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Coupling between a Weyl semimetal and a nontopological metal
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We study the effects of tunneling between a Weyl semimetal (WSM) and a simple parabolic band. When
coupled to the nonmagnetic parabolic band, the interface between the two exhibits two main phenomena. First,
the WSM’s chiral arc state lowers in energy, and second, a previously extended WSM state becomes localized to
the interface and is lowered in energy. Together these surface bound states create a new closed orbit in momentum
space, and a noticeable spin-dependent asymmetry in the interface spectrum in the vicinity of the Weyl nodes
appears. We study these effects with a lattice model that we solve numerically on a finite sample and analytically
using an Ansatz on an infinite sample. Our Ansatz agrees very well with the numerical simulation as it accurately
describes the behavior of the chiral state, from its energy asymmetry to the spin rotation at the interface. We find
that the tunneling effectively increases the Fermi arc length, allowing for the presence of interface states beyond
the bare Weyl nodes. These additional states may carry current along the interface, and their contribution can be
detected in the conductance. In addition to conductivity, the effect of tunneling between the WSM and the metal
can be seen in quantum oscillation experiments, which we briefly address.
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I. INTRODUCTION

Weyl semimetals (WSMs) are materials whose low-energy
excitations are Weyl fermions due to band crossing at the
Fermi level [1–3]. While these particles have been initially
predicted in high-energy physics as solutions to the mass-
less three-dimensional Dirac equation with definite chirality,
WSMs present a way of realizing them in condensed-matter
settings. A growing interest in these materials culminated
with their physical realization in TaAs [4,5], NbAs [6], and
Co3Sn2S2 [7], with additional predictions of type-II WSMs
in WTe2 [8] and MoTe2 [9]. On the theoretical side, the
classification of WSMs as a gapless topological phase makes
them an appealing object of study with deep connections to
topological Chern insulators [10] and novel properties in the
presence of external magnetic fields [11], to name but a few.

The Weyl Hamiltonian describes a linear crossing of two
nondegenerate bands. For a pair of such bands to touch, one
must in general tune three independent parameters, one for
each Pauli matrix [1,12]. In three spatial dimensions with
three independent momenta, these band crossings, so-called
Weyl nodes, are therefore robust against weak perturbations.
Near these nodes, the bulk energy disperses linearly and the
physics are governed by the Weyl Hamiltonian

H = h̄v0 · k ± h̄vk · σ, (1)

where ± denotes the node’s chirality, v is the effective Fermi
velocity, k is the momentum, and σ is a vector of Pauli ma-
trices acting in spin space. The first term, proportional to the
unit matrix, breaks Lorentz invariance and tilts the dispersion.
For type-I WSMs it can be ignored, leaving only the second
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term. The latter has a linear dispersion that, while strongly
reminiscent of two-dimensional (2D) graphene, will not open
a gap in the presence of small perturbations. Each Weyl node
is also a monopole of Berry curvature, leading to a chiral
anomaly that manifests itself in a negative magnetoresistance
[13], for instance.

In lattice systems, a Weyl semimetal hosts pairs of Weyl
nodes of opposite chirality [14–16] along a given nodal direc-
tion [1,17,18]. This is required by either time-reversal (T ) or
inversion (I) symmetry and the fact that the total Berry flux
in the first Brillouin zone (BZ) must vanish. Consequently, if
one imagines creating a momentum space slice of our WSM
model, such that the momentum in the direction of the Weyl
node separation, kz, is fixed, then each of the resulting 2D
models can be characterized by a Chern number. When vary-
ing kz, the Chern number changes by ±1 at the Weyl point,
representing a transition between a Chern insulator and a triv-
ial one [19,20]. Therefore, the bulk-boundary correspondence
implies the presence of topologically protected surface states
residing on an arc in the surface momentum space. The arc
begins and ends at the projection of the Weyl nodes on the
surface momentum. The arc states are chiral as they connect
the Weyl nodes that serve as a source and drain of Berry
curvature. The surface states disperse linearly away from the
Fermi level [21]. In this sense, gapless topological phases are
intermediaries between genuine trivial and topological phases
of matter, and they can even be realized by a repeated stacking
of the two [18].

Recently, much work has been done to understand how
WSM surface states change when put into contact with a
nontopological material (see, e.g., Refs. [22–26]). Among
many potential applications, these Fermi arcs may be utilized
to mitigate grain boundary scattering [27], and so it is crucial
to understand how they behave when put in contact with other
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systems. In what follows, we approach this problem by con-
structing a simple tight-binding model of a time-reversal (T )
broken WSM coupled to a nonmagnetic band over two lattice
sites. We choose a model with broken time reversal such that
only two Weyl points are present while all the aforementioned
properties can be studied without further complication. Gen-
eralization to time-reversal-invariant models with more Weyl
points can be easily done. Likewise, our choice of a simple
tunneling potential and featureless band is intentional: We
seek to draw out the bare properties of a WSM in contact with
a nontopological material.

The remaining sections are structured as follows. In Sec. II,
we present the WSM and nonmagnetic band models along
with the specific form of surface tunneling. The numerical
results of a finite lattice model are then presented in Sec. III. In
Sec. IV, we derive an infinite lattice theory with an interface
to model the spectra, spin rotation, and interface arcs in a
lattice framework, while Sec. V presents a simpler continuum
model. We finish in Sec. VI by investigating the novel trans-
port properties of the coupled system both along and across
the interface in the Landauer-Büttiker and electron tunnel-
ing formalism, respectively. Directions for further study are
briefly touched upon in the conclusion, Sec. VII, and relevant
technical details are included in the Appendixes.

II. MODEL

A. Weyl semimetal

We consider a minimal Hamiltonian that captures the
Fermi arc feature. This can be achieved either by break-
ing time reversal, T , while preserving inversion, I, or
vice-versa. To work with smaller matrices, we choose
the former. Explicitly, our bulk Hamiltonian must sat-
isfy H (k) = σzH (−k)σz and H (k) �= σyH∗(−k)σy. A simple
tight-binding Hamiltonian that abides by these symmetries is
(h̄ = lattice constant = 1) [1]

Hw =
∑

k

c†
kHbulk

w (k)ck, (2a)

Hbulk
w (k) = t sin kxσx + t sin kyσy + tm(k)σz, (2b)

m(k) = (2 + γ − cos kx − cos ky − cos kz ). (2c)

Here, ck = (ck,↑, ck,↓)� is an annihilation operator in momen-
tum space, t is the strength of hopping, and σ are the Pauli
spin matrices. Note that σ may represent a pseudospin and
not necessarily a physical spin. The Hamiltonian (2) admits
the bulk energies

E± = ±t[sin2 kx + sin2 ky + m2(k)]
1
2 . (3)

These vanish at k±
w = (0, 0,± arccos γ ) ≡ (0, 0,±kw )—the

aforementioned Weyl nodes. We emphasize the importance of
the cos kx,y terms, without which there could be more than two
Weyl points in the BZ for a given γ .

These gapless bulk momenta k±
w suggest that Hw exhibits

different phases that depend solely on the arc length parameter
γ . For γ > 1, m(k) > 0 for all k and the system is trivially
gapped. As γ decreases to 1, a pair of Weyl nodes appear at
the origin and move outward along kz as γ decreases further.
This defines a gapless topological phase whereby a nonzero
Berry flux flows within the momentum range |kz| < kw from

FIG. 1. The minimal Weyl semimetal model. (a) Spectral func-
tion at the sample surface, y = Ly − 1, of a WSM with open
boundary conditions in y plotted in the E − kx plane for fixed kz = 0
and (b) kz = π/2. (c) WSM spectral function plotted in the kx − kz

plane for fixed E = 0 showing the Fermi arc. (d) Phase diagram of
Eq. (2) where kz is fixed and the two other directions are analyzed as
a 2D system. The color represents the lower band’s Chern numbers.
The phase boundaries γ = cos kz, γ = cos kz − 2, and γ = cos kz −
4 are marked in blue. We will work at γ = 0 (dashed orange line).

the node of negative chirality to that of positive chirality. If
one imagines dividing the system into two-dimensional slices
of fixed kz, then each slice can be characterized by a Chern
number. The Chern number is nonzero between the nodes,
and zero beyond them. When γ � −1, the Weyl nodes reach
the BZ boundaries and disappear, leaving the bulk dispersion
with an inverted band gap. Between −5 < γ < −1, the same
process occurs for Weyl nodes with (kx, ky) = (0, π ), (π, 0),
and (π, π ), until γ < −5, where the system is again gapped
and trivial for all k. In all numerical results that follow, we
take γ = 0 (such that kw = π/2), well within the gapless
topological regime and with a Fermi arc length karc = π . The
bare WSM’s surface spectrum, Fermi arc, and topological
phases are shown in Fig. 1.

B. Tunneling

To draw out the tunneling properties of the Weyl
semimetal, we couple it to a simple parabolic band via spin-
independent hopping between the WSM surface atoms and
their nearest neighbor on the parabolic band. The band’s
Hamiltonian is spin-independent and reads

Hm =
∑

k

d†
kHbulk

m (k)dk, (4a)

Hbulk
m (k) = −2tm(cos kx + cos ky + cos kz ) − μ, (4b)

where tm is the hopping amplitude, μ is the chemical po-
tential, and dk = (dk,↑, dk,↓)� is an annihilation operator in

035118-2



COUPLING BETWEEN A WEYL SEMIMETAL AND A … PHYSICAL REVIEW B 108, 035118 (2023)

FIG. 2. (a) Schematic of the WSM-metal system. Only the right-
most surface, or interface (with the Fermi arc shown as a white line
and the nodes as white crosses), is linked to the metal via tunneling
�. (b) Physical representation of the system as a chain (Rw , hw , etc.
defined in Appendix A). (c) By integrating out the metal degrees of
freedom, the chain is simplified into a single semi-infinite chain with
a single edge site with an energy shift h� = T †GmT (shaded with a
gray line).

momentum space. For brevity, we equivalently refer to this
nonmagnetic parabolic band as “metal”, though one may of
course tune μ to achieve a semiconductor or an insulator,
as discussed in Appendix B, where we also consider two
parabolic bands.

We now introduce a tunneling Hamiltonian that couples
the surface of the WSM to the surface of the metal. We
proceed with open boundary conditions in the y-direction
and keep well-defined momenta perpendicular to the surface,
k⊥ = (kx, kz ). The WSM (metal) side runs from y = −Ly + 1
to 0 (y = 1 to Ly), defining an interface between the WSM’s
y = 0 and metal’s y = 1 sites. The Hamiltonian for the full
(finite-sized) system is therefore

H =
∑
k⊥

Ly∑
y,y′=−Ly+1

f†
k⊥,yH(k⊥)y,y′fk⊥,y′ , (5a)

H(k⊥) =
(
Hopen

w (k⊥) T †

T Hopen
m (k⊥)

)
, (5b)

where

fk⊥,y =
{

ck⊥,y, −Ly + 1 � y � 0,

dk⊥,y, 1 � y � Ly,
(6)

and Hopen is the partial-in-y Fourier transform of Hbulk. The
full form of Eq. (5) is shown in Appendix A. The surface
tunneling term takes the form

(T )y,y′ = �δ0,Ly−1, (7)

where, for simplicity, we have assumed that � is a real
constant representing the tunneling strength.1 Physically, the
tunneling strength can be modified either by varying the

1A more realistic tunneling, e.g., one that extends over multiple
metal sites, can always be effectively recast as a strong localized
tunneling via the procedure outlined in Sec. II B.

metal bandwidth tm or by changing the interface thickness,
as suggested by Fig. 2. There are therefore two competing
energy scales at the WSM’s interface: The interlayer hopping
t pulling the electron towards the bulk, and the tunneling
strength � pulling the electron towards the metal.

Before moving on to the numerical results of our model on
a finite lattice, we note that the metal degrees of freedom can
be integrated out to make way for an effective WSM propa-
gator [28,29]. More precisely, the effective Green’s function
becomes

Geff (iωn) = [
G−1

w (iωn) − T †Gm(iωn)T
]−1

, (8)

where ωn is the Matsubara frequency, and Gw,m = (iωn −
Hopen

w,m )−1 are the bare Green’s functions. Substituting in
Eqs. (4) and (7) yields

T †Gm(iωn)T = − �2√
(iωn − hm)2 − 4t2

m

δy,Ly−1δy,y′ , (9)

where hm = −2tm(cos kx + cos kz ) − μ. Surface tunneling
simply shifts the same-site hopping of the last site [Fig. 2(c)].

III. FINITE LATTICE MODEL

We now turn to the numerical results of Eq. (5) on a
finite lattice. Keeping the system open in y with the quan-
tum numbers kx and kz, we calculate the Green’s function,
defined by

G(E , k⊥) = [E + i0+ − H(k⊥)]−1, (10)

and the spectral function, A(E , k⊥) = −π−1Im[Tr(G)]. The
interface spectral function displayed in Fig. 3 is found by
tracing over the y = 0 site only.

At kz = 0 [Fig. 3(a)], we are exactly in between the Weyl
nodes. Without tunneling, only the Fermi arc state is present
and localized to the interface, residing on the Fermi arc and
dispersing as E = −t sin kx with a spin σx = −1. With tun-
neling, there are two noticeable effects. First, the chiral Fermi
arc state (which will henceforth be referred to as a chiral state)
is lowered in energy. This is due to the possibility to spread
the wave function wider into the metal side. This lowering
of energy captured by Eqs. (8) and (9) is a prevailing effect
throughout this work. Second, a previously extended state en-
ters the bulk gap from the upper bulk band and localizes to the
interface. Contrary to the chiral state, this so-called emergent
interface state does not have a uniform spin polarization.

At the Weyl nodes [Fig. 3(b)], the Fermi arc terminates
and there are no interface states for � = 0. As tunneling is
increased, however, the chiral state can be seen along the Weyl
node’s upper cone. When � increases beyond the interlayer
hopping t , the chiral state detaches from the Weyl cone and
forms, together with the emergent interface state, a noticeable
asymmetry in the spectral function at the interface with re-
spect to kx reflection [Fig. 3(b.iii)]. This striking asymmetry
is of particular interest. Physically, it suggests that tunneling
modifies the group velocity along the interface to produce
additional left- and right-flowing current in an energy range
between the chiral and emergent interface states’ intersections
with the bulk dispersion. Naively, this is surprising because
one may not expect the breaking of translation symmetry in
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FIG. 3. Spectral function at the interface for the coupled WSM-metal system for both spins. The numerical results (simulated on an
Ly = 30 sized chain sampled at 100 momentum points) are shown in warm colors, whereas the chiral state’s infinite lattice model (Sec. IV)
is plotted in blue. In all plots where the infinite lattice theory obstructs the numerical results (e.g., the top left), the agreement is near exact.
The columns correspond to (a) the spectrum along kx at kz = 0, (b) the spectrum along kx at the Weyl point kz = +π/2, and the emergent
interface arcs at (c) E = 0 and (d) E = 0.5. The rows are set in increasing order of � = 0, 1, 2.3 going down. The bulk energy edges
Ebulk = ±t[sin2 kx + (1 + γ − cos kx − cos kz )2]

1
2 are denoted by dashed white lines, as is the Fermi surface in the E = 0.5 interface plots.

The bare Weyl nodes k±
⊥,w = (0,±π/2) are white crosses. The fixed parameters used for these and all other plots are t = 1, γ = 0, tm = 0.5,

μ = −4, unless otherwise specified.

y to induce an asymmetry in the x-direction. However, one
must remember that the physics on a single surface are not in
fact symmetric in kx to begin with, as evidenced by the linearly
dispersing chiral state at the interface. Therefore, although
the spectral function is symmetric in kx when traced over all
sites, the localized tunneling term in y will explicitly break
this symmetry.

By plotting A(E , k⊥) in the surface BZ, we see that the
zero-energy interface Fermi arc [Figs. 3(c) and 3(d)] will
curve in the presence of tunneling [30]. While still terminating
at the Weyl nodes k±

⊥,w = (0,±kw ), it does go beyond kz =
±kw at zero energy due to this curving, thereby signifying
the existence of interface states in a region of parameters
outside the bare Fermi arc. This is illustrated by the chiral
state’s presence at kz = π/2 and will have important transport
consequences starting in Sec. VI.

These results are robust to changes in the metal’s disper-
sion relation. In fact, we find that equivalent behavior may be
obtained simply by coupling the WSM to a constant energy
reservoir tm = 0, μ = −M. A more realistic setup in which
the WSM is coupled to a two-band bulk insulator will yield
two copies of the dispersion found in Fig. 3, one for positive
and one for negative energy (see Appendix B).

Finally, as seen in the numerics above, a new closed orbit
of low-energy states appears on the interface. This closed
orbit should be apparent in quantum oscillation experiments
as it leads to oscillations with frequency, which matches the
enclosed momentum space area. These oscillations should be

contrasted to the arc/node oscillations suggested by Ref. [31]
and studied in Ref. [28]. The latter oscillations result from
closed orbits, which include both the surface (interface) and
bulk states, meaning their frequency depends on the slab
depth. By contrast, the new orbit seen in Fig. 3(d.iii) contains
only interface states, and its frequency is depth-independent.
We leave the study of these orbits open for future work.

IV. INFINITE LATTICE THEORY WITH AN INTERFACE

The physics at the interface seen in the lattice model above
can be described in an infinite model and treated analytically
with the help of an Ansatz. We take Ly → ∞ and impose
ψ → 0 at y → ±∞ on both sides of the interface. Therefore,
this theory effectively consists of two semi-infinite slabs con-
nected by surface tunneling �.

To simplify the algebra, we perform a unitary transforma-
tion U = 1√

2
(1 − iσy). In the next sections, we will use the

following definitions:

g1 = t sin kx, (11a)

g3 = t (2 + γ − cos kx − cos kz ), (11b)

hw = g1σz − g3σx, (11c)

Rw = t

2
(σx + iσy), (11d)
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where hw contains all in-plane terms and Rw represents the
nearest-neighbor hopping along the y axis. hw and Rw are
matrices in spin space.

A. � = 0

As a first test of validity, we take the � = 0 case and
recover the chiral state and Fermi arc of the finite lattice
model. In a lattice formalism, Hopen

w ϕw = Eϕw produces a set
of coupled difference equations relating ϕw(y) to its nearest
neighbors ϕw(y ± 1) [32]. Without the possibility of tunnel-
ing into the metal, there are two distinct equations, one for
the bulk (hopping to both y + 1 and y − 1) and one for the
interface (hopping to y = −1 only). They read

Eϕ(y) = hwϕ(y) + R†
wϕ(y + 1) + Rwϕ(y − 1) (12a)

and

Eϕ(0) = hwϕ(0) + Rwϕ(−1), (12b)

respectively. Seeking states ϕ exponentially localized to the
interface, we make the Ansatz

ϕ ∝
{

eikxx+ikzz	yφw, y = −∞, . . . ,−1, 0,

eikxx+ikzz	
−y+1
m φm, y = 1, 2, . . . ,∞,

(13)

where φw,m are spinors. Note that this Ansatz assumes a
constant spin direction and is therefore suitable for the chiral
state found above but is not completely general. Plugging in
Eq. (13), we obtain the matrix equations

(E − g1σz + g3σx − t	−1σ+ − t	σ−)φw = 0, (14a)

(E − g1σz + g3σx − t	−1σ+)φw = 0, (14b)

where σ± = 1
2 (σx ± iσy). Subtracting Eq. (14b) from

Eq. (14a) reveals the condition

t	σ−φw = 0 (15)

for the chiral state. Clearly, the factor 	, which represents the
spatial decay into the bulk, is nonzero for a surface state.
Therefore, the chiral state is an eigenstate of σx with eigen-
value −1. Setting the determinant of Eq. (14a) to zero yields
the ratio of spins and the energy, respectively,

φ↑
w

φ
↓
w

= E + g1

t	 − g3
= t	−1 − g3

E − g1
, (16a)

E = ±[
g2

1 + g2
3 + t2 − g3t (	 + 	−1)

] 1
2 , (16b)

where ± is the band index. Setting φ↑
w/φ↓

w = 0 for a state with
spin in the −x direction, we find 	 = t/g3 and E = −g1 for
the chiral state.

To satisfy the boundary condition at y → −∞, we impose
Re(	) > 1, or |g3| < t . The familiar Fermi arc condition γ <

cos kz then follows naturally.2 We have therefore recovered the
aforementioned chiral state: A unidirectional interface state on
the Fermi arc.

2For a bulk state of energy E , Re(	) > 1 implies −Ebulk < E <

Ebulk, where Ebulk (k⊥) = [g2
1 + (g3 − t )2]

1
2 is the bulk edge.

B. � > 0

We now allow for tunneling at the interface between the
y = 0 and 1 sites. There are then four difference equations,
one for each type of site: The Weyl bulk, Weyl interface, metal
interface, and metal bulk. Substituting in the supposed form of
ϕ, the difference equations are, respectively,

(E − g1σz + g3σx − t	σ− − t	−1σ+)φw = 0, (17a)

(E − g1σz + g3σx − t	−1σ+)φw − �φm = 0, (17b)(
E − hm + tm	−1

m

)
φm − �φw = 0, (17c)(

E − hm + tm	−1
m + tm	m

)
φm = 0. (17d)

Equation (17c) has no matrix structure and is hence the same
for both components of the spinor, requiring the spinor direc-
tion to be the same on both sides of the interface. Moreover, it
determines the magnitude ratio

φm = �

E − hm + tm	−1
m

φw. (18)

Together with Eq. (17b), we obtain(
E − �2

E − hm + tm	−1
m

− g1σz + g3σx − t	−1σ+

)
φw = 0.

(19)

Equation (19) is similar in form and purpose to the effec-
tive surface Green’s function (8) except it is purely in spin
space since the Ansätze and vanishing boundary conditions
took care of position dependencies. It can be interpreted as
an eigenvalue problem for the matrix g1σz − g3σx + 	−1σ+,
whose eigenvalues are

E� ≡ E − �2

E − hm + tm	−1
m

. (20)

With this, its energy bands are twofold and defined by the
implicit equation

E − �2

E − hm + tm	−1
m

= ±(
g2

1 + g2
3 − tg3	

−1
) 1

2 , (21)

where 	 and 	m are themselves functions of the energy, which
are found by requiring that the determinant of the right-hand
side of Eqs. (17a) and (17d) vanishes:

	± = Q ±
√

Q2 − 1, (22a)

	m,± = P ±
√

P2 − 1. (22b)

Here, Q = g2
1+g2

3+t2−E2

2g3t and P = hm−E
2tm

. While it may seem at
first glance that the energies are symmetric in kx due to the
even parity of both 	 and 	m with respect to kx, one must be
careful in choosing the appropriate branch, such that the state
indeed decays away from the interface. In general, the branch
may vary as a function of k⊥.

The energies obtained from Eq. (21) agree with the shape
of the numerical results obtained in Sec. III, albeit with no-
ticeable discrepancies. The problem is that our system is
overconstrained. Indeed, there are a total of nine equations
[Eq. (17) and normalization] and eight variables (the two
components of each φw and φm, 	, 	m, E , and normalization).
We find that a better expression of the energy can be obtained
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by relaxing the initial Ansatz to allow the spin at the zeroth
site, φ0

w, to differ from the spin in the remainder of the WSM:

ϕmod ∝

⎧⎪⎪⎨
⎪⎪⎩

eikxx+ikzz	yφw, y = −∞, . . . ,−1,

eikxx+ikzzφ0
w, y = 0,

eikxx+ikzz	
−y+1
m φm, y = 1, 2, . . . ,∞.

(23)

There are now five difference equations, one for each type of
site: The Weyl bulk, Weyl y = −1 site, Weyl interface, metal
interface, and metal bulk. The Weyl and metal bulk equations
remain unchanged. The Weyl and metal bulk equations are
still Eqs. (17a) and (17d), respectively. The Weyl y = −1,
Weyl interface, and metal interface equations are

(E − g1σz + g3σx − t	−1σ+)φw − t	σ−φ0
w = 0, (24a)

(E − g1σz + g3σx )φ0
w − t	−1σ+φw − �φm = 0, (24b)(

E − hm + tm	−1
m

)
φm − �φ0

w = 0, (24c)

respectively. Using Eq. (24a) to relate φw to φ0
w and Eq. (24c)

to relate φm to φ0
w, we arrive at the matrix equation(

E� − E − g1

2D
(1 + σz ) − g1σz + g3σx

)
φ0

w = 0, (25)

where D = E2−g2
1−g2

3+g3t/	
t2 . Requiring that the matrix be singu-

lar yields

E� − E − g1

2D
= ±

[
g2

3 +
(

g1 + E − g1

2D

)2
] 1

2

, (26)

which can be implicitly solved for E . The infinite lattice
theory Eq. (26) is found to be in very good agreement with
the finite lattice model, as seen in Fig. 3.

A perfect description of the finite lattice model would
necessitate an Ansatz with a potentially distinct spin on every
site. Since the chiral state has most of its weight on the
interface, our approximation of only allowing the y = 0 site to
differ from the remaining WSM sites is a fine and physically
justified one. What we gain in quantitative accuracy, however,
we lose in intuition, as Eqs. (25) and (26) do not have the same
pleasant interpretation as Eqs. (19) and (21).

Another remarkable consequence of tunneling is spin rota-
tion. At first glance, one should not expect that nonmagnetic
tunneling to a nonmagnetic metal should cause the polarized
spins at the interface to rotate away from the −x direction
(which was found in the previous section). Indeed, this intu-
ition is supported by Eq. (18) and in fact agrees with the finite
lattice model for � � t . To paint a more complete picture,
however, we must consider the ratio of spins of the interface
state, which, in light of Eq. (25), is

φ↑
w

φ
↓
w

= E� + g1

−g3
. (27)

For � > 0 and if E < hm + tm	−1
m , we expect the interface

spin to rotate away from φ↑
w/φ↓

w = 0 (σx = −1 in the original
basis) towards φ↑

w/φ↓
w = −1 (σz = +1 in the original basis)

due to the energy lowering brought on by �. Solving for
φ↑

w/φ↓
w together with Eq. (26) yields the spins at the interface

of the chiral state as they vary with tunneling, shown in Fig. 4,
panel (a). We therefore conclude that nonmagnetic surface

FIG. 4. (a) The chiral state’s spin at the interface, fixed at the
Weyl node kz = π/2 and kx = −0.7 on a lattice of size Ly = 30.
Varying � rotates the spin from σx = −1 towards σz = +1 (black
arrows), matching the prediction of Eq. (27). The solid (dashed)
lines correspond to finite lattice numerical (infinite lattice theory)
results. (b) Spin texture along the Fermi arc at E = 0 for � = 0
and 2.3 plotted with the interface spectral function at zero energy.
The spin texture obtained in the infinite lattice theory via Eq. (27)
(white arrows) is overlaid onto the finite lattice numerical results
(blue arrows). Note that 〈σy〉 is always zero (see Appendix C).

tunneling to a nonmagnetic band can in fact induce a change
in the spins of the WSM’s chiral states. The spin rotation is
related to the curvature of the Fermi arc, as seen in Fig. 4,
panel (b).

V. CONTINUUM INTERFACE THEORY

A simplified model that can capture the effect of tunneling
is a continuum model that is valid near ky = 0. We note that
in order to satisfy the boundary conditions at the interface, we
have chosen to keep the second derivative in the y-direction,
as can be seen below.

A. � = 0

We first consider the � = 0 case, a semi-infinite WSM slab
in the continuum limit. Starting from the bulk lattice model
Hbulk

w and keeping the O(k2
y ) terms, we let ky = −i∂y and

multiply by iσy throughout to arrive at the differential equation
(with t = 1):

∂yψ + σx

2
∂2

y ψ = iσy(E − t sin kxσx )ψ + hzσxψ, (28)

where hz ≡ g3 − t . To hone in on the objective interface
states, we take the interface to be at y = 0 and make the
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Ansatz ψ ∝ eκyφ, where φ is an unspecified spinor and
Re(κ ) > 0 such that ψ → 0 as y → −∞. The differential
equation (28) admits four solutions for κ , of which two have
a putatively positive real part:

κ2
± = 2(1 + hz ) ± 2[1 + 2hz + E2 − sin2 kx]

1
2 . (29)

For a state of energy E , Re(κ ) > 0 translates to E2 <

sin2 kx + h2
z , in agreement with the infinite lattice theory.

Equation (29) sheds light on the fact that for a given eigen-
vector with energy E satisfying Eq. (28), there is a distinct
eigenvector with equal and opposite energy −E which is also
a solution. Therefore, there are two κ values per energy.

To determine which solution is correct, we impose the
boundary condition ψ(0) = 0. In general, one has the su-
perposition ψ ∝ eκ+yφκ+ + αeκ−yφκ− . Therefore, α = −1 and
φκ+ = φκ− . Equating the ratio of spinor components, the latter
condition can be surmised as

E + hz − κ2
+/2

sin kx + κ+
= E + hz − κ2

−/2

sin kx + κ−
. (30)

After some algebra, we recover the aforementioned chiral
state of energy E = − sin kx, leading to the decay parameters
κ± = 1 ± √

1 + 2hz and spin in the negative x-direction:

ψchiral ∝ eikx+ikzz(eκ+y − eκ−y)

(
1

−1

)
. (31)

The condition of Re(κ ) > 0 leads once again to γ < cos kz,
which is the familiar arc condition. At the surface BZ origin
k⊥,0 = (0, 0), the chiral state’s decay length is on the order of
a lattice length, pointing to a strongly localized state. At the
surface Weyl points k±

⊥,w = (0,±kw ), however, κ− = 0 and
the chiral state’s decay length diverges, as expected from the
absence of such surface states at the Weyl node.

B. � > 0

To get a simple analytical result, we imagine coupling the
WSM to a quantum dot of energy M. Here, we model the
metal as a flat band since it is well above the WSM, and
only states with the same energy are relevant. The continuum
Hamiltonian reads

Hcont =
(

sin kxσx + hzσz − iσy∂y − 1
2σz∂

2
y �

� M

)
. (32)

Once again, we focus on solutions bound to the interface
ψw ∝ eκyφw (ψm ∝ e−κmyφm), leading to four differential
equations. The first two restrict the metal spinors to be identi-
cal to the Weyl spinors up to a scalar factor:

φm = �

E − M
φw. (33)

The remaining two equations reduce to a 2 × 2 matrix equa-
tion expressed in the basis of Weyl spinors φw:(

E − �2

E − M
− sin kxσx − hzσz + κ2

2
σz + iκσy

)
φw = 0,

(34)

which is the continuum form of Eq. (19). When � = 0 and
E �= M, it is not difficult to see that the bare WSM surface

FIG. 5. Spectral function at the interface for the WSM-metal
system (Ly = 30) at kz = 0 for a tunneling strength of (a) � = 0
and (b) � = 1.5. The blue line is the analytic chiral state dispersion
Echiral, whereas the dashed white lines represent the bulk energy gap
Ebulk = ±1. The metal energy is M = 4.

chiral state is recovered. For � > 0, the physics are identical
to the � = 0 case with the substitution E → E − �2/(E −
M ) = E�.3 For instance, the decay parameters are now

κ2
±a2t = 2(t + hz ) ± 2

(
t2 + 2thz − t2 sin2 kx + E2

�

) 1
2 , (35)

where we have reinserted the energy scale t and the lattice
constant a.

The continuum interface theory therefore hints at a
straightforward interpretation of the energy shift upon tunnel-
ing. Indeed, seeing as the only effect of � was to shift the
energies, the chiral band’s energy in the continuum theory is
defined by E� = −t sin kx, or

E = M − t sin kx

2
− 1

2
[(M + t sin kx )2 + 4�2]

1
2 . (36)

In regimes where the decay lengths κ−1
± ∼ a, Eq. (36) is in

agreement with finite lattice simulations, as shown in Fig. 5.
As for the chiral state’s spin, it remains unchanged due to
Eq. (30) still being satisfied and equal to −1 when E → E� =
−t sin kx.4 Therefore, the validity of Eq. (36) will depend
wholly on whether or not the state is in a σx = −1 eigen-
state, and any deviations in the band structure must reflect a
changing spin in the lattice model. Since the spins do in fact
rotate for � � t , this is the root of the continuum theory’s
inaccuracy in this regime.

Another aspect captured by the continuum theory is the
localization of bulk states at the interface to produce the
emergent interface state, a typical feature of systems with
boundary topologies [32]. Simply put, the lowering of energy
with tunneling will give the bulk state’s decay parameter a
positive real part, even for arbitrarily small �.

3In fact, the effective surface propagator Eq. (9) exactly reduces
to −�2/(E − M ) when tm = 0 and μ = −M.

4In the infinite lattice theory, the replacement

E → E� = −t sin kx = −g1

in Eq. (27) also leads to a spin σx = −1 (φ↑
w/φ↓

w = 0).
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VI. TRANSPORT

We will now turn to the transport consequences of the pre-
viously described theory and numerics. We study the current
along the interface (traveling in the x-direction). We fix kz and
analyze transport in 2D, summing over all momenta at the end.

At � = 0, the conductance at the Weyl node should vanish
due to the gap closure and subsequent absence of unidi-
mensional current-carrying states. For � > 0, however, the
presence of interface states near the Weyl node and the result-
ing spectral asymmetry in kx [Fig. 3(b.iii)] suggests a jump
in group velocity ∂kx E across the Weyl point, leading to a
nonzero conductance.

We verify our reasoning numerically via the Landauer-
Büttiker formalism, where conductance along the interface G‖
is defined as [33]

G‖(E ) = e2

h
Tr(GR�lG

A�r ). (37)

Here, GR is the usual retarded Green’s function

GR = (E − H − �R)−1 (38)

with the lead self-energy �R = �R
l + �R

r giving the quasipar-
ticles a finite lifetime. The �l and �r operators describe the
loss of electrons into the left and right leads, respectively:

�l (r) = i
(
�R

l (r) − �A
l (r)

) = −2 Im
(
�R

l (r)

)
. (39)

For simplicity, we place two leads, one on each of the
x-boundaries, which span the entire sample in the y-direction.
Since the leads are (the interface is) in the plane perpendicular
to x (y), our construction forces the sample to be open in
both the x-direction and the y-direction while still remaining
periodic in z. For any kz, �R

l takes the form

(
�R

l

)
x,x′;y,y′ = − i

2τ
δx0δxx′δyy′ , (40)

where τ is the quasiparticle’s lifetime. For its part, �R
r admits

a similar form with δx,0 replaced by δx,Lx−1. The tunneling
matrix T now adopts a new diagonal sub-component in the
x-direction:

Tx,x′;y,y′ = �δxx′δy0δy′Ly . (41)

For � = 0 [Fig. 6, panels (a) and (b), top row], the e2/h
quantized conductance for |kz| < kw can be understood in the
context of the quantum anomalous Hall effect, treating each
constant kz plane as a 2D quantum spin Hall insulator with
one-dimensional edge states carrying G‖ = e2/h [34].

At kz = 0 [Fig. 6(a)], the surface tunneling, � �= 0, local-
izes a bulk state to within the gap, allowing for both left-
and right-moving carriers to produce a “bump” in the conduc-
tance. One can reason by examining the juxtaposed spectrum.
Above and below the bump energies (denoted by pink and
green lines), there is only one left-moving state, whereas
within it there are two left-movers and one right-mover. With-
out scattering between left- and right-movers, these states
should contribute 2e2/h to the conductance in one direction
and e2/h in the other direction. On the other hand, scattering
may reduce the conductance since a left- and right-mover can
hybridize. In our case, the scattering is provided by the leads,

FIG. 6. Conductance G‖ of the WSM-metal system along the
interface at (a) kz = 0 and (b) kz = π/2 for � = 0 (i,ii) and � =
2.3 (iii,iv). To guide the physical intuition, the spectra are shown in
the left panels (i,iii) and states are colored and shaded according to
their y-position, with the relevant interface states in dark magenta
and bulk states in faint colors. Energies relevant to the discussion in
Sec. VI are denoted by full horizontal lines.

and therefore the resulting conductance is between one and
two quanta of conductance.

The effect of tunneling is perhaps most pronounced at
the Weyl node [Fig. 6(b)]. As discussed, the bulk gap closes
and the subsequent absence of interface states leads to zero
conductance at zero energy when � = 0. However, with tun-
neling there are now two interface states in the spectrum:
The left-moving chiral state and the right-moving emergent
interface state. The former will terminate at an energy Eterm
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FIG. 7. (a) Conductance summed over all kz for � = 0 (i) and
� = 2.3 (ii). (b) Total conductance minimum (43) as a function of
bare Fermi arc length. For � = 0 (black crosses), kz

arc = 2 arccos γ

and the minimum conductance scales with the Fermi arc length
(modulo scattering). For � = 2.3 (red triangles), kz

arc > 2 arccos γ

and the conductance minimum is therefore increased relative to
� = 0.

(green line), the intersection of Ebulk = (t2 sin2 kx + h2
z )

1
2 with

the energy from Eq. (21). Below Eterm, there are no uni-
directional carriers and the conductance is unchanged. For
Eterm < E < 0, the emergent interface state is absent and the
chiral state is present, so there is a conductance e2/h per kz

slice. Note the deviation from e2/h due to the small amount
of bulk states present near zero energy. Above this range,
both the chiral and the emergent interface states are present
and move in opposite directions—their sum is null (modulo
scattering), and only bulk states contribute.

When experimentally measuring transport between leads,
the measured quantity is a sum over all kz momenta. We
therefore define the total conductance along the interface,

G‖(E ) = 1

Lz

∑
kz

G‖(E , kz ). (42)

Summing over quantized conductance contributions on the
z-projected Fermi arc kz

arc, Eq. (42)’s minimum is fixed
(Fig. 7):

min G‖ = e2

h

kz
arc

2π
. (43)

To probe this signature, we vary the arc length along the
kz-direction, as shown by Fig. 7(b). In the minimal model,
this can be done by applying a Zeeman coupling bzez to
spin degrees of freedom, bringing the arc length to kz

arc →
2 arccos (γ + bz ) provided bz is small enough not to change

the overall topological phase and that its orbital effects may
be neglected.

Finally, transport across the interface (i.e., traveling in the
y-direction) is touched upon in Appendix D and is found to
reproduce standard tunneling conductance.

VII. CONCLUSION AND DISCUSSION

Using both lattice and continuum frameworks, we have
described the behavior of a T -broken WSM’s interface in
proximity to a nonmagnetic band. When coupled to this band
via nonmagnetic surface tunneling, the WSM’s chiral state
lowers in energy and forms, together with a previously de-
localized bulk state, a noticeable spin-dependent asymmetry
in the interface spectrum across the Weyl nodes. To model
this phenomenon, we derived an infinite lattice theory of the
interface and compared it to finite lattice model numerical
results. We found that the infinite lattice theory accurately
described the behavior of the chiral state in the entire Brillouin
zone (BZ), from its energy asymmetry to the spin rotation at
the interface. The localization of bulk states and the curving of
the Fermi arc was also captured by the infinite lattice theory.
To build intuition, we also derived a simpler continuum theory
of interface states which captured the physics near k⊥,0.

Using the Landauer-Büttiker formalism, we calculated the
transport of Weyl electrons traveling along the interface. Due
to the asymmetry and increased Fermi arc length which allows
for the presence of interface states beyond k±

⊥,w, we found a
quantized increase in conductance per kz at the Weyl nodes
due to tunneling. We proposed a possible probe of this in-
crease by relating the minimum in total conductance to the
Fermi arc length.

Though this toy model described the minimal case of
two Weyl nodes in a magnetic WSM with strong localized
tunneling, these nodes always come in pairs connected by
Fermi arcs. It is therefore reasonable to expect that the re-
sults obtained herein will still manifest themselves in more
complicated systems with, e.g., broken inversion symmetry
and a greater number of Fermi arcs. Finally, the asymmetry is
resolved if one also accounts for the Hamiltonian’s T -reversed
partner σyH∗

w(−k)σy, instead of breaking inversion symmetry.
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APPENDIX A: THE FULL HAMILTONIAN

Recall the Hamiltonian for the full (finite-sized) system:

H =
∑
k⊥

Ly∑
y,y′=−Ly+1

f†
k⊥,yH(k⊥)y,y′ fk⊥,y′ , (A1a)

H(k⊥) =
(
Hopen

w (k⊥) T †

T Hopen
m (k⊥)

)
, (A1b)
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where

fk⊥,y =
{

ck⊥,y, −Ly + 1 � y � 0,

dk⊥,y, 1 � y � Ly,
(A2)

with cy = (ck⊥,y,↑, ck⊥,y,↓)�. Hopen is the partial-in-y Fourier
transform of Hbulk. There is translational invariance in both
x and z, so each block is in general a function of k⊥.

The bare Weyl Hamiltonian Hopen
w is

Hopen
w = C0 ⊗ hw + C1 ⊗ Rw + C†

1 ⊗ R†
w, (A3)

where C0 is the Ly-sized identity and (C1)y,y′ = δy+1,y′ is the
displacement operator on the lattice. Here,

hw = tx sin kxσx + tz(2 + γ − cos kx − cos kz )σz, (A4a)

Rw = ity
2

σy − tz
2

σz (A4b)

are the spin-matrices corresponding to same-site and nearest-
neighbor hopping, respectively.

The bare metal Hamiltonian Hopen
m is written in a similar

form (1 is the identity matrix in spin):

Hopen
m = hmC0 ⊗ 1 − tmC1 ⊗ 1 − tmC†

1 ⊗ 1 (A5)

with

hm = −2tm(cos kx + cos kz ) − μ. (A6)

APPENDIX B: THE INTERFACE SPECTRUM
FOR DIFFERENT BAND CONFIGURATIONS

The asymmetry at the Weyl node illustrated in Fig. 3(b)
is also apparent for different choices of μ, tm, and metal
band structure. To convince ourselves of our specific model’s
ubiquitous features, we display a few more metal configura-
tions in Fig. 8(a). We expect that in the more realistic setup
of a WSM coupled to a two-band bulk insulator, both copies
will be present: One for positive and one for negative energies.
This is confirmed in what follows.

One may also imagine coupling the WSM to a two-band
bulk insulator, i.e., two copies of the single bulk metal band
separated by a gap. Keeping each individual band nonmag-
netic, the Hamiltonian is now

H =

⎛
⎜⎜⎝
Hopen

w T † T †

T Hopen
+ 0

T 0 Hopen
−

⎞
⎟⎟⎠, (B1)

where Hopen
± represent the metal Hamiltonian Hopen

m with pa-
rameters tm,± = ±tm, μ± = ±μ, and T is the same as before.
The resulting spectrum is shown in Fig. 8(b). Unsurprisingly,
we recover two copies of the previously observed, single-band
asymmetry: One for positive energies and one for negative
energies. The asymmetry is therefore resolved if one inverts
both the momentum and the energy.

Though the case of a band with zero bandwidth tm = 0
is not physically realistic, it still reproduces the same quali-
tative asymmetry. For mathematical simplification, therefore,

FIG. 8. The energies at the Weyl node for various parabolic band
configurations at � = 2.3. (a) The interface spectral function for
tm = 0.5 at (from left to right, top to bottom) μ = −4, −2, 0, and
+2 as defined by Eq. (4). The WSM (metal) bulk edge is shown
by dashed white (blue) lines. (b) The band structure for a WSM in
contact with the two-band insulator [Eq. (B1)]. States localized to the
interface are shown in red.

we may set tm = 0 as is done in the continuum theory and
spin rotation discussion. We ultimately choose to work with
μ = −4 and tm = 0.5 and a single metal band due to the clear
asymmetry across the Weyl node and separation between bulk
WSM and metal dispersions.

APPENDIX C: 〈σy〉 = 0 IN AN OPEN WSM

In the bulk, it is clear that 〈σy〉 may be any value. In
particular, the spin-orbit coupling in a Weyl Hamiltonian of
the form k · σ will tie the y-momentum ky to the spin in that
same direction. Upon opening our system in the y-direction,
however, 〈σy〉 = 0 identically throughout. Similarly, opening
the system in x renders 〈σx〉 = 0.

One can see why this is the case by examining the finite-
sized WSM Hamiltonian Eq. (A3). Written in matrix form, the

035118-10



COUPLING BETWEEN A WEYL SEMIMETAL AND A … PHYSICAL REVIEW B 108, 035118 (2023)

blocks are

hw =
(

g3 g1

g1 −g3

)
, (C1a)

R†
w = 1

2

(−tz ty
−ty tz

)
(C1b)

in spin space, where tx,y,z are real. Adding these blocks into
the finite-sized matrix Hw leads to a real and Hermitian (or
symmetric) matrix, i.e., H�

w = Hw. We set out to prove that
one can always find real eigenstates to a real symmetric ma-
trix, thereby rendering 〈σy〉 = 0 identically as σy is purely
imaginary.

To prove this, we start by noting that the eigenvalues of a
symmetric matrix are real. Now, take Hw|ψ〉 = E |ψ〉. Adding
it to its complex conjugate yields

Hw(|ψ〉 + |ψ〉∗) = E (|ψ〉 + |ψ〉∗). (C2)

Now, if |ψ〉 = −|ψ〉∗ then |ψ〉 is purely imaginary and we
can therefore define |ψ〉 = i|ϕ〉 with |ϕ〉 purely real, satisfy-
ing Hw|ϕ〉 = E |ϕ〉. Otherwise, if |ψ〉 + |ψ〉∗ �= 0 then it is
necessarily real. Therefore, one may always find a complete
set of real eigenvectors to a real symmetric matrix. Since the
eigenvectors are purely real and the matrix σy contains only
imaginary entries,

〈ψ |σy|ψ〉 = 0. (C3)

Of course, one can always perform a unitary rotation in spin
space such that σx → σy and σy → −σx. In this case, an open
system in x exactly mirrors one open in y before the rotation,
and 〈σx〉 = 0 likewise follows. One should note that in the
case of degeneracies (such as bulk states with the same energy
at ky and −ky), it is possible to construct a superposition of
states that have a nonzero σy value. Surface states, however,
have no such degeneracy and are therefore guaranteed to have
a zero spin in the y-direction.

APPENDIX D: DERIVATION OF CONDUCTANCE
ACROSS THE INTERFACE

We set out to derive an expression for the conductance
across the interface G⊥,σ = dIσ /dV of a particle polarized
with spin σ . We begin by expressing the current Iσ of a particle
with spin σ in terms of the retarded correlation function U σσ ′

R
[35–37]:

Iσ = −2e Im
∑
σ ′

U σσ ′
R (−eV ). (D1)

U σσ ′
R (−eV ) is found by computing the Matsubara correla-

tion function Uσσ ′
(iωn) and analytically continuing iωn →

−eV + i0+. At finite temperature β−1, we have

Uσσ ′
(iωn) = 1

β

∑
kq

|Tkq|2
∑

ip

gσ ′σ
w (k, ip − iωn)gσσ ′

m (q, ip),

(D2)

where k (q) is the momentum in the WSM (metal), Tkq is
the tunneling matrix element, ωn (p) is a bosonic (fermionic)
Matsubara frequency, and gw (gm) is the Matsubara Green’s
function for the bare WSM (metal). Since states bound to the
interface will not contribute to tunneling across from it, we

may consider only bulk states. The bulk Green’s functions
gm,w are therefore

gm(q, ip) = 1

ip − ξm
, (D3a)

gw(k, ip) = ip + Hbulk
w

(ip − ξw )(ip + ξw )
, (D3b)

with the WSM (metal) dispersion ξw (ξm). Setting |Tkq|2 =
�2δ(k⊥ − q⊥), we perform the Matsubara frequency summa-
tion

∑
ip(ip − ξ )−1 = βnF (ξ ) [36], where nF is the fermionic

distribution, by splitting the denominator into partial fractions.
Using Im (−eV + i0+ − ξ )−1 = −πδ(−eV − ξ ), Eq. (D1)
becomes

I = 2e�2
∑

k⊥,ky,qy

{
u2

k[nF (ξm) − nF (ξw )]δ(−eV − ξ−)

+ v2
k[nF (ξm) − nF (−ξw )]δ(−eV − ξ+)

}
, (D4)

where ξ± = ξm ± ξw and

u2
k = 1

2 (1 + t sin kx/ξw ), (D5a)

v2
k = 1

2 (1 − t sin kx/ξw ). (D5b)

Note that we have chosen the quantization axis in the
x-direction for simplicity. More generally, the second term in
Eqs. (D5) is an odd function of kx, kz, and ξw and will vanish
when integrated over, leaving the current spin-independent.

Equation (D4) has two terms: The first (second) corre-
sponds to tunneling from the upper (lower) WSM band to the
metal band. Each term has three parts: The Dirac δ imposes
energy conservation, nF (ξm) − nF (ξw ) counts the participat-
ing states available to tunnel, while u2

k,σ and v2
k,σ weigh the

bands according to their corresponding spin. All of this is
proportional to �2, the amplitude of a tunneling interaction
in light of the exact action Eq. (8).

To proceed, we imagine placing the metal band’s Fermi
level μm in the WSM’s upper band and largely above the
parabolic band minimum. At low energies,

ξw = v
(
k2

⊥ + k2
y

) 1
2 (D6a)

and

ξm = μm + 1

m

(
2mμ̃ − k2

⊥
) 1

2 qy, (D6b)

where m = 1/2tm and μ̃ = μ + μm + 6tm (the lattice con-
stant is still a = 1). The latter expression is found by
expanding near ξm’s intercept with μm along qy, the metal’s
y-momentum. We further consider a small positive applied
voltage such that particles tunnel from the upper WSM band
to the metal. Thus, only the first term of Eq. (D4) con-
tributes. Replacing the sums by integrals, changing variables
from ky to ξw and qy to ξm, and reinserting h̄, the current
is now

I = e

h

m�2

2πv2

∫ eV

0
dξw

∫
d2k⊥
(2π )2

ξwu2
k

× θ (ξw − v|k⊥|)θ (2mμ̃ − k2
⊥)√

ξ 2
w/v2 − k2

⊥
√

2mμ̃ − k2
⊥

. (D7)
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Note that we have applied the low-temperature limit nF (ξw ) =
θ (−ξw ). The integral over d2k⊥ can be done analytically,
yielding the conductance across the interface:

G⊥(eV ) = e2

h

m�2

(2π )2v2
eV log

∣∣∣∣ε + eV

ε − eV

∣∣∣∣. (D8)

For eV �
√

2mv2μ̃ ≡ ε, the leading-order term is quadratic
in V :

G⊥(eV ) ≈ e2

h

2m�2

(2π )2v2ε
(eV )2. (D9)

Equation (D9) maintains that tunneling measurements with
featureless metals reveal the density of states at the tunneling
energy, since the three-dimensional WSM’s linear dispersion
corresponds to a density of states proportional to E2.
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