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While local unitary transformations are used for identifying quantum states that are in the same topological
class, nonlocal unitary transformations are also important for studying the transition between different topo-
logical classes. In particular, it is an important task to find suitable nonlocal transformations that systematically
sweep different topological classes. Here, regarding the role of dimension in the topological classes, we introduce
partially local unitary transformations, namely Greenberger-Horne-Zeilinger (GHZ) disentanglers, which reduce
the dimension of the initial topological model by a layer-by-layer disentangling mechanism. We justify the
importance of such a mechanism for characterizing topological phases by considering two important examples.
To this end, we apply GHZ disentanglers to two-dimensional (2D) topological quantum codes and show that they
are converted to many copies of Kitaev’s ladders. It implies that the above disentanglers cause a transition from
an intrinsic topological phase to a symmetry-protected topological phase. Then, we show that while Kitaev’s
ladders are building blocks of both color code and toric code, there are different patterns of entangling ladders in
2D color code and toric code. It shows that different topological features of these topological codes are reflected
in different patterns of entangling ladders. In this regard, we propose that the layer-by-layer disentangling
mechanism can be used as a systematic method for classification of topological orders based on finding different
patterns of long-range entanglement in topological lattice models.
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I. INTRODUCTION

Studying equivalence classes under local unitary transfor-
mations [1–4] is an important approach in the classification of
quantum phases of matter, which is one of the most important
problems in condensed-matter physics [5,6]. Applying such
transformations as local disentanglers to lattice models is an
important step of entanglement renormalization, which is an
important tool for studying critical quantum phases as well
as topological quantum phases [7–10]. In particular, because
of nonlocal order in topological quantum systems [11–17],
quantum phases in different topological classes cannot be
transformed to each other by local operations. It implies that
different equivalence classes under local unitary transforma-
tions correspond to different topological classes [18].

Among topological quantum systems, the classification of
topological quantum codes has attracted much attention due
to their applications in quantum computation [19–24]. The
toric code model [20] with a Z2 topological order [25] is a
quantum memory that is topologically robust against local
perturbations [26–31]. Another important topological code is
a color code [21,22,32] with an additional element of color,
which leads to more computational power compared with the
toric code. Local unitary transformations play an important
role in characterizing these topological codes. In particular, it
has been shown that a two-dimensional (2D) color code is lo-
cally equivalent unitarily to two copies of toric codes [33–40],
and therefore the color code has a Z2 × Z2 topological order.
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Local unitary transformations are also important in un-
derstanding the role of dimension in the classification of
topological phases. For example, one-dimensional quantum
states are topologically trivial because a local unitary trans-
formation converts them to product states like a scissor that
breaks a string. Therefore, there is no intrinsic topological
order in one-dimensional lattice models [41]. However, it is
known that some 1D quantum phases have a nonintrinsic topo-
logical order and are named symmetry-protected topological
phases. A simple example of such models is the toric code
state on a ladder, which shows a topological phase protected
by a Z2 × Z2 symmetry [42] in the sense that it is not trans-
formed to a product state by local unitary transformations with
respect to a Z2 × Z2 symmetry.

On the other hand, topological order is characterized by
long-range entanglement in topological quantum states [43].
Since local unitary transformations cannot remove the long-
range entanglement in a topological state, if we consider the
space of all quantum states belonging to different topological
classes, local unitary transformations correspond to moving
along paths towards fixed points in each topological class
[18]. However, in order to move between different topological
classes, we need nonlocal unitary transformations to change
the pattern of long-range entanglement. Therefore, it is an
important task to find a systematic way to apply nonlocal
transformations to sweep all topological classes.

Here we propose partially local unitary transformations,
which are local along one particular dimension of the lattice
and nonlocal along other dimensions. We show that it leads
to a layer-by-layer disentangling mechanism that induces
transitions between different topological classes by reduc-
ing the dimension of the initial quantum state. We explicitly
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FIG. 1. Toric code on a square lattice, a triangular lattice, and
a triangular ladder where qubits live in edges. Av operators are
represented by a loop on a dual lattice denoted by red (dashed) lines,
and Bp operators correspond to plaquettes of the lattice. A product of
Av operators for the square lattice is represented by a bigger loop on
the dual lattice.

introduce such a partially local transformation that we call a
Greenberger-Horne-Zeilinger (GHZ) disentangler for a color
code on a hexagonal lattice as well as a toric code on a square
lattice. By applying such disentanglers to the above 2D topo-
logical codes, we convert them to many copies of Kitaev codes
on ladders that have a symmetry-protected topological phase.
Therefore, it implies a transition from intrinsic topological
phases to the symmetry-protected topological phase. We also
use our results to compare the entanglement structure of the
color code with that of the toric code. In particular, we show
that the difference between these important topological quan-
tum codes is reflected in different patterns of entanglement
between Kitaev’s ladders. In this regard, we propose that the
layer-by-layer disentangling mechanism is an important tool
for finding the pattern of long-range entanglement in different
topological states, which is important for the classification of
topological orders.

The structure of the paper is as follows: In Sec. II, we give
an introduction to the toric code, the Kitaev ladder, and the
color code. In Sec. III, we introduce a partially local unitary
transformation for a color code state on a hexagonal lattice.
We show that such a transformation plays the role of a disen-
tangler, which converts the color code state to many copies of
Kitaev’s ladders. In Sec. IV, we examine our approach for the
toric code state, and we show that it is also converted to many
copies of Kitaev’s ladders by partially local transformations.
Finally, we compare the pattern of long-range entanglement
in the toric code and the color code by considering dif-
ferent patterns of entangling ladders in these topological
codes.

II. TOPOLOGICAL QUANTUM CODES

The toric code (TC) is one of the most groundbreaking
quantum codes [19,23]. It can be defined on any arbitrarily
oriented lattice with qubits on the edges; see Fig. 1. The
Hamiltonian corresponding to this code is defined in terms
of vertex and plaquette operators Av and Bp,

HTC = −J
∑

v

Av − J
∑

p

Bp, (1)

where J is the coupling energy. Bp and Av are defined as
follows:

Bp =
∏

i∈∂ p

Zi, Av =
∏

i∈v

Xi, (2)

where X and Z are Pauli operators, i ∈ v refers to qubits that
live on edges approaching the vertex v, and i ∈ ∂ p refers
to qubits that live on edges surrounding the plaquette p. In
Fig. 1, we show these operators for three different lattices,
including a square lattice, a triangular lattice, and a triangular
ladder. Since the plaquette and vertex operators are commuted
with each other, the ground state of the toric code is simply
obtained as follows:

|GS〉 =
∏

v

(1 + Av )|0〉⊗n, (3)

where n is the number of qubits, and we ignore the normal-
ization factor. On the other hand, since each vertex operator
corresponds to a loop on the dual lattice, as shown in Fig. 1,
each product of the plaquette operators can be represented by
configurations of loops. In this regard, the ground state of
a toric code is a superposition of all loop configurations of
spin down |1〉 on the background of spin ups |0〉, which is
called a loop condensed state. Such a state has a topological
order, which leads to degeneracy in the ground state when we
consider a periodic boundary condition. In particular, there
are two topological operators in the form of the product of
X operators along noncontractible loops around the torus.
Applying such operators in the |GS〉 generates three more
ground states of the toric code. In particular, different topo-
logical descriptions of the above ground states are the reason
for robust degeneracy in the toric code, which is important for
application as a quantum memory.

The robustness of topological order in the toric code is
also understood in terms of local unitary transformations. In
particular, topological order is robust against arbitrary local
unitary transformations in the sense that the ground state
cannot be converted to a product state by applying arbitrary
local unitaries. On the other hand, as shown in Fig. 1, we can
consider the Kitaev code on a quasi-one-dimensional lattice as
a ladder that is named Kitaev’s ladder. It is shown that Kitaev’s
ladder does not have an intrinsic topological order, but it is
a symmetry-protected topological phase [42]. In particular,
while the ground state is converted to a product state under
generic local unitary transformations, it is protected under
local unitaries that respect a particular symmetry, i.e., Z2 × Z2

symmetry.
Besides the toric code, the color code (CC) is also another

topological quantum code in which qubits live on the vertices
of a three-colorable lattice. Adding an extra element of color
in this model leads to the emergence of some features that
are different from the toric code [21,22]. Here we consider
a two-dimensional hexagonal lattice that is colored by three
colors: Red, blue, and green. As is shown in Fig. 2(a), the
hexagonal lattice is a three-colorable lattice in the sense that
no two neighboring plaquettes have the same color. Moreover,
the edges are also three colorable, where we assign a color to
each edge that connects the plaquettes of the same color.
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(a) (b)

(c) (d)

FIG. 2. (a) Color code on a two-dimensional hexagonal lattice.
Here the qubits live on the vertices of each plaquette, and the edges
connect the plaquette of the same color. For example, the green edge
connects the green plaquettes. (b) Red and blue plaquette operators
are described by triangles of a green triangular lattice. (c) Blue
and green plaquette operators are described by triangles of a red
triangular lattice. (d) A product of plaquette operators in the color
code is represented by a loop structure constructed by two different
colors.

The Hamiltonian corresponding to this code is written as

HCC = −J
∑

p

Bx
p − J

∑

p

Bz
p, (4)

where BX
P and BZ

P are commuting plaquette operators that are
defined as follows:

Bz
p =

∏

i∈p

Zi, Bx
p =

∏

i∈p

Xi, (5)

where i ∈ p refers to all qubits belongings to the plaquette p.
Similar to the toric code, the ground state of the color code

can be written in terms of X -type operators as follows, up to a
normalization factor:

|GS〉cc =
∏

p

(
1 + Bx

p

)|0〉⊗m, (6)

where m refers to the number of vertices in the hexagonal
lattice. As is shown in Figs. 2(b) and 2(c), we can plot a
triangular lattice with edges crossing edges of the hexagonal
lattice which have the same color. In this regard, since each
triangle of such a lattice corresponds to a hexagonal plaquette
of the initial lattice, the corresponding Bx

p operator can be
represented by a triangular loop. It implies that there should
be a loop representation for the color code state similar to
the toric code state. However, it is impossible to represent all
Bx

p operators with loops with the same color. For example,
while red and blue plaquettes correspond to green triangles
[Fig. 2(b)], to represent green plaquettes we need blue or red
triangles [Fig. 2(c)]. In this regard,

∏
p(1 + Bx

p) in Eq. (6) does
not lead to a simple loop condensed state. In particular, there
are loop structures constructed by different colors similar to
what we show in Fig. 2(d).

FIG. 3. A schematic of a D-dimensional model where partially
local operators are applied between (D − 1)-dimensional layers.

The existence of loop structures of different colors plays
an important role in the degeneracy of the ground state of the
color-code model. In particular, we have six noncontractible
loops with three different colors in two different directions. In
this regard, and since only two colors of the above noncon-
tractible loops are independent, the color code has a 16-fold
degeneracy due to four noncontractible loops of two different
colors. Furthermore, it has been shown that the color in the
color code leads also to more computational power compared
to the toric code where one is able to apply all Clifford gates
on qubits encoded in the ground state of the color code [21]. In
spite of such a difference between the toric code and the color
code, it is shown that a local unitary transformation converts
a 2D color code to two copies of the toric code. Here, we
would like to emphasize different topological classes of the
above 2D topological codes and quasi-1D Kitaev’s ladder. It
is a reflection of the role of dimension in the classification
of topological phases. In particular, the toric code and the
color code can even be defined on higher-dimensional lattices
where different topological properties emerge [44–47]. For
example, while excitations in the 2D toric code and color code
are string-type, in higher dimensions excitations correspond
to membranes [44,46]. This important topological property is
the reason that a higher-dimensional version of these codes
can be self-corrected [48]. Regarding different topological
properties of topological codes in different dimensions, it is
clear that there is no local unitary transformation that converts
topological codes in different dimensions.

Here, we propose a systematic way to induce a transition
between different topological classes corresponding to differ-
ent dimensions. To this end, for a D-dimensional topological
code, one can consider a partially local transformation that is
applied between two (D − 1)-dimensional layers in the sense
that while it is nonlocally applied to (D − 1)-dimensional
layers, it is local in a direction orthogonal to the above layers;
see Fig. 3 as a schematic of such a transformation. In the next
section, we introduce explicitly such a transformation for a
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FIG. 4. Partially local transformations are applied to qubits
living in noncontractible loops in horizontal directions. Such a trans-
formation corresponds to a change of basis, which is represented by
GHZ qubits, denoted by circles of three different colors, living on the
edges of the lattice along noncontractible loops.

2D color code, and we show that it converts the color code to
many copies of Kitaev’s ladders in the sense that it reduces the
dimension of the initial topological code by a layer-by-layer
disentangling mechanism.

III. PARTIALLY LOCAL TRANSFORMATIONS
ON THE COLOR CODE

In this section, we examine a layer-by-layer disentangling
operation for a 2D topological color code, and we show that
it is converted to many copies of Kitaev ladders by a partially
local unitary transformation. To this end, consider the color
code on the honeycomb lattice. As is shown in Fig. 4, we con-
sider noncontractible loops along one direction on the lattice
where each loop passes from N qubits. There are N such non-
contractible loops on the lattice which cover all qubits of the
color code. Then, corresponding to each loop, we introduce an
N-qubit GHZ basis. To this end, note that the GHZ state on the
N qubit in the form of 1√

2
(|00 · · · 0〉 + |11 · · · 1〉) is a stabilizer

state stabilized by a group of Pauli operators constructed by
the following N generators:

gN = {Z1Z2, Z2Z3, . . . , ZiZi+1, . . . , ZN Z1�x}, (7)

where �x refers to a product of all X operators on qubits
belonging to a noncontractible loop, and we denote the above
generators by g1, g2, . . . , gN , respectively. Moreover, using
the above set of stabilizers, we are also able to construct other
N − 1 GHZ states to have a complete N-qubit GHZ basis.
For example, the state 1√

2
(|00 · · · 0〉 − |11 · · · 1〉) is stabilized

by g1, . . . , gN−1, but the effect of gN on such a state leads
to the eigenvalue of −1. In the same way, all N-qubit GHZ
states are defined as eigenstates of g1, . . . , gN with different
eigenvalues. In this regard, we write all 2N GHZ states in the
form

1

2N/2

N∏

i=1

[1 + (−1)mi gi]| + + · · · +〉, (8)

(a)

(b)

FIG. 5. (a) A green Bx
p operator is converted to a product of X

operators on four green GHZ qubits. Blue and red Bz
p operators are

also converted to a product of Z operators on three green GHZ qubits.
(b) The resultant stabilizers are the same as stabilizers of a Kitaev
codes defined on a triangular ladder.

where mi = 0, 1 and m1, m2, . . . , mN are called GHZ qubits
living on edges belonging to each noncontractible loop; see
Fig. 4, where we denote GHZ qubits by circles colored by
the same color of the corresponding edge. Notice that corre-
sponding to each noncontractible loop there is a GHZ basis,
and therefore the whole space for N2 qubits on the lattice is
spanned by a product of N numbers of the above N-qubit
GHZ bases. It is clear that there is a unitary transformation
that changes the computational basis to the above GHZ basis.
Since such an operator is local in the vertical direction and
nonlocal in the horizontal direction, we call it a partially local
unitary transformation. Now, we are going to find the effect
of such a transformation on the color code state. Since there
is a one-to-one correspondence between a stabilizer state and
the group of its stabilizers, we consider the effect of the above
transformation on stabilizers of the color-code state. Then, we
can use the new group of stabilizers to characterize the final
quantum state after transformation. To this end, we divide
all stabilizers into three sets corresponding to three colors
of GHZ qubits. In particular, corresponding to green GHZ
qubits, we consider all Bx

p operators corresponding to green
plaquettes in addition to Bz

p operators corresponding to red
and blue plaquettes, which have three green GHZ qubits on
their edges; see Fig. 5(a). In the same way, corresponding
to the red (blue) GHZ qubits, we consider another stabilizer
set including Bx

p operators corresponding to the red (blue)
plaquette in addition to Bz

p operators corresponding to blue
and green (red and green) plaquettes, which have three red
(blue) GHZ qubits on their edges; see Fig. 6(a).
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(a) (b)

FIG. 6. (a) A red Bx
p operator beside green and blue Bz

p operators
are converted to stabilizers applied on red qubits. A blue Bx

p operator
beside red and green Bz

p operators are converted to stabilizers applied
on qubits qubits. (b) The resultant stabilizers are the same as stabi-
lizers of Kitaev codes defined on red and blue triangular ladders. In
this regard, color code is constructed by Kitaev’s ladders with three
different colors, which overlap with each other, and each disentangler
along a noncontractible loop disentangles three successive Kitaev’s
ladders of the color code.

We start with a transformation on the first set of stabilizers
corresponding to the green color. In particular, consider a Bx

p
stabilizer corresponding to a green plaquette. As shown in
Fig. 5(a), there are eight GHZ qubits near a green plaquette,
including three red GHZ qubits, one blue GHZ qubit, and four
green GHZ qubits. To consider the effect of the Bx

p operator on
these eight GHZ qubits, note that each GHZ qubit in the GHZ
basis appears in the form of · · · [1 + (−1)mi ZiZi+1] · · · | +
+ · · · +〉. In this regard, if Bx

p commutes with ZiZi+1, we
will have Bx

p[1 + (−1)mi ZiZi+1] = [1 + (−1)mi ZiZi+1]Bx
p, and

therefore the effect of Bx
p on the GHZ qubit mi is equivalent

to an identity operator. On the other hand, if Bx
p anticom-

mutes with ZiZi+1, we will have Bx
p[1 + (−1)mi ZiZi+1] = [1 +

(−1)mi+1ZiZi+1]Bx
p, and therefore the effect of Bx

p on the GHZ
qubit mi is equivalent to a logical X operator which shifts mi to
mi + 1. In this regard, we consider the commutation relation
of the green Bx

p operator with eight operators of ZiZi+1 corre-
sponding to eight GHZ qubits near the green plaquette p. As
seen in Fig. 5(a), since Bx

p has two qubits in common with blue
and red edges, it commutes with the corresponding ZiZi+1.
However, it has one qubit in common with four green edges,
and therefore it anticommutes with the corresponding ZiZi+1.
In this regard, the effect of the Bx

p operator is equivalent to a
product of four logical X operators on four green GHZ qubits.

Now, we consider red and blue plaquettes which have three
green GHZ qubits in their edges, and we study the transforma-
tion on the corresponding Bz

p operators. In particular, note that
such a Bz

p operator has two qubits in common with each green
edge and therefore it is equal to a product of ZiZi+1 operators
on three green edges. To consider the effect of this operator
on the GHZ basis, we notice that ZiZi+1[1 + (−1)mi ZiZi+1] =
(−1)mi [1 + (−1)mi ZiZi+1]. Therefore, each ZiZi+1 applied to
a green edge is equivalent to a logical Z operator on the
corresponding green GHZ qubit. Consequently, the above Bz

p
operators are transformed into a product of three logical Z
operators on three green GHZ qubits around the plaquette p,
as shown in Fig. 5(a). Interestingly, as shown in Fig. 5(b), the
resultant logical X -type and Z-type stabilizers are the same as

the vertex and plaquette operators for a Kitaev code define on
a triangular green ladder where green GHZ qubits live on the
edges of the ladder. By applying the above transformation to
similar stabilizers in other rows of the lattice, we find other
green ladders. Importantly, the above ladders are completely
separated in the sense that there are no common green GHZ
qubits for them.

Transformation for other sets of stabilizers corresponding
to blue and red is also done in the same way. As shown in
Fig. 6(a), consider a Bx

p stabilizer corresponding to a red (blue)
plaquette. Such an operator anticommutes with four red (blue)
GHZ qubits, and therefore it is equal to a product of four
logical X operators on red (blue) GHZ qubits. Bz

p operators
corresponding to green and blue (green and red) plaquettes are
also equal to the product of three logical Z operators on three
red (blue) GHZ qubits, as shown in Fig. 6(a). Such stabilizers
are also represented by red (blue) ladders, and the resultant
stabilizers are the stabilizers of Kitaev codes defined on red
(blue) ladders; see Fig. 6(b).

In this regard, while in the color code state all qubits are
entangled, logical qubits in the GHZ basis are disentangled
where the resultant state is a tensor product of Kitaev states
on ladders with three different colors. In other words, Kitaev’s
ladders are building blocks of the color code, and the partially
local unitary transformation plays the role of a layer-by-layer
disentangler which separates different layers of the color-code
states. Regarding the symmetry-protected topological phase
of Kitaev’s ladder, our result implies a transition from an in-
trinsic topological phase to a symmetry-protected topological
phase. On the other hand, notice that the nonlocal nature of
disentanglers has led to a change of pattern of long-range
entanglement in the initial state. Therefore, the pattern of
entangling ladders in the color code is in fact a simple picture
of the pattern of long-range entanglement in this topological
quantum code.

IV. DISENTANGLING TORIC CODE
TO KITAEV’S LADDERS

Our layer-by-layer disentangling method can be applied to
other topological models. It is particularly important for com-
paring the patterns of long-range entanglement for topological
states in different topological classes. In this section, we show
that there is another pattern of partially local transformations
which converts the toric code model to many copies of Ki-
taev’s ladders. To this end, as shown in Fig. 7, we study the
toric code on a square lattice and consider diagonal lines on
the square lattice which cross qubits along noncontractible
loops. Corresponding to half of these lines, we define GHZ
bases in the sense that two neighboring qubits i and i + 1
along the line are mapped to a GHZ qubit mi living be-
tween them, i.e., [1 + (−1)mi ZiZi+1]. It would be a partially
local transformation because it is local in the direction that
is orthogonal to the diagonal lines. Next, we consider the
effect of such a partially local transformation on stabilizers
of the toric code. As shown in Fig. 8(a), a vertex operator
Av = X1X2X3X4 anticommutes with ZiZi+1s corresponding to
two GHZ qubits corresponding to qubits 1 and 2. Therefore,
X1 and X2 are converted to two logical operators X̄1 and X̄2,
while two original operators X3 and X4 remain unchanged.
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FIG. 7. Partially local unitary operators are applied to a diagonal
line denoted by orange. Such a transformation corresponds to a
change of basis, which is represented by GHZ qubits, denoted by
circles living along the diagonal lines.

Consequently, the original operator is converted to a four-local
operator including two logical X operators and two initial
X operators, which are the same as the X -type stabilizer of
a Kitaev code on the triangular ladder. On the other hand,
for a plaquette operator Bz

p = Z1Z2Z3Z4 shown in Fig. 8(b),
while Z3 and Z4 remain unchanged, the effect of Z1Z2 on the
GHZ basis is equal to a logical operator Z̄1 because Z1Z2[1 +
(−1)m1 Z1Z2] = (−1)m1 [1 + (−1)m1 Z1Z2]. Therefore, the ini-

(a)

(b)

FIG. 8. (a) An Av operator is converted to a product of X oper-
ators on two GHZ qubits and two initial qubits. (b) A Bp operator
is converted to a product of Z operators on one GHZ qubit and two
initial qubits.

tial plaquette operator is converted to a three-local Z-type
stabilizer including one logical operator Z̄1 and two original
operators Z3 and Z4, which is the same as the Z-type stabilizer
of the Kitaev code on a triangular ladder. Next, we apply
the above transformation to all plaquette and vertex operators
of the toric code. As is shown in Fig. 9(a), we divide all
vertices of the square lattice into two different sets denoted
by blue and green. Then we color also all GHZ qubits with
blue and green in the sense that a GHZ qubit living in a
plaquette is colored by blue (green) if most of the vertices
of that plaquette are blue (green). As shown in Fig. 9(b),
by such a division of vertex operators, the blue and green
vertex operators are converted to X -type operators living in
blue and green GHZ qubits, respectively. In other words, blue
and green GHZ qubits are decoupled due to transformation.
In the same way, plaquette operators are also converted to two
sets of Z-type operators on blue and green GHZ qubits, which
are decoupled. Finally, applying the above transformation on
all qubits generates blue and green Kitaev’s ladders which
are decoupled; see Fig. 9(c). Consequently, similar to the
color code, Kitaev’s ladders are building blocks of the toric
code, and the partially local transformation plays the role of a
layer-by-layer disentangler which separates diagonal ladders
from the toric code.

On the other hand, it is important to compare patterns of en-
tanglement between ladders for the toric code with that for the
color code. Regarding Fig. 9(c), the toric code is constructed
by entangling Kitaev’s ladders, which are inserted near each
other in a side-by-side pattern. However, as shown in Fig. 6(b),
the color code has a different structure in the sense that it
is constructed by Kitaev’s ladders, which overlap with each
other and entanglers are applied to three successive Kitaev’s
ladders. In particular, we represent the above three Kitaev lad-
ders with three different colors corresponding to three colors
in the color code. In this regard, the above structure is a re-
flection of the role of color in the difference between features
of the color code and the toric code. This result shows that
by using the layer-by-layer disentangling mechanism, we are
in fact able to find the pattern of long-range entanglement in
the above topological quantum states. In other words, different
patterns of entanglement between layers for the color code and
the toric code correspond to different patterns of long-range
entanglement.

V. CONCLUSION

We proposed a layer-by-layer disentangling mechanism
as a systematic way to reduce dimension in topological lat-
tice models. Since such nonlocal operations can change the
pattern of long-range entanglement in topological states, it
was expected that the above mechanism leads to a transition
between different topological classes. We showed that there
is such a transition from 2D topological codes with intrinsic
topological order to Kitaev’s ladders with symmetry-protected
topological order. Furthermore, we showed that there are dif-
ferent patterns of the entanglement between ladders for the
color code and the toric code. Therefore, we concluded that
different patterns of the entanglement between layers are re-
lated to different topological features of the above quantum
codes.
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(a) (b) (c)

FIG. 9. (a) We divide vertices of the square lattice into two sets denoted by blue and green. A GHZ qubit living in a square plaquette is
also colored by blue or green if most vertices of that plaquette are blue or green, respectively. (b) Av operators corresponding to blue or green
vertices are converted to logical X -type stabilizers on blue or green GHZ qubits, respectively. Bp operators are also converted to logical Z-type
stabilizers on blue or green GHZ qubits. (c) The logical stabilizers correspond to blue and green ladders, which are decoupled, and therefore
the initial toric code is converted to many copies of Kitaev’s ladders.

Finally, we emphasize that by finding different patterns of
entanglement between layers in the toric code and the color
code, we have in fact found different patterns of long-range
entanglement for the above models. In other words, while
there is no long-range entanglement in Kitaev’s ladders, GHZ
transformations between layers generate long-range entangle-
ment in the sense that different patterns of entangling layers
lead to different topological phases. On the other hand, it
is known that different topological classes are characterized
by different patterns of long-range entanglement. There-
fore, finding different patterns of long-range entanglement
for different topological phases is useful for characterizing

topological phases. In this regard, we propose that the layer-
by-layer disentangling mechanism can be regarded as a tool
for finding patterns of long-range entanglement, and therefore
it can be used for the classification of topological orders in dif-
ferent lattice models with different dimensions. For example,
we expect that different topological classes in D-dimensional
models are distinguished by different patterns of entanglement
between layers when we reduce the dimension of the model
step by step to convert the initial model to many copies of
one-dimensional models. In this regard, one is able to classify
different topological orders corresponding to different pat-
terns of entanglement between layers.
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