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Materials that can host macroscopic persistent current are important because they are useful for energy storage.
However, there are very few examples of such materials in nature. Superconductors are known as an example in
which flow of supercurrent can persist up to 100 000 years. The chiral magnetic current is possibly the second
example predicted by the chiral magnetic effect. It was proposed to be realized in recently discovered Weyl
semimetals. However, a no-go theorem negates the chiral magnetic effect and shows that the chiral magnetic
current is generally absent in any equilibrium condensed-matter system. Here we show how to break the no-go
theorem by resorting to dynamical transitions in time-frequency space. By driving an insulator using a time-
periodic potential and coupling it to a phonon heat bath that provides suitable dissipation, we show that a Floquet-
Weyl semimetallic phase with Fermi-Dirac–like distribution emerges. Furthermore, we show that, even in the
presence of a static magnetic field, the resulting steady Floquet-Weyl semimetal supports nonvanishing chiral
magnetic current. Our dynamical model provides a systematic way to fully realize the chiral magnetic effect in
condensed-matter systems.
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I. INTRODUCTION

The flow of electric current in a medium is usually dissi-
pative. Hence, without supplying energy, the current cannot
be maintained indefinitely. However, there are a few cases in
which quantum mechanics dictates that the equilibrium state
of a medium can support a persistent current. In the case of
superconductors, a persistent supercurrent can be set up in a
superconducting loop with duration being over 100 000 years
[1]. In magnetized materials, persistent microscopic currents
always accompany the magnetization. However, this type of
current is a bound current and cannot be extracted as a free
current. Similarly, tiny persistent currents can also arise in
mesoscopic metallic rings that are placed in a magnetic field
when the size of the metallic system is reduced to the scale of
the electron coherence length [2].

On the other hand, the discovery of graphene and subse-
quent uncovering of topological materials [3–7] have inspired
the idea to realize macroscopic persistent current in materi-
als that exhibit the chiral magnetic effect (CME). The CME
is a manifestation of the chiral anomaly and is believed to
be able to host macroscopic persistent currents in systems
composed of relativistic massless fermions [8]. In condensed-
matter systems with topological phases, relativistic massless
quasiparticles would emerge in low energies [9,10] of the
semimetallic phase at the transition point when the system
goes from topological nontrivial phase to topological trivial
phase. In particular, in the presence of the time-reversal and
inversion symmetries, the semimetallic phase is character-
ized as the three-dimensional (3D) Dirac semimetal [11–13]
with the underlying quasiparticles being Dirac fermions
without definite handedness (or chirality). When either the

inversion symmetry or the time-reversal symmetry is bro-
ken, Weyl fermions with definite chirality can be also
realized [14–17].

Due to the Nielsen-Nimomiya theorem [18], Weyl
fermions with definite chirality in condensed-matter systems
on a lattice cannot exist alone. The net chirality due to all Weyl
nodes must vanish. Hence Weyl nodes must occur in pairs
with opposite chiralities. One of the peculiar effects associated
with Weyl nodes is the chiral anomaly [17], which states
that, even though the total chirality due to all Weyl nodes
vanishes, the chiral current is nonconserved. As a result, in the
presence of a static magnetic field �B, a macroscopic persistent
current, �J , in parallel to the magnetic field is predicted to
arise such that �J = α �B with α being the CME coefficient. α

is proportional to the energy separation between Weyl nodes.
In the continuum model of Weyl fermions, a nonvanishing
α, i.e., the CME effect, is generally confirmed in theoretical
calculations. However, in condensed-matter systems where
Weyl fermions are put on latices, a no-go theorem indicating
that the chiral magnetic current must vanish is established
[19]. More precisely, the no-go theorem shows that, for equi-
librium condensed-matter systems in static magnetic fields,
the electric current can be expressed as the total derivative
of band energy dispersion. As a result of the periodicity of
energy dispersion in Brillouin zones, the ground state does
not support any persistent current [19]. On the other hand,
derivations of α based on the Kubo formula indicate that, only
in ac magnetic fields, condensed-matter systems may support
the chiral magnetic current [20–24].

The derivation of α leads to the consideration of driving
condensed-matter systems by time-periodic perturbations. For
condensed-matter systems driven by time-periodic potentials
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or gauge potentials, additional Brillouin zones known as Flo-
quet Brillouin zones are created along the time axis [25,26].
This additional periodicity modifies the band structure and
the current operator. Furthermore, it can be used to create the
so-called Floquet-Weyl semimetallic phase. There has been
extensive work on creating the Floquet-Weyl semimetallic
phase via time-periodic potentials [27,28] or gauge fields
[29,30] generated by irradiation of light. The realization of
the chiral anomaly in the Floquet-Weyl semimetallic phase or
static Weyl semimetallic phase is also discussed. For instance,
it is shown that anomalous charge density will be generated
as a manifestation of the chiral anomaly [31]. It is also shown
that it is possible to generate large electric current by using
the polarized light acting as an effective magnetic field in
Weyl semimetals [32]. A single Weyl node is shown to be
realizable in Floquet lattice systems [33] so that the CME
can be realized. Furthermore, it is shown that the Nielsen-
Ninomiya no-go theorem still holds on a Floquet lattice, but
in the adiabatic limit the time evolution of the low-energy
section is decoupled from the high-energy section so that
unbalanced handedness of Weyl fermions can be created to
realize the CME [34]. While these works show that the CME
current could be realized in Floquet systems, the consider-
ations are based on the lowest energy band of the Floquet
system. Therefore, the electric current can be expressed as
the total derivative of band energy dispersion and it may still
suffer from the problem and issue governed by the no-go
theorem.

In this work, we show that one can break the no-go theo-
rem by including dynamical transitions involved with higher
Floquet bands such that the current operator is no longer the
derivative of the energy dispersion for quasiparticles. Further-
more, by coupling the Floquet-Weyl semimetallic band to a
phonon heat bath that provides suitable dissipation, a steady
state that features the Fermi-Dirac–like filling of the Floquet
bands can be established. As a result, we show that, even in
the presence of a static magnetic field, the resulting steady
Floquet-Weyl semimetallic phase supports the nonvanishing
chiral magnetic current, explicitly realizing the chiral mag-
netic effect in a condensed-matter system.

II. THEORETICAL MODEL

We start by considering a 3D multilayer system driven by
a time-periodic potential governed by the Hamiltonian H =∑

k,σ,σ ′=↑ or ↓ f †
kσ hσσ ′

k fkσ ′ with hk = h0(k) + hT (k, t ). Here
h0 is the static part of hk that governs the multilayer system
composed by 2D topological insulators and magnetic layers
and is given by [35]

h0(k) = sin kxσx + sin kyσy + sin kzσz

+ (m0 − cos kx − cos ky)σz. (1)

Here the lattice constant is set to be 1, k = (kx, ky, kz ) is
the wave vector, the first three terms describe the spin-orbit
coupling with the coefficients being set to be one so that all
energies in the followings are expressed in unit of the spin-
orbit coupling, and the fourth term is due to the presence of
magnetization m0. hT (hk, t ) is a time-periodic driven potential

and is given by

hT (k, t ) = s cos kzθ̄

(
t − T0

2

)
+ m1 cos(�t )σz, (2)

where m1 is the amplitude for on-site oscillating magneti-
zation along ẑ; s is the strength of a background periodic
step-function driven field θ̄ (t − T0

2 ). Here θ̄ (t − T0
2 ) is defined

by

θ̄

(
t − T0

2

)
=

{
1, t � T0/2 + nT0,

0, t < T0/2 + nT0,
(3)

with n being any given integer and T0 being the period of
the driving potential. Note that, because Weyl nodes appear
at kz = 0 or π , the value of s affects the energy differ-
ence of Weyl nodes directly. More precisely, the first term
in Eq. (2) is introduced to shift and control positions of
Weyl nodes in kz. The action of switching on and off by
the driven field θ̄ (t − T0

2 ) is to control the effective ampli-
tude of cos kz and we choose the duration of switching on
to be a half period so that, in the effective Hamiltonian,
the amplitude of cos kz is 1/2. Physically, as cos kz corre-
sponds to the nearest-neighbor hopping along the z axis in
real space, it corresponds to periodically turned-on hopping
along the z axis and can be realized by using an arbitrary
waveform generator (AWG). Similarly, the second term–cos-
like driving of the magnetization can be realized either by
using AWG or using ac magnetic fields to generate oscillating
magnetization.

To analyze the spectrum of hk, let the eigenstate to the
Floquet operator hk − i∂t be |ψa(k, t )〉 so that (hk − i∂t )
|ψa(k, t )〉 = εa|ψa(k, t )〉 with a = 0, 1 being the band index
and εa being the quasienergy in the first Floquet Brillouin
zone (FBZ). |ψa(k, t )〉 can be expressed in its Fourier
components as |ψa(k, t )〉 = e−iεat

∑
n e−in�t |φa(k, n)〉, where

εa + n� is the quasienergy associated with the nth component
|φa(k, n)〉. In the frequency domain, hk becomes the Floquet
Hamiltonian HF [26] and is given by

HF =
⎡
⎣ Hn,n, Hn,n+1, . . .

Hn+1,n, Hn+1,n+1, . . .

. . . Hn+2,n+1, Hn+2,n+2

⎤
⎦, (4)

where Hm,n = ∫ T0

0 dt [h0(k) + hT (k, t )]e−i(m−n)�t + δm,nm�.
The corresponding band structure forms multipair Weyl nodes
in frequency domain. In Fig. 1(a), we show the electronic
structure of the topological trivial band before the Floquet
driving is turned on, while in Fig. 1(b) the Floquet driv-
ing is turned on and the band in (a) is driven to a Weyl
semimetallic phase. Here Fig. 1(b) shows the band struc-
ture in the first FBZ, in which two Weyl nodes appear at
(kx, ky, kz ) = (0, 0, 0), (0, 0, π ). These Weyl nodes are ro-
bust under parameter perturbation [36]. Furthermore, one can
derive an effective Hamiltonian heff to describe the Floquet
driven spectrum. For this purpose, we first note that the effec-
tive Hamiltonian that describes the nth Floquet band must be
a 2×2 matrix. Hence it can be generally expressed as a sum-
mation of Pauli matrices as A · I + Bσx + Cσy + Dσz with the
coefficients A, B, C, and D being expanded in terms of sin ki

and cos ki (i = x, y, z). To get the form for these coefficients,
we note that n� and 1/2s cos kz are already in Hnn in Eq. (4).
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FIG. 1. (a) Gapped energy spectrum of H0 with parameters
(m0, s) = (6, 1) along kz axis at (kx, ky ) = (0, 0). (b) Energy spec-
trum along kz of the Floquet-driven Hamiltonian with parameters
(k, s,�, m1) = (6, 2, 4, 4). Gaps at (0,0,0) and (0, 0, π ) collapse so
that (0,0,0) and (0, 0, π ) become two Weyl nodes with chirality being
+1 and −1, respectively.

Furthermore, in hT (k, t ), m1 acts as an ac magnetic field that
induces coupling of the original electronic band in H0 to
the same energy band shifted in frequency (±�). Hence we
expect that a term �σz is present to reflect the energy shift. As
Hn,n+1 and Hn,n−1 are the only nonvanishing coupling terms
in Eq. (4) and they depend on σz through the ac magnetic
field term in Eq. (2), one expects to get combinations of σxσz

(∝σy) or σyσz (∝σx) to the leading terms by treating Hn,n+1

and Hn,n−1 as perturbations to Hnn. We thus expect that coef-
ficients of sin kxσx and sin kyσy are corrected and introduce λx

and λy as the corrected coefficients that will be fixed by the
numerically computed spectrum. From the above reasoning,
we find that the resulting spectrum in the nth FBZ can be
described by a time-independent effective Hamiltonian as

heff (k) = λx sin kxσx + λy sin kyσy + sin kzσz

+ (m0 − cos kx − cos ky − �)σz

+ s

2
cos kz1 + n�1. (5)

heff has been tested by computing the spectrum of Eq. (4)
with large cutoff (the matrix involved is at least 1000×1000).
The convergence of the resulting spectrum is also checked by
changing the cutoff. heff is found to accurately describe the
computed spectrum. To get the numerical values of λx and
λy, we fix kx and ky and compute the energy spectrum versus
m1. It is found that the spectrum is periodic in m1 with period
being around 16. By fitting to numerical results, we find that
λx = λy = 0.67 cos(0.39m1 + 0.26). Note that, as shown in
Fig. 1(a), in the original Hamiltonian without the Floquet
driving, the energy spectrum is in the range from E = −10
to E = 10. Since � is the period of Floquet driving, which
is also the unit cell in frequency space, to fill the unit cell
in frequency we only consider parameters of � and m1 for
values being less than 10. Furthermore, because the energy
gap in the original Hamiltonian without the Floquet driving
is about 5, to be able to hybridize the conduction and valence
bands to yield the Weyl semimetallic phase, it is required
that m1 and � have to be greater than 4 when both terms
in hT are considered. Hence, speaking overall, the effective

Hamiltonian and corresponding coefficients are tested and
valid only in the range 4 � m1 � 10, 4 � � � 10.

III. FLOQUET OCCUPATION STATE

The Floquet driven system will heat up eventually if it
is not a many-body localized system [37]. To prevent over-
heating, we couple the system to a bosonic reservoir [38].
Following the discussion in Ref. [38], since the Floquet en-
ergy gap in the Floquet-Weyl semimetal is zero, which is
less than the finite bandwidth of the phonon reservoir �D, it
ensures the cooling process in which the excited particle in
the upper band can scatter back to the lower band by releasing
a phonon. Hence a steady state can be established. In our
setting, we further require the phonon band width �D to be
much smaller than the driven frequency, �D � �, so that the
Floquet-Umklapp process which may also heat up the system
is suppressed. The bosonic reservoir is modeled by a phonon
bath characterized by the Hamiltonian Hbath together with an
electron-phonon interaction Hep as

Hep =
∑

G(k, k′, q)(b†
−q + bq) f †

kσ fk′σ , (6)

Hbath =
∑

h̄ωqb†
qbq. (7)

Here G(k, k′, q) characterizes the scattering of electrons in
the Floquet system by phonons in the reservoir. When the
screening of charges is weak, the electron-phonon scattering
is dominated by long-range Coulomb scattering and is thus
dominated in the forward direction [14,15,39]. Due to low
density of electronic states in Weyl semimetals, the screening
of charges is weak. Hence we shall assume that the electron-
phonon coupling is dominated in the forward direction and
take G = G0 δ(k − k′ − q), with G0 being a constant to sim-
plify the calculation. In Eq. (7), h̄ωq is the energy of the
phonon in with momentum q. We shall adopt the continuum
model of phonons such that ωq = C|q| = Cq. Here C is the
speed of sound whose relation to the Debye frequency cutoff
�D is given by

√
3πC/ap = �D, with ap being the lattice

constant for phonons. Following Ref. [38], the occupation
number Fka = 〈 f †

ka fka〉 with a = 0, 1 can be found by solving
the Floquet-Boltzmann equation. Starting from the quantum

kinetic equation that Fka obeys, i∂t Fka = 〈[ f †
ka fka, Hep]〉, one

can derive the Floquet-Boltzmann equation through the per-
turbation theory. In the derivation, the evaluation of terms
such as 〈 f †

k+qa fkabq〉 is required. By performing perturbative
expansion and keeping the leading order terms in G0, we find
that Fka satisfies the Floquet-Boltzmann equation

∂t Fka =
∑
a,b,q

|G0|2δ(εa(k) − εb(k + q) − h̄ω−q)

× {Fka(1 − Fk+qb)[1 + N (ω−q)]

− Fk+qb(1 − Fka)N (ω−q)}
− δ(−εa(k) + εb(k + q) − h̄ωq)

× [Fka ←→ Fk+qb, ω−q ←→ ωq]. (8)

Here a = 0 or 1 is the band index in FBZ and N (ωq) =
(eβωq − 1)−1 is the phonon occupation number. In princi-
ple, the summation over momentum needs to include all
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FIG. 2. (a) Blue mesh is the numerical solution to Eq. (8), plot-
ting with arbitrarily chosen ky = 4π

5 , and the orange mesh is the
result fitted to the Fermi-Dirac distribution with fitted temperature
being T ∗ = 1.387 and fitted chemical potential being μ∗ = 0.016.
Here the momentum space is divided into 10×10×10. The reservoir
temperature is kept in T = 0.001 and G0 = 0.05�. Other parameters
are the same as those used in Fig. 1(b). (b) Plot of Fk versus (kx, ky )
with kz = 4π

5 .

Floquet-Umklapp processes. However, since we have taken
�D � � to suppress the Floquet-Umklapp process, we shall
focus on processes in the first Floquet Brillouin zone. The
delta function in Eq. (8) enforces the momentum and energy
conservations during the electron-phonon scattering. Since, as
discussed in the above, forward scattering is dominated in the
electron-phonon coupling, the integration of the phonon mo-
mentum q can be done in a similar way as what is done in 1D
electronic systems coupling to a 3D bosonic bath in Ref. [38].
Here we shall assume that the occupation numbers Fk+qb and
N (ωq) are dominated for q being the forward direction to k
so that the summation

∑
a,b,q δ(εa(k) − εb(k + q) − h̄ωq)[·]

can be performed in the transverse direction q⊥ of q and re-
place

∑
q[·] by

∑
q[·] = ∑

qk̂,q⊥[·] = ∑
qk̂

∫
dω ρ̄(qk̂, ω)[·],

with ρ̄(qk̂, ω) being the partial density of state to the forward
scattering direction k̂ [38]. Furthermore, since there is only
one solution to satisfy the momentum and energy conservation
in most of the time, following Ref. [38], we shall take the ap-
proximation by treating ρ as a constant for our reservoir model
such that ρ̄ = 1, |εa(k) − εb(k + q)| � ωq = Cq; otherwise,
ρ̄ = 0. In the steady state, ∂t Fka = 0, which when combined
with Eq. (8) leads to a self-consistent equation for the occupa-
tion number Fka = 〈 f †

ka fka〉. By setting �D = 0.1�, we solve
Eq. (8) self-consistently. In Fig. 2, we show typical numer-
ical results of the occupation number Fka. We find that the
occupation number can be fitted by a Fermi-Dirac distribution
with an effective temperature T ∗ and an effective chemical
potential μ∗. In particular, after the system couples to the
reservoir, the temperature increases to T ∗ = 1.387 and the
chemical potential is found to be μ∗ = 0.016, while at the
same time the reservoir temperature is kept at T = 0.001.
The effective temperature depends on the coupling constant
G0 in Hep but we are not going to investigate the detailed
dependence on each coupling constant but leave it for a fu-
ture study [38]. However, the dependence of the effective
temperature T ∗ on the parameter s and � that specifies the
electronic structure is crucial and is listed in Table I. It is clear
that the effective temperature is not sensitive to s. However,
increasing driven frequency � increases the energy rate that

TABLE I. Variation of effective temperature T ∗ and effective
chemical potential μ∗ with respect to s for � = 4 (upper table)
and with respect to � for s = 1 (lower table). Note that fillings of
electrons for all cases shown are at half filling.

s T ∗ μ∗

1 1.387 0.016
2 1.394 0.024
� T ∗ μ∗

4 1.387 0.016
5 1.394 0.024
6 1.721 0.063
7 2.080 0.120
8 1.972 0.184

is pumped into the system. Hence it leads to higher effective
temperatures.

IV. MANIFESTATION OF CHIRAL
MAGNETIC CURRENT

Given nonvanishing occupation, the driven Floquet sys-
tem can support nonvanishing current. As indicated in the
Introduction section, the CME may exist in nonequilibrium
systems. Therefore, we calculate the average current 〈Ji〉
(i = x, y, z) over a period in the presence of magnetic field as

〈Ji〉 ≡ 1

T0

∫ T0

0
dt〈Ji(t )〉 = 1

T0

∫
dt

∫
dk

∑
a

Ji,a
k (t )Fka(t ),

(9)

where Ji,a
k (t ) = ∑

m,n 〈φa(k, m)|Ji(k, t )|φa(k, n)〉 with
J(k, t ) = ∂hk/∂k. In the frequency domain, we can express
〈Ji〉 in the Floquet basis as

〈Ji〉 =
∑

a

⎡
⎣∑

m,n

Ji,a
mn (k)

⎤
⎦Fka(εa). (10)

Here Ji,a
mn is the matrix element of J given by

Ji,a
mn (k) = e−i(n−m)�t 〈φa(k, m)|Ji(k, t )|φa(k, n)〉. (11)

We then compute 〈Ji〉 directly by choosing i = z as the direc-
tion of the current and imposing a static magnetic field, B =
(0, 0, B), which is also along the ẑ axis and passes through
two Weyl points. In this case, |φa(k, n)〉 in Eq. (11) will be
replaced by eigenfunctions of Landau levels. By taking the
vector potential in the Landau gauge with A = (−By, 0, 0),
Landau levels are specified by k⊥ = (kx, kz ) and an index of
lattice sites along the ŷ axis, ny. Since any hopping amplitude
tx along the x̂ direction is replaced by txei2πφny upon the Peierls
substitution with φ = B

φ0
and φ0 = hc

e being the flux quanta,
the x component of the wave vector, kx, becomes kx + 2πnyφ.
Hence the Hamiltonian can be written as

H =
∑

k⊥,ny,my,a,b

f †
k⊥,ny,a

hab
ny,my

(k⊥, t ) fk⊥,my,b + H.c. (12)

Here hny,my (k⊥, t )=[h0(kx+2πnyφ, kz, t )− sin kyσy+ cos kyσz

+ hT (kx + 2πnyφ, kz, t )]δny,my + 1/2(σz + iσy)δny−1,my + 1/2
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FIG. 3. (a) Result of directly computed CME current along z
direction in temperature T = 0 for s = 0, 1, 2. Here Floquet bands
with n = 0, −1, 1 are included and other parameters are the same as
those adopted in Fig. 1. (b) CME current in z direction is computed
from the effective Hamiltonian with the temperature being set at
T = 1.

(σz − iσy)δny+1,my . After numerically solving eigenstates
to the Hamiltonian in frequency space, we substitute the
eigenfunctions into Eq. (10) and obtain 〈Ji〉 in uniform
magnetic fields. The numerical result is shown in Fig. 3(a),
which clearly exhibits a nonvanishing CME current at
temperature T = 0 for nonvanishing s. For a comparison,
in Fig. 3(b), we show the CME current obtained in the
corresponding effective Hamiltonian with the temperature
being set at T = 1. Clearly, it confirms that nonvanishing
CME currents arise for nonvanishing s. For both temperatures
(T = 0 and T = 1), when s = 0, two Weyl points collapse
into one and the CME current vanishes. Furthermore, the
CME current changes sign as one goes from T = 0 to
T ∗ ≈ 1.394 and almost decreases to zero at T ∗ ≈ 1.394. The
numerical computation in Fig. 3(a) can be further extended
to finite temperatures and it shows similar results as those
shown in Fig. 3(b). We note in passing that, while the
above nonvanishing CME current is computed by using the
simulated Fermi-Dirac-like population distribution, the exact
form of population is not essential for the nonvanishing CME
current to survive. In fact, by using Gaussian distributions,
we still obtain the nonvanishing CME current. This shows
that, as long as contributions from two Weyl points are not
the same, the finite CME current will survive.

The direct computation of the CME current shown in the
above is reliable only for finite and large magnetic fields, in
which the lattice effect is important, so that the energy spec-
trum exhibits features of the Hofstadter spectrum. For small
magnetic fields and when B approaches zero, Landau levels
are dense in energy with total number approaching infinity. In
this case, it is more reliable to compute the CME current as a
linear response through the relation 〈 �J〉 = α �B. Here the linear
response is α, defined as the CME coefficient. To obtain α, we
first note that the linear response of the average current can be
generally expressed as [36,40,41]

〈Ji(q, ω)〉 = �i j (q, ω) Aj (q, ω) ≡ iαεi jkqkA j (q, ω). (13)

Here �i j is the retarded current-current correlation function
[40]. By taking q = qk̂ in Eq. (13) and choosing z as the direc-
tion of the current, α can be determined by the antisymmetric
part of � as α = − i

2q (�i j − � ji ) [41]. In the Floquet basis,

FIG. 4. CME coefficient α versus s calculated from Eq. (15) at
zero temperature.

�i j can be expressed as

�i j (q; ω) = i

V Tr[ρ(t )]

∑
k

∑
ab

∑
mn

× ρa Tr
[
JiPb

n (k + q)J jPa
m(k)

]
ω + εm

a (k) − εn
b (k + q) + iδ

. (14)

Here ρ(t ) is the density matrix with its diagonal compo-
nent being denoted by ρa. V is the volume of the system.
Pa

m(k) is the projection operator |φa(m, k)〉〈φa(m, k)|. εm
a =

εa + m� is the energy of band a with Floquet index m. In
the dc limit, q −→ 0 and ω −→ 0; by expanding �i j (q; ω)
in q and using the identity [∂q〈φb(k, n)|]|φc(k, p)〉 =
〈φb(k, n)|Jq|φc(k, p)〉/(εb

n − εc
p) when (b, n) �= (c, p), the

CME coefficient α can be expressed as

α = i

V Tr[ρ(t )]

∑
k

∑
abc

∑
mnp

× ρa
Tr

[
JiPc

pJkPa
mJ jPb

n

]
(
εm

a − εn
b

)(
ε

p
c − εn

b

) + Tr
[
JiPb

n JkPc
pJ jPa

m

]
(
εm

a − εn
b

)(
ε

p
c − εn

b

)
− (i ←→ j), with (a, m) �= (b, n), (c, p) �= (b, n).

(15)

Here i, j, and k are three cyclic indices for x, y, and
z. (a, b, c) ∈ {0, 1} are the band indices. (m, n, p) are the
Floquet indices from −∞ to ∞. Note that, due to the con-
straint on band indices, the only possible cases are (a, b, c) =
(0, 1, 0), (1, 0, 1). In Fig. 4, we show numerically computed
α versus s. We see that α generally does not vanish and
decreases as s increases. The nonvanishing α for s �= 0 fur-
ther confirms the existence of the nonvanishing CME current.
Together with the direct computation of the CME current
as shown in Fig. 3(a) for finite and large magnetic fields,
we conclude that, in the presence of a static magnetic field,
the steady Floquet-Weyl semimetal supports the macroscopic
chiral magnetic current.
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V. DISCUSSION AND CONCLUSION

In comparison to the equilibrium condensed-matter sys-
tems in which the electric current can be expressed as the
total derivative of band energy dispersion, the expression of
the electric current in Floquet systems is given by Eq. (10)
and cannot be expressed as a total derivative of the band
energy. The mechanism for a nonvanishing CME current in
Floquet systems is best illustrated by considering the current
expression in Eqs. (10) and (15). Due to dynamical transitions
between different Floquet bands in frequency space, the cur-
rent operator is not diagonal in Floquet index. As a result, the
off-diagonal matrix element of the current operator in Eq. (10)
cannot be reduced to the total derivative of energy eigenvalues
with respect to k, which is shown to vanish in equilibrium
condensed-matter systems [19]. Indeed, from Eq. (15), it is
clear that dynamical transitions from Floquet bands in dif-
ferent frequencies to the same Floquet band give rise to a
nonvanishing CME coefficient.

In conclusion, we have shown that, in a time-periodic
potential, an insulator can be driven to become a Floquet-Weyl
semimetal with two Weyl points separated in energy.

Furthermore, by coupling the resulting Floquet-Weyl
semimetallic band to a phonon heat bath, we show that
the electronic populations can be controlled so that the steady
state is characterized by the Fermi-Dirac–like distribution. As
a result, even in the presence of a static magnetic field, we find
that the resulting steady Floquet-Weyl semimetal supports
the nonvanishing chiral magnetic current so that the chiral
magnetic effect is realized in the condensed-matter system.

Our results indicate that dynamical transitions between
different Floquet bands in frequency space are the key to
break the no-go theorem of the CME current in equilibrium
condensed-matter systems. As the CME current is a macro-
scopic persistent current, our results open the door to realize a
macroscopic persistent current in condensed-matter systems.
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