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Multiparticle quantum walk: A dynamical probe of topological many-body excitations
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Műegyetem rakpart 3, H-1111 Budapest, Hungary

4Department of Physics, University of Oradea, RO-410087 Oradea, Romania
5MTA-BME Lendület Topology and Correlation Research Group, Műegyetem rakpart 3, H-1111 Budapest, Hungary
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Recent experiments demonstrated that single-particle quantum walks can reveal the topological properties of
single-particle states. Here, we generalize this picture to the many-body realm by focusing on multiparticle quan-
tum walks of strongly interacting fermions. After injecting N particles with multiple flavors in the interacting
SU(N) Su-Schrieffer-Heeger chain, their multiparticle continuous-time quantum walk is monitored by a variety
of methods. We find that the many-body Berry phase in the N-body part of the spectrum signals a topological
transition upon varying the dimerization, similarly to the single-particle case. This topological transition is
captured by the single- and many-body mean chiral displacement during the quantum walk and remains present
for strong interaction as well as for moderate disorder. Our predictions are well within experimental reach
for cold atomic gases and can be used to detect the topological properties of many-body excitations through
dynamical probes.
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I. INTRODUCTION

Our conventional understanding of phase transitions as-
sociated with a symmetry breaking and the emergence of
a local order parameter [1] has been extended with the ad-
vent of topological insulators [2,3]. Such materials are not
characterized by a local order parameter and display various
topological phases identified by topological invariants [4,5].
In noninteracting systems, topological invariants account for
the topological character of single-particle wave functions
and are accompanied by robust low-energy features at the
boundaries of the system [6,7]. Not only are these useful in
revealing the topological properties of matter, but also hold
the promise to revolutionize quantum computation, quantum
technologies, and spintronics [8–10].

While the study of noninteracting topological systems has
advanced significantly in recent years, and the basic physics
of noninteracting topological insulators is well understood by
now, research into the analogous strongly correlated systems
has progressed slowly [11,12], and it is rather unclear whether
topology survives the presence of strong interactions [13].
Electron-electron interactions may in some situations be
responsible for topological phase transitions, as it was demon-
strated that a single quadratic band crossing is unstable with
respect to topological insulating phases in the presence of
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interactions [14,15]. More generally, a mean-field decoupling
of the interaction can result in an effective spin-orbit coupling,
for instance, thus inducing a transition from a topologically
trivial to a nontrivial phase [16–18]. Thus, understanding
the topology of the ensuing phase and disentangling it from
single-particle topological states is far from trivial.

It is therefore extremely important to establish ways for
characterizing an interacting topological insulator [12,19].
The most likely candidate, which generalizes the underlying
noninteracting Berry phase, would be the occurrence of a
quantized many-body Berry phase [20–23]. Other proposals
suggest a connection between topology and the degeneracy of
the entanglement [24,25] or entropy itself [26]. However, test-
ing any of these hypotheses experimentally in bulk systems is
a challenging task.

A simple, experimentally appealing way to probe topol-
ogy invokes the quench dynamics of quantum particles in
single-particle quantum walks [27]. Recent experiments have
revealed the presence of bound states at the interface of sys-
tems with different topological phases [28,29] and allow for
the detection of topological invariants in cold atoms [30] or
in nanophotonic topological lattice through the mean chiral
displacement (MCD) [27,31,32], which measures the differ-
ence of the average occupations of the dimerized lattice in
the long-time limit [see Eq. (5) for a concise definition]. So
far, the MCD has been measured experimentally only in a
noninteracting setup, by performing single-photon quantum
walks in topological photonic lattices [27,32–34].
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By now, experimental quantum walks have been imple-
mented for trapped atoms and ions [35,36], photons [37–39],
or spin impurities [40,41], and full control over the dynam-
ics has been achieved. Furthermore, with recent advances in
nanophotonics [42,43], quantum walks of correlated photons,
and correlation effects in Bloch oscillations [44,45] in mul-
tiparticle quantum walks have already been realized. It is
therefore interesting to explore whether the MCD is a suit-
able quantity to capture topology in the presence of strong
interactions as well [46].

II. MODELS

A. Interacting SU(N) Su-Schrieffer-Heeger model

In the present paper we address this problem, and investi-
gate the effect of interactions on the bulk states’ topology in
a multiparticle quantum walk setup. For that, we corroborate
results on the Berry phase, computed using the many-body
spectrum in a subspace of excited states with a reduced num-
ber of particles, and results on single-particle and many-body
MCDs.

For the noninteracting SU(N ) Su-Schrieffer-Heeger (SSH)
model, the cases of N odd and even differ significantly, simi-
larly to other spin models [47]. The Berry phase γB is marked
by a jump of πN (modulo 2π ) at the topological transition,
therefore for even N , γB is unable to distinguish between the
topological phases [48]. This is inherited in the interacting
version of the model, where the many-body Berry phase de-
fined below displays a jump π only for odd N , and can be used
as an indicator of the topological transition. Nevertheless,
the dynamically accessible single- and many-body MCDs
identify correctly the topological phases for any number of
flavors [49], are robust against moderate disorder, and serve as
suitable measures to interrogate the bulk states’ topology. For
clarity, in this paper we mostly explore the simplest case, N =
3, where γB is also a good indicator. Results for the SU(2)
SSH model are detailed in the Supplemental Material [49],
where extensions to N > 3 are also considered.

The prototypical SU(N ) SSH model [50] with an on-site
Hubbard interaction is given by

H =
L/2∑

x=−L/2

{
−J

N∑
α=1

[1 + (−1)xδ](c†
x,αcx+1,α + H.c.)

+ U
∑

1�α<β�N

c†
x,αcx,αc†

x,βcx,β

⎫⎬
⎭. (1)

The first term in Eq. (1) accounts for the dimerized hopping
with amplitudes J1,2 = J (1 ± δ) between neighboring sites
(see Fig. 1), with c(†)

x,α the annihilation (creation) operator of
a fermion with flavor α at site x. The second, the Hubbard
term, describes the on-site interaction between fermions with
different flavors.

Interacting extensions of the SSH model have been used
so far as a springboard to understand the effects of strong
interactions, and have been concerned either with interacting
bosonic [51–53], spinless fermionic models [54], or SU(2)
fermionic models, i.e., with flavors associated with the ↑ (↓)
spin labels [26,54–56].

(a)

(b) (c)

Many body spectrum
Single particle 
spectrum

FIG. 1. (a) Multiparticle quantum walk on an SU(3) SSH lattice.
U represents the strength of the on-site interaction. Three particles
are injected at t = 0. The single- or multiparticle MCDs measured
at later times provide information on the bulk states’ topology. Here,
J1,2 represent the hoppings of the dimerized lattice, while U is the
on-site repulsion energy. (b) Typical single-particle spectrum in the
topological regime of the noninteracting spinless SSH model, with
midgap lines indicating topological edge states. (c) Three-particle
many-body spectrum of the SU(3) model for U � J . The spectrum
consists of three bands separated by energy gaps of order ∼U .

In the absence of interactions, U = 0, the different flavor
channels are decoupled and for N = 3 the model reduces to
three copies of the noninteracting spinless SSH model [50].
The noninteracting model with U = 0 has an antiunitary
chiral symmetry �, which transforms the local operators as
�cx,α �−1 → (−1)xc†

x,α and � i �−1 → −i (see Supplemental
Material [49] for details), and the model displays a topological
phase transition at δ = 0, from a trivial (δ < 0) to a topologi-
cally nontrivial (δ > 0) phase. The transition is characterized
by a jump of π in the Zak phase [30]. A typical band structure
for the spinless SSH model in the topological regime, with
the zero-energy modes emphasized, is displayed in Fig. 1(b).
The interacting Hamiltonian (1) also respects chiral symme-
try apart from an overall chemical potential term, which is,
however, irrelevant for the dynamics in a closed system, in-
vestigated here.

In the interacting model we find that excitations still ex-
hibit two topological phases due to the presence of inversion
symmetry, although zero-energy topologically protected edge
excitations cease to exist. This is similar to the situation in
noninteracting systems, where inversion symmetry enforces
the Zak phase quantization, γZ = 0 or π (modulo 2π ) [57].
This quantization has recently been demonstrated experimen-
tally in a photonic lattice, where the chiral symmetry of a
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noninteracting SSH model is broken by engineered long-range
hopping, designed to preserve inversion symmetry [58].

To explore the topology of excitations, we inject three
particles into the empty lattice in the middle of the chain
by the three-particle creation operator �(3)†

x = ∏3
α=1 c†

x,α , and
investigate the effect of interactions in the quench dynamics in
a multiparticle quantum walk setup [59–61], where the wave
function follows a unitary evolution |	(t )〉 = e−iHt |	(t = 0)〉
[see Fig. 1(a)].

B. Effective model for trions

Before investigating the quench dynamics, let us discuss
shortly the many-body “band structure” of the Hamilto-
nian (1). A sketch of this band structure is displayed for N = 3
in Fig. 1(c) in the limit of strong interactions, U � J . The
lowest band is constructed from states of propagating single
fermions, and has a width W1 ≈ 4J . The highest in energy
band, the trionic band, is constructed from states in which all
the three particles reside mostly at the same site [62]. This
band consists of L states (split into two subbands, as we show
below), with very large energies ≈3U , and a small bandwidth,
of the order W3 ≈ J3/U 2. Between the single-particle and the
trionic bands there is the doublonic band, well separated in en-
ergy from the others. The average energy of doublons is of the
order ∼U (see Ref. [63] and the Supplemental Material [49]
for more details on the band structure).

The initial state |	(0)〉 = �(3)†
x |0〉 has an energy ≈3U , and

has most of its weight in the trionic band. In the large U limit,
trions propagate across the lattice by high-order tunneling
processes, and their dynamics is described by the effective
Hamiltonian,

H3 =
∑

x

{
J3[1 + δ3(−1)x]

(
�̃(3)†

x �̃
(3)
x+1 + H.c.

)
+ E3�̃

(3)†
x �̃(3)

x

}
, (2)

where the �̃(3)† create dressed trion states, and E3 and J3 are
the effective on-site energy and hopping, describing the trionic
band [64]. The effective Hamiltonian (2) preserves the bipar-
tite nature of the original Hamiltonian (1) with an effective
dimerization δ3 of the same order of magnitude as δ [49].
Trions are extremely heavy objects, and propagate through the
lattice with a small effective velocity v3 ≈ 2 J3 	 v1, much
smaller than the single-particle speed of propagation, v1 =
2J (1 − |δ|). The initial three-particle state �(3)†

x |0〉 overlaps
with a large probability p3 ≈ 1 with the dressed trionic state,
�̃(3)†

x |0〉. It contains, however, with a small probability p2 ≈
3
2 J2/U 2 an admixture of doublons and free fermions, and an
even smaller contribution from three independent fermions.
Although they have a small contribution, these latter compo-
nents propagate fast compared to trions.

III. TOPOLOGICAL TRANSITIONS IN THE
INTERACTING SU(3) SSH MODEL

A. Many-body Berry phase

A numerical analysis performed by computing the wind-
ing number using the Green’s functions for the SU(N =
2) version of the model (1) at half filling indicates that

interactions do not destroy the topology, although the bulk-
boundary correspondence no longer survives [55]. Similar
conclusions have been drawn from the analysis of two-body
physics in spinless bosonic SSH models [51,52].

We now investigate the bulk properties of SU(3) SSH sys-
tems using the many-body Berry phase γB. We compute γB

by using an approach, where in contrast to the standard meth-
ods [21,65–67], we determine the Berry phase over a subset of
excited many-body states instead of simply using the ground
state. The justification to use such a subset is that the initial
three-particle state is built out of highly excited eigenstates.
We consider a ring geometry, and impose twisted boundary
conditions on the many-body spectrum. This is done by mod-
ifying one of the hopping terms J → Jeiθn with θn = 2πn/M,
n ∈ {0, 1, . . . , M − 1}, and M controlling the twist angle dis-
cretization. For each θn, we diagonalize the Hamiltonian (1)
within the N = 3 subspace, H (θn)	 (n)

j = E (n)
j 	

(n)
j , and obtain

the full many-body spectrum {E (n)
j } of the Hamiltonian.

The many-body Berry phase is well defined over a subset
{	 j} of the many-body spectrum, separated by a gap from
the rest of the states for all twist angles. By generalizing the
procedure used for the ground state [21,65,67–69], we obtain

γB = −Im log
M−1∏
n=0

det[S(n,n+1)], (3)

where the elements of the matrix S(n,n+1) are

S(n,n+1)
j j′ = 〈

	
(n)
j

∣∣e2π iX/ML
∣∣	 (n+1)

j′
〉
, (4)

with j, j′ indexing the subset of many-body states, {	 j},
and with X = ∑

j,α x c†
x,αcx,α the many-body position operator

along the chain. Under inversion symmetry the Berry phase
transforms as γB → −γB (modulo 2π ). Therefore, even in the
interacting system, inversion symmetry enforces γB = 0 or π .

As explained earlier, the initial three-particle state is
mainly constructed from states within the trionic band, which
contains L states divided into two subbands, separated by
a gap generated by the effective dimerization parameter δ3.
By including the L/2 highest-energy many-body states into
the set {	 j}, we recover a jump of π in γB at δ = 0 (see
Fig. 2). This indicates a topological phase transition between
two topologically distinct regions, δ ≶ 0.

B. Single- and many-body mean chiral displacements

The mean chiral displacement represents a dynamical mea-
sure capable to distinguish between the topological and the
trivial regimes [27], defined as

P1(t ) =
∑

x

〈	(t )|(x − x0)� n(x)|	(t )〉. (5)

Here, p(x) = (x − x0)n(x) denotes the regular polarization
operator with respect to the reference point x0 and by using
the chiral-symmetry operator �, distinguishing between dif-
ferent sublattices, the “chiral polarization” operator or MCD is
(x − x0)�n(x). |	(t )〉 is the wave function time evolved from
an appropriate initial state, localized on site x0, now set as the
middle of the chain [46]. Although P1(t ) depends on time,
for noninteracting systems it converges to P1(t → ∞) � ν/2,
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FIG. 2. Berry phase γB as a function of δ, obtained by integrating
half of the excited (trion) many-body states in an L = 8 lattice with
twisted boundary conditions, with M = 20 and U = 3J , for different
chiral disorder strengths W . For each W �= 0, we average over 100
disorder realizations. Inset: Berry phase for the noninteracting SSH
model with hopping disorder

where ν is the bulk topological invariant associated with the
Zak phase (see Supplemental Material [49] for a derivation).

Since the many-body state is mainly constructed from
states in the trionic band, it is natural to extend the definition
of the noninteracting MCD in Eq. (5), and introduce the many-
body MCDs as

P3(t ) ≡ 1

〈n3(t )〉 〈	(t )|
∑

x

(−1)x x �(3)†
x �(3)

x |	(t )〉. (6)

The prefactor 〈n3(t )〉 � 1 measures the prob-
ability of three-particle occupation, 〈n3(t )〉 =∑

x〈	(t )| �†
3(x)�3(x)|	(t )〉 [70]. Simple perturbation

theory in J yields the asymptotic estimate, 〈n3(t → ∞)〉 ∼

1 − O(J2/U 2). The results for γB are corroborated by
the single-particle and the many-body MCDs, P1,3(t ),
computed using both exact diagonalization and time
evolving block decimation (TEBD) [71]. To tame the
time oscillations, we also investigate the cumulative average
MCDs, Pc

1,3(t ) = ∫ t
0 P1,3(t ′)dt ′/t . Notice that P1,3(t ) are

measures of the bulk topology, and do not provide any
information on the localized states at the edges. Boundaries
produce spurious artifacts while measuring P1,3(t ), they
reflect propagating fronts, and yield boundary-induced
oscillations in the simulations. The measurement time t∞ is
therefore always set to be smaller in our simulations than the
time required for the front to reach the system boundaries.

The MCDs P1,3(t ) are presented in Fig. 3. The two in-
sets in Fig. 3(a) display the time evolution of P3(t ) in the
two regimes, as computed with TEBD. The asymptotic limit
P3(t∞) depends on the value of δ, and it converges to 0 (0.5)
in the trivial (topological) regime. The main panel shows the
δ dependence of the asymptotic values. The small oscillations
in the asymptotic values are due to finite-size effects and
limited simulation runtime, and they reduce in amplitude with
increasing system size. As clear from Fig. 3, the many-
body and the single-particle MCDs are both suitable tools to
differentiate between topologically distinct regions. We also
demonstrate [49] that both MCDs remain reasonably well
quantized even away from the strongly correlated region as
well.

C. Disorder effects

The quantization of the MCD is relatively robust against
disorder. We have tested this robustness against different kinds
of disorder. We have introduced a moderate chiral (hopping)
disorder W breaking the inversion symmetry to test the robust-
ness of γB. Figure 2 displays the results for γB for different
W ’s. Although the jump at the transition becomes somewhat
smeared, γB remains quantized as long as W � δ3 ∝ δ.
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FIG. 3. Mean chiral displacement in the interacting SU (3) SSH model. (a) Cumulative average MCD Pc
3 for different chiral-symmetry

preserving disorder strengths W as a function of dimerization parameter δ, for lattice size L = 30, and t∞ = 40/J . Insets: Typical evolution
of the MCD P3 in the clean system at (right) δ = 0.5 and (left) δ = −0.5. (b) Cumulative disorder-averaged MCD Pc

1 for different disorder
amplitudes as a function of dimerization parameter δ, for L = 40, and t∞ = 20/J . In both panels U = 3J , and the average is done over 100
disorder realizations at each W .
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Similarly, disorder does not affect significantly either
P1(t∞) or P3(t∞), and the MCDs remain robust as well
against the on-site or hopping disorder, as long as disorder
is small compared to the topological gap for the excitations
(see Fig. 3). Although moderate disorder does not destroy the
topological band of excitations, strong interactions reduce the
trion bandwidth as ∼J3/U 2, and topological trion excitations
become more susceptible to disorder in the limit of strong
interactions (see Supplemental Material [49]).

D. Extension to the SU(N) SSH model

For clarity, so far we mostly focused on the SU(3) SSH
model. Many of the results carry over, however, to the general
SU(N ) case. In the latter case, the N-particle many-body
spectrum has a ladderlike structure with N bands, separated
by energy gaps of the order of U . The highest in energy
band, the N-ion band, has an energy EN ≈ N (N − 1)U/2.
The construction of the effective model that describes the
N-ionic band, similar to Eq. (2) for the trions, is detailed in
the Supplemental Material [49] and Ref. [63]. Computing the
many-body Berry phase and the polarization is done along the
same lines as for SU(3). Introducing the N-particle creation
operator, �(N )

x = ∏N
α=1 c†

x,α , the many-body MCD is obtained
as in Eq. (6) with the substitution 3 → N . Details for the
Berry phase and MCD in the SU (2) case are presented in the
Supplemental Material [49]. Our findings also carry over to
the case when several trions are injected to the lattice. We
performed calculations for the case where two trions have
been injected, and our findings [49] indicate that, irrespective
of the strong interaction between trions, the MCDs P1,3(t∞)
remain unaffected in the long-time limit, and capture correctly
the topological transition.

E. Connection to experiments

Experimental implementation of repulsive bound pairs has
been realized by loading 87Rb atoms in an optical lattice [72],
while later on, the same setup was used to probe the dynamics
and equilibrium properties of the topological SSH model [73].
In a state-of-the-art experiment [74], the SU(N > 2) Fermi-
Hubbard (FH) model has been realized by using 173Yb atoms.
By adjusting the lattice depth, one can tune the parameters
of the FH model in the range U/J � 0.025–2.5, confirming
that our simulations are well within experimental reach. Ex-
perimentally, the three-body losses may become an important
factor. The ratio of the on-site interaction and the three-body
loss rate γ is found to scale as U/γ h ∝ (λ/as)3 for N = 3,
where the scattering length for 173Yb, as ≈ 10 nm is much

shorter than the wavelength λ = 759 nm of the confining
laser [74]. In this system, for an interaction strength U/J = 1,
we obtain the estimate U/h ≈ J/h ≈ 300 Hz, while the three-
body loss rate is only γ ≈ 0.16 Hz 	 J/h. The timescale of
the three-body losses is at least one order or magnitude larger
than the measurement time t∞ of the experiment. The three-
particle occupation defined in Eq. (6) can be measured by
means of quantum gas microscopy, by extending the method
of measuring two-particle occupations [75,76]. This is, how-
ever, not necessary in the strongly interacting regime, where
〈n3(t )〉 is almost unity, as discussed above.

IV. CONCLUSIONS

We have investigated the quench dynamics in a multiparti-
cle continuous-time quantum walk, and evaluated the effect
of strong interactions on the topological properties of bulk
excited states in the SU(3) SSH model. Strong interactions
generically violate the conventional chiral symmetry of SSH
models, nevertheless, a quantized many-body Berry phase is
observed in the presence of inversion symmetry, signaling two
distinct topological phases, separated by a π jump. The many-
body topological phases are robust against moderate disorder.
A similar discontinuity shows up in the asymptotic value
of single-particle and many-body mean chiral displacements.
Measuring the latter quantities in multiparticle quantum walk
setups is within experimental reach, and could be used to
infer the topological properties of the excited states. Similar
features are expected for general SU(N ) models as well.
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