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Strong to weak topological interacting phase transition of bosons on a lattice
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We study hard-core bosons on the honeycomb lattice subjected to anisotropic nearest-neighbor hopping along
with anisotropic nearest-neighbor repulsion, using a quantum Monte Carlo technique. At half filling, we find
a transition from strong topological interacting order to weak topological interacting order as a function of the
hopping anisotropy. The strong topological phase is characterized by a finite topological entanglement entropy,
while the weak topological order is identified with a nontrivial value of the bipartite entanglement entropy.
Some of the order parameters and their derivatives demonstrate abrupt changes when varying the parameters
controlling the lattice anisotropies, thus revealing the nature of this topological interacting phase transition.
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I. INTRODUCTION

In recent years, the study of topological phases in bosonic
systems has become a research frontier [1–8]. Interest in this
field has been partly fueled by recent developments in optical
lattice experiments, which provide a playground for realizing
various phases of interacting and noninteracting bosonic sys-
tems [9–15]. In contrast to fermions, repulsive interactions are
necessary to stabilize topological phases due to the conden-
sation property of bosons. Interactions can also substantially
enrich the topological phases compared to their noninteracting
counterparts.

Interacting, topologically ordered states in two dimensions
(2D) can be roughly divided into two types. One type, which
we will refer to as strong topological interacting order (STIO),
is characterized by the presence of a strong topological in-
dex, which classifies the equivalence class of Hamiltonians
that can be deformed to each other without closing a gap.
Such phases admit a finite topological entanglement entropy
(TEE) [16,17], and they can host excitations with fractional
charge and anyonic exchange statistics, leading to a unique
phenomenology [18–27]. The other type, which we will refer
to as weak topological interacting order (WTIO), can be
constructed by stacking one-dimensional (1D) chains with
interchain hopping. Each 1D chain admits a strong topological
index that relies on intrachain interactions, while the topolog-
ical order in the full 2D system is characterized by a weak
topological index, being the average index of the individual
chains [28]. An intriguing question is whether a single system
can be tuned between WTIO and STIO, exposing the proper-
ties of this topological interacting phase transition.

This paper reports such a strong-to-weak topological phase
transition for hard-core bosons (HCBs) on the honeycomb
lattice, with anisotropies in both the tunnelings and nearest-
neighbor (NN) interactions. In the isotropic tunneling limit,
in the presence of large enough anisotropy in the interac-
tions, the system realizes STIO, characterized by a quantized
TEE [29]. Here, we demonstrate that as the anisotropy in
the tunneling increases, the system transitions into a weak

topological interacting insulator at a critical value, comprising
horizontal chains with weak vertical hopping. The WTIO is
characterized by a universal bipartite Renyi entanglement en-
tropy (BREE) through a vertical cut, but a vanishing TEE. We
explore the variations of the different order parameters char-
acterizing the phases across this topological phase transition.
The transition is marked by a jump in the slope of the edge
current. Remarkably, interactions are crucial for generating
the topological order in both the weak and the strong limits.

II. THE MODEL

We consider HCBs on a 2D periodic honeycomb lattice
(see Fig. 1), governed by the Hamiltonian

H = −
3∑

α=1

tα
∑

〈l,m〉α
(d̂†

l d̂m + H.c.)

+
3∑

α=1

Vα

∑

〈l,m〉α
n̂l n̂m −

∑

l

μn̂l , (1)

where d̂†
l (d̂l ) is the creation (annihilation) operator of a boson

at site l , n̂l = d̂†
l d̂l is the number operator at the same site,

and μ represents the chemical potential. The HCBs experi-
ence NN hopping tα and NN repulsion Vα on bonds 〈l, m〉α ,
which belong to one of the three families α of parallel bonds
highlighted in Fig. 1. In the following we take t = (t, t ′, t ′)
and V = (V,V ′,V ′); therefore, the parameter τt = t ′/t is a
measure of the isotropy in hopping and τV = V ′/V in the
repulsive interactions.

In the fully isotropic limit, τt , τV = 1, the system realizes
the t-V model [30]. In Ref. [29], we showed that when τV

decreases beyond a critical value, the Hamiltonian in Eq. (1)
exhibits a strong topological interacting dimer insulator at
half filling, which admits a finite TEE ln(2)/2 and chiral
edge states. In this paper, we vary also the value of τt and
construct the full phase diagram by calculating various or-
der parameters, as well as the TEE and the (second) BREE
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FIG. 1. Pictorial description of the model on (a) the honey-
comb lattice, and (b) a variant with straightened bonds. Bulk bonds
(solid lines) and bonds connecting lattice sites across the boundaries
(dashed lines) represent NN hopping (repulsion) of strength tα (Vα),
with α = 1 (red), 2 (green), and 3 (blue) denoting three families of
bonds. The shaded gray regions denote the underlying 1D chains
with interaction-induced dimerization. Vertical stripes (yellow) are
labeled by i. The lattice connecting bonds of the same family α is
marked by purple lines. (c) Subsystems Ap, p = 1, . . . , 4, required
for the calculation of the TEE [16].

using Stochastic Series Expansion (SSE) quantum Monte
Carlo (QMC) technique [31,32]. As we now describe, the ad-
ditional anisotropy exposes a rich phase diagram with various
topological and nontopological phases.

III. ORDER PARAMETERS AND PHASE DIAGRAM

We employ the following three order parameters in order to
uncover the phase diagram displayed in Fig. 2, as a function
of τt and μ/V , at the maximally anisotropic point τV = 0.
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FIG. 2. Complete phase diagram in terms of μ/V and τt obtained
for a 20 × 20 honeycomb lattice with t = 1, V = 8, and τV = 0. The
yellow region denotes the superfluid phase, whereas the ρ = 0, ρ =
1/2, and ρ = 1 represent the empty phase, dimer insulator at half
filling, and Mott insulator, respectively. The white area indicates the
transition region between the STIO and WTIO phase at half filling.
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FIG. 3. Plots of average density ρ, superfluid density ρs, and
dimer structure factor SD(π, π ), as a function of the chemical poten-
tial μ. The measurements are done on a 20 × 20 periodic honeycomb
lattice with t = 1, V = 8, τV = 0, τt = 0.2, and β = 120. The inset
figure shows the splitting of the ρ = 1/2 plateau under open bound-
ary conditions.

First, the average density of a system containing Ns sites is
calculated as 〈ρ̂〉 with ρ̂ = ∑

l n̂l/Ns. Here, n̂l is the number of
HCBs (either 0 or 1) at site l and 〈· · · 〉 represents the ensemble
average. Varying μ, the system is found to admit three density
plateaus, at ρ = 0, 1/2, and 1. The plateaus at ρ = 0 and
ρ = 1 mark the empty phase and the Mott insulator at filling
fraction 1, respectively.

Next, the superfluid density is calculated as ρs = 1
2 (ρx

s +
ρ

y
s ) where ρa

s = 1
β
〈�2

a〉, is expressed in terms of fluctuations
of winding numbers �a ≡ (N+

a − N−
a )/La along the a direc-

tion. Here, β = t/T is the dimensionless inverse temperature;
La denotes the length of the lattice along the a direction; and
N+

a (N−
a ) is the combined total number of steps the particles

take in the positive (negative) a direction during the evolution
over an imaginary time β to return to their original configu-
ration of occupations. The emergence of a density plateau at
ρ = 1/2 together with zero superfluid density (see Fig. 3) is
a clear indicator of an incompressible insulator at half filling.
This insulating phase is surrounded by a superfluid phase (see
Fig. 2) which separates it from the empty phase at ρ = 0
and the Mott insulator at ρ = 1. Noticeably the width of the
insulating phase at ρ = 1/2 increases as τt is decreased. This
is accompanied by a decrease of the width of the surrounding
superfluid region.

Finally, the dimer structure factors for the three fam-
ilies of bonds α (see Fig. 1) are defined as S(α)

D (Q) =∑
bb′∈α eiQ·(Rb−Rb′ )〈D̂bD̂b′ 〉/N2

b , where Nb is the number of
bonds; Rb = (xb, yb) denotes the midpoint of the bond b [the
lattice sites of the dual lattice in Fig. 1(b)]; and the dimer
operator on this bond is D̂b = d̂†

b1
d̂b2 + d̂†

b2
d̂b1 where b1 and

b2 represent the two lattice sites attached to this bond (b1 is
the site either to the left or to the bottom of b2). Due to the
interactions, dimers are formed only for the α = 1 family (red
bonds in Fig. 1), hence we focus on SD(Q) ≡ S(1)

D (Q), while
S(α)

D (Q) for α = 2, 3 (blue and green bonds in Fig. 1) are zero
for all Q values. Since dimers are formed at all red bonds and
for any pair of these bonds (xb − xb′ ) + (yb − yb′ ) is an even
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FIG. 4. Variations of the superfluid density ρ
y
s,i with the isotropy

parameter of hopping τt , measured along vertical stripes at the left
edge (i = 1), right edge (i = L), and in the bulk (i = L/2), with
open boundary conditions along x, for a 20 × 20 lattice (inset) and,
in the thermodynamic limit, with each point extracted by finite-size
scaling analysis (main panel). The dimer structure factor SD(π, π )
is measured for a 20 × 20 periodic honeycomb lattice (inset). The
chirality indicator −�ρy

s is measured in the thermodynamic limit
(main panel). Here, β = 120 and μ = 4.

number, we observe that the dimer structure factor SD(π, π )
peaks with a value close to 1 within the entire plateau at ρ =
1/2 (see Fig. 3). Therefore the insulator at ρ = 1/2 remains
a dimer insulator as a function of τt with dimers formed on
every red NN bond in Fig. 1. Despite its apparent uniformity,
we now argue that it changes its topological nature as we
decrease the value of τt .

IV. THE TOPOLOGICAL PHASE TRANSITION

For a strongly interacting system, such as the one we con-
sider in this paper, the calculation of topological invariants
in 2D is numerically challenging. Instead, we employ various
techniques to identify the topological phase transition.

First, since the strong topological phase at τt = 1 entails
protected chiral edge states under open boundary conditions,
in order to observe any transition from this phase, we study
the behavior of the edge current as a function of τt . For this
purpose we define the stripe superfluid density ρ

y
s,i = 1

β
〈�2

y,i〉
with the winding number projected to the ith vertical stripe
displayed in Fig. 1(b) [33]. The inset of Fig. 4 displays ρ

y
s,i

along the two edge stripes (i = 1, L), as well as one bulk stripe
(i = L/2), as a function of τt for a 20 × 20 lattice. While the
bulk superfluid density remains vanishingly small throughout,
the edge superfluid density decreases with τt and becomes
nearly zero around τt = 0.4. Performing a finite-size scaling
analysis at several τt values in the main panel of Fig. 4 we plot
the thermodynamic-limit-extrapolated edge superfluid density
as a function of τt . It demonstrates that in the thermodynamic
limit the edge superfluid density decreases with τt and be-
comes zero around τt = 0.5. This behavior, which manifests
as an abrupt change of slope in the variation of the superfluid
density as a function of τt , is our first indicator of a phase
transition. Interestingly, from the inset of Fig. 4, one can see
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FIG. 5. Variation of topological entanglement entropy γ as a
function of the isotropy parameter of hopping τt measured on a
16 × 16 honeycomb lattice with t = 1, V = 8, β = 1.5, τV = 0 at
μ = 4 (τV = 0.1 at μ = 4.8). The inset shows the system size de-
pendence of the transition for τV = 0.

that the dimer structure factor maintains its value close to 1
throughout the entire range of τt . So while the insulator at half
filling is still a dimer insulator at low τt , its topological nature
may be different. To check this possibility, next we study the
entanglement properties of the system.

The nth BREE in a 2D topological system follows a modi-
fied area law Sn(A) = a
 − qγ , with a a nonuniversal constant
and 
 representing the boundary length between the subsystem
A and its complement. The TEE is the topological component
γ , which gets multiplied by the number of connected compo-
nents q in subsystem A. It can be extracted using Levin and
Wen’s construction [16] by adding and subtracting the BREE
for four different subsystems Ap, p = 1, . . . , 4, as defined in
Ref. [16],

γ = lim
r,R→∞

1
2 [−Sn(A1) + Sn(A2) + Sn(A3) − Sn(A4)], (2)

with Ap, r, and R shown schematically in Fig. 1(c). Here, S2

is accessible using QMC at any temperature via a thermo-
dynamic integration, and is extrapolated to zero temperature
[34,35]. The TEE is nonzero only in a strong topological
phase. Instead, it vanishes in a weak topological and nontopo-
logical phases.

To explore the possibility of a phase transition, we study
the behavior of the TEE as a function of τt . The results
are depicted in Fig. 5: For τV = 0, as the value of τt is de-
creased from 1 up to τt = 0.512, the TEE remains quantized
at ln(2)/2, revealing the existence of strong topological order.
However, at τt = 0.5, the TEE suddenly drops to zero and
remains zero for values below τt = 0.5, indicating a phase
transition that takes place between τt = 0.512 and τt = 0.5,
below which the strong phase disappears. The inset of Fig. 5
depicts this transition for three different system sizes, which
demonstrates that the transition point remains unaffected by
the system size. However, the position of this transition is af-
fected by the value of τV . Taking instead τV = 0.1, we observe
in Fig. 5 that the transition shifts to a value in between 0.712
and 0.7. We conclude that for larger values of τV the transition
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FIG. 6. Bipartite Renyi entanglement entropy as a function of
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and the BREE for a single 1D horizontal stripe with 8 sites. Here,
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point shifts towards higher values of τt , diminishing the range
of τt where the strong topological phase is observed.

In order to probe the chirality of the edge currents in the
STIO phase, we calculate the quantity �ρ

y
s = ρ

y
s − ∑

i ρ
y
s,i.

As argued in Ref. [29], in the thermodynamic limit a mea-
surement of �ρ

y
s 	 −2ρ

y
s,E , with ρ

y
s,E being the average edge

superfluidity, would indicate chirality in the system. Figure 4
depicts the variation of −�ρ

y
s as a function of τt for an infinite

lattice at τV = 0. In agreement with the TEE, it shows that
indeed around τt = 0.5, the chiral nature of the edge current
vanishes.

V. THE WEAK TOPOLOGICAL INTERACTING PHASE

The remaining question is what is the nature of the dimer
insulator at ρ = 1/2 at values of τt below the critical value
of 0.5.

First, we explore the possibility of the existence of edge
states. Under open boundary conditions along the x direc-
tion, we observe that the plateau at ρ = 1/2 splits into two
equal parts (inset of Fig. 3) corresponding to densities ρ1,2 =
(L ∓ 1)/(2L) for an L × L lattice. This splitting indicates the
existence of midgap edge states; the lower (upper) plateau cor-
responds to a situation when no (all) edge sites are occupied.
This suggests that the dimer insulator at τt � 0.5 has certain
edge states associated with it, which might be topological in
nature.

Since the TEE vanishes in this phase, we turn our atten-
tion to the calculation of the BREE. We divide the periodic
honeycomb lattice into two equal halves using a vertical cut
and then calculate the BREE for any one of the halves. We
observe S2/L for different values of inverse temperature β

to determine the constant a (the proportionality factor of the
area law) in the ground state of our system at a high β value.
Figure 6 compares the BREE per unit length for three different
system sizes 12 × 12, 16 × 16, and 20 × 20, where the NN
repulsion is fixed at V = 8 with τV = 0 and τt = 0.2. As β

increases, the BREE approaches ln(2) for all three system
sizes.

Using exact diagonalization, we calculate the 1D strong
topological invariant ν and the zero-temperature BREE of
a single horizontal stripe [depicted by shaded gray rectan-
gles in Figs. 1(a) and 1(b)]. The topological invariant can
be calculated by ν = Im log

∏M
s=1〈�(φs)|�(φs+1)〉/|〈�(φs)

|�(φs+1)〉|, where |�(φs)〉 is the ground state at twisted
boundary conditions along the x direction with phase φs =
2π
M s. We find that ν becomes nonzero within the region of
μ compatible with the region marked as WTIO in Fig. 2
in the small τt limit, while the value of the BREE becomes
simultaneously 2 log 2 (inset of Fig. 6). The natural inter-
pretation for the 2D model is that for τt = 1 the system
comprises 1D chains that are strongly connected to each other,
admitting a strong 2D index as reflected in the nonzero γ .
As we decrease the value of τt , below the critical value of
τt 	 0.5, the insulator becomes a weak topological insulator,
where the effective chains, each admitting a 1D strong index,
are weakly connected, while the 2D system admits only a
weak 2D index. This is reflected in the bipartite entangle-
ment [36]: First, γ is zero; and, second, since for an L × L
honeycomb lattice there are L/2 such chains, S2 turns out
to be L/2 × 2 ln 2, i.e., S2/L becomes ln 2, in perfect agree-
ment with the QMC calculation at β → ∞. Therefore, we
finally identify the transition in Fig. 5 as a strong-to-weak
topological transition governed by the isotropy parameter of
hopping τt .

VI. CONCLUSIONS

In this paper, we studied HCBs on a honeycomb lattice sub-
jected to anisotropic NN repulsions as well as anisotropic NN
hopping. We observed that in the extreme anisotropic limit
of the repulsive interactions (τV = 0), the isotropy parameter
of hopping τt tunes a strong-to-weak topological interact-
ing phase transition. The phase transition is characterized by
an abrupt change of the TEE when τt goes through a τV -
dependent critical value. In addition, the superfluid density
on the edge shows a jump in its slope at this critical value.
The weak phase is identified by a zero value of the TEE along
with a universal value of the BREE at vanishing temperature.
This is in one-to-one correspondence with the fact that weak
topological phases are associated with a zero strong topolog-
ical index, but a nonzero weak topological index. The weak
topological phase is an interacting version of a symmetry pro-
tected topological phase, akin to the models described, e.g.,
in Refs. [37,38], but with interaction-induced dimerization.
While there have been studies of the effect of interactions
on topological phase transitions [39–42], these phases inherit
their topological properties from the noninteracting cases. In-
stead, in the model discussed here, both the weak and strong
phases rely on interactions to manifest their topology for every
value of τt .
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