ≈ b−yoO(t/bz, x/b, L/b, bywwi, byww),

(18)

where b is an arbitrary (large) length scale, yo is the RG
dimension of the local operator Ôx and the RG exponents

yw and z are determined by the universality class of the CQT
(they are the RG dimensions of the Hamiltonian parameter w

and the temperature T , respectively). Thus both the initial and
final values of w, i.e., wi and w, take the same RG exponent
yw, being coupled to the RG perturbation Ĥp within the Hamil-
tonian. Note that we do not assume translation invariance,
which is generally broken by the presence of boundaries, such
as those arising from open boundary conditions.

OFSS can be straightforwardly derived by fixing b = L in
the above homogenous scaling law. Then, we expect the OFSS
of the expectation value O of a generic local operator Ôx, of
its spatial average Ôa = L−d

∑
x Ôx, and its two-point correla-

tion function GO, develop the asymptotic OFSS behavior [5,9]

O(t, x, L,wi,w) ≈ L−yo O(�, X ,�i,�),

Oa(t, L,wi,w) ≈ L−yo Oa(�,�i,�), (19)

GO(t, x1, x2, L,wi,w) ≈ L−2yo GO(�, X 1, X 2,�i,�),

where the scaling variables appearing in the scaling functions
O, Oa, and GO are defined as

� ≡ t

Lz
, X i ≡ xi

L
, �i ≡ Lyw wi, � ≡ Lyw w. (20)

The OFSS limit is obtained in the large-L and large-t limit
keeping the above scaling variables fixed. These conditions
ensure that the system remains within the universal critical
regime during the quantum evolution. Note that in the scaling
law (20) the dynamic features are essentially encoded in the
time dependence of the scaling variable � ∼ t �. The other
features, in particular when wi = w, are analogous to those
arising from equilibrium FSS at CQTs [5,24], where the argu-
ment � = Lyww of the scaling functions is controlled by the
RG dimension yw of the relevant parameters w at the RG fixed
point associated with the CQT.

The above OFSS equations can be straightforwardly ap-
plied to the observables defined in Sec. II D, after a quench
from wi to w at t = 0, keeping into account that the RG
dimension of the subtracted particle density is yn = 1, and
that of the fermionic operator ĉx is yc = 1/2. Note that the
dominant analytical contributions to the particle density [5,24]
coming from the analytical background are canceled in the
difference ns defined in Eq. (15), whose leading asymptotic
behavior arises from the quantum critical modes, therefore it
is analogous to that of Oa in Eq. (19), with yo = yn. Analo-
gously one can apply the OFSS in Eq. (19) to observables and
correlation functions constructed with the spin operators of
the quantum spin chain (6). The OFSS functions are expected
to be universal with respect to the microscopic details of
the model, apart from nonuniversal multiplicative rescaling
and normalizations of its arguments. Within isolated fermionc
Kitaev wires and quantum Ising chains, the OFSS arising from
soft QQs has been verified by numerical computations for
various boundary conditions, and also along their quantum
first-order transition line [5,9].

The OFSS limit is expected to be approached with
power-law suppressed corrections. There are various sources
of scaling corrections when approaching the OFSS. Of course,
they include those that are already present at equilibrium.
In particular, the irrelevant RG perturbations are sources
of scaling corrections for the asymptotic behavior of the
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free-energy density [5,99]. In the case of one-
dimensional quantum systems undergoing CQTs
belonging to the two-dimensional Ising universality
class, the leading scaling corrections from irrele-
vant RG perturbations are suppressed as L−ω with
ω = 2 [24,98]. However, other contributions may become
more relevant [5,24,99], such as those arising from the
presence of analytical backgrounds, from the presence of
boundaries (which generally gives rise to O(1/L) corrections),
and, in the case of correlation functions, from RG mixings
of the source fields [this for example happens in the case of
the correlation functions of the fermionic field ĉx, for which
corrections are O(1/L)]. These scaling corrections have
been confirmed by numerical results [5,24]. Therefore we
expect that the asymptotic OFSS of fermionic Kitaev wires
and quantum Ising chains with open boundary conditions is
generally approached with O(1/L) corrections.

B. OFSS along the unitary QQ protocol

For the simplest unitary protocol reported in Sec. II C,
where the quantum evolution is that of the isolated fermionic
wire, the request that the dynamics remains within the critical
regime implies that the temperature of the initial Gibbs state
must be appropriately suppressed in the large-L OFSS limit,
to obtain a nontrivial out-of-equilibrium critical limit. This is
analogous to what happens within the equilibrium FSS, where
one introduces the scaling variable [3–5]

� ≡ LzT, (21)

to allow for a nonzero temperature in the FSS of the observ-
ables. Therefore, like equilibrium FSS, we conjecture that
the temperature of the initial Gibbs state enters the OFSS
associated with the unitary QQ protocol by adding a further
dependence on � in the scaling functions (19). In other words,
a nontrivial asymptotic OFSS limit is expected to be realized
in the large-L and large-t limits keeping also � fixed, beside
the scaling variables already defined in Eq. (20). Therefore we
expect that the OFSS of standard QQ protocols starting from
ground states, cf. Eq. (19), changes into

O(t, x, L,wi,w, T ) ≈ L−yo O(�, X ,�i,�,�), (22)

and analogously for its spatial average Oa and the correlation
function GO.

The numerical analysis for the fermionic Kitaev wire under
the unitary protocol fully support to this OFSS, obtained by
extending the QQ FSS behaviors of closed systems starting
from an initial ground state. This is clearly demonstrated by
the curves reported in Fig. 2, associated with the quantum
evolutions of the subtracted particle density ns(t ) and the
fermionic correlation P(x, y, t ) (the other fermionic correla-
tion C(x, y, t ) develops an analogous OFSS).

C. OFSS along the dissipative QQ protocol

We now discuss the dynamics arising from the dissipative
protocol outlined in Sec. II C, when the quantum evolution
after quenching is described by the Lindblad master equation
(4) with the thermal-like dissipator (10), to modelize the in-
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FIG. 2. OFSS behavior of the subtracted particle density
(bottom) and the fermionic correlation function P(x = L/3, y =
2L/3, t ), cf. Eq. (16), arising from the unitary QQ protocol, for
various lattice sizes L, at fixed � = LzT = 1, �i = Lywwi = −1, and
� = Lyww = 0, vs the time scaling variable � = t/Lz. These com-
putations nicely support the OFSS behaviors reported in Eq. (22).
The inset of the bottom figure shows that the approach to the OFSS
limit is consistent with O(1/L) corrections. Analogous results are
obtained for other values of the scaling variables.

teraction with a thermal bath characterized by a temperature
T (which does not change after quenching) and decay rate γ .

We expect that the temperature T of the thermal bath must
be rescaled as in the case of the unitary QQ protocol, i.e., we
must consider again the associated scaling variable � already
defined in Eq. (21). However, since the QQ moves the system
out-of-equilibrium, also the decay rate γ , and corresponding
timescale τ = γ −1, associated with the interactions with the
thermal bath is expected to play a relevant role to establish a
corresponding nontrivial OFSS limit. This was already noted
in Ref. [97] in the analysis of dynamic protocols entailing the
variation of the temperature at the critical point.

When keeping τ constant in the FSS limit where the scaling
variable � = t/Lz is kept fixed, in the large-L limit we have
eventually that

t = � Lz 
 τ, (23)
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FIG. 3. Equilibrium FSS of the subtracted particle density ns,eq

at the critical point w = 0 vs the rescaled temperature � = LzT .
With increasing L, the data show the expected convergence to the
equilibrium FSS reported in Eq. (24) with yn = 1.

which is the condition ensuring thermalization for any finite
value � > 0. Therefore, when keeping τ fixed, the quantum
evolution is not expected to develop a nontrivial OFSS limit.
Indeed, in the large-L limit, the system turns out to sud-
denly approach an equilibrium Gibbs state (associated with
the Hamiltonian parameter w and temperature T ) with respect
to the rescaled time �, without any further relevant evolution
of the system for any � > 0. Therefore, if the temperature
is rescaled by keeping � = LzT fixed, we must recover the
equilibrium FSS behavior in the presence of a thermal bath
at temperature T , such as that associated with the subtracted
particle density [5,24]

ns,eq(w, L, T ) ≈ L−ynN (�,�), (24)

where � = Lyww, and the temperature dependence enters
through the associated scaling variable � = LzT . In Fig. 3, we
show some equilibrium data at the critical point w = � = 0,
versus �, showing the approach to the asymptotic large-L
equilibrium FSS (24). The realization of the equilibrium FSS
within the QQ protocol at fixed γ is demonstrated by the
plots reported in Fig. 4, which show the somewhat trivial
convergence toward the equilibrium FSS for any finite � > 0.

The above results suggest that also the decay rate γ of
the system-bath interactions must be rescaled to observe a
nontrivial OFSS limit as a function of the time scaling vari-
able �, to create the conditions for a balanced competition
between the critical Hamiltonian driving and the interac-
tions with the thermal bath. As already put forward in the
case of other homogeneous dissipative terms in the Lind-
blad equation [5,55,100–102], for example associated with
particle-decay or particle-pumping dissipative mechanisms, a
nontrivial OFSS limit is obtained by rescaling the decay rate
of the dissipative term, so that the scaling variable

� ≡ Lzγ ∼ γ /� (25)

is kept fixed in the OFSS limit, where � is the energy dif-
ference of the lowest eigenstates of Ĥ (w) at the critical point
w = wc = 0. Then an OFSS behavior emerges from the non-
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FIG. 4. Quantum evolution of the subtracted particle density
arising from the dissipative QQ protocol, when rescaling all quan-
tities involved in the quench protocol, except for the decay rate γ .
With increasing L, the curves appear to approach the equilibrium FSS
value at finite temperature (where the temperature dependence enters
through the scaling variable � = LzT ) faster and faster, reflecting a
nonuniform convergence for any � > 0. The dashed line shows the
equilibrium value of ns for � = 0 and � = 1, which is asymptoti-
cally approached by the various curves.

trivial competition between the critical unitary dynamics and
the dissipative driving arising from the thermal bath.

In conclusion, on the basis of the above scaling arguments,
the OFSS arising from the dissipative QQ protocols in the
presence of a thermal bath is expected to be given by

Oa(t, L,wi,w, T, γ ) ≈ L−yo Oa(�,�i,�,�,�) (26)

and

GO(t, x1, x2, L,wi,w, T, γ )

≈ L−2yo GO(�, X 1, X 2,�i,�,�,�). (27)

In the large-� limit, the above OFFS behaviors at fixed �

is expected to approach the corresponding equilibrium FSS,
faster and faster in terms of �, matching the behavior at
finite γ . Moreover, we also expect that the equilibrium FSS
is also approached in the large-� limit at fixed � and �,
independently of �, but faster and faster with increasing �.

Again, the numerical results for the particle density ns(t )
and correlation functions P and C fully support the above
OFSS equations, i.e., Eq. (26) for ns(t ) with yo = yn = 1, and
Eq. (27) for P and C with yo = yc = 1/2. Some results are
reported in Fig. 5. We also stress that analogous results are
expected for other observables, for example the correlation
functions of the spin operator of the equivalent formulation
provided by the quantum Ising chains.

IV. CONCLUSIONS

We have reported a study of the effects of thermal
baths to the out-of-equilibrium dynamics of many-body
systems within their quantum critical regime close to a
zero-temperature CQT. In particular, we analyze the out-
of-equilibrium quantum evolution arising from QQs of the
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FIG. 5. Quantum evolutions along the dissipative protocol, fully
supporting the OFSS reported in Eqs. (26) and (27). We report curves
for L ns (bottom), L P(x = L/3, y = 2L/3, t ) (middle), and C(x =
L/3, y = 2L/3, t ) (top), for various values of L, at fixed �i = −1,
� = 0, � = 1, and two values of � = Lzγ , i.e., � = 1, 10 (except
for the top figure where we only report data for � = 10 to ensure a
good readability). The inset of the top figure shows that the OFSS is
approached with O(1/L) corrections. Analogous results are obtained
for other values of the scaling variables.

Hamiltonian parameters within two different protocols involv-
ing a thermal bath coupled homogeneously to the system.

Within the first protocol, named unitary QQ protocol, the
thermal bath is used to prepare the system at t = 0 in a finite-
temperature Gibbs state, then the dynamics after quenching of
the Hamiltonian parameters is assumed unitary, i.e., the ther-
mal bath is removed during the quantum evolution for t > 0.
The second protocol, named dissipative QQ protocol, starts
from the same initial condition, but the thermal bath is not
removed after quenching, and the quantum evolution for t > 0
is assumed to be described by the Lindblad master equation
(4). The dissipative term of the Lindblad equation is supposed
to simulate a thermal bath, such that the many-body system
is driven to a large-time finite-temperature Gibbs state. This
dissipative protocol is characterized by a further timescale
τ = γ −1, related to the decay rate of the interactions between
the system and the bath.

Within OFSS frameworks, we argue that, when the thermal
baths are associated with a sufficiently small temperature,
their effects can be taken into account by appropriate exten-
sions of the zero-temperature out-of-equilibrium scaling laws
describing soft QQs of isolated systems within the critical
regime. For the unitary QQ protocol, where the thermal bath
only determines the initial Gibbs state and the evolution is
unitary, a nontrivial OFFS limit is simply obtained by rescal-
ing the temperature as T ∼ L−z, similarly to equilibrium FSS.
Along the dissipative QQ protocol, where the thermal bath
is not removed after quenching, the dynamics is more com-
plicated, and the decay rate γ plays a relevant role. Indeed,
in addition to the rescaling of the temperature T associated
with thermal bath, one also needs to rescale γ as γ ∼ L−z to
obtain a nontrivial OFSS. Otherwise, when keeping γ fixed,
the dynamics converges toward the equilibrium FSS at finite
temperature, which happens suddenly after quenching with re-
spect to the timescale tc ∼ Lz of the critical regime. Therefore
the scaling behavior when keeping γ fixed becomes somehow
trivial, reproducing the equilibrium FSS for any rescaled time
� = L−zt > 0 in the large-L limit.

Our scaling arguments are supported by numerical results
with the paradigmatic fermionic Kitaev model, or equiva-
lently quantum Ising chain, at its CQT separating quantum
disordered and ordered phases. We consider a particular mod-
elization of the thermal bath that guarantees the asymptotic
thermalization within the Lindblad formulation of the dy-
namics of open systems. However, we note that the scaling
arguments used to arrive at the OFSS laws for critical QQs
are general, and therefore we expect that the emerging out-
of-equilibrium scenarios also apply to many-body systems at
generic CQTs in contact with homogenous thermal baths, in
any dimension.

We finally remark that the out-of-equilibrium scaling ar-
guments we put forward, leading to the OFSS of QQs in
the presence of a thermal bath, can be extended to other
protocols giving rise to out-of-equilibrium dynamics. Another
interesting class of dynamic protocols entails slow variations
of the Hamiltonian parameters across the critical regime of a
quantum transition, such as those associated with the quantum
KZ problem (see, e.g., Refs. [5,12–23]). In standard KZ pro-
tocols starting from the ground state for an initial parameter
wi < 0, the out-of-equilibrium quantum evolution arises from
the linear time dependence of one Hamiltonian parameter,
w(t ) = t/ts in Eq. (1), where ts is the timescale of the KZ
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protocol. Since w(t ) crosses the critical point at t = 0, the
system passes through the quantum critical regime, moving
it away from equilibrium even in the large-ts limit, and de-
veloping a peculiar out-of-equilibrium scaling behaviors. In
particular, the interplay between the size L of the system
and the timescale ts of the protocol develops OFSS behaviors
[5,23] when ts → ∞ and L → ∞, keeping the scaling vari-
ables �t ≡ t/tκ

s = t/t z/(yw+z)
s and ϒ ≡ ts/Lyw+z (thus �t =

t/t1/2
s and ϒ = ts/L2 for the fermionic Kitaev wire or quan-

tum Ising chain) fixed. In particular, in isolated fermionic
wires subject to the above KZ protocol with w(t ) = t/ts, the
subtracted particle-density average (15) is expected to asymp-
totically behave as [5]

ns(t, ts, L) ≈ L−yn F (�t , ϒ), (28)

in the limit of large ts and L keeping �t and ϒ fixed. This is
the standard KZ OFSS of isolated systems, from which one
may also derive the scaling behavior of the residual defects
for w(t ) > 0 [5,14–21].

KZ-like protocols can be also extended to systems inter-
acting with a thermal bath, such as that outlined in Sec. II B,
starting from a Gibbs state for an initial wi < 0 and the tem-
perature T of the thermal bath. Then we may consider a time
evolution driven by the Lindblad master equation (4), with a
time-dependent Hamiltonian Ĥ [w(t )] and the dissipator term
(10), where also the Bogoliubov operators are assumed to be
time dependent to adapt themselves to the time dependence of
w. Analogously to the OFSS of QQs in contact with thermal
baths, to define a nontrivial OFSS limit in KZ protocols, we
expect that both the temperature T and the decay rate γ asso-
ciated with the bath must be rescaled, as T ∼ L−z and γ ∼
L−z. Therefore the OFSS of the subtracted particle-density
average (15) in the presence of a thermal bath is expected to
turn into

ns(t, ts, L, T, γ ) ≈ L−yn Ft (�t , ϒ,�,�), (29)

with � ≡ T Lz and � ≡ γ Lz, and keeping the initial value wi

fixed. Note that if only the temperature of the thermal bath
is rescaled as T ∼ L−z, while γ > 0 is kept fixed, the time
interval associated with a variation of �t in the KZ scaling
limit, i.e., ��t ∼ tκ

s ��t , becomes eventually much larger
than the timescale τ ∼ γ −1 of the interaction with the thermal
bath. Since τ/��t → 0 in the KZ limit, the system effec-
tively thermalizes at each rescaled time �t . Therefore, in the
KZ limit, the quantum evolution is expected to pass through
equilibrium finite-temperature states, thus effectively result-
ing into equilibrium evolutions reproducing the equilibrium
finite-temperature FSS as a function of Lyww(t ). Therefore,
like dissipative QQ protocols, the observation of a nontrivial
OFSS in KZ protocols requires the simultaneous rescaling
of the timescale τ associated with the interaction with the
thermal bath. The necessary rescaling of the decay rate γ of
the dissipative term in the Lindblad master equation has been
also put forward for KZ protocols in the presence of other
dissipative mechanisms, such as those related to particle decay
or pumping [100].
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APPENDIX: DETAILS ON THE COMPUTATIONS

In this section, we provide some details of the computa-
tions for the fermionic Kitaev wire in the presence of a thermal
bath.

1. Asymptotic thermal states

The dynamics of the system in contact with the thermal
bath described by the Lindblad master equation (4) with the
dissipator term (10) leads to thermal states, such as those
described by the density matrix reported in Eq. (13). To com-
pute the correlation functions of the fermionic operators ĉx

in thermal states of the Hamiltonian Ĥ (w), one can use the
relation with the Bogoliubov eigenoperators b̂k , cf. Eq. (9),
and the thermal correlations of the Bogoliubov operators
b̂k , i.e.

〈b†
kbq〉 ≡ Tr[ρt (w, T )b†

kbq] = δkq

1 + eωk/T
, (A1)

corresponding to the standard Fermi-Dirac distribution func-
tion. Note also that the other correlations 〈bkbq〉 and
〈b†

kb†
q〉 vanish. Then the correlation functions of the origi-

nal fermionic field ĉx can be straightforwadly obtained from
Eq. (9).

2. Computations for the unitary protocol

In the unitary QQ protocol, one starts from a Gibbs state
associated with the Hamiltonian parameter wi and the temper-
ature T , then at t = 0 one instantaneously changes wi → w

and removes the contact with the thermal bath. Therefore the
quantum evolution is unitary, described by the Schrödinger
equation (3). One may easily obtain closed equations for the
evolution of the correlation functions C and P defined in
Eqs. (16) and (17).

We introduce the correlations

Cx,y = Tr[ρ(t )ĉ†
x ĉy], Px,y = Tr[ρ(t )ĉ†

x ĉ†
y ], (A2)

whose quantum evolution can be written as

dCx,y

dt
= i [Cx,y+1 − Cx−1,y + Cx,y−1 − Cx+1,y]

− i (P†
y,x−1 − P†

y,x+1) + i (Px,y−1 − Px,y+1),
(A3)

dPx,y

dt
= −i [Px,y+1 + Px+1,y + Px,y−1 + Px−1,y]

− 2 i μPx,y − i (δx−1, y − δx+1, y)

− i (Cx,y−1 − Cy,x−1 − Cx,y+1 + Cy,x+1). (A4)

The initial conditions are easily obtained by the relations
with the thermal correlations of the Bogoliubov operators
associated with the initial Gibbs state. Then the fermionic
correlation function are obtained by

C(x, y, t ) = 2 ReCx,y(t ), P(x, y, t ) = 2 RePx,y(t ). (A5)
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The above differential equations are solved using the four-
order Runge-Kutta method. The particle density is obtained

from the data of Cx,x = Tr[ρ(t )ĉ†
x ĉx].

3. Computations for the dissipative protocol

For the dissipative QQ protocol, where the thermal bath is
kept in contact with the system, the evolution is driven by the
Lindblad master equation (4), which can be equivalently writ-
ten in terms of the time dependence of Heisenberg operators
ÔH(t ), i.e., [84,86]:

∂t ÔH(t ) = i [Ĥ (w), ÔH(t )] + γ D̂T [ÔH(t )], (A6)

where

D̂T [ÔH(t )] =
∑

k

f (ωk ) [2b̂†
kÔH(t )b̂k − {ÔH(t ), b̂k b̂†

k}]

+
∑

k

(1 − f (ωk )) [2b̂kÔH(t )b̂†
k

−{ÔH(t ), b̂†
kb̂k}], (A7)

where b̂k are the Bogoliubov operators associated with the
Hamiltonian Ĥ (w).

The initial state at t = 0 is the Gibbs state for the Hamilto-
nian parameter wi. This state corresponds to the steady state
solution of the Eq. (A6) with Ĥ (wi ). Then, the change of the
Hamiltonian parameter to w �= wi leads to a change of the
Bogoliubov operators diagonalizing the Hamiltonian. We call
{b′

k} the operators which diagonalizes Ĥ (w),

Ĥ (w) =
L∑

k=1

ω′
k b̂′†

k b̂′
k, (A8)

where {ω′
k} is the Bogoliubov spectrum associated with Ĥ (w).

To evaluate the correlations of the Bogoliubov operatore {b′
k},

one can solve the Eq. (A6) for couples of operators {b′
k},

obtaining [84]

〈b′†
k b′

k〉 = (1 − e−2γ t ) f (ω′
k ) + e−2γ t 〈b′†

k b′
k〉0 ,

〈b′†
k b′

q〉 = ei(ω′
k−ω′

q )t−2γ t 〈b′†
k b′

q〉0
,

〈b′†
k b′†

q 〉 = ei(ω′
k+ω′

q )t−2γ t 〈b′†
k b′†

q 〉
0
,

〈b′
kb′

q〉 = e−i(ω′
k+ω′

q )t−2γ t 〈b′
kb′

q〉0
. (A9)

The initial values 〈b′†
k b′

q〉0
of the correlations is computed

on the initial Gibbs state associated with wi, and it can
be obtained using the relations between {bk} to {b′

k}. This
relation can be formally derived as follows [84]. Introduc-
ing the fermionic Nambu field C† = (ĉ†

1, . . . , ĉ†
L, ĉ1, . . . , ĉL ),

their relations with the Bogoliubov operators B(w)† =
(b̂†

1, . . . , b̂†
L, b̂1, . . . , b̂L ) corresponding to the Hamiltonian

ĤK(w) are obtained by a unitary transformation, C =
T (w)B(w). See, e.g., Ref. [84] for more details. Therefore
one can formally derive the relation between the Bogoliubov
operators b̂′

k and b̂k , corresponding to the Hamiltonian param-
eters wi and w respectively, from the general relation

B(w2) = T (w2)†T (w1)B(w1). (A10)
Finally, to compute the time-dependent observables de-

fined in Sec. II D, one can use the relations between the
fermionic correlation functions associated with ĉx and those
of the Bogoliubov operators b̂k , such as

C(x, y) =
L∑

k,q=1

[A∗
xkAyq 〈b†

kbq〉 + B∗
xkByq 〈bkb†

q〉

+ A∗
xkByq 〈b†

kb†
q〉 + B∗

xkAyq 〈bkbq〉] (A11)

where A and B are the matrices entering Eq. (9).
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