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We discuss a semiclassical approach to solve the quantum impurity model within nonequilibrium dynamical
mean-field theory for electron-lattice models. The effect of electronic fluctuations on the phonon is kept
beyond Ehrenfest dynamics, leading to a stochastic phonon evolution with damping and noise terms that are
self-consistently determined by the electronic correlation functions in the fluctuating phonon field. Together with
a solution of the electronic model based on a nonperturbative quantum Boltzmann equation, the approach can
be used to address the coupled dynamics of the electrons and the lattice during photoinduced phase transitions.
Results for the Anderson-Holstein model are benchmarked against numerically exact quantum Monte Carlo
data. We find good agreement for the phonon distribution function at temperatures comparable to the charge
ordering temperature. The general formulation can be extended to models with electron-electron interactions or

multiorbital systems.
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I. INTRODUCTION

The coupled nonequilibrium dynamics of the electrons and
the lattice in solids leads to processes which can be orders of
magnitude slower than the intrinsic microscopic timescale of
the electrons, including coherent amplitude modes in charge
density wave systems [1,2], or photoinduced phase transitions
[3—-8] and nonthermal transitions to disordered and metastable
states [9—11]. The large separation between the fast electronic
dynamics and slow lattice dynamics poses a considerable
challenge for numerical simulations, even for minimal mod-
els such as the Holstein or Hubbard-Holstein model. Direct
wave-function-based techniques like exact diagonalization
and matrix product state algorithms [12-14] for electron-
phonon coupled systems must cope with the large bosonic
Hilbert space. Efficient procedures exist for the dilute limit of
a few polarons [15-18], but simulations at finite electron den-
sity [19,20] remain restricted to short times. For systems with
large spatial dimension, nonequilibrium dynamical mean-field
theory (DMFT) [21] becomes the reference method. DMFT
maps a lattice model with local electron-phonon coupling
to a single-site impurity model. In equilibrium, this model
can be solved using quantum Monte Carlo (QMC) tech-
niques [22,23], but nonequilibrium simulations usually rely on
perturbative weak-coupling expansions [24,25] or the strong-
coupling expansion around the atomic limit [26,27]. The latter
also provides a good starting point for the regime of strong
electron-phonon coupling, but different ways of integrating
out the phonon within this formalism correspond to additional
approximations when used within low orders of the expansion
[such as the noncrossing approximation (NCA)] [27-29]. The
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unbiased approach, on the other hand, which includes the
phonon exactly in the atomic limit of the impurity model [30],
faces a steep increase of the computational cost with the size
of the phonon Hilbert space and is therefore again restricted
to short times.

In this work, we explore an alternative approach to solve
the impurity model for DMFT-based electron-lattice models
up to long times, based on a semiclassical approximation
[31-33] to the phonon dynamics. A straightforward semi-
classical approach would use a mean-field decoupling of the
electrons and phonons, leading to classical equations of mo-
tion for the phonons with a force determined by electronic
expectation values (Ehrenfest dynamics) [34]. Beyond that,
thermal and quantum fluctuations can be expected to have a
profound impact on the lattice dynamics. One way to incor-
porate fluctuations into a semiclassical evolution is through a
weighted average over initial states for the classical variable
[35-38]. Here, we aim to include the back-action of elec-
tronic fluctuations on the phonon also during the dynamics.
This leads to a stochastic phonon evolution, with damping
and noise obtained self-consistently from the electronic sys-
tem driven by the fluctuating phonon field. With this, one
can potentially address all the relevant stages of a photoin-
duced phase transition, including the recovery of the ordered
phase and the thermalization of the phonons to their final
equilibrium statistical distribution. The approach still requires
a description of the electronic state at long times, but for
well-separated electron and lattice timescales one can rely
on a quasisteady approximation obtained from a nonpertur-
bative quantum Boltzmann equation [39], or possibly even an
adiabatic approximation. Nevertheless, in this work we only
analyze the equilibrium properties of the model, so that we
can benchmark the stochastic semiclassical theory against a
numerically exact method.

©2023 American Physical Society
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While the semiclassical approach misses quantum pro-
cesses like the tunneling between polaronic configurations
[32], it can be expected to provide a suitable description at
sufficiently high temperature. The approach has been used to
study the melting and recovery of the charge density wave in
the Holstein model on a Bethe lattice [33], where it revealed
that the recovery of the ordered state proceeds through a
disordered polaron phase, in which the local order parameter
is not representative of the mean. This scenario for the pho-
toinduced dynamics differs from the phenomenology obtained
by time-dependent Ginzburg-Landau theory, and implies a
very slow recovery dynamics. The aim of the present work
is to provide a derivation of the semiclassical approach which
extends to models with electron-electron interactions and mul-
tiorbital systems, and could therefore be used to describe, e.g.,
correlated electrons coupled to Jahn-Teller phonons, or realis-
tic models for coupled electron-lattice dynamics in materials
like VO, [40]. Moreover, for the Anderson-Holstein impurity
model, we benchmark the approach against the exact solution
in equilibrium, and compare to approximate solutions based
on the self-consistent Migdal approximation and the NCA.

The outline of this paper is as follows. In Sec. II, we
derive the stochastic semiclassical equations of motion for
the lattice displacement in a quantum impurity model with
general linear coupling of the phonon displacement to an
electronic operator. In Sec. III, we introduce the Anderson-
Holstein model (Sec. III A), we summarize the corresponding
QMC formalism which is used for the exact benchmarks
(Sec. III B), as well as the solution in weak- (Sec. III C) and
strong-coupling perturbation theory (Sec. III D). Section III E
contains the stochastic semiclassical equations of motion for
the Anderson-Holstein model. In Sec. IV, we compare the
equilibrium phonon distributions and electronic spectral func-
tions obtained with the various techniques. A summary and
conclusion are presented in Sec. V.

II. THEORY FOR THE SEMICLASSICAL EQUATIONS
OF MOTION FOR THE LATTICE DISPLACEMENT

A. Impurity action

In this section, we provide a derivation of the stochastic
semiclassical equations of motion for the local lattice dis-
tortion, starting from a generic impurity problem in which
electrons interact with a local vibrational mode. The electronic
part of the impurity Hamiltonian includes the hybridization
with an electron reservoir, and possibly a local interaction
(such as a Hubbard interaction). The precise form will be
specified in the numerical examples below. The phonon is
described in terms of the Hamiltonian

Hy = 3(°X* + P, (1

with canonically conjugate variables X (displacement) and P
(momentum). The vibrational mode interacts with the elec-
trons on the impurity with the linear term

H.. = ~/29gX 0, )

where O is a generic local electronic operator. For example,
in the Holstein model, O is the local electron density O =
>, ¢l é,, while interesting settings in multiorbital impurity

models would include a displacement X which modifies the
crystal field splitting (i.e., O is the occupation difference
il — i1, between orbitals), or the hybridization between two
impurity orbitals (O = &[é; + &5¢)).

We aim to solve the problem using a path integral for-
mulation on the Keldysh contour C = C*UC™, with C* =
(—tmax> fmax) and C™ = (fmax, —fmax)> fmax — 00. We will
henceforth use a notation such that the contour time 7 =¢*
(t =17) denotes the physical time ¢ on the upper (lower)
branch of C. In order to derive stochastic equations of motion
for the phonon variable, we keep the discrete-time notation for
the path integral, and divide C into 2N — 2 time intervals of
length §,. The physical time ¢ takes N equidistant values #; =

—tmax - - - » IN = Imax» While the contour times 7; run from
j=1...,2N, withty = =t} , v =1}, 41 =l and
Toy = —t,,- The action is given in terms of the displacement

field X; = X(7;), and Grassmann fields ¢; = ¢(t;), ¢; = ¢(t;)
for the electrons. In addition to the time index j, electron op-
erators carry orbital and/or spin indices, which are not shown
for simplicity. The action is given by

S[¢, ¢, X] = ScelC, c] + Sc[X ]+ SexlC, ¢, X], 3)

2N—1

h; X — X\’
SX — Z Jj+1 [( j+1 _/) _ QZXJ-Z], (4)
j=1 2 hj+1
2N—1
Scx = — ZQg Z hj+1 Oj-HX‘a (5)
j=I

where the term S..[C, c] is purely electronic, while S, and S,
incorporate the bare phonon and the electron phonon interac-
tion, respectively; h; = t; — t;_; is the time step (which is
44, for j on the upper and/or lower contour, and Ay = 0).
Moreover, O; is the representation of the operator O in terms
of Grassmann variables; i.e., if O[¢', é] is a normal-ordered
function of ¢ and ¢, then O; = O[¢;, ¢;_1].
With the action, the partition function can be written as

Z= / D[X] / DIE, c] 516X, (6)

from which time-dependent expectation values are obtained
by taking derivatives with respect to source fields. Integrating
out the electrons gives the effective action for the phonons,

giSerrX] — IS XI+iITIX] )
[[X] = —ilog(eS=lecXly | )
where (- ) = 5= [ D[E, c]eS<Ié ... is the bare electronic

expectation value. In order to proceed towards stochastic
equations, we represent the fields X; in terms of their so-called
quantum and classical components, which are functions of the
physical time ¢ € (—o0, 00). We first denote by X* the fields
on the upper and/or lower branch as a function of the physical
timet; (j=1,...,N),

Xt=xul) =X, ©))

in EX(I;) =X2N+l—j- (10)
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Quantum and classical components are introduced via the
Keldysh rotation,

X\ (XX
x4) T 2\xr—x7 ) (v
j ;=

The classical component of the field X' represents the average
of the fields on the upper and lower branches of the contour,
while the quantum component X9 is the semidifference of the
two. In a purely classical configuration, we expect the fields
on the two branches to be equal, i.e., X; = =X , leading to
X 4 = 0, which explains the notation [41] With thls the free-
phonon part of the action can be recast in the form

N—1
S, =—26, Z XJ(Xs'+ Q°X5') + b, (12)
j=2

with the discrete second derivative

1 1 1
o Kb =2 X,
5

13)

The abbreviation b.t. denotes terms involving only the fields
XE, X5 XE, and X | on the boundary of the contour, which
will not be important in the following. (They set the initial
condition for the stochastic equation at t — —oo, which be-
comes irrelevant because the system evolves in the presence
of a damping term; see below.) The electron-phonon action
(5) becomes

«@@wa—

Jj=2

— cl
0;_)X]

«/2§2gZ(01+l +O X! +be,  (14)

where in analogy to Egs. (9) and (10) we use the notation
0;'_ = 0([;'_) = Oj and 0]_ = O(Ij_) = 02N+1—j~

The effective potential I'[X] is expanded in a Taylor series
in the quantum variable

Z: Z XpM g (19)

rxe, x4 =

I%Mm“%mﬂ (16)

. i = ~<a ~<a
Jlseeorin 3X](-11 ..~8XJ‘»1

To interpret the coefficients [1, we define the action

S = See — 8,4/2Qg Z(OH, -

Jj=2

07 X' +bt. (17

This describes a purely electronic model where electrons at
the impurity are subject to a fluctuating field

Hy (1) = vV2QgX 1) 0 (18)
in the Hamiltonian, with the time-dependent force
V2QgX (1) = /2QgX ¢! for t € [t),1j,1]. With this,

M., = ()" V228, )'(0;, - 0, )", (19)

where (- - - )&" are the connected correlation functions for the
electrons in the presence of the fluctuating force (18), and
0; = (07, +0; /2. In particular

f; = —2v/2Qg8,(0,)u, (20)

1=[j7, = —8[24Qg2()(5)j31,

2y
where
(x) ;. = —(0))et{On)er) (22)

is recognized as the discrete representation of the Keldysh
component

xh@ 1) =—i((0®O0E)NS" +1 < ') (23)

of the connected OO autocorrelation function of the electrons
in the presence of the fluctuating field term (18).

—2i((0;0y)a

B. Semiclassical approximation

The semiclassical approximation corresponds to truncating
expansion (15) at second order. The first order in expansion
(15) is combined with free phonon action (12) into

N—1
Sy + 10 =-26, Y " XI(X + QX! + v2Qg(0;)).
j=2
(24)
The quadratic term in Eq. (15), TI'@PX]=

—2Q87¢ 3, (x5)juXj'X}', is decoupled using a Hubbard-
Stratonovich transformation with a real field &,

eil"m 38742y

—e X} g (x5 X!

1 )
zifpmfﬁﬁwwﬁﬁﬂwi (25)

with (A7");; = ig?(xX);.. Here [ D[§] = J 11, dg;j, and

Z Z/D[S]ei%Z_HSJA/‘,IE[ (26)

is the normalization factor. The Gaussian integral is con-
vergent, because (ixX);, is a positive definite matrix [cf.
Eqg. (22)]. Combining all terms which are linear in X9 in
Egs. (24) and (25) gives a factor e*"z‘s’quF 7, with

Fj =X + QX5 + vV2Qg(0))0 — V. (27)

The integral over X9 is then performed analytically,
/ dX e XE = g(S(Fj ). (28)
1

With this, the path integral has been reduced to (up to con-
stants)

_ /D[S]/D[Xcl]ziée;Z_,-_IE/A,;;S,-I ng(lrj)_ (29)
j

The term [] ;8(Fj) constrains the values XjCl to a trajectory

which satisfies at each time step j > 2 the (discretized) equa-
tion of motion

X' = —Q7X5' — V2Qg(0))a + V. (30)
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which can be rewritten in the form of two first-order differen-
tial equations:

Vi =V +8(-2°X;" — V2Q¢(0))a + VQE;),  (31)

X5 =X 468,V (32)

We point out that if the expansion in the quantum variable
in Eq. (15) is truncated at the leading order, the £ integral
will be absent, and Eq. (30) becomes the equation of motion
obtained from a mean-field decoupling of the electron-phonon
interaction, which is reminiscent of the result from Ehren-
fest dynamics [42]. On the other hand, in the derivation of
Eq. (30), we did not make any assumption on the separa-
tion of the timescales between the electronic and the lattice
subsystems, so this equation cannot be regarded as a Born-
Oppenheimer approximation. The term & can be viewed as a
stochastic force, whose statistics is determined by the matrix
A, which itself depends on the trajectory de. With this, the
path integral (29) defines a nonlinear non-Markovian stochas-
tic differential equation. A scheme for the solution of this
problem is provided in Appendix D.

C. White-noise limit

The stochastic equations can be further simplified if the
electronic timescale 7., which is determined by the bandwidth
of the bath, is much shorter than the period 1/<2 of the phonon.
In this case, we can try to numerically solve for the phonon
dynamics on a time grid At which is sufficiently short com-
pared to 1/€2, but still long compared to 7., 7, K At K 1/Q.
Electronic correlation functions, in particular the autocorre-
lation function (23), vanish for time differences t — ¢’ > 7.,
which implies that also the noise becomes uncorrelated on
these times:

((t1)E()) — 0 forlty — 6] > 7. (33)

As a consequence, the phonon dynamics on the coarser time
grid At should be reduced to a stochastic equation with a force
that is uncorrelated between different time steps (white noise).
To derive this equation, let us formally integrate Eqs. (31)
and (32) over a time interval of duration Ar (to simplify the
notation, we set the initial time of the interval to zero):

At
XA = X (A1) + é / df sin[Q(AL — DIfFF), (34)
0

At

V(At):VO(At)—i—/ di cos[QAL —DIf@).  (35)
0

Here f(t) = —gv/2Q(0(t))q +/QE() is the force,
and Xo(t) = X(0) cos(Q) + 71V (0) sin(2) and
Vo(t) = V(0) cos(2t) — QX (0)sin(2¢) correspond to the
solution of the free oscillator. For sufficiently short times
At < 1/€2, the increment of the position is therefore

X(t) ~ XN0) + V(O + -+, (36)
where the omitted terms are of order O(z3/?). To see the latter,
consider the correction to Eq. (36), AXy = é fot dt; sin[Q(r —
tf () = f(; dt; t,f(t;) + O(t?), which is a random vari-

able with variance Uixf = fé dtidty i, (f (t1)f (f2)). Even for
a §-correlated force term « (t1, 1) = (f(t))f(t2)) ~ 8(t1 — 12)

(white noise), this gives just oax, ~ t*/; for a smooth func-
tion (¢, 1) = (f(t1)f(#2)) the square root of the variance is
oax, ™~ 2. Similarly, the increment of V is

At
V(At) —V(0) = —QZX(O)AI+/ du f(t1), (37
0

up to terms of O(At?). We first analyze the contribution of
(O(t)) to the force integral,

At
AVp = —v Zng dti{0(t)))er- (38)

0
The variable (O(t;)).; depends on the trajectory X () during
the interval [0, Az]. However, since X°(t) — X°(0) remains

small [cf. Eq. (36)], we can obtain (O(t;)). by the linear
response in the difference AX () = X (r) — X/(0),

(O(t))er = (O(t))et0 + V298 / dtr x5 o(t1, ) AX (12).
0
(39)

Here (O(t))e.0 is the expectation value calculated for the
electronic model (17) in which the field X°'(¢) is frozen to
X(0) for r > 0. Accordingly, x5 ,(z1.1,) is the response
function

X4, ) = =6t = )([0), O] (40)

in that model. When Eq. (39) is inserted into Eq. (38), we can
to leading order replace (O(t;)).1.0 = {O(0));, and AX (¢;) by
Eq. (36),

AV = —v2QgA1(0(0))
At n
_vORee / dn / dty xE ot ). (A1)
0 0
The function xg’o(tl, t;) decays to zero when the time dif-
ference #; — 1, is much larger than the electronic timescale t,.

With the separation of timescales 7, < Ar < 1/€2, the double
integral in Eq. (41) then becomes (substituting 1, = | — )

At n
/ dt1/ ds x5 ot 1y — $)(t1 — 5)
0 0
At o0
~ /0 dn /0 ds x® ot 1 — )t —5)  (42)

At
- / dn(ty + i3,)x8 o 11, @), (43)
0
with the backward Fourier transform
o0
Xﬁ,o(fs W) = / ds e"“sxs’o(t,t — ). (44)
0

When replacing Eq. (43) with its expression to leading order
in At, Eq. (41) becomes

AVp = At (—/2Qg(0(0)); — QT(0)V (0)), (45)
with
T(t) = —28°0,Imy 5 (1, )] oo (46)

Here, we also used the anti-Hermitian symmetry of the corre-
lation functions in time.

035115-4



STOCHASTIC SEMICLASSICAL THEORY FOR ...

PHYSICAL REVIEW B 108, 035115 (2023)

Next, we analyze the contribution from the stochastic term
to the force integral in Eq. (37),

At
AV =VQ / dnE). (47)
0

The noise £ (¢, ) is determined by the Keldysh matrix yx 5 (t1, 1)
fort;, t, < t. To leading order in At, we can replace the latter
by the correlation function x 5’0, obtained again by the elec-
tronic model (17) in which the field X°'(¢) is frozen to X°'(0)
for t > 0. In the limit of 7, — 0 [with Eq. (33)], the noise
therefore depends only on the Keldysh matrix in the interval
[0, At], and becomes a statistically independent variable with
variance

At At
o2, =@ / dn / dn(E(1)E () (48)

0 0
At At

~ 0 / dn / dnigxX (11, 1) (49)
0 0
At +o00

~Q / dn / duigxk it —s) (50
0 —00 :

At
e / dnig 1% o (11, mo 51)
0

~ —At Q gImyX (0, w),=o- (52)

In the third step [Eq. (50)] we have made use of the decay of
X g,o(tl, t,) on times shorter than At, and the last step is again
correct to leading order in At.

In summary, Egs. (31) and (32) in the limit 7, — 0 reduce
to the stochastic equations V; = V;_; + AtF;_; and X?ll =

J+
de + AtV;, with the force
Fj = —QX{' — gv2Q(0))0 — QU V; +V/QE;  (53)

that contains a damping term

T = —2¢°3,Imx2 ¢}, ®)|w=0, (54)
and a white noise (£;) = 0, (§;6;) = K;8; 7 At~" with
K; = =g’ Imx5 (¢}, ©)wo. (55)

The stochastic evolution of the phonons must be solved to-
gether with a time propagation of the electron dynamics in the
presence of the time-dependent field (18), which determines
the force v/Q (O i)e1» the damping I';, and the noise power K ;.
In equilibrium, i.e., for time-independent X', the correlation
function xX (7, w) [Eq. (23)] and x®(z, ) [Eq. (40)] do not
depend on time and satisfy the fluctuation-dissipation relation,

xX(w) = 2icoth <w—2ﬁ)lmxc’§(w). (56)

Hence we have K = 2I'T, i.e., the standard Einstein relation
between noise and damping.

In the end, we point out that, despite the apparent similarity
of our treatment with the better known Born-Oppenheimer
approximation, the stochastic semiclassical theory does not
rely on an adiabatic assumption for the electronic degree of
freedom. Thus it does not have the same limitations as the
Born-Oppenheimer approximation, e.g., in the presence of
level crossings in the electronic band structure. Nevertheless,
we emphasize that the separation of timescales between the

electronic and the phononic subsystems is a relevant assump-
tion leading to Eq. (53).

D. Quantum Boltzmann equation for the electronic problem

After the quantum phonon has been replaced with the
semiclassical stochastic one, X<, one still needs to solve
the electron impurity model with action (17), with a time-
dependent force [cf. Eq. (18)]. In the limit of well-separated
timescales for the electrons and the lattice, the time evo-
Iution of the local electronic system on the impurity can
be obtained from a nonperturbative quantum Boltzmann
equation (QBE) for the distribution function F(w,t) =
G~(w,1)/(2miA(w, t)), which is given by the ratio between
the lesser component of the electronic Green’s function
G= (occupied density of states), and the spectral function
Alw, t) = —%ImGR (w, 1) [39]. Dynamical quantities depend-
ing on time and frequency are understood in terms of the
Wigner transform of two time functions,

Y(w,t) = /ds EY(t +5/2,t —5/2), (57)

with respect to relative time s at given average time ¢. The
QBE provides an equation of motion for both the distribution
and the spectral function. The basic assumption is that the
evolution of electronic spectra and distribution functions with
average time ¢ is much slower than 1 /5w, where dw is given by
the bandwidth of the relevant spectral features [39]. The QBE
then gives an equation for the evolution of the distribution
function, 9, F (w, t) = I,[F], with scattering integral

I[F] =—il~(w,1) + 2iF (0, ) Im T (w, 1), (58)

with the self-energy I'(w,t). For the Anderson-Holstein
model (see below), I'(w, t) = A(w, t) with A being the hy-
bridization of the impurity with the noninteracting bath. More
generally, additional self-energy contributions X, have to
be included due to interactions, which, however, can also
be assumed to be a functional of the full Green’s function
G, Zint = Zin[G]. In this case, I" reads I'(w, t) = A(w, t) +
Yint(w, t). The self-energy and the spectrum that appear in
Eq. (58) are evaluated nonperturbatively, by solving at each
time step an auxiliary steady-state problem which is designed
to have the same interaction, and a nonequilibrium steady-
state distribution function Fngss(w) = F(w, t), which, for a
lattice problem, can be computed with DMFT (for details, see
Ref. [39]). The assumption here is that the electronic structure
(spectral function) is determined by the electronic distribu-
tion function at the same time (the so-called instantaneous
response approximation in Ref. [39]). We emphasize that the
computational effort, in the presence of a nonzero local inter-
action (such as a Hubbard U, which we do not consider in the
following), would depend on the specific impurity solver used,
but would not dramatically change as long as the white-noise
approximation remains valid.

III. HOLSTEIN IMPURITY MODEL
A. Model

The quantum impurity model considered here is repre-
sented as a Hamiltonian, Hy,;, with three basic terms: Hipp,
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which describes the impurity, H, the infinite noninteracting
system with continuous spectrum to which the impurity is
coupled (so-called bath or reservoir), and Hcoypi, the coupling
term between the impurity and the bath:

HQI = Himp + Hpes + Hcoupl- (59
The Hamiltonian of the impurity is

I_]imp =Hy + Hex + Hee

| PO N
= 5(sz2x2 + P?) +V2QgX (Z ny — 1) + He.
(60)

The first term corresponds to Eq. (1), with quadratures X =
(c? + éﬂ)/@ and P = i«/Q/2(3% — c?) expressed in terms
of phononic creation and annihilation operators d* and d; the
second one is given in Eq. (2), where now we set the operator
0= (3>°, ne —1). He is the purely electronic part of the
Hamiltonian, that can include, e.g., the chemical potential or
the on-site Hubbard interaction, Hee = —pt Y, 1o + U nyny.
However, in the simulations we set both & and U to zero,
meaning that the impurity is at half filling.

The terms Hyes + Heoupt in Eq. (59) define a quadratic
Hamiltonian that describes the hybridization of the impurity
with a reservoir (bath) characterized by the Green’s func-
tion g, (¢,t"), with p and p’ labels for the energy levels of
the reservoir. The effect of the bath is included through a
self-energy correction to the impurity Green’s function. The
hybridization function reads

A )= Vo8t t' Wy, (61)

pr

where Vp , is the hopping integral from the impurity to
the bath level p. The bath is assumed to be always in
equilibrium at temperature 7 = 87!, and it is therefore con-
venient to represent the self-energy in real frequency space
A(w). In this case, one needs to specify the bath spectrum
only, Ax(w) = —nllmAR(a) +i0), and the lesser compo-
nent is given by the fluctuation-dissipation relation A<(w) =
—2ifp (0)Im{AR(w)}, where fp is the Fermi distribution at
inverse temperature 8. In our implementation, the density of
states of the bath is assumed to be semicircular, leading to a
bath spectral function

An(w) = Vzﬁewz — w*)WD? — 2, (62)

with 6(w) the Heaviside step function and D the half band-
width. For all simulations below, we set D = 2 to define the
unit of energy, while the coupling V between the impurity
and the bath is chosen to be V. = 0.1581D. We stress that the
bath plays a crucial role in transmitting the information on the
temperature to the semiclassical phonons.

B. Monte Carlo method

To test the semiclassical theory we will provide bench-
marks against established methods for the Holstein impurity
problem. The Holstein model at temperature 7 > 0 can
be solved numerically exactly (within error bars) using
QMC methods. Here we consider the hybridization-expansion

continuous-time quantum Monte Carlo approach developed
in Ref. [23]. This method performs a stochastic expansion of
the partition function in powers of the hybridization function
A. At expansion order n, for spin o, the n,! diagrams cor-
responding to a given imaginary-time sequence of fermionic
creation and annihilation operators can be summed up into a
determinant of a matrix M 1 [43], so that the weight of the
Monte Carlo configuration can be expressed as

w({Yi(@))) = Tr(Tre™ B Oy, (10,) -y (11),
x dty - -dry, | | (detM; s, (63)

o

where the 1;(t;) denote the (time-ordered) electron creation
or annihilation operators and s, is 1 (—1) if the spin-o
operator with the lowest time argument is a creation (anni-
hilation) operator. To evaluate the phonon expectation value,
a Lang-Firsov transformation [44] is introduced to shift X —
X — Xo, with Xo = (v/2g/Q2)(Y_, ne — 1). This transforma-
tion introduces the polaron operators &f = e ~¢i ¢, =
e~ 5@ =dc_ and decouples the electrons from the phonons
in the transformed impurity Hamiltonian. The transformation
also shifts the local interaction and chemical potential as U —
U=U - 2% andpu - i =pu— %. One may then integrate
out the phonons, to obtain a phonon-related weight factor

wp({¥i(t)})
2
:exp|:— £/% (n(ef + 1))

P —1

+ s,-sj{e““‘-“'—ff”+e“<“"”}>] (64)

2nzi>j>1

where s; = 1 (—1) if the ith operator is a creation (anni-
hilation) operator. The weight (63) becomes the product of
this bosonic weight factor and the weight corresponding to a
usual Anderson impurity model (without phonons, but with
the modified U, ):

w{Yi(t)}) = wp({i(t)HDam{Pi(t)}).  (65)

Based on these weights, one then samples all possible dia-
grams using Monte Carlo updates which insert and/or remove
pairs of creation and annihilation operators, or which shift the
positions of the operators [43].

To measure the phonon distribution function P(X), we
calculate the expectation values

p(a) = (cos(av/QX))mc = / dX P(X)cos(avQX)

(66)

for different a. To derive the measurement formula, we first
discuss the measurement of (e"“*/ﬁx Ymc. This measurement
formula is obtained by inserting the operator VX gt
T =0 into expression (63), which defines wX ({i(z;)}) =
Tre (Tre™ b Hm @y, (13,) - Yy (2 )y d 1y - dTyy
1, (detd "s,. During the Monte Carlo sampling, we
then measure the ratio w* ({y;(z))})/w({¥;(z;)}). Since the
additional e®*X factor only modifies the bosonic factor, this
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amounts to measuring the ratio wi‘({w,-(ri)})/wb({lp,-(ri)}),
where wff({lpi(r[)}) is the bosonic weight factor obtained
with the additional operator X at = 0. This ratio can
be expressed as

wy ({i(t)})
wp({¥i(t)})
2 B2 4
= exp [—%Zﬂg i_ T~ ia«/ﬁXO(t = O)i|

PN 84 e e
xexp|: eﬁQ—IXj:szﬁ(e ey |.

Note that because of the Lang-Firsov shift, this expression
depends on Xy(r = 0) and hence on the occupation of the
impurity at T = 0 in the measured configuration. Since the
first factor is independent of the Monte Carlo configuration,
we can express the measurement formula for p(a) [Eq. (66)]
as

(cos(av' QX ))mc
a® eP? + 1
= exp |: — ZM:K cos |:a«/§Xo(r =0)

1 g a Q(B—1; QT
+ ZS' (P _ ¢ )D . (68)
B2 _ J
e 15 Q2 e

We measure p(a) on a sufficiently fine a grid (Aa = 0.02 in
the calculations below) and then compute the phonon distri-
bution function by inverting Eq. (66) as

P(X) = % / da p(a) cos(av/QX). (69)

Some tests of this measurement scheme against exact diago-
nalization (ED) for a model with a single bath site are shown
in Appendix B.

C. Second-order Migdal approximation

This section discusses the solution of the Anderson-
Holstein impurity model with the self-consistent Migdal
approximation [25]. In the Migdal approximation, one treats
within a Gaussian approximation the quantum fluctuations of
the phonons around the average order parameter, represented
by the displacement (X) of the atoms. The self-consistent
Migdal approximation is the lowest-order approximation for
the electronic self-energy that allows to treat the renormaliza-
tion of the phonons induced by the electron-phonon coupling:
The vibrational mode evolves as a consequence of the interac-
tion with the electrons and, in turn, influences the electronic
dynamics; the electrons couple back to the phonons in the
form of a phonon self-energy (polarization bubble). The ex-
pectation values that will be shown in the following denote
expectation values of quantum operators. The Dyson equa-
tion for the impurity Green’s function reads

(10 + 1t — Mo ()]G (2, 1)

— [AG@ )+ 200, )] % G, 1) = Se(t, 1)) (70)

in the Keldysh formulation (following the notation for two-
time Green’s functions in Ref. [21]). We are considering here
the spin-symmetric phase and omitting spin indices in X, G,
and A. The term Ay, defines a time-local (Hartree) contribu-
tion to the electronic self-energy, i.e., a self-consistent on-site
potential,

hioe (1) = V2Qg(X (1)). (71)

Furthermore, we include the leading-order self-consistent dia-
grammatic corrections to the first-order electronic self-energy
hiee in the expansion in terms of the fluctuations AX () =
X (1) — (X(1)). The second-order electronic self-energy, in the
self-consistent Migdal approximation, is

. 1) =igG@t, 1D, 1), (72)
where
D(t,t") = =2i(Te AX(1)AX (t')). (73)

To include the back-action of the electrons on the phonons
on the same diagrammatic level, we include the phonon self-
energy (polarization operator),

(¢, 1) = —2ig QG(t, )G, 1), (74)

and solve the Dyson equation for the phonon propagator
D(t,t') in the form

[1 —Dy(t,t)«T1(t, t)] = D(t, 1) = Dy(z, t'). (75)

Here Dy(z,t') is the noninteracting (g = 0) phonon propaga-
tor,

Dy(t,t) = —g cos[Q(r — 1')1bg(2)

- é[eca’, D) 4 go(t, 1) D], (76)

where bg(2) = 1/(e’m — 1) is the Bose function and 6¢(¢', t)
is the Heaviside step function on the Keldysh contour C.

In the Migdal approximation, the phononic distribution
function Py,(X) is Gaussian; thus it can be computed from
the mean (X) and the variance extracted from Eq. (73):
Var[X] = (AX?) = %D<(t, t). The equations can be solved
numerically using the NESSI simulation package [45].

D. Noncrossing approximation

In this section, we will present the solution of the single-
impurity Holstein model obtained within the noncrossing
approximation (NCA) [26]. This scheme is based on a strong-
coupling expansion formulated in terms of pseudoparticles,
which, in this case, have to take into account the mixed
fermionic and bosonic nature of the local Fock space due to
the presence of both bosons and fermions in the Hamiltonian
[30]. Within this approach, the local Fock space is composed
of an electronic sector of dimension 4 for a single-band prob-
lem and a bosonic one of size Ny, which defines the cutoff
of the phononic subspace, so that Ny; = 4 x Nyn. We set the
highest-energy bosonic state reachable in our simulation to
Npn = 18, similarly to what has been done in other contexts
[19,30].

Given the perturbative nature of this method, we do not
expect it to accurately describe the electronic properties of the
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system. However, it is interesting to compare to what extent
it can provide a reasonable and consistent description of the
phonon properties. Within the NCA, we get access to the local
reduced phonon density matrix pP" = Tr.[p] from which we
can build the phonon distribution function as

Npn—1
PX) =Y phen(X)gn(X), (77)
n,m=0
where
0a(X) = NHy (VX )™ (78)

is the nth eigenfunction of the one-dimensional harmonic os-
cillator, H,(x) the nth Hermite polynomial, and N,, = L

N/ 2'nlm

the corresponding normalization factor.

E. Semiclassical stochastic equations

For completeness, we summarize in this section the semi-
classical stochastic equations of Sec. II for the particular case
of the Anderson-Holstein model. The equations of motion
for the phonon read, in continuous time, V(t) = F(t) and
X<(t) = V(t), with the force field

F(t) ==X (1) — gv2Q((n(1)) o — 1)
— QU OV (1) + VQE®). (79)

Here we have replaced the generic electronic operator
(Ot))e; = (n(t))ey — 1 in Eq. (53). The damping T'(¢) =
—2g%0,Imy X (7, w)|,—o and the second moment of the white
noise (1) ((§(1)) = 0, (§()E(t")) = K(1)3(z,1"), with K (1) =
—gImyX(t, w)|,=0) can be computed from xX(r, ) and
xX(t, ), which correspond to the density-density correlation
functions x.(t,t") = —i{TcA(H)A@'))*". In the Anderson-
Holstein model, the action with the classical phonon field
is quadratic in the electronic variables, so that the density-
density correlation functions can be factorized in terms of the
electronic Green’s function G (z,1’) in the presence of the
fluctuating field X °l(¢). One obtains

xo@. 1) = —i[GR (. ("HGE (' 1) + GE . )G (', 1)),

(30)
xh@ ) =—i[Ght, HGE W 1) + GR (. G (1)
+ Go @, 1)GE (', 1)]. (81)

from which x® (¢, w) and xX (¢, ) are obtained by a Wigner
transform. In the simulations, the Green’s function is obtained
from the QBE (see Sec. IID).

In order to extract observables like P(X) in the semiclassi-
cal stochastic approach, we simulate different trajectories with
different noise realizations & (¢ ). For details about the selection
of the initial configuration X°(t = 0) for each trajectory and
the subsequent time evolution to the steady state, we refer
the reader to Appendix C. Once the system has reached the
steady state, the frequency of the occurrence of the realization
of X! is measured, which is distributed according to P(X ). We
obtain good enough statistics by considering 256 impurities,
each evolved for at least 90 000 time steps (time step §, =
0.05D). To further reduce the statistical error, in the following
we plot the symmetrized distribution (P(X) + P(—X))/2.

IV. RESULTS AND DISCUSSION

For different values of the inverse temperature 8 and pa-
rameters g, Q2 in the Holstein model (60), the distributions
P(X) of the equilibrium phonon displacements generated by
the different approaches will be benchmarked against the nu-
merically exact solution from QMC. In particular, we will
compare the phonon distribution function P(X) and the elec-
tronic spectra.

A. Distribution functions P(X) and crossover
to the polaronic state

Let us first discuss the overall physical behavior that
emerges from the model. When all other parameters in the
impurity Hamiltonian are fixed, the distribution P(X ), which
is symmetric with respect to X = 0, develops a bimodal
shape as the value of the electron-phonon interaction g is
increased. This double-peak structure indicates the formation
of a polaronic state, which can already be understood on
a qualitative level from a semiclassical frozen-phonon pic-
ture (adiabatic approximation): In this picture, the adiabatic
potential V,q(X) for the phonon is determined as the sum
of the bare phonon potential E,, = %QZX 2, and the energy
E.(X) of the electronic system with phonon displacement
frozen at X (see Appendix A for details). The phonon dis-
tribution is then approximated by the Boltzmann distribution
Pa(X) o< exp(—BVaa(X)), neglecting the kinetic energy of the
phonon. A large frozen-phonon displacement X creates a deep
impurity level for the electrons, so that the electronic ground
state behaves like £ (X ) ~ const — mg|X | for large X [cf.
Eq. (60)]. (Note that the potential is symmetric with respect
to X, because the Hamiltonian is invariant under a combined
particle-hole transformation and inversion X — —X.) For
large g, the adiabatic potential V,q(X) = Eq(X) 4+ Q2X?/2
therefore assumes a double-well form, which implies the bi-
modal distribution P(X). The full solution can be understood
as a polaron undergoing both quantum tunneling and ther-
mal excitations across the potential barrier, which leads to a
renormalization of the distribution P(X) with respect to the
adiabatic one.

In Fig. 1, Q and B are fixed, and g is varied between the
different panels. In the exact QMC results (error bars are of
the order of the linewidth), we see that as g increases, the
weight of the phonon distribution at X = 0 decreases, making
evident the formation of the polaronic state. The phonon dis-
tribution is described qualitatively well by the frozen-phonon
approach (blue lines), which supports the qualitative picture
of the polaron undergoing quantum tunneling and thermal
excitations between the minima of the adiabatic double-well
potential. In the semiclassical approximation (histograms in
red shaded color), we observe the same qualitative behavior,
with some quantitative differences: The distribution generally
shows a lower variance with respect to the QMC result, and
reduced weight around X = 0 in the polaronic regime. This
is consistent with the interpretation that the polarons can be
thermally excited across the potential barrier, like in QMC,
but do not exhibit quantum tunneling between the wells at low
temperatures. For the same reason, for high values of g, when
the double-well potential is well formed [Figs. 1(d) and 1(e)],
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FIG. 1. [(a)—(e)] Equilibrium distributions P(X) of the phonon
displacement X, for increasing values of the electron-phonon in-
teraction g, at inverse temperature 8 = 10 and phonon frequency
Q = 0.2. In each panel, the P(X) from QMC (dotted black lines),
the semiclassical stochastic approach (histograms in red), the self-
consistent Migdal approximation (solid green lines), the NCA (solid
orange lines), and the frozen-phonon approximation (solid blue lines)
are shown. In the Migdal case, we show the symmetrized distribu-
tion. (f) Imaginary-time Green’s function G(tr) from QMC (solid
lines) and the semiclassical approximation (dashed lines). (g) Equi-
librium spectra from the semiclassical approximation. (h) G(r =
B/2) from QMC (solid lines) and the semiclassical approximation
(dashed lines).

the semiclassical distribution gets increasingly localized with
respect to the exact QMC results. In the crossover region to
the polaronic regime [Fig. 1(b)], however, one can see that
the semiclassical approach provides a clear improvement over
the adiabatic approximation, in particular in the barrier region
at X = 0. Indeed, the frozen-phonon approximation overesti-
mates the stability of the polaronic state since it completely
neglects the thermal fluctuations of the lattice parameter X,
which, in contrast, are included within the stochastic semi-
classical theory. One can envision that, in specific parameter
regimes, the difference between the two methods might be-
come qualitative rather than merely quantitative.

By comparing the Migdal solution with QMC, we notice
that the former approach reproduces the exact solution by
construction for small values of g [Fig. 1(a)] while it strongly
deviates from QMC at intermediate values [Figs. 1(b) and
1(c)]. Atlarge values of g, the self-consistent Migdal result un-
dergoes a symmetry-breaking transition, where (X) acquires
a nonzero expectation value; thus P(X) would have a single
Gaussian peak centered at (X), instead of a bimodal distri-
bution. While a symmetry breaking is clearly not expected
to happen for a single-impurity model, it is interesting to
note that for large g, the symmetrized distribution P(X) =
POOPEX  which is plotted in Figs. 1(d) and 1(e), is close
to the exact result. This qualitative behavior is expected: The
Migdal theory can be viewed as a Gaussian theory that takes
into account small quantum fluctuations around a mean-field
solution (X). With this, the symmetrized Migdal result can
properly reproduce the QMC results when the exact distribu-
tion approaches a Gaussian (centered around X = 0), or when
the polaronic state is so well formed that the distribution can
be approximated by two Gaussians centered around +X, with
X being the maximum of P(X). Hence, it works well for small
values of g or when the double-well potential is deep enough
that tunneling is negligible and the polaron is well localized
around positive or negative values of X.

Finally, we consider the result obtained from the NCA.
These results take into account both the quantum and thermal
fluctuations of the phonon. However, due to the strong-
coupling perturbative nature of the method, the system shows
a strong tendency to the insulating state, leading to a sig-
nificant underestimation of the critical g for the onset of
the polaronic regime. This result is not surprising since we
are working in a parameter regime (no electron-electron re-
pulsion) where NCA is expected to fail in reproducing the
quantitative features of the transition.

B. Electronic spectral functions

In addition to the phonon variables, we also compare elec-
tronic properties obtained with QMC and the semiclassical
approach. (In the semiclassical approach, electronic corre-
lation functions are averaged over the phonon trajectories.)
In Fig. 1(f) we compare the Matsubara component G(7) of
the electronic Green’s function, which can be calculated with
QMC. This quantity is related to the real frequency spectrum
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by

G(r) = —/da)e_“”A(a))[l — fg(w)], (82)

so that the quantity G(tr = B/2) provides a good measure
for the spectral weight at w = 0 and low temperature. One
can thus conclude from the figure that the spectral weight at
o = 0 is suppressed as the polaronic regime is approached
[see also Fig. 1(h)]. The semiclassical method provides an
overall reasonable agreement with the QMC results for G(7),
which improves as g increases [see Figs. 1(f) and 1(h)]. Con-
sistent with the distribution functions P(X), which show a
stronger polaronic localization for the semiclassical approx-
imation, the semiclassical approximation also underestimates
the electronic spectrum at w = 0.

With the semiclassical approach, one can also obtain real
frequency spectra, which would have to be extracted by
analytical continuation from the QMC data. As shown in
Fig. 1(g), one finds an opening of the electronic gap concomi-
tant with the appearance of the polaronic state in the phonon
distribution.

C. Evolution with temperature

In Fig. 2, we analyze the behavior of the system with de-
creasing temperature 7 = 1/, for fixed parameters g = 0.25
and Q = 0.2. First of all, the QMC results show that the
polaronic regime is reached as temperature is lowered. For the
given parameters €2 and g the system is in the polaronic regime
(the adiabatic potential has a double-well form in the ground
state), but thermal excitations across the wells delocalize the
polaron at high temperature. This high-temperature behavior
is perfectly matched by the semiclassical result [Fig. 2(a)].
As the temperature decreases, however, the semiclassical re-
sults deviate from QMC: In particular at 8 = 100, when the
thermal fluctuations are almost suppressed [Fig. 2(c)], the fact
that the semiclassical approach neglects quantum tunneling
makes the phonons much more localized in the two wells of
the potential. Interestingly, despite that, the electronic Green’s
function for 8 = 100 in the semiclassical approximation is
close to the exact ones [Fig. 2(d)], suggesting that the elec-
tronic degree of freedom is mostly influenced by the position
of the peak in the distribution function rather than by the
phonon fluctuations in this regime. Again, the Migdal solution
approaches the exact QMC results when the double well is not
present [Fig. 2(a)] and when it is deep enough [after restoring
the symmetry from the artificially symmetry-broken state,
Fig. 2(c)], while it fails to describe the bimodal distribution at
intermediate temperatures [Fig. 2(b)]. The NCA always over-
estimates the position of the peak of the distribution, while
for the frozen-phonon approximation the same comments as
above apply regarding the suppression of the distribution at
X = 0 and the enhancement of the value of P(X). By looking
at the electronic properties, we notice in Fig. 2(d) that the Mat-
subara Green’s function in the semiclassical approximation is
very close to the QMC one in all the regimes and this is also
confirmed in Fig. 2(f). (The noise in the QMC data at high
temperatures is due to an inefficient measurement procedure
in the case of low diagram orders.) The electronic spectrum in
the semiclassical approximation in Fig. 2(e) shows again the
opening of the gap with the formation of the polaronic states.
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FIG. 2. [(a)—(c)] Equilibrium distributions P(X) of the phonon
displacement X, for increasing values of the inverse temperature 3, at
electron-phonon coupling g = 0.25 and phonon frequency 2 = 0.2.
The symbols for QMC, the semiclassical stochastic approach, self-
consistent Migdal, and NCA are the same as in Fig. 1. (d) Green’s
function G(t) from QMC (solid lines) and the semiclassical approxi-
mation (dashed lines). (e) Equilibrium spectra from the semiclassical
approximation. (f) G(r = 8/2) from QMC (solid lines) and the
semiclassical approximation (dashed lines).

D. Evolution towards the adiabatic limit

In Fig. 3, we vary the phonon frequency €2 to approach
the adiabatic limit (Q <« 1), fixing B and the ratio g*/<2. The
equilibrium position of the phonon is proportional to g/<2,
so it is shifted towards lower values with increasing €2, from
Fig. 3(a) to Fig. 3(e). Moreover, by increasing €2, the phonon
period 2 /2 decreases, while the depth of the potential well
remains unchanged; in this way, the white-noise approxima-
tion is less justified even when quantum tunneling is less
relevant, and the semiclassical results deviate more strongly
with respect to QMC [Figs. 3(c)-3(e)]. It would be interesting
to see whether this deviation can be reduced by the non-
Markovian stochastic approach outlined in Appendix D, but
implementing this is left for future research. The deviation is
visible also in the electronic properties shown in Figs. 3(f) and
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FIG. 3. [(a)—(e)] Equilibrium distributions P(X) for different
phonon frequencies  at a fixed value of g2/ = 0.3125 and at in-
verse temperature 8 = 10. The symbols for QMC, the semiclassical
stochastic approach, self-consistent Migdal, and NCA are the same
as in Fig. 1. For the smaller values of 2, Q2 = 0.01, 0.05, the NCA
results are not shown, because they would need a prohibitively large
cutoff in the phonon Hilbert space to reach converged results with
VOX > 1. () Imaginary-time Green’s function G(t) from QMC
(solid lines) and the semiclassical approximation (dashed lines).
(g) Equilibrium spectra from the semiclassical approximation. (h)
G(t = B/2) from QMC (solid lines) and the semiclassical approxi-
mation (dashed lines).

3(h). As expected, the adiabatic approximation (blue lines)
becomes more accurate for small €2, but the stochastic semi-
classical theory always shows a better agreement with the
QMC results, even in the regime were the adiabatic limit
fails [Fig. 3(e)]. This reflects the larger overestimation of
the polaronic domain in the frozen-phonon approximation,
compared to the stochastic semiclassical theory. For the value
of g2/ used in this figure, the Migdal approximation fails
to reproduce the formation of the polaronic state, while the
NCA generally overestimates the peak position of the phonon
distribution.

V. CONCLUSION

In conclusion, we have developed a microscopic formal-
ism to treat the nonequilibrium dynamics of linearly coupled
electron-phonon systems. The linear coupling is of the form
gX O, where O is a generic electronic operator. Within this
framework, the effect of the electronic fluctuations on the
phonon is kept beyond the Ehrenfest dynamics, leading to a
stochastic phonon evolution with damping and noise terms
that are self-consistently obtained from the connected OO
autocorrelation functions of the electrons. The electronic
dynamics in the presence of this fluctuating semiclassical
distortion field is computed by means of a nonperturbative
quantum Boltzmann equation that might even be combined
with a steady-state nonequilibrium DMFT solver. This leads
to a consistent description in which the electronic spectra and
distribution functions are influenced by the stochastic dynam-
ics of the lattice distortions, while the lattice distortions are
in turn affected by the dynamics of the electrons and by their
fluctuations.

To benchmark this approach, we solved the equilibrium
Anderson-Holstein model with several methods (frozen-
phonon approximation, second-order Migdal expansion, and
noncrossing approximation) besides the stochastic semiclas-
sical theory and numerically exact quantum Monte Carlo. We
found good agreement for the phonon distribution functions
between the quantum Monte Carlo results and the stochas-
tic semiclassical theory at higher temperatures, in particular
in the crossover region to the polaronic regime. The latter
would correspond to the most interesting regime close to
the charge ordering temperature in a DMFT solution of the
Holstein model. At low temperature, the semiclassical results
overestimate the localization of the polaron due to the lack
of quantum tunneling. Such quantum tunneling contributions
are incorporated into multiconfigurational Ehrenfest meth-
ods [42], which are, however, challenging for a macroscopic
number of electronic degrees of freedom. A possible way of
including quantum tunneling in the stochastic semiclassical
theory, which would be interesting to explore in the future, is
the combination with the Wentzel-Kramers-Brillouin (WKB)
method, which naturally admits these processes.

The semiclassical approach can be used to address the
coupled dynamics of the electrons and the lattice during
photoinduced phase transitions up to long times [33], and
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goes beyond the phenomenological Ginzburg-Landau de-
scription. This general formulation can be extended to study
more general electron-phonon couplings, such as nonlinear
couplings or Jahn-Teller phonons in multiorbital models, or
even to the Hubbard model, where semiclassical charge and
spin fields can be introduced through Hubbard-Stratonovich
transformations [46]. In the latter case, the white-noise limit
considered in this work might fail, and one would have to de-
scribe the dynamics of the fields by using the non-Markovian
equations of motion outlined in this work.
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APPENDIX A: EQUILIBRIUM DISPLACEMENT
IN THE FROZEN-PHONON LIMIT

We are interested in the equilibrium value of the displace-
ment X that minimizes the total energy of a single impurity
[Eq. (60)], coupled with the bath A in Eq. (62), in the adi-
abatic limit of frozen phonons. The total energy is given
by four contributions: the free phonon energy, the electronic
kinetic energy, the electron-phonon interaction energy, and,
eventually, the on-site energy. The phonon energy, i.e., the
expectation value of the third term in Eq. (60), reads

2

1 Q
Ep = SQ°X%) + (P ~ —X7, (A1)

In the frozen-phonon case, the momentum of the phonon is

zero since the phonon is fixed at position X, so Ep, = %X 2
where X is now a parameter. Using the Keldysh formalism,
the kinetic energy can be expressed as

Ein = 2iI[A%xG+ Gx Al~(t,1)
= % / do{—-2I[A(w)G(w) + G(w)A(w)]~}, (A2)

where G, the impurity’s Green’s function, has to be deter-
mined by solving the Dyson equation of the impurity coupled
to the bath A. The retarded component of G thus reads

GR(w) = [0+ in+ 1 — hoe — AR()]7!, (A3)

where hjoc = +/2Q2gX 1is taken from Eq. (71) in the frozen-

phonon approximation. 7 is a positive small constant,

n — 0%, that will be neglected in the following (if we want

to explicitly consider it, it is enough to apply the substitution

ImAR(w) — ImAR(w) — 1 in the equations below). By ex-

plicitly writing the real and imaginary parts of G® (), we get
w—0

[0 — &P + (Im{AF(@)})?
Im{A*(w)}

[w — @1 + (Im{AR(0)})*’

GR(w) =

+1i

(A4)

where @ = —p + hioc + Re{AR(w)}. With this, the spectrum
is obtained as A(w) = —%Im{GR(a))}. We assume that the

system is in equilibrium at the temperature of the bath, so
the lesser component of the Green’s function, G<, is given by
the fluctuation-dissipation theorem

G~ (w) = 2wiA(w) fp(w), (AS5)

with fg denoting the Fermi distribution function at inverse
temperature . Having determined the full G, we can explic-
itly calculate the kinetic energy by using Eq. (A2),

Eun = — / do(~21[AF ()G (@)
2

+ A% ()G (@) + GR(0) A= (w) + G=(w) A (w)]}
=4 / dw[Re{ AR (0)}A(w) + Re{GF (0)}An ()] f5(@).

(A6)

Here Re{G"} is taken from Eq. (A4), A, from Eq. (62), and
2

ReAR(w) = ZDLZ[Q) — sgn(w)f(w? — DY)V w? — D?]

is obtained from the spectrum A, by a Kramers-Kronig trans-
form.

We are left at this point with just the electron-phonon
interaction term, which is the expectation of the second term
in Eq. (60). Within the frozen-phonon approach, this gives

Ein(t) = V298X [2 / doA(o)fs (@) — 1], (A7)
where the integral gives the expectation value of the electronic
impurity occupation. As usual, n = n + n4 and the factor 2
in the last line of Eq. (A7) comes from the fact that we are
considering the spin-symmetric phase and omitting the spin

indices G, . Finally, the expectation value of the first term of
Eq. (60) reads

Eurie = —1ln) = ~20 [ doA@fy(@).  (a8)
The total energy
Vaa(X) = Eg(X) = Eph + Exin + Eint + Eonssite (A9)

defines the adiabatic potential V,q(X) introduced in the main
text. The phonon distribution P(X) is given by the Boltzmann
distribution

¢ PEa(X)

P(X) = é (A10)

where Z = [T dX e PEuX),

APPENDIX B: TWO-SITE MODEL

Here we consider a simple impurity model where the bath
is replaced by a single site, in order to benchmark the mea-
surements of the distribution function P(X) in QMC against
exact diagonalization. The Hamiltonian reads

Himp = IIZ(f;ngJ +f21:afl,(r) - Z Zﬂiﬁi,(r

i=12 o

N |
+V2QegX (A4 + 71y — 1)+ 5(92)(2 + P?), (B1)
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where sites 1 and 2 refer to the impurity and bath site, re-
spectively. The last term of Eq. (B1) can be written as Hyp, =

Qd'd by recalling the definition of X = (d¥ 4+ d)//2Q
and P = i\/g(dT —d). The parameters are chosen consis-

tent with the ones in the main text: Q = 0.2, u; = u =0,
t'=-0.3162, 8 = 10, and g = 0.15, 0.2, 0.25, 0.3, 0.35. We
solve this toy problem by exact diagonalization (ED), rep-
resenting fermionic operators in the Fock space with four
possible electronic states per site (|, 0), |i, 1), |i, ), and
li, 1), with i =1,2), and truncating the bosonic Hilbert
space to a maximum number Ny, (which is chosen large
enough to obtain converged results). We calculate the prob-
ability P(X)dX of finding a phonon between X and X + dX:

PX) = Tr[p(Ia @ 1X)(X])]

= (Zm, a|ple, m>> (mX) (X |n)

n,m 14

= > [Traplom(m|X)(X|n), (B2)

n,m

similarly to Eq. (77), where p = %e‘f’ﬁimv with Z =
Tr[e"mimp] the density matrix obtained from exact diagonal-
ization. In Eq. (B2), |o, m) = |a) ® |m), where |«) is one of
the 16 electronic states, while |m) and |n) represent one of the
Npn phononic states. (X |n) = (n|X) are the eigenfunctions of
the free harmonic oscillator, defined by means of the Hermite
polynomials of order n,

1 2 _ox?
= —_— 2
(X|n) ( ﬁznn!) T H,(WQX), (B3
with Ho(x) =1, Hi(x) =2x, and H,11(x) = 2xH,(x) —
2an_1 (x)

To illustrate and test the QMC procedure in Sec. III B,
we show some benchmark results for the half-filled Holstein
impurity coupled to a single bath site described in Eq. (B1).
The hopping to the bath is chosen such that the hybridization
function in imaginary time is A(t) = —0.05( 0 <t < B). In
Figs. 4(a) and 4(b), we plot the function p(a) [Eq. (66)] for
B = 1,10, 100, and two values of g. This function is the output
of the QMC simulation. With the postprocessing procedure
[Eq. (69)], the data in Figs. 4(a) and 4(b) yield the QMC
phonon distributions shown in Figs. 4(c) and 4(d). For this
single-bath Holstein impurity model, accurate reference data
for P(X) with an error of less than 10~° can be obtained using
ED with 130 phonon states. In Figs. 4(c) and 4(d) the dashed
black lines represent these essentially exact reference data.
The QMC results for P(X) reproduce the ED data. Since, for
the QMC method, the single-bath problem is not simpler than
an impurity problem with a generic hybridization function,
this demonstrates the correctness and accuracy of the QMC
measurement.

APPENDIX C: EQUILIBRATION PROCEDURE FOR
THE SOLUTION OF THE SEMICLASSICAL
STOCHASTIC EQUATIONS

Here we describe the solution at the initial time ¢ = 0 of the
stochastic equations of the type of Eq. (53), and their succes-
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0.25
= 0.20
<
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I
©
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FIG. 4. [(a), (b)] Quantum Monte Carlo distributions p(a) =
(cos(av/2X))mc for = 0.2 and B =1,10,100: (a) g=0.3 and
(b) g =0.75. [(c), (d)] Comparison between the distributions P(X)
obtained from QMC (colored solid lines) and ED (dashed black
lines) for the same parameters as in (a) and (b).

sive evolution towards equilibrium. At zero temperature, the
equation of motion

X(1) =—Q°X(r) — gv2Q((n(t))a — 1)

— QI (OX () + VQE®) (C1)
leads to the solution
X9 = —gsf«nm —1). (€2)

In order to determine the starting configuration of the sys-
tem in Eq. (60), we initialize all the trajectories at the same
values of X' and (n)y [the precise values of X' and (n)q
are determined by performing a self-consistent equilibrium
DMFT calculation, which includes the self-consistency of
the classical distortion through Eq. (C2), besides that on
the electrons]. Different trajectories i correspond to different
realizations of the noise &;(¢); since at t = 0 we consider
the zero-temperature (and thus zero-noise) solution, we can
choose all the XiCI (t = 0) to be equal.

Once we have determined the starting configurations
Xfl(t = 0), we evolve them in time through Eq. (C1), now at
some nonzero temperature; i.e., we switch on the noise that, at
each time + > 0, may have in principle a different realization
&;(t) for each trajectory i. Thanks to the noise contribution
&;(t), each impurity i experiences a different dynamics, and we
evolve all of them until we observe a saturation of the standard
deviation oya(t) = (X2(t)) — (X°(¢))?, where the average
has a statistical meaning and is performed over the 256 impu-
rities i (or trajectories) considered in our simulations.

The state reached at this point is the equilibrium one that
we consider as the starting point 7 in order to compute the
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relevant physical properties of the system, such as the phonon
distribution function, P(X). P(X) is indeed an average over all
the time steps starting from the equilibrium time (¢t > 7) and a
statistical average over all the trajectories i. Moreover, due to
the inversion symmetry, X — —X, of the system in Eq. (60),
we symmetrize the P(X) just calculated, by imposing P(X) =
w (indeed, the phononic distribution must be even in
the phonon variable).

APPENDIX D: NON-MARKOVIAN
STOCHASTIC EQUATION

Although in the main text we provided a numerical solu-
tion of the stochastic equation (29) just in the white-noise
limit, it is illustrating to transform the equation to a form
which emphasizes the causal structure that would allow for a
time-stepping solution. The starting point consists in rewriting
Eq. (30) in the form of the two first-order equations (31) and
(32). To clarify the causal structure of these equations, assume
we know V; for j < n and XjCl for j < n. The knowledge of
X allows to calculate (A‘l)j,j/ and (Oj)d for all j,j'<n
because the latter are expectation values for the electronic
problem in the presence of a time-dependent field (18), which
do not depend on the field at future times. It remains to be
seen how this information can be used to obtain a probability
distribution for &,. Equation (31) then determines the velocity
V.., and thus Xn“l+1 at the next time step via Eq. (32).

To construct the probability distribution of the noise, we
use the fact that the matrix A~! is symmetric and positive
definite and can therefore be factorized in Cholesky form,

A™'=LDU, (D1)

where U is upper triangular with 1 on the diagonal, D is
diagonal and positive, and L = U7 is lower triangular. In
matrix form (writing a matrix of dimension 3 for simplicity
of notation),

Aw Ao Ap
A=Ay An Ap
Ay Ay Ap
1 0 O\ /Dy O 0 1 Uy Up
=Ly 0 0 D 0 0 1 U
Ly Ly 1 0 0 D 0 0 1
(D2)

Since the column index of U (row index of L) corresponds to
the time, let us denote the columns of U and rows of L as time
slices of the respective matrices. From Eq. (D3), it is apparent
that the nth time slice of U and L, and the diagonal entry
D, can be determined from the knowledge of all previous
time slices m < n and the upper n x n block of A7, i.e, the
correlation function (21) for times < n. Moreover, with the
Cholesky factorization, the inverse matrix is given by

A=U"'D'L7!, (D3)

where L~! is also lower triangular. Using the ansatz

1 0 O 1 0 0 1 0 0
0O 1 0 é 1:10 1 0 Lo 1 0
0 0 1 Lz() L21 1 Ly Ly 1

, (D4)

with the notation (L~');; = L;, it is clear that the rows of L
can be constructed successively from the time slices of L. The
quadratic form in the action (29) then becomes

Z ZLI’JEJ D7 ZLpISZ , (D5)

J<p I<p

Z%‘A;‘,ISI =
Y

and the &-dependent integral in Eq. (29) can be rewritten as

1 DiJe 2 Zi ik
Z;
D, 7717 -
/D H/dn,, = §{np,— Y _Lyj& | (D6)
v D Jsp
Here we also used that
(D7)

Z; =/ @u)V det(A)' = [ [ V27D,
p

The § function in the second line of Eq. (D6) defines a fixed
relation between the variables n and &, which can be inverted
to obtain

(D8)

£ = Z Ljpnp-

P<J

These equations finally provide the basis for a possible time-
stepping solution of the path integral (29). Assuming that the
problem has been solved up to time step n, i.e., X; °l s known
for j < n, while V}, 17,, (0 )et» Dj, and the matrlcesA 7 ! and
L; y are known for j, j* < n, the solution at the next step n +1
is updated as follows:

(1) Propagate the electronic problem in the presence of
X jd by one time step to calculate (O,). at time step n, and

to extend the correlation matrix Aj’l1 =ig?(x5);1 [Eq. (22)]
to the upper n x n block. For reasons of causality, the solution
depends only on the known X j°1 for j < n.

(2) From the upper n x n block of A~! calculate the next
time slice of the Cholesky decomposition, i.e., the nth row of
L, and the diagonal weight D,,.

(3) Draw a Gaussian random variable 5, with zero mean
and variance D,,.

(4) Calculate &, from Eq. (D8), using the noise 1 at all
previous time steps and the nth time slice of L.

(5) Update V,, and Xnﬂ_l from Egs. (31) and (32).
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