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Perfectly localized Majorana corner modes in fermionic lattices
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Focusing on examples of Majorana zero modes on the corners of a two-dimensional lattice, we introduce a
method to find parameter regions where the Majorana modes are perfectly localized on a single site. Such a
limit allows us to study the dimerization structure of the sparse bulk Hamiltonian that results in the higher-order
topology of the system. Furthermore, such limits typically provide an analytical understanding of the system
energy scales. Based on the dimerization structure we extract from the two-dimensional model, we identify
a more general stacking procedure to construct Majorana zero modes in arbitrary corners of a d-dimensional
hypercube, which we demonstrate explicitly in d � 3.
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There have been recent attempts to realize Majorana
bound states as zero-dimensional, topological bound states of
higher-order (HO) topological insulators (TIs) [1–8]. While
normal d-dimensional TIs are insulating in the bulk but host
(d − 1)-dimensional surface or edge states [9–11], d-
dimensional HOTIs host (d − D)-dimensional states with
D > 1 [12–19]. A two-dimensional (2D) second-order topo-
logical insulator (SOTI), for instance, has insulating bulk and
edges but zero-energy corner states. An established way to
characterize HOTIs relies on crystalline symmetries, in which
case the boundary states are protected by a combination of
intrinsic and crystalline symmetries [3,20–22]. One typically
obtains a HOTI by breaking certain crystalline symmetries
of a TI so that its boundary states localize onto a lower-
dimensional manifold [2,23–25]. For example, on a cube, the
surface states can localize onto the hinges or corners [16],
and edge states of a 2D square lattice can localize onto the
corners [2].

We consider particle-hole symmetric models on a square
lattice hosting a pair of helical edge states. By introducing
an in-plane magnetic field these edge states become gapped,
and pairs of Majorana corner states are formed [1,2]. The
orientation of the magnetic field is locked to the configuration
of the emergent corner modes, so the corner states can be
moved by rotating the magnetic field. We seek an answer
to the following question: are models featuring zero-energy
Majorana corner modes adiabatically connected to a limit
where the zero modes are decoupled from the bulk, and how
can we characterize the corresponding topological phase? In
other words, our goal is to find an analog of the “sweet spot” of
the Kitaev chain, where the Majorana bound states are located
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on different unit cells and the couplings between Majorana
modes vanish even in the limit of a finite system. The corre-
sponding dimerization structure readily reveals the geometric
interpretation of the pairing between Majorana sites, the roles
played by different couplings in the fermionic language,
and possible ways to characterize the topological phases
[12,13,26–28]. Such an understanding makes it possible to
identify and propose additional couplings which enhance the
robustness of topological Majorana states. Lastly, the topolog-
ical sweet spot we unveil in a particular example model leads
to a geometric pairing strategy that inspires the construction
of a family of zero-energy Majorana corner modes embedded
in higher dimensional lattices.

We begin by analyzing the model proposed in Ref. [2]. It
hosts Majorana corner states and constitutes a second-order
topological insulator, but, within its parameter space, the cor-
ner modes never become perfectly localized. We develop a
scheme to find perfectly localized Majorana corner states by
considering an enlarged parameter space and show that these
corner states are adiabatically connected to those of the orig-
inal model. Moreover, we show that the perfectly localized
bound states result from a dimerization structure of the model
expressed in the Majorana basis, which turns out to consist of
pairs of coupled Kitaev chains.

We proceed to construct a topological invariant for this
extended 2D model and demonstrate the corner-edge corre-
spondence based on adiabatic changes which rotate the corner
modes. The topological invariant we propose is based on the
Pfaffian invariant, which we compute from the band structure
of a ribbon geometry [29–31].

The method we propose for finding perfectly localized
Majorana bound states is fairly general. To demonstrate its
scope, we go on to propose a three-dimensional model which
features two Majorana corner modes on corners of a simple
cubic lattice and which results from a suitable stacking of
2D lattices. We demonstrate that this stacking procedure can
be applied to construct models with two Majorana modes
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on arbitrary corners of a hypercube, protected by embedded
Kitaev chains in the topological phase.

Construction of localized Majorana bound states. We
consider a translation invariant, superconducting tight-
binding Hamiltonian, which we generically write as Ĥ =∑

r′r c†
r′Tr′−rcr. Here, cr is a Nambu spinor, which consists

of electron creation and annihilation operators and includes
sublattice degrees of freedom. Moreover, Tr′−r are the matrices
that determine the hopping and pairing terms between the sites
at r and r′. For illustration purposes, we restrict ourselves to
nearest-neighbor hopping on a d-dimensional hypercube. The
Hamiltonian then reduces to

Ĥ =
∑

r

(∑
i

(c†
r+âi

Tâi cr + h.c.) + c†
r T0cr

)
, (1)

where {âi} are the primitive lattice vectors between nearest
neighbors. For example, on a 2D square lattice âi ∈ {aêx, aêy},
where a is the lattice constant, which we now set to unity.
For simplicity, we assume that Tâi are linear functions of the
tight-binding parameters of the model.

Denoting by |0〉 the ground state of Ĥ , a perfectly localized
single-particle state in the corner of the hypercube corre-
sponds to |ψrc〉 = ∑

r ψ(r, rc) · c†
r |0〉, with a wave function of

the form ψ(r, rc) = vδr,rc , where v = (v1, . . . , vn)T is a vector
in the n components of the sublattice degrees of freedom at a
unit cell, δ denotes the Kronecker delta, and rc is the spatial
location of the associated corner. By requiring this state to
be a zero-energy eigenstate of the Hamiltonian in Eq. (1),
we obtain a set of equations T0v = 0 and Tâiv = 0 for all âi.
The existence of a nontrivial null space is not guaranteed in
general. However, in the special cases that we will discuss,
we find that we require at least a Hamiltonian with direction-
anisotropic tight-binding terms.

Other types of localization can be revealed as well through
this procedure. For example in a 3D system, if nontrivial
solutions of Têx v = Têyv = Têzv = 0 exist, then the wave func-
tion v is associated with a corner mode. However, we can
also identify hinge modes by lifting one of the null space
constraints, e.g., isolated modes along the êz hinge may be
found by the solutions of Têx v = Têyv = 0, without imposing
Têzv = 0. Similarly, the kernel of a single condition Têx v = 0
can reveal localized zero energy surface modes on the yz
plane.

Finding the nontrivial parameter constellations such that
T0 and Tâi have v as a common null eigenvector is a
computationally difficult task. To simplify the set of equa-
tions, we later use the fact that a system with topological
Majorana zero-energy modes has particle-hole symmetry,
with the Majorana modes defined as the corresponding
particle-hole symmetric states. It is therefore practical to
choose v such that the corresponding wave function ψ(r, rc)
transforms trivially under particle-hole symmetry. The op-
erator form of particle-hole symmetry and the associated
transformation from Dirac to Majorana fermions depends on
the system at hand, which is why we explain this step for a
practical example in the next paragraph.

Majorana bound states in adjacent corners. We apply the
method outlined above to find perfectly localized Majorana
corner modes on two corners of a square lattice. For this

purpose, we propose the following Bloch Hamiltonian:

Hk = (t0 + tx cos kx + ty cos ky)�03

+ dy sin ky�02 + dx sin kx�31

+ (sx cos kx + sy cos ky)�11 + bx�10 + by�23, (2)

where �i j = σiτ j , and σi and τ j denote two sets of Pauli
matrices in spin and particle-hole space, respectively. The
total Hamiltonian can be written as Ĥ = ∑

k c†
kHkck using the

spinors ck = (c↑,k, c↓,k, c†
↑,−k,−c†

↓,−k )
T

. After a transforma-
tion from momentum to real space, we identify the hopping
matrices

T0 = t0�03 + bx�10 + by�23, (3a)

Têx = 1
2 (sx�11 − idx�31 + tx�03), (3b)

Têy = 1
2 (sy�11 − idy�02 + ty�03). (3c)

The model (2) is an anisotropic generalization of the
Hamiltonian discussed in Ref. [2], and has a higher-order
topological phase hosting a pair of Majorana modes on ad-
jacent corners of the square lattice.

The particle-hole symmetry of this model is represented
by UP = �31, i.e., Hk = −UPH∗

−kU †
P , and the symme-

try operator can be diagonalized as MPUPMT
P = �00 with

MP = exp[i π
4 (�30 − �03)] exp[i π

4 (�02 − �10)]. The corre-
sponding particle-hole symmetric basis in real space defines
the Majorana fermions, given by mr = MPcr, and satisfies
{mr,i, mr, j} = δi j/2. In the fermionic basis, the components of
these Majorana elements are given by (v̂i ) j = MP,i j .

We now apply this technique for revealing Majorana corner
modes in the model described by Eq. (2). We consider a
square lattice of size L × L and impose the presence of two
Majorana bound modes located on adjacent corner positions
r1 = (0, 0)T and r2 = (0, L)T . The corresponding Majorana
states are chosen from vA, vB ∈ {v̂1, v̂2, v̂3, v̂4} defined in the
previous paragraph. To localize the Majorana mode vA at r1,
we impose the conditions Têx vA = 0 and TêyvA = 0. Similarly,
to localize vB at r2, we require that Têx vB = 0 and T−êyvB = 0.
Solving the four sets of matrix equations simultaneously (two
each for vA and vB) for all possible choices of vA and vB

gives 16 distinct solutions, since vA and vB can be chosen
to belong to one of the four Majorana modes individually.
Some of the solutions correspond to “trivial” parameters in the
tight-binding model where more than the required corner sites
are isolated from all other sites of the lattice. They include
the flat-band cases where the bulk or edge sites also decouple
from their neighbors, and are at zero energy. Throughout this
work, we are interested in the set of solutions which carry
only two zero-energy modes associated with the two chosen
corner states vA and vB. We find four nontrivial solutions,
given by the following constraints between the parameters of
Eq. (2):

tx = bx = 0, by = p1t0, dy = p1 p2ty, dx = p1sx, (4)

with p1, p2 = ±1. Note that the isolated corner mode solu-
tions do not exist in the isotropic model [2]. We checked that
the anisotropic topological limit and the topological phase
of the isotropic model are adiabatically connected (see Sup-
plemental Material [32]). Choosing a different sign for p2
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FIG. 1. Construction of the dimerization structure in the param-
eter regimes of Eq. (4), starting from (a) a pair of topological and
trivial Kitaev chains, which are (b) stacked on top of each other and
then coupled as in (c) to gap out the intermediary Majorana modes
to obtain a 2D bulk model with corner modes in adjacent corners.
Panel (d) shows the gapped bulk bands for t0 = 0.5dy, ty = 0.3dy,
sx = 2dy, and panel (e) shows the eigenvalues for a square lattice
with 7 × 7 unit cells with open boundary conditions for the same
parameters as in (d). The corner modes (in green) are at zero energy
(by construction), and the spectrum shows the gapped bulk (blue)
and edge (yellow) bands.

corresponds to transformations of the kind ky → −ky, or
alternatively exchanging the sublattice flavor of the two
Majorana bound states that are localized in the two
corners.

In Fig. 1(d), we display the spectrum of the perfectly lo-
calized limit, featuring a bulk and edge gap, together with two
midgap states exactly at zero energy—the perfectly localized
corner states by construction. The Majorana pairing structure
is presented in Fig. 1(c), where dangling sites, hosting the
Majorana zero modes, are highlighted in red. Along the x
direction, Fig. 1(c) readily reveals a decoupled topological Ki-
taev chain which protects the zero modes even in the presence
of couplings along the y direction as long as the edge and bulk
gaps remain finite. The 2D lattice can therefore be understood
in terms of repeating coupled trivial and topological Kitaev
chains, which are dressed by additional couplings along the y
direction. This interpretation is one of the main results of this
paper, and leads to the second main result, that the stacking
procedure of coupled Kitaev wires can be used to engineer
pairs of corner modes with flexible geometrical configurations
in d-dimensional hypercubic lattices. To give more specific
examples, we now proceed to propose two similar models, the
first one hosting Majorana zero modes on opposite corners,
and the second one featuring Majorana corner modes embed-
ded in a 3D cube.

Majoranas in opposite corners. We proceed to adapt the
procedure to construct Majorana modes on opposite corners
of a square lattice. Our construction uses two copies of the
Hamiltonian (2), with one copy rotated by 90◦ relative to
the other one and stacked on top of the other as shown in
Fig. 2(a). As a result, a pair of Majorana corner modes overlap
on a single corner and form a gapped Dirac mode when
additional couplings are introduced [see Fig. 2(b)]. The final
system, therefore, hosts two diagonally opposite Majorana
corner modes.

(a) (b)

Γ X M Γ
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4

E
/t

⊥
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180 190 200 210
Eigenvalue
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0.0

0.5

1.0

E
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⊥
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bulk
edge
corner

FIG. 2. Each of the two sheets in panel (a) features two isolated
corner modes. By introducing an additional interlayer coupling [see
panel (b)], a pair of corner modes becomes gapped without closing
a bulk or edge gap. This results in a 2D bilayer model with isolated
Majorana corner modes on opposite corners. In panels (c) and (d), we
show the bulk bands and spectrum of a 7 × 7 lattice for μ1 = μ2 =
t⊥, ty,1 = tx,2 = 2.5t⊥, tx,1 = ty,2 = 1.5t⊥, t ′

x,1 = t ′
y,2 = λ = 0.

The associated tight-binding model is given by

T0,1 = −μ1�25, (5a)

T0,2 = −μ2�25 + λ�24, (5b)

Têy,1 = 1
2 ty,1(i�02 − �03), (5c)

Têy,2 = −ity,2�−4 − it ′
y,2�+5, (5d)

Têx,1 = −itx,1�+4 − it ′
x,1�+5, (5e)

Têx,2 = 1
2 tx,2(i�12 + �13), (5f)

T0,12 = −it⊥�74, (5g)

where again �i j = σiτ j . In addition to the identity matrix σ0

and the Pauli matrices σ1,2,3, we define σ± = 1
2 (σx ± iσy),

σ4 = 1
2 (σ0 + σ1), σ5 = 1

2 (σ0 − σ1), σ6 = 1
2 (σ0 + σ3), σ7 =

1
2 (σ0 − σ3). The matrices τi are defined analogously. Here,
Tâi,1 are the hopping matrices for the first layer, Tâi,2 are the
hopping matrices for the second layer, and T0,12 is the hopping
between the two layers. The perfectly localized limit in this
model corresponds to λ = 0.

The corresponding 8 × 8 Bloch Hamiltonian Hk has a
particle-hole symmetry represented by UP = �010, where
�i jk = σiτ jηk and the Pauli matrices ηk act on the layer degree
of freedom. UP is diagonalized by MP = (�000 + i�020)/

√
2.

Figure 2(c) shows the spectrum of a finite system with open
boundary conditions, where we identify a gapped bulk and
two zero-energy states corresponding to the two isolated
Majorana modes on adjacent corners.

Nested Pfaffian. Previous work constructed invariants from
the polarization of the model (which are quantized due
to crystalline symmetries) to characterize the HOTI state
[26,33–40]. In contrast, the only symmetry present in the
models considered here is particle-hole symmetry, due to
which the periodic BdG Hamiltonian has an associated well-
defined Pfaffian [29,30]. Since the corner modes identified in
the previous paragraphs are hosted by embedded topological
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Kitaev chains, a topological classification can be performed
through the Pfaffian of the effective edge Hamiltonian.

As an example, we consider a particle-hole symmetric 2D
Hamiltonian H (k) that hosts a pair of corner Majorana bound
modes. To access the edge Hamiltonian we construct a ribbon
geometry, which is infinite in one direction and finite in the
other, by a partial Fourier transform to real space,

[Hy(kx )]y2,y1 =
∫

dky

2π
Hkeiky (y2−y1 ), (6)

[Hx(ky)]x2,x1 =
∫

dkx

2π
Hkeikx (x2−x1 ). (7)

Each effective 1D Hamiltonian describes a pair of edges,
which is sufficient for the topological classification of the
systems presented here. If the classification of a single
edge should be required, we expect that an investigation of
semi-infinite domains can be done by constructing the edge
Hamiltonian in a similar manner to Ref. [41]. If we consider
the spatial indices as internal degrees of freedom, Hy(kx ) and
Hx(ky) represent one-dimensional Bloch Hamiltonians, and
the particle-hole symmetry passes over from the bulk Hamil-
tonian as

Hy(kx ) = −(UP ⊗ 1y)H∗
y (−kx )(U †

P ⊗ 1y), (8)

Hx(ky) = −(UP ⊗ 1x )H∗
x (−ky)(U †

P ⊗ 1x ), (9)

where 1x and 1y are identity operators acting on the real-
space indices of the Hamiltonian. In the eigenbasis of the
particle-hole symmetry, the one-dimensional Hamiltonians
are skew-symmetric and have well-defined Pfaffians, Qx =
Pf[Hy(kx )] and Qy = Pf[Hx(ky)]. Together, the pair Q =
(Qx, Qy) can be used to classify the topology of the edges of a
square system, with Q = (−1, 1) and Q = (1,−1) meaning
that the corner states exist along the two ends of the x (y)
edge. Moreover, Q = (−1,−1) indicates two nontrivial edges
which then support corner modes on opposite corners. Q =
(+1,+1) indicates trivial Kitaev chains along both edges, and
corresponds to the case of no corner modes.

Pumping corner modes. In the preceding paragraphs, we
constructed two models for inequivalent geometric configu-
rations of two Majorana corner modes on a square lattice:
one displaying them on adjacent corners and the other one
on diagonally opposite corners. We can connect them by con-
structing a pumping protocol in which one of the Majoranas
residing in the opposite corner of it’s partner is first pumped
through the edge and then onto the adjacent layer. At the end
of the pumping cycle, the two Majorana modes will lie on
adjacent corners, and the upper layer will be topologically
trivial and isolated from the bottom layer. During the process,
the edge gap of the upper layer closes to enable transferring
the Majorana mode while, the bulk gap remains nonzero
[32].

To pump the Majorana from one corner of the top layer
to the adjacent corner of the bottom layer, we need to make
the topological Kitaev edge of the top layer trivial, while
simultaneously decoupling the two layers. This is achieved by
changing the couplings as shown in Fig. 3(a),

t⊥ = 0.4(1 − T )t0, λ = 0.6(1 − T )t0, t = 0.6T t0. (10)
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FIG. 3. Adiabatic deformation to connect different geometric
configurations: moving isolated corner modes from adjacent to op-
posite corners. (a) The couplings that will be varied (with t0 acting
as reference energy scale). (b) The spectrum of the finite system as
a function of time, which suggests a gap closing at time T = 0.5.
(c,d) The spectrum of ribbon geometries along the x and y directions,
respectively, at time T = 0.5. This shows that the gap of an edge
along the y axis closes at T = 0.5.

Figure 3(b) shows the spectrum of a 10 × 10 lattice during a
pump cycle. At time T = 0.5, when the parameters λ = t , the
gap of the finite system appears to close. This can be better
understood by considering the spectra of ribbon geometries
along the x and y directions, which we present in Figs. 3(c)
and 3(d). This shows indeed that during the pumping pro-
tocol the bulk gap stays finite, but the edge gap closes and
reopens, which is expected because the edge Kitaev chain
turns from topological to trivial on the top layer, and the asso-
ciated invariant changes. The bulk spectrum remains gapped
throughout the pumping process [32].

Majorana bound states on the corners of a cube. We
now demonstrate how to construct models with two localized
Majorana modes on adjacent corners in a three-dimensional
cubic lattice. To construct the unit cell, we couple a layer with
perfectly localized Majorana modes on adjacent corners to
a topologically trivial one [42] as shown in Fig. 4(a). Next,
the double layer unit cells are repeated along the z axis [see
Fig. 4(b)], and we allow additional tunneling terms to couple
the undesired dangling sites to the bulk [see Fig. 4(c)]. The
hopping matrices for this model are given by

T0 = μ1�073 + μ2�373 − α1�720, (11a)

Têx = tx
2

(i�662 − �663), (11b)

Têy = ty
2

(�020 − i�010) + t ′
y

2
(�320 − i�310), (11c)

Têz = tz
2

(�200 − i�100). (11d)

This model has a particle-hole symmetry represented by
UP = �001, which is diagonalized by MP = 1√

2
(�000 +

i�002). In real space, this transformation again changes the
basis from a Dirac to a Majorana basis. The spectrum of a
finite 3D model with open boundary conditions, shown in
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FIG. 4. From (a) to (c), we present the strategy to couple a pair
of 2D Majorana corner mode models to obtain a 3D bulk model with
corner modes in adjacent corners. Panel (d) shows the gapped bulk
bands, and in panel (e) we show the eigenvalues for a square with 7 ×
7 × 7 unit cells with open boundary conditions. The corner modes
(in red) are at zero energy, and the spectrum shows the eigenvalues
of clearly gapped bulk (blue) bands. The parameters used are α1 =
−0.9tx , μ1 = μ2 = −0.25tx , ty = t ′

y = 0.45tx , tz = −1.2tx .

Fig. 4(c), displays a gapped bulk along with a pair of zero-
energy states. These correspond to a pair of perfectly localized
Majorana corner modes.

Conclusion. In this work, we presented three models host-
ing exact Majorana corner states at zero energy, and showed

how to identify the model parameters that result in perfectly
localized modes based on the intersections of nontrivial solu-
tions of common null vectors of all hopping matrices. Inspired
by the dimerization structure revealed in a particular 2D
model, we demonstrated that 2D models with pairs of topo-
logical Majorana corner modes can be constructed from sets
of coupled Kitaev chains. We proposed how to extend the unit
cell to stabilize localized corner modes in different geometric
configurations and to embed them in higher-dimensional bulk
models. We further identified a topological invariant—the
nested Pfaffian—which is uniquely linked to the geometric
configuration of the pair of corner modes. Finally, by propos-
ing a pumping protocol that adiabatically connects different
configurations of corner modes, we showed how to adiabati-
cally move localized Majorana states in a finite-sized lattice.
In a previous work [2], the pumping protocol was proposed
for braiding of Majorana bound states. While the possible
outcomes of statistical phases obtained through such braiding
protocols are obstructed by the geometry, an extension to 3D
with two pairs of Majorana corner modes could overcome
such limitations.
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