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Strange correlators for topological quantum systems from bulk-boundary correspondence
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“Strange” correlators provide a tool to detect topological phases arising in many-body models by computing
the matrix elements of suitably defined two-point correlations between the states under investigation and trivial
reference states. Their effectiveness depends on the choice of the adopted operators. In this paper, we give a
systematic procedure for this choice, discussing the advantages of choosing operators using the bulk-boundary
correspondence of the systems under scrutiny. Via the scaling exponents, we directly relate the algebraic decay
of the strange correlators with the scaling dimensions of gapless edge modes operators. We begin our analysis
with lattice models hosting symmetry-protected topological phases and we analyze the sums of the strange
correlators, pointing out that integrating their moduli substantially reduces cancellations and finite-size effects.
We also analyze instances of systems hosting intrinsic topological order, as well as strange correlators between
states with different nontrivial topologies. Our results for both translational and nontranslational invariant cases,
and in the presence of on-site disorder and long-range couplings, extend the validity of the strange correlator
approach for the diagnosis of topological phases of matter and indicate a general procedure for their optimal
choice.
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I. INTRODUCTION

In the last decades, topological phases of matter have been
at the heart of condensed matter and quantum many-body
physics [1–3]. Since the discovery of the quantum Hall effect,
a plethora of paradigmatic topological models with different
characteristics has been proposed and studied to exemplify
the variety of topological phenomena occurring in quantum
many-body systems. The goal of this research line is to drive
the technological design of quantum systems of increasing
complexity, in the quest to realize topological quantum fea-
tures stable against disorder and noise.

Despite the progress in the study of topological states,
their identification in realistic scenarios is not in general an
easy task. For instance, physical setups display finite size
effects and disorder which may hinder the observation of
the most common topological features, especially when they
are extrapolated from numerical results obtained for small
systems.

The development of diagnostic tools for topological phases
of matter is therefore an important task for the study of
some of the fundamental features of quantum many-body
systems. Among the tools for the detection of the onset of
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topological states, the so-called strange correlators [4] have
proved especially useful for theoretical and numerical inves-
tigations [5–18]; they follow an approach which, in spirit,
is related to the characterization of off-diagonal long-range
order (ODLRO) [19]. In systems with ODLRO the one-body
density matrix is determined from the correlation functions,
evaluated in the ground state or at equilibrium at finite tem-
perature or more generally in a given state. Once the one-body
density matrix is known, in translationally invariant systems
one can find whether the system exhibits ODLRO by exam-
ining how the one-body density matrix decays as a function
of the distance [19,20]. In absence of translational invariance,
one has to determine whether the largest eigenvalue of the
one-body density matrix scales with the number of particles,
and if it does so, then there is ODLRO.

In this work, we will show that strange correlators general-
ize the notion of two-point correlation functions and one-body
density matrix and provide similar scaling features to detect
topological states of matter belonging to phases with protected
gapless edge modes.

Let us label by |�〉 a state that one desires to understand
whether it is topological or not. Strange correlators, denoted
by s, are defined by estimating suitable two-point matrix ele-
ments between |�〉 and a topologically trivial state |�〉. |�〉
is used as reference on the same Hilbert space, and must be
carefully chosen based on the system symmetries. The strange
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correlators are defined by

s[ô, ô′]r,r′ ≡ 〈�| ô(r)ô′(r′) |�〉
〈�| �〉 , (1)

where we explicitly evidenced the dependence on the chosen
operators ô, ô′, whereas the dependence on the states |�〉 and
|�〉 is left implicit. These are two-point functions taken in the
bulk of the system, such that, differently from other diagnostic
tools for topological phases, they do not rely on the presence
of physical boundaries or peculiar boundary conditions.

Equation (1) makes clear the difference with the ODLRO
criterion, which is instead based on expectation values of
the form g(1) ≡ 〈�| ô†(r)ô(r′) |�〉. To stress the parallel with
the strange correlators (1), we observe that g(1) = s[ô†, ô]r,r′

when |�〉 = |�〉: if g(1) converges to a constant for large
distances |r − r′| in translationally invariant systems, then
there is ODLRO; when instead g(1) decays as a power law,
then there is quasi-ODLRO, and when it decays faster than a
power law, the system displays neither.

Similarly, the main property of the strange correlators s is
that, for short-range entangled topological phases of matter
[21], they display a power law decay (or saturate to a finite
value) as a function of the distance when |�〉 is a topological
state. On the contrary, if both |�〉 and |�〉 are trivial states,
all the strange correlators s decay exponentially in |r − r′|.
In Ref. [4], it was argued that this behavior holds for several
topological phases in one and two spatial dimensions. The
discussed phases include both short-range entangled states
whose topological features give rise to protected gapless
modes at their boundaries, and a large class of symmetry-
protected bosonic phases of matter whose wave functions can
be derived by suitable Wess-Zumino-Witten models [22,23].
In these systems, the power law decay of the strange cor-
relators can be qualitatively understood by means of their
mapping into the two-point correlation function of a gapless
model in a system with a lower space dimension [4]. When
the system under investigation is two-dimensional, this map-
ping translates the strange correlators in the bulk into suitable
correlation functions of the corresponding (1+1)-dimensional
conformal field theory at the boundary.

In this work, we address strange correlators in one-, two-
, and three-dimensional systems, including also long-range
couplings, finite size and boundary condition effects, as well
as on-site disorder.

We discuss the bulk-boundary correspondence at the basis
of their scaling properties and we show that the optimal choice
of the operators ô to use strange correlators as a diagnostic tool
for topological phases is related to the creation of particle-hole
excitations in the bulk of the related systems. For the sake of
clarity, we decided to first present and discuss in detail some
concrete examples, and then to extend our observations by
presenting a general procedure: for strange correlators used
to detect topological phases, we propose to systematically ex-
ploit the information about the boundary theory to implement
a correct choice of the operators entering the strange corre-
lators. More precisely, in Sec. V, we discuss the following
points. (a) For noninteracting systems, the optimal operators
entering the strange correlators must have overlaps with the
bulk operators describing both filled and empty bands. In
particular, the strange correlators can be decomposed in terms

corresponding to the creation of particle-hole excitations over
the ket ground state. (b) For a general—possibly interacting—
theory, one has to know the boundary theory for the edge
modes. Once the latter is known, and the operators creating the
edge modes have been identified as well, one has to determine
the corresponding lattice operators. (c) The operators must be
then continuously connected to bulk operators.

We discuss how to efficiently extract information from
strange correlators, studying their summation, possibly taken
in modulo. These sums provide a more efficient diagnosis than
the decay of the single strange correlator even for the small
system sizes typically achievable in numerical simulations.
Furthermore, they are more efficient also in systems with
disorder, as in many cases relevant for experiments, where
distinguishing the power-law from the exponential decays
may be difficult. We show that the finite-size scaling of suit-
able strange correlators allows us to identify the anomalous
scaling dimensions of the operators related to the protected
topological massless edge modes of the systems under anal-
ysis. Finally, generalized strange correlators between states
with different nontrivial topologies are addressed. Our find-
ings allow us to extend the validity of the strange correlator
approach, leading to a general strategy for their optimal choice
and numerical evaluation.

In the next section, we present the main scaling features
of strange correlators, then, in Sec. III, we discuss several
paradigmatic examples of topological superconductors and
insulators based on systems with translational invariance.
Section IV numerically verifies the robustness of the scal-
ing of strange correlators in the presence of disorder for
two-dimensional Chern insulators. In Sec. V, we discuss the
relation between the bulk operators ô(r), ô′(r′), the boundary
modes of the topological phases under analysis and their
particle-hole excitations; Sec. VI extends the results obtained
for symmetry-protected topological phases to the case of
fractional quantum Hall states with intrinsic topological or-
der. The Appendixes provide detailed calculations for several
of the presented examples and discuss the negative results
obtained for the Kitaev surface code, which exemplifies a sys-
tem with intrinsic topological order without protected gapless
edge modes.

II. SCALING OF THE SUMS OF STRANGE
CORRELATORS

To enhance the visibility of the scaling of the strange
correlators with the finite size of the considered system, we
introduce the following functions of the linear lattice size L:

S[ô, ô′]L = 1

Ld

∑
r,r′

s[ô, ô′]r,r′ , (2)

S̄[ô, ô′]L = 1

Ld

∑
r,r′

|s[ô, ô′]r,r′ |, (3)

where d is the dimension of the lattice, so that the number of
sites scales as ∼Ld . These functions constitute respectively
the sums of the strange correlators s[ô, ô′]r,r′ and of their
moduli |s[ô, ô′]r,r′ | over the whole system under analysis,
rescaled by the volume. In the following, we will consider,
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in particular, lattice models, such that r and r′ label the lattice
site vectors, and d is the lattice space dimension.

A scaling result that we will exploit in the following, in-
spired by the Penrose-Onsager criterion for the ODLRO [19],
is that, when the modulus of the strange correlator, |s[ô, ô′]r,r′ |
decays asymptotically as |r − r′|−2α , for large system sizes
the sum in Eq. (3) behaves as

S̄[ô, ô′]L ∼

⎧⎪⎪⎨
⎪⎪⎩

Ld−2α for α < d
2

ln L for α = d
2

const + O(Ld−2α ) for α > d
2

, (4)

The saturation to an asymptotic constant characterizes also
the case in which, instead, s[ô, ô′]r,r′ decays exponentially.
However, in this situation, the constant is reached exponen-
tially rather than algebraically, see Appendix A for more
details. The previous scaling behavior does not hold, in gen-
eral, for S[ô, ô′]L. Without the modulus, indeed, s[ô, ô′]r,r′

may display nonmonotonic (typically oscillating) character:
its envelope may still decay as |r − r′|−2α , but the non-
monotonic behavior yields a faster decay of S[ô, ô′]L and
complicates the derivation of formulas similar to (4). Such
a complication is not present for the standard case of re-
pulsively interacting bosons with ODLRO, due to the non
oscillating nature of their one-body density matrix. In general,
the relations in Eq. (4) are valid for S[ô, ô′]L if s[ô, ô′]r,r′

is monotonic.
In the traditional ODLRO criteria, one performs the inte-

gral of the one-body density matrix, which is (in translational
invariant systems) nothing but the momentum distribution
at k = 0, which gives the indication of the presence of
ODLRO or, which is the same, Bose-Einstein condensation
[24]. The advantage of integrating the correlation functions
is that it makes more convenient to detect ODLRO, since
their nonvanishing value for large distances is multiplied by
the volume when they are integrated. That is the reason
why the first signature of ODLRO in Bose-Einstein conden-
sation has been obtaining by measuring the peak at zero
momentum of the momentum distribution [24]. In the case
of standard one-body density matrices in superfluid bosonic
systems, the decay of the two-point function g(1) can be
expressed in terms of the anomalous dimension critical ex-
ponent associated with the considered bulk operators ô [20].
As a consequence, this exponent determines the scaling of
the largest eigenvalue of the one-body density matrix on the
state |�〉 with the particle number or the size of the system
[20].

In the case of strange correlators, when |�〉 is a topo-
logically trivial state and |�〉 lies in a topological phase
characterized by gapless edge modes, s[ô, ô]r,r′ can be associ-
ated to the two-point correlation function of suitable operators
of the theory describing the boundary between the two phases,
through a suitable space-time rotation. The exponent α is then
associated to the anomalous scaling dimension of a boundary
operator related to ô through bulk-boundary correspondence,
as we will discuss in Sec. V. For instance, in the case of nonin-
teracting topological insulators with gapless Dirac modes on
their boundaries, when ô is a free fermionic field, α = (d −
1)/2, as expected by the corresponding scaling dimensions.

If, instead, |�〉 and |�〉 belong to the same phase, no gapless
boundary separates them in the rotated space-time picture, and
the behavior of s[ô, ô′]r,r′ mimics the corresponding two-point
correlation functions in the related gapped phase. In this case,
s[ô, ô′]r,r′ ∝ exp[−|r − r′|/ξ ] decays exponentially for large
distances, such that the sum S̄[ô, ô′]L exponentially converges
to a constant.

III. TRANSLATIONALLY INVARIANT MODELS

In this section, we analyze several lattices hosting non-
trivial symmetry-protected topological phases, in the case of
translational invariant systems, such that we can derive exact
results in the momentum space basis. Notably, in this con-
dition, the sum (of the moduli) of the strange correlators,
S (S̄)[ô, ô′]r,r′ is equal to the largest eigenvalue λ0 of the ma-
trix s (|s|)[ô, ô′]r,r′ in Eq. (1), for varying r and r′. This fact is
a rephrased version of the famous Penrose-Onsager criterion
for the Bose-Einstein condensation [19,25], here applied to
topological quantum systems. In Sec. V, we will elaborate
more on this point.

A. The Kitaev chain

We analyze first the paradigmatic model for one-
dimensional topological superconductivity, namely, the Ki-
taev chain [26]. Its Hamiltonian is given by

HKit = − t

2

∑
x

(c†
xcx+1 + c†

x+1cx )

− μ
∑

x

c†
xcx − �

2

∑
x

(c†
xc†

x+1 + cx+1cx ), (5)

where x labels the sites of the chain. The model in Eq. (5)
represents a one-dimensional p-wave superconductor with
pairing �. The parameter μ is the chemical potential of the
system and t > 0 represents a hopping amplitude along the
chain. The model is characterized by particle-hole symmetry,
and it belongs to the D class of the “tenfold-way” clas-
sification of the topological insulators and superconductors
[1,27,28]. In particular, the Kitaev chain displays a topo-
logical phase for |μ| < t and a trivial phase for |μ| > t .
For open boundary conditions, the topological phase is char-
acterized by the well-known zero energy Majorana modes
localized at its edges. Correspondingly, the system displays
two degenerate ground states. These ground states, that we
label by |�+〉 and |�−〉, are distinguished by their total
fermionic parity. The transport properties of the chain are
affected qualitatively by these modes, therefore transport
is a useful diagnostic for topology, see for instance the
recent reviews [29,30] and the analysis in Refs. [31,32],
concerning the introduction of long-range pairings and
interactions.

For superconducting systems in the BCS mean-field de-
scription, such as HKit, the conservation of the particle number
is violated by the pairing term. This causes arbitrariness in
the choice of ô, ô′ in the strange correlators: several choices
are possible, with the constraint that the total fermionic parity
must be preserved by ôô′.
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In order to identify the most efficient choice of the strange
correlators, for a reliable detection of the topological phase
transition in this model, it is instructive to consider first
the limit μ → 0, with open boundary conditions, which con-
stitute the paradigmatic example for the topological phase.
In this limit, the two ground states are expressed in terms
of equal-amplitude linear superpositions of all the possible
occupied Cooper pair states [33]:

|�+〉 = N −1/2
∑

n

(−1)n
∑
j2n

|j2n〉 , (6)

|�−〉 = N −1/2
∑

n

(−1)n
∑
j2n+1

|j2n+1〉 , (7)

where jm is an ordered m-plets of sites, such that
|jm〉 = c†

j1
c†

j2
. . . c†

jm
|0〉, and the norm is N =∑n ( L

2n) =∑
n ( L

2n + 1) = 2L−1. In this situation, it is straightforward to
study the strange correlators associated with the structure of
the Cooper pairs. In particular, for the even ground state, we
consider

s[c, c]x,y = 〈�| cxcy |�+〉
〈�| �+〉 , (8)

where the Fock vacuum state, corresponding to the ground
state in the (trivial) μ → −∞ limit of Eq. (5), can be adopted
as the trivial reference state |�〉. For this specific choice
of |�〉, s in Eq. (8) is a constant, independent on x and y
(when we restrict to y > x): the operator cxcy selects indeed
the components of |�+〉 with two particles only, and their
amplitude is independent on their distance, given the con-
struction in Eq. (6). Similar results can be obtained for |�−〉,
replacing |�〉 with a generic single-particle state. This con-
stant behavior of the strange correlator in Eq. (8) constitutes
a strong indication of the topological character of the state,
and it suggests that the optimal choice for the operators o
and o′ must include terms probing the Cooper pair spatial
profile.

The systematic and general calculation of the strange
correlators of the Kitaev chain can be performed in the
translational invariant case. In particular, we consider a
periodic chain with L sites and antiperiodic boundary con-
ditions, cx = −cx+L. The Kitaev Hamiltonian in Eq. (5)
assumes in momentum space the Bogoliubov - de Gennes
form:

HKit =
∑

0�k<π

(c†
k , c−k )[(μ − t cos k)τz − (� sin k)τy]

(
ck

c†
−k

)
,

(9)

where τ j are the Pauli matrices in the Nambu-Gorkov formal-
ism. The Bogoliubov energies are

E±(k) = ±
√

(μ − t cos k)2 + �2 sin2 k. (10)

The positive energy eigenmodes can be written in the form

ηk = ukck − vkc†
−k, (11)

with normalized coefficients

uk = cos
θ (k)

2
, vk = −i sin

θ (k)

2
,

θ (k) = arctan

[ −� sin k

μ − t cos k

]
, (12)

where θ (k) is meant in the interval (−π, π ] and its winding
number across the same interval distinguishes topological and
trivial phase. The general normalized BCS ground state is
derived by the condition ηk |GS〉 = 0 and it reads

|GS〉 =
∏

0�k<π

[uk + vkc†
kc†

−k] |0〉 = N
∏

0�k<π

egkc†
k c†

−k |0〉 ,

(13)

where |0〉 is the Fock vacuum state and

gk = u−1
k vk, N =

∏
0�k<π

uk . (14)

Starting from the equations above, the strange correlators
can be evaluated (see Appendix B for a detailed derivation).
The overlap between two generic normalized ground states
|�〉 and |�〉 of the Kitaev chain reads

〈�|�〉 =
∏

0�k<π

[
cos

θ� (k) − θ�(k)

2

]
, (15)

where θ�/� labels the θ parameters in Eq. (12) for the BCS
ground states |�〉 and |�〉 respectively. The simplest quadratic
strange correlators result:

〈�| c†
xcy |�〉

〈�|�〉 =
∑
q>0

2 cos q(x − y) sin θ� (q)
2 sin θ�(q)

2

L cos θ� (q)−θ�(q)
2

, (16)

〈�| c†
xc†

y |�〉
〈�|�〉 = −

∑
q>0

2 sin q(x − y) cos θ� (q)
2 sin θ�(q)

2

L cos θ� (q)−θ�(q)
2

.

(17)

Similar results can be obtained also for cxcy. Moreover, analo-
gous expressions of Eqs. (16) and (17) in real space are given
in Appendix C.

The previous strange correlators, however, do not provide
a satisfactory diagnosis of the topological phases of the model
in the generic case: Eq. (16) does not display a qualitatively
different behavior to distinguish when |�〉 and |�〉 are in
the same or different topological phases; it typically decays
exponentially and it may present staggering; Eq. (17), instead,
generally breaks the symmetry between |�〉 and |�〉 and, for
instance, it vanishes when |�〉 is the Fock vacuum state, thus
it is not reliable for a full diagnosis of the system phases.

To overcome these limitations, we consider a more sym-
metric strange correlator, which is inspired by the onset of
Majorana zero modes at the edges of the Kitaev chain with
open boundaries. Indeed, the optimal choice for the strange
operator approach is identified by bulk-boundary correspon-
dence: since the interfaces between trivial and topological
domains of the Kitaev chains are characterized by pro-
tected Majorana modes, the boundary theory suggests to take
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FIG. 1. Majorana strange correlators |s[γ , γ ]x,y| in Kitaev chains with antiperiodic boundary conditions of length L = 101 and � = t
plotted as a function of x for y = 51. (a) Both ground states |�〉 and |�〉 are taken in the trivial phase with μ�/t = 3 and μ�/t = 6. The
pair strange correlator decays exponentially as expected. (b) Both the ground states are taken in the topological phase with μ�/t = 0.1 and
μ�/t = 0.3; the pair strange correlator decays exponentially also in this case. (c) Pair strange correlator for ground states in different phases
with μ�/t = 0.3 and μ�/t = 3: in this case, |s[γ , γ ]x,y| does not decay to zero and displays constant behavior for x 
= y.

ô = c + c† and ô = ô′. Therefore we define a Majorana
strange correlator, based on Majorana operators γx = cx + c†

x
in the bulk of the model:

|s[γ , γ ]x,y| ≡
∣∣∣∣∣ 〈�| (cx + c†

x )(cy + c†
y ) |�〉

〈�| �〉

∣∣∣∣∣
=
∣∣∣∣∣∣
∑

0�k<π

2 sin k(x − y) sin
(

θ� (k)−θ�(k)
2

)
L cos θ� (k)−θ�(k)

2

∣∣∣∣∣∣. (18)

The same results would be recovered by assuming the other
Majorana operator i(cx − c†

x ). The second identity in Eq. (18)
is valid for x 
= y and is obtained by observing that Eq. (16)
is symmetric under the exchange x ↔ y. Therefore the terms
stemming from c†

xcy + cxc†
y vanish for x 
= y. The strange

correlator |s[γ , γ ]x,y| is thus related to the combination c†
xc†

y +
cxcy which returns the result in Eq. (18). Furthermore, given
the absolute value, the result is symmetric under the exchange
|�〉 ↔ |�〉.

In the following, we fix � = t , and we label with μ�

and μ� the chemical potentials respectively adopted to ob-
tain the Kitaev ground states |�〉 and |�〉. In Fig. 1, we
plot typical examples of the strange correlator |s[γ , γ ]x,y|.
Panel (a) displays |s| for two ground states in the trivial
phase (obtained for μ�/t = 3 and μ�/t = 6 respectively);
in this case |s[γ , γ ]x,y| decays exponentially with the dis-
tance |x − y|. Panel (b) displays |s| for two ground states
both in the topological phase (μ�/t = 0.1 and μ�/t = 0.3):
also in this case, the strange correlator decays exponentially.
Panel (c) shows |s| for ground states taken in different phases
(μ�/t = 0.3 and μ�/t = 3); in this case, the strange cor-
relator returns, for x 
= y, an approximately constant value
different from zero, and it is reminiscent of the limiting
case with μ� = 0 and μ� = −∞, discussed above for open
boundaries.

In Fig. 2, we display instead the scaling behavior with
the system size of the sum S̄[γ , γ ]L = 1

L

∑
x,y |s[γ , γ ]x,y|,

obtained for μ�/t = 0.1 with μ�/t = 0.3 [panel (a)] and
μ�/t = 6 [panel (b)]. A different qualitative behavior is
clearly observable: when both states are in the same phase,
S̄[γ , γ ]L rapidly converges to a constant [in Fig. 2 S̄ is practi-
cally a constant given the very rapid exponential decay of the

corresponding strange correlator in Fig. 1(b)]. Instead, when
the states are in different phases, panel (b), the linear growth
is clearly visible and it corresponds to the predicted behav-
ior in Eq. (4): indeed, (0 + 1)-dimensional Majorana modes
are characterized by the scaling dimension α = 0. In both
cases, the modulus in Eq. (18) is essential, since otherwise
a vanishing value for the sum, S[γ , γ ]L = 1

L

∑
x,y s[γ , γ ]x,y,

is obtained.

(a)

(b)

FIG. 2. Scaling in L of the sum of Majorana strange correlators
S̄[γ , γ ]L , referred to the Kitaev chain HKit in Eq. (5). We assumed
antiperiodic boundary conditions and we set � = t with chemical
potentials specified as follows. (a) μ�/t = 0.3 and μ�/t = 0.1: both
states are in the topological phase and S̄ displays a constant behavior.
(b) μ�/t = 0.1 and μ�/t = 6: S̄[γ , γ ]L displays a linear behavior
consistent with |�〉 being in a topological phase with Majorana edge
modes with scaling dimension α = 0, and |�〉 being a trivial state.
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B. Long-range Kitaev chain

In Refs. [34,39,40], an extension of the Kitaev chain has
been considered, involving long-range pairing:

HKLR = − t

2

∑
x

(c†
xcx+1 + c†

x+1cx )

− μ
∑

x

c†
xcx − �

2

∑
x,l

1

lδ
(c†

xc†
x+l + cx+l cx ). (19)

Here, the exponent δ dictates how fast the superconduct-
ing pairing decays algebraically with the distance. The limit
δ → ∞ corresponds to the nearest-neighbor pairing appear-
ing in Eq. (5). It is known [34,39,40] that the Hamiltonian
HKLR for δ > 1 displays a physics qualitatively similar to the
Kitaev model in Eq. (5). In particular, we verified that the
Majorana strange correlator |s[γ , γ ]x,y|, defined in Eq. (18),
is still able to capture the topological transition for δ > 1.
However, for δ < 1 the situation changes completely, since
the pairing term in momentum space diverges, as well as the
Bogoliubov dispersion. Correspondingly, purely long-range
(insulating) phases appear, which are not included in the stan-
dard tenfold classification [27] of the short-range topological
insulators and superconductors. In particular for μ/t < 1 a
phase with massive edge modes [39], and related to nontriv-
ial long-range topologies [34], is realized. These modes are
indeed still localized at the edges, although to a minor extent
than in the short-range limit (they display algebraic tails in
the wave-function decay) and they possess a nonvanishing
energy also in the thermodynamic limit. They can be thought
as the result of the hybridization, induced by the long-range
pairing, of the Majorana edge modes characterizing the short-
range (δ > 1) topological phase at |μ/t | < 1, see [34] and
references therein. Therefore, at least for μ/t < 1, a topolog-
ical phase transition is expected when varying the exponent
δ across the critical value δ = 1. We mention that in very
recent literature, several other properties of the edge modes in
presence of long-range couplings have been discussed, see the
review [35] and references therein. A notable example is the
case of Goldstone excitations from the spontaneous symmetry
breaking of continuous symmetries [36–38].

The phase transition at μ = t is known to evolve, for
δ < 1, into a transition between the topological phase with
massive edge modes, at μ < t , and a phase with trivial long-
range topology and without edge states [34,39]. In Fig. 3(a),
we display S̄[γ , γ ]L for δ = 0.5, μ�/t = 6 and μ�/t = 0.1;
its growth is clearly sublinear. In particular, a fit reveals a
growth compatible with a logarithm as a leading term. This
behavior is compatible with a finite mass-gap [34,39,40], both
in the bulk and for the edge modes, when the open chain
is considered and still with vanishing scaling dimension. In
Fig. 3(b), we report S̄[γ , γ ]L for μ�/t = μ�/t = 0.1, δ� =
10, and δ� = 0.5: different nontrivial topologies, short and
long-range, are considered. The resulting sum S̄[γ , γ ]L still
appears to scale sub-linearly. Overall, both the panels suggest
the breakdown of the picture in [4], in the presence of long-
range couplings and interactions. More comment will be given
in Sec. V.

We finally notice that, analogously to the standard Kitaev
chain, the modulus is essential in the analysis of the strange

(a)

(b)

FIG. 3. Scaling in L of the sum of Majorana strange correla-
tors S̄[γ , γ ]L , referred to the Kitaev chain HKLR with a long-range
superconducting pairing, ruled by a power-law exponent δ, in turn
defined in Eq. (19). We assumed antiperiodic boundary conditions
and we set � = t with chemical potentials specified as follows.
(a) μ�/t = 6, μ�/t = 0.1, and δ = 0.5: the sublinear behavior is
consistent with the absence of a topological phase transition for δ <

1, such that the system displays two distinct trivial phases, without
edge modes at short-range pairing and with gapped edge modes at
long-range pairing. (b) μ�/t = μ�/t = 0.1, δ� = 10, and δ� = 0.5:
the states |�〉 (topological phase at short-range pairing) and |�〉
(gapped edge-modes phase at long-range pairing) are separated by
a topological transition. However, the resulting sum S̄[γ , γ ]L still
scales sub-linearly.

correlator sums: in its absence strong cancellation effects may
emerge, resulting in the vanishing of S[γ , γ ]L, independently
on the state choices.

C. A two-dimensional Chern insulator

The previous scaling analysis of the strange correlator
sums can be extended to higher-dimensional topological sys-
tems. In the following, we address both a two-dimensional and
a three-dimensional topological insulator example.

Let us first address the Bernevig-Hughes-Zhang (BHZ)
two-dimensional model, which constitutes a minimal model
for two-dimensional Chern insulators displaying anomalous
Hall response [1,2,41]. The corresponding Hamiltonian reads

H (2D)(k) =
(

M̃(k) sin kx + i sin ky

sin kx − i sin ky −M̃(k)

)
, (20)

where M̃(k) ≡ M − 4 + 2 (cos kx + cos ky). The two-
component spinorial structure of Eq. (20) can either be
originating from a sublattice or orbital degree of freedom,
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FIG. 4. (a) Different phases of the 2D BHZ model in Eq. (20) and related Chern numbers, as a function of M. (b) S̄[c†
A, cB]L and S[c†

A, cB]L

for M� = 2 and Mψ = 6: only the sum of the moduli display a linear behavior, signaling the different topological phase of |�〉 and |�〉.

or be an effective representation of an inner spin degree of
freedom in the case of spin-orbit coupled systems. In the
following, we will label with A and B fermionic operators
referring to the two spinor components.

The Hamiltonian H (2D) does not possess time-reversal in-
variance and, when considering a generic chemical potential,
it belongs to the A class of the (“tenfold-way”) classifica-
tion of topological insulators and superconductors [2,27,28].
Instead, at half filling the same Hamiltonian is charge-
conjugation invariant, H (2D)(k) = −σ1 H (2D) ∗(−k) σ1, so that
its energy bands display opposite energies at opposite mo-
menta, and H (2D)(k) is in the D symmetry class [2,27,28].

This model displays different phases depending on the
value of M, as shown in the left panel of Fig. 4. For M < 0
and M > 8, the system is fully gapped and it corresponds to a
standard band insulator with vanishing Chern number [1]. For
0 < M < 4 and 4 < M < 8, instead, two topological gapped
phases appear with Chern number ±1, thus displaying oppo-
site Hall conductivities. These phases are separated by critical
points at M = 0, 4, 8, characterized by Dirac band-touching
points. In the following, we will denote by |M = a〉 (a being
a real number) the ground state of the insulating phase of the
Hamiltonian in Eq. (20) with M = a.

Differently from the superconducting Kitaev chain in
Eq. (5), the model defined by Eq. (20) conserves the particle
number. Therefore the simplest choice for the definition of
the strange correlators is given by the operators o = c†

f and
o′ = c f ′ , with f = A and B. This choice is also consistent with
the bulk-boundary correspondence, related to the onset of chi-
ral edge modes at the boundaries of the topological insulator
phases (see Sec. V for more detail).

In particular, we evaluate the strange correlators between
many-body ground states of the Hamiltonian (20) obtained for
different values of the parameter M, M� and M� . The ground
states are generically defined as

|� j〉 =
∏

k

γ
(−)†

k |0〉 , (21)

where |0〉 is the fermionic vacuum, k spans the full BZ, and
we label with γ

(+)†
k and γ

(−)†
k the creation operators of the

single-particle eigenstates with positive and negative energies,
respectively. In particular, we set

γ
(±)†

k = a(±)
A,k c†

A,k + a(±)
B,k c†

B,k, (22)

where a(±)
f ,k are suitable coefficients and c†

f ,k are the usual
fermionic creation operators.

The Hamiltonian (20) can be written in real space as

H (2D)
lat =

∑
r

[
c†(r + x̂)

(
σ3 − i

2
σ1

)
c(r) + c†(r + ŷ)

×
(

σ3 + i

2
σ2

)
c(r) + M − 4

2
c†(r) σ3 c(r) + H. c.

]
,

(23)

where σi labels the Pauli matrices and the operators c†(r)
and c(r) are meant as two-component spinors (with A and B
components). The strange correlators are defined by

s[c†
f , c f ′ ]r,r′ = 〈�| c†

f (r)c f ′ (r′) |�〉
〈�|�〉 . (24)

It is convenient to consider at first the sums S[c†
f , c f ′ ]L. De-

tails about the calculations of these quantities are given in
Appendix D. For periodic boundary conditions, we obtain:

S[c†
f , c f ′ ]L = s̃[c†

f , c f ′ ]0, (25)

where s̃[c†
f , c f ′ ]k denotes the Fourier transform of

s[c†
f , c f ′ ]r,r′ . We notice that, since the Hamiltonian in Eq. (23)

with periodic boundary conditions is translationally invariant,
then s̃[c†

f , c f ′ ]0 in Eq. (25) is the largest eigenvalue of the
matrix, in r and r′, defined by Eq. (24) (see Ref. [42] and
Appendix D). Therefore the scaling in L of s̃[c†

f , c f ′ ]0 yields
a criterion for topology at zero temperature, analogous to the
well-celebrated Onsager-Penrose criterion for Bose-Einstein
condensation and ODLRO [24]. The same analogy holds
also in the absence of translational invariance, provided that
the largest eigenvalue of the matrix in Eq. (24) is directly
calculated by diagonalization: its scaling in L is still related,
as s̃[c†

f , c f ′ ]0, to the decay behavior of the strange correlators
in Eq. (24).

The results for S[c†
A, cB]L, with |�〉 = |M = −1〉 and

|�〉 = |M = ±1〉, are shown in Fig. 5 (left and right panels,
respectively). Periodic boundaries are assumed again. To reg-
ularize possible divergences in k = 0, which may arise due
to the orthogonality of single-particle states [4], S[c†

A, cB]L is
estimated by evaluating Eq. (25) at k = 2π

L (1, 1, 1), instead
of imposing k = 0. Similarly to the Kitaev chain, different
qualitative behaviours are clearly observable in Fig. 5: we
observe an asymptotic decay for the sum of the standard
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FIG. 5. Scaling in L of S[c†
A, cB]L , for the two-dimensional models in Eqs. (20) and (23) (blue points) and for the three-dimensional models

in Eqs. (26) and (28) (red points), both for M� = M� = −1 (a) and M� = −M� = −1 (b). Periodic boundary conditions are assumed here;
open boundaries yield the same qualitative trends (see the main text).

correlators with |�〉 = |�〉 (M� = M� = −1), whereas a lin-
ear growth characterizes the sum of the strange correlators
with M� = −1 and M� = 1.

Next, we consider the sum of the strange correlator moduli,
S̄[c†

A, cB]L. Its linear behavior is confirmed when |�〉 and |�〉
lie in different topological phases as exemplified by Fig. 6(b)
for M� = 1 and M� = −1 in the 2D system. On the contrary,
a finite constant is approached when the states belong to the
same phase and Fig. 6(a) illustrates the standard correlator
obtained for |�〉 = |�〉 = |M = −1〉. We emphasize that the
results in Fig. 6(a) are qualitatively the same for both open and
periodic boundary conditions; in particular, no divergences
occur when both states are in the same phase. The case with
states in different topological phases and periodic boundary
conditions, instead, can be affected by divergences due to
their orthogonality and the data in Fig. 6(b) correspond to a
system with open boundary conditions; see more details in
Appendix D.

(a)

(b)

FIG. 6. Scaling in L of S̄[c†
m, cn]L with n, m = A, B, for the

two-dimensional model in Eqs. (20) and (23), for M� = M� =
−1 (a) and M� = −M� = −1 (b). Open boundary conditions are
assumed.

When fixing |�〉 in the trivial phase, by decreasing M�

from the topological phase across 0 (the location of the topo-
logical transition), one observes the onset of a bending of
S̄[c†

A, cB]L, as a function of the system size, as seen also
in Fig. 6(a). The same happens if both |�〉 and |�〉 are
in the same topological phase. In these situations S̄[c†

A, cB]L

evolves from an approximately linear behavior for small L to
a constant behavior at larger system sizes. This trend reflects
the exponential decay of the strange correlator s[c†

A, cB]r,r′ .
Indeed, the value of the system size L at which the bending
occurs depends on the decay length of s[c†

A, cB]r,r′ . This length
is in turn approximately related to the gap of edge modes that
would appear at the interface between regions characterized
by the different values of M� and M�. Therefore the transition
between linearly growing and saturating S̄[c†

A, cB]L reflects the
general behavior of the strange correlators.

In the light of Eq. (4), and in agreement with the known
relation between algebraic functions and their Fourier trans-
forms [43], f (r) = 1

|r|2α ⇐⇒ f̃ (k) ∝ 1
|k|d−2α , the behavior of

S̄[c†
A, cB]L can be linked to the decay of S[c†

f , c f ′ ]r,r′ , which
respectively decays sub-algebraically and as the power law
|r − r′|−1 in the two cases. In turn, the latter scaling re-
flects the (mass) scaling dimension α = 1/2 of the edge
modes (since they are free fermions, the relation α = d−1

2 = 1
2

holds). Therefore we infer that the algebraic decay of the
strange correlator between |M� = −1〉 and |M� = 1〉 is again
deeply connected with the scaling dimensions of the edge
modes at the interface between the corresponding phases.
In Sec. V, this correspondence will be investigated in more
detail.

So far, we analyzed S[c†
A, cB]L and S̄[c†

A, cB]L when |�〉 has
a trivial topology, the case discussed in Ref. [4]. It is worth
to consider also the case where |�〉 and |�〉 have different
nontrivial topologies. In particular, we assume |�〉 = |M = 2〉
and |�〉 = |M = 6〉, two states with opposite Chern number,
±1. Also in this case, with periodic boundary conditions, we
find that S̄[c†

A, cB]L scales linearly with L, witnessing the pres-
ence of different topologies, corresponding to an algebraic
decay of the related strange correlators s[c†

A, cB]r,r′ . Instead,
S[c†

A, cB]L vanishes, not providing any scaling. These situa-
tions are shown in the right panel of Fig. 4.

Finally, our results show immediately the relevance of our
method, also for sake of evaluation simplicity: the effect of
algebraic decay of the strange correlators is explicit already
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at very small linear sizes L, where it is known that to distin-
guish directly the algebraic and subalgebraic (as exponential)
decays of s can be demanding in general.

D. A three-dimensional time-reversal generalization

We consider now the three-dimensional Bernevig-Hughes-
Zhang model [1,44] which extends the two-dimensional
topological insulator considered in Eq. (20):

H (3D)(k) =

⎛
⎜⎜⎜⎜⎜⎝

M̄(k) (sin kx + i sin ky) 0 sin kz

(sin kx − i sin ky) −M̄(k) sin kz 0

0 sin kz M̄(k) −(sin kx − i sin ky)

sin kz 0 −(sin kx + i sin ky) −M̄(k)

⎞
⎟⎟⎟⎟⎟⎠, (26)

where M̄(k) = M − 6 + 2 (cos kx + cos ky + cos kz ). The
Hamiltonian (26) can be expressed in terms of the Dirac �

matrices and it can be associated to a cubic lattice model.
In particular, it has been proposed as a low-energy effective
description for three-dimensional time-reversal-invariant
topological insulator [1,44–46] (quantum spin-Hall systems).
The model is time-reversal invariant, since:

H (3D)
lat (k) = UT H (3D) ∗

lat (−k)U †
T , UT = σ2 ⊗ I. (27)

The matrix UT correctly interchanges the upper and lower
two-by-two blocks (corresponding to opposite spin-1/2 pro-
jection), also adding a relative phase. The Hamiltonian in
Eq. (26) belongs to the AII class of the “tenfold-way” clas-
sification of the topological insulators and superconductors
[1,27,28]. The model displays four bands, two-by-two degen-
erate, and symmetric around zero energy.

As a function of the parameter M, the model displays three
kinds of phases at half filling (see the detailed analysis of the
equivalent model in Ref. [45]). For M < 0 and M > 12, the
Hamiltonian (26) defines a trivial insulator; for 0 < M < 4
and 8 < M < 12, the ground states correspond to strong topo-
logical insulating phases, and their surfaces are characterized
by single protected Dirac cone states; for 4 < M < 8, the
system is characterized by a weak topological insulating phase
and its surfaces can present pairs of Dirac cones. Proceeding
as in the two-dimensional case, we take o = c f ,σ with f =
A, B and σ =↑,↓.

The tight-binding model corresponding to Eq. (26) can be
written in real space as

H (3D)
lat =

∑
r

[
c†(r + x̂)

(
�0 − i

2
�1

)
c(r) + c†(r + ŷ)

×
(

�0 + i

2
�2

)
c(r) + c†(r + ẑ)

(
�0 − i

2
�3

)
c(r)

+ M − 6

2
c†(r)�0c(r) + H. c.

]
, (28)

where we introduced the following representation for the
Dirac matrices:

�0 = I ⊗ σ3, �1 = τ3 ⊗ σ1,

�2 = I ⊗ σ2, �3 = τ1 ⊗ σ1. (29)

Here I is the 2 × 2 identity matrix, and σi and τi label Pauli
matrices usually associated to electronic spin and orbital de-
grees of freedom.

The results for the sums S[c†
A↑, cB↓]L, with |�〉 =

|M = ±1〉 and |�〉 = |M = −1〉, obtained by the expressions
reported in Appendix D, are shown in in Fig. 5 (red dots).
Again, periodic boundary conditions are assumed and, to
regularize possible divergences in k = 0 and S[c†

A↑, cB↓]L is

evaluated at k = 2π
L (1, 1, 1), instead that strictly at k = 0, as

in Eq. (25). As for the two-dimensional case, a different qual-
itative behavior is observable in Fig. 5: an asymptotical decay
in the diagonal ( |�〉 = |M = −1〉 ) case, a linear growth in
the strange case. In the light of Eq. (4), these behavior can
be linked to the decays of s[c†

A↑, cB↓]r,r′ , sub-algebraic and

as 1
|r−r′ |2 in the two cases. In turn, the latter behavior reflects

again the dimension in mass of the edge modes on the d − 1 =
2 dimensional edge space, α = d−1

2 = 1.
We also analyzed the generalized strange correlators be-

tween trivial (|�〉 = |M = −1〉) and weak (|�〉 = |M = 6〉)
topological insulators, finding linear growth in L for
S[c†

A↑, cB↓]L.
Summing up, all the examined growth behaviours of the

strange correlators, linear in L, are due to the fact that we
are considering free fermionic models and related edge states.
We notice however that the stability of the edge states, then
of the power-law decay for the strange correlators, is not
even generally guaranteed for three-dimensional topological
insulators, if in the presence of strong internal interactions [4].

IV. BREAKDOWN OF TRANSLATIONAL INVARIANCE

In this section, we focus on the two-dimensional BHZ
model in Eq. (23) with open boundary conditions, and we add
an onsite quenched disorder. Our calculations are performed
by the equations in Appendix E, and we point out that the
same equations also apply to the three-dimensional case in
Eq. (28).

Disorder is introduced as a random position-dependent off-
set

Hdis =
∑

r

wr c†
rcr, (30)

with wr uniformly distributed in the range wr ∈ [ − σ, σ ],
where σ identifies the disorder strength. From the topologi-
cal phase at 0 < M� < 4, a transition to the trivial phase is
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(a)

(b)

FIG. 7. Scaling in L of S̄[c†
m, cn]L with n, m = A, B, for the

two-dimensional model in Eqs. (20) and (23), for M� = M� = −1
(a) and M� = −M� = −1 (b). Open boundary conditions are as-
sumed and disorder is introduced as described in the main text, with
σ = 1.2 and 100 realizations. Qualitatively similar trends as in the
clean case are observed.

expected for a sufficiently strong disorder, when σ becomes
comparable to the bulk gap.

It is convenient to analyze separately the behaviours of
S̄[c†

m, cn]L (m and n labeling the sublattices A and B), mediated
on the various disorder configurations, with |�〉 both in the
trivial and topological regimes. To properly locate the transi-
tion, a number of disorder configurations increasing with L is
required, since the configurations for which S̄[c†

n, cm]L grows
linearly tend to dominate at large L.

Figure 7 shows the strange correlator sums S̄ for σ =
1.2. Results for different numbers of realizations nr =
10, 100, 200 are produced, showing a satisfactory conver-
gence with nr . This fact is not obvious a priori, since it is
expected only at sufficiently small L.

The data displayed are obtained by considering the same
disorder configuration for both the |�〉 and |�〉 states. In both
panels, M� = −1, corresponding to a trivial disordere state.
The values of S̄[c†

m, cn]L are then mediated on the various
configurations.

Analyzing S̄[c†
A, cB]L, analogously to the clean cases

in Fig. 6, we clearly distinguish two different behaviors:
S̄[c†

A, cB]L tends to a constant if M� = −1, while it grows
linearly if M� = 1.

These results indicate the stability of the topological phase
against local disorder for the moderate disorder correspond-
ing to σ = 1.2, to be compared with the single-particle gap,
�E ≈ 1.6 at M� = 1.

Furthermore, when considering the space-time rotation of
the strange correlators into correlation functions of gapless
edge modes [4], these results provide also an indirect signa-
ture of the stability of the edge states arising at the interface

FIG. 8. Scaling in L of S̄[c†
m, cn]L with n, m = A, B, for the two-

dimensional model in Eqs. (20) and (23), for M� = −M� = −1.
Open boundary conditions are assumed and disorder is introduced
as described in the main text, with σ = 5 and 100 realizations.

between disordered topological and nontopological phases,
which are not localized by this moderate disorder [1,27,28].

Figure 8 displays the behavior of S̄[c†
m, cn]L for small sys-

tem sizes when the disorder parameter, σ = 5, is closer to the
transition from the topological insulating phase (M� = 1) to a
disordered-induced insulating phase. When crossing the phase
transition, the linear behavior of the average S̄[c†

A, cB]L as a
function of L varies from linear for small disorder, to super-
linear when the disorder strength becomes comparable with
the single particle gap of the clean system. This is an effect
of the normalization 〈�|�〉 at the denominator of the strange
correlators (1). For these intermediate values of the disorder,
progressively more configurations display almost orthogonal
|�〉 and |�〉 states such that the strange correlator denomina-
tors are orders of magnitude smaller than the numerators. The
strange correlators s, in this case, do not display any longer
the predicted decay with the distance and this effect changes
the predicted qualitative scaling of S̄[c†

A, cB]L, whose average
value appears to grow faster than linear in L.

Finally, we notice that the present discussion on spatial
disorder can be easily adapted to other types of disorder,
as on gauge potentials, when optical lattices realizations of
topological phases are considered, see, e.g., Refs. [47–49].

V. STRANGE CORRELATORS AND BULK-BOUNDARY
CORRESPONDENCE

In the previous sections, we probed a link between the lin-
ear growth of the sum of suitable bulk strange correlators and
the anomalous dimensions of the edge mode operators. Here,
we elaborate more on this important point, proposing, for a
wide family of topological systems, a criterion for an optimal
choice of the operators ô in the strange correlators, that means
displaying an algebraic decay if |�〉 and |�〉 host different
topologies. We focus primarily on the two-dimensional exam-
ples.

In Supplementary Material of Ref. [4], it has been shown
that strange correlators of general local operators φα (x1, y)
and φα (x2, y), defined in the bulk of a two-dimensional lattice
system displaying short-range entanglement and symmetry-
protected topological edge modes, are mapped in the thermo-
dynamic limit onto standard correlators of the edge-projected
operators φα (x1) and φα (x2), defined on the ground states of
a suitable (1+1)-dimensional conformal theory that describes
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FIG. 9. Edge state evolution as one hopping along ŷ, say between the Lth and the first rows of sites, is varied between 0 and 1, such to
interpolate continuously between open and periodic boundary conditions along ŷ, keeping periodic the boundary conditions along x̂. We set
L = 400 and w1L = 0, 0.3, 1 from the left-hand side (in units of the bulk tunneling amplitude).

the related edge modes:

〈�|φβ (x1, y) φα (x2, y)|�〉
〈�|�〉

=
∑

a

〈θa|φβ (x1) φα (x2)|θa〉
〈θa|θa〉 , (31)

x1 and x2 in the right hand term being located on the edge(s).
In Eq. (31), a labels the different quantum vacua θa of the
edge theory, distinguished by symmetries or one-dimensional
topologies. In particular, it indicates the different conformal
sectors, associated with primary operators, which describe the
possible chiral or helical edge excitations of the state |�〉, as,
for instance, in quantum Hall or quantum spin Hall systems.
The appearance of the edge modes clearly require systems
with open boundaries, but we stress that, in spite of this fact,
the map in Eq. (31) holds strictly if the lattice system has
periodic boundary conditions.

This construction is based on the seminal paper [50], where
a direct link is traced between the low-energy Hamiltonian
(say HL) of the chiral edge modes, described by a conformal
field theory, of generic two-dimensional topological fermionic
states, and their entanglement Hamiltonian HE, originated
by the interaction with their counter-propagating twin edge
states. References [50] indicates indeed that the bulk states
of topological systems carry the information related to the
corresponding edge theory. This information can be extracted
from reduced density matrices referring to bulk regions of
the systems, as numerically verified also in the framework of
fractional quantum Hall states [51]. These observations can
be further extended to fermionic topological systems hosting
helical edge states, invariant under time-reversal symmetry.
Furthermore, analogous techniques have been further devel-
oped to decompose topological phases of matter in terms of
one dimensional Luttinger liquids (see [52] and references
therein), thus hinting to the fact that the construction in
Ref. [4] is expected to hold also for long-range entangled
(intrinsically topologically ordered) system with gapless edge
modes, as fractional quantum Hall models, provided to chose
correctly the conformal theory related to the edge states. The
mapping in Eq. (31) indicates a criterion for the optimal
choice of the operators in the strange correlators. Indeed, as
suggested by the link between the decay exponents of the bulk
strange correlators and the anomalous dimensions of the edge
mode operators, it is useful to consider the right-hand part of

Eq. (31), and to restrict to the case

∑
a

〈θa|η†(x1) η(x2)|θa〉
〈θa|θa〉 . (32)

where η†(x) is a primary field in the edge conformal theory
and, in general, it corresponds to the creation of a quasiparticle
belonging to the gapless edge mode.

In order to exploit Eq. (31), the next step is to understand
which bulk operator ô(x, y) corresponds to η†(x). To this
purpose, we apply a continuous evolution of the Hamiltonian,
with the aim of merging two disconnected gapless edges into a
gapped bulk: this is the situation considered in Fig. 9 in which
the boundary conditions of a topological system are evolved
from open to periodic. In particular, we refer to η(x, y) to
represent the low-energy field η(x) embedded in the two-
dimensional system with open boundaries. The annihilation
operator η(x, y) must evolve into a linear combination of an-
nihilation operators ô(x, y) of bulk particles, as the boundary
conditions evolve continuously. In particular, for systems in-
variant under translation along x, the evolution can be clearly
seen in the kx momentum basis η(kx, y).

To elaborate on this point, we focus again on the model in
Eq. (20). The spectral evolution between gapless edge modes
for an open system and the bulk quasiparticle states in the
closed system is analyzed numerically in Fig. 9: the bound-
ary conditions evolve continuously and the geometry changes
from a cylinder to a torus. When considering, for instance,
y = 1, this is done by allowing the hopping amplitude w1L,
between the Lth and the first row of sites, to vary adiabat-
ically between 0 and 1. When w1L = 0, we find two chiral
counterpropagating edge states interpolating between the bulk
bands. As w1L increases towards 1, these edge modes mix
and separate in energy, with an increasing energy gap, around
kx = 0. At the same time, we checked that their eigenstate
wave functions become progressively more distributed in the
bulk. Therefore we conclude that both the counterpropagat-
ing edge modes η(kx ) for open boundaries are continuously
connected with linear combinations of the bulk operators γ

(+)
k

and γ
(−)

k around k = 0 annihilating quasiparticles in the two
energy bands. This correspondence holds also in Eq. (31).

Hence, the two-point correlations of the edge theory,
evolve, in general, into a linear combination of the strange cor-
relators associated to the operators γ

(±)†
k γ

(±)
k for the periodic

system in momentum space , where the labels (±) refer to the
involved bulk bands. For translationally invariant systems, the
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most significant contribution is provided by

〈�| γ (+)†
k γ

(−)
k |�〉

〈�|�〉 . (33)

Here the γ
(±)

k operators refer to the quasiparticle states in the
system whose ground state is |�〉, such that this strange cor-
relator describes the creation of a particle-hole pair excitation
over |�〉 associated to the momentum k. The strange corre-
lators in real space in Eq. (35) can be Fourier-decomposed in
terms of the kind (33) for translational invariant systems.

We observe that, besides the contribution in Eq. (33), the
other quadratic combinations of the γ ±

k operators return trivial
results: 〈�| γ (−)†

k γ
(−)

k |�〉/〈�|�〉 = 1 since |�〉 is the state in
which all the negative energy quasiparticle states are filled.
This also implies that S[γ (−) †, γ (−)]L = S̄[γ (−) †, γ (−)]L = 1
[since s[γ (−) †, γ (−)]r,r′ = δr,r′ , see Eq. (25) and Appendix D,
Eq. (D2)]. Instead, γ

(+)
k , annihilates |�〉, making the strange

correlator with operators γ
(±)†

k γ
(+)

k vanish.
Using the direct expressions for a(−)

A,k and a(−)
B,k for |�〉 and

|�〉 in Eq. (22), it is easy to check that Eq. (33) displays a
singularity at k = 0, analogously to the k = 0 component of
the strange correlator in Eq. (25) (see also Appendix D).

Summarizing, the strange correlators in Eq. (32), on one
side, can be estimated through the correlation functions of
the conformal field theory, thus returning the typical power
law decay as 1/|x1 − x2|2 α , where α is the scaling dimension
of the primary operator η; on the other, they are connected
with the particle-hole excitations of the bulk system, as in-
dicated in Eq. (33) (see also Appendix D, Eq. (D3)). In the
discussion above, we adopted the BHZ model as a paradig-
matic example, but analogous considerations hold for general
two-dimensional topological insulators and superconductors,
and can be further extended to other dimensions. In the case
of chiral superconductors, for instance, the main difference
is the fact that the edge modes η correspond to Bogoliubov
(typically Majorana) modes. In this case, the operators ô must
be chosen as suitable Bogoliubov operators in order to have
a good overlap with the creation operator for a particle-hole
excitation over the state |�〉 as indicated by Eq. (33). This
corresponds, for example, to the choice in Eq. (18) for the
Kitaev chain.

We also comment that, instead of Eq. (33), more complex
strange correlators of excitons (particle-hole pairs) could be
considered (in real space):

〈�| γ (+)†(r)γ (−)(r)γ (+)†(r′)γ (−)(r′) |�〉
〈�|�〉 . (34)

However, Wick theorem and particle conservation allow to
reduce Eq. (34) to the strange correlator in Eq. (33) (in mo-
mentum space).

Another generalization is provided by boundaries char-
acterized by multiple chiral modes, which correspond to
different primary operators in the conformal description; in
this case, our analysis must be extended to strange correlators
of the kind:

〈�|η(α)†(x1, y) η(β )(x2, y)|�〉
〈�|�〉 . (35)

This expression generalizes indeed strange correlators to mul-
tiple bulk operators connected with different boundary fields.
Consequently, it is necessary to choose the reference state |�〉
in order to fulfill all the symmetry requirements of the system
and η operators. The resulting scaling must then be derived by
the suitable operator product expansion of the related primary
operators [53]. Due to the bulk-boundary adiabatic continua-
tion discussed above, the η(α)(x, y) operators are connected
with independent linear combinations of the lowest-energy
bulk excitations, when closed boundary conditions are as-
sumed. Moreover, the specific constant coefficients in these
combinations influence only the prefactors but do not affect
the dominant scaling behavior of the corresponding strange
correlators. This fact allows us to focus directly on the strange
correlators of the low-energy bulk excitations, similar as in
Eq. (33). Finally, as in Sec. III C, the scaling in L of the largest
eigenvalue of the matrix in Eq. (35) still yields a criterion
for topology at zero temperature, independently from transla-
tional invariance, analogous to the Onsager-Penrose criterion
and ODLRO [24]. In the Sec. VI, a similar discussion will be
performed for Laughlin fractional quantum Hall state where
edge excitations with different charges can be considered.

At the end of this general discussion, it is worth to stress
that the described procedure to identify the optimal operators
for the strange correlators does not rely at all on Lorentz
invariance. Indeed, the bulk-boundary correspondence at the
basis of the validity of the method, although formalized in [4]
by a conformal field theory (relying on Lorentz invariance)
approach, does not rely at all on the same invariance.

What can we say about one- and three-dimensional sys-
tems? For several topological 1D and 3D models similar
continuity arguments can be presented and we can check the
validity of Eqs. (35) on specific examples, as those proposed
in the previous sections.

First of all, we focus on the Kitaev chain in Eq. (5). In
Fig. 10, we report the evolution of the energy of the lowest
excitation for the long-range Kitaev chain in Eq. (5) with
δ = 10, as the boundary conditions are changed adiabatically,
from antiperiodic (a = 1) to open (a = 0). We set μ = 0.5
(in the topological regime) in the left panel and μ = 1.5 (in
the non topological regime) in the right panel. In the topolog-
ical phase, the excitation energy interpolates between 0 and
the bulk energy gap for a going from open to antiperiodic
boundary conditions, which is consistent with the existence
of Majorana zero modes and does not have a counterpart in
the trivial state (right panel). Therefore the adiabatic continu-
ation between bulk and boundary modes is confirmed also in
this one-dimensional case. Notably a similar behavior for the
low-energy excitations is found also for the long-range Kitaev
Hamiltonian with δ < 1, where, however, edge modes remain
gapped in the thermodynamic limit. In this case, indeed, the
validity of the mapping as in Eq. (31) is debated, so that in
general we cannot assume an algebraic decay of the strange
correlators associated to phases with gapped edge modes.

The analysis of strange correlators, however, is not re-
stricted to fermionic models. In one dimension, this is easily
shown by the analysis of the famous AKLT spin-1 chain [54],

ĤAKLT =
∑

j

s j · s j+1 + 1

3
(s j · s j+1)2. (36)
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FIG. 10. Evolution of the energy m of the lowest-energy excitation for the Kitaev chain in Eq. (5) with δ = 10, as the boundary conditions
are changed adiabatically, from antiperiodic (a = 1) to open (a = 0). We set μ = 0.5 (in the topological regime) in the left panel and μ = 1.5
(in the non topological regime) in the right panel.

The ground state of this Hamiltonian is known to be a valence
bond solid, with a single bond connecting every neighboring
pair of sites. More in detail, each spin-1 can be decomposed
in terms of two spins 1/2 degrees of freedom, projected on
a triplet state; in turn a spin 1/2 on a site is organized in
a singlet, together with a spin 1/2 on the neighboring site.
For the case of periodic boundary conditions, the AKLT chain
has a unique ground state, |GS〉. Instead, if open boundaries
are assumed, the first and last spin-1 of the chain have only
a single neighbor, leaving one of their constituent spin 1/2
unpaired. As a result, the ends of the chain behave like free
spins 1/2. For finite chains, these edge states mix in a singlet
and a higher-energy triplet states, similarly as for the closed
chain, while, as the size increases, the edge states decou-
ple exponentially, leading to a ground-state manifold that is
fourfold degenerate. Therefore the edge states are massless in
the thermodynamic limit. In this scheme, the s(±)

j operators,
applied at the end of a finite-size chain, create edge excitations
with vanishing scaling dimension. Restoring adiabatically the
closed boundary conditions, as described above for the model
in Eq. (20), it turns out that the same operators create the
minimal energy excitations above the unique ground states.
These facts explain the behavior

〈�|s(+)
i s(−)

j |�〉 → constant as |i − j| → ∞, (37)

obtained for the closed chain in [4] and confirms our picture
above, based on Eq. (35). The same behavior is actually simi-
lar to that for the Kitaev chain in Eq. (5), at δ > 1.

Finally, a similar discussion as for the model in Eq. (20)
can be straightforwardly extended, especially numerically; to
the three-dimensional case in Eq. (26), although the bulk-
boundary analytical mapping [50], provided by Eq. (31), is not
available. The same picture, encoded in Eq. (35) can emerge.

Summing up, all the analyzed cases notably suggest a con-
tinuous evolution between lowest-energy excitations above
the ground state at closed boundary conditions and edge
excitations, at least if massless. This behavior is someway
expected, since fortuitous energy crossings, in the absence
of symmetries, are generally suppressed, especially in the
absence of disorder. For the same reason, and as commented
for the Kitaev chain at α < 1, the same spectrum evolution
can hold also if edge states are gapped, although not leading
to an algebraic decay for the strange correlators defined as
in Eq. (35). The same choices as in Eq. (35) can hold for
topological bosonic systems, also disordered.

Finally, we comment that the mentioned construction in
Ref. [4] can be applied to the more general case where |�〉
and |�〉 have different nontrivial topologies, as in Sec. III C,
but additional observables need to be considered to infer the
nature of the phase transition between them, and the related
change in their Chern number. Moreover, in the presence of
long-range couplings, as in Sec. III B, the standard strange
correlator construction seems to fail as a reliable diagnostic
tool for topological phase transitions, at least for the system
sizes that we investigated (L � 160). This is probably due to
the fact that in this condition the separation between bulk- and
boundary-states is generally not well stated and justified, as
also suggested by the appearance of a mass gap for the edge
states.

VI. TOPOLOGICAL ORDER IN THE LAUGHLIN STATE

The models analyzed in the previous Sections exemplify
the behavior of strange correlators for symmetry-protected
topological phases. Such topological states are characterized
by short-range entanglement [55] and do not display genuine
intrinsic topological order (thus degenerate ground states on
a torus geometry and anyonic excitations) and long-range
entanglement. For two-dimensional systems, however, the
strange correlators are not limited to short-range entangled
systems with symmetry-protected topological phases, but can
additionally be applied as a general tool to detect the onset
of chiral gapless edge modes also in systems with intrinsic
topological order and long-range entanglement [55]. In the
following, we will discuss the behavior of the strange corre-
lators in the paradigmatic example of the simplest fractional
quantum Hall (FQH) state, namely the Laughlin state. In Ap-
pendix F, instead, we show that the toric code does not display
a power law decay of the strange correlators as expected for
topologically order systems without gapless topological edge
modes.

Similar to the symmetry-protected topological systems,
it is known [56] that also Abelian FQH phases can be de-
scribed by arrays of one-dimensional quantum wires, which,
essentially, constitute one-dimensional copies of the same
conformal field theory that characterizes their edge modes.
Analogous constructions have been obtained also for sev-
eral non-Abelian FQH states [57]. In the simplest scenario
of the Laughlin state at filling ν = 1/m with odd m, each
one-dimensional subsystem can be effectively described by a
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Luttinger liquid with Hamiltonian:

Hj = v

2π

∫
dx K (∂xϕ j )

2 + 1

K
(∂xθ j )

2, (38)

where the Luttinger parameter K represents the effect of repul-
sive interactions, and the operators describing electrons in the
bulk of the theory assume a bosonized form whose dominating
contribution is provided by

� j (x) ∝ e−ikF xei(ϕ j (x)+θ j (x)) + eikF xei(ϕ j (x)−θ j (x)). (39)

Here j labels the y coordinate of the electrons, and kF = πρ1D

is the effective Fermi momentum of the 1D subsystem, related
to the 1D particle density ρ1D. Each Hamiltonian of the kind
(38) corresponds to a simple c = 1 bosonic conformal field
theory. To obtain a Laughlin state, these 1D subsystems are
gapped by interactions of the form [56,57]

HI ∝
∑

j

ei[ Bea
h̄ −2mkF ]xei[ϕ j+1−ϕ j−m(θ j+1+θ j )] + H.c., (40)

where a is the distance between neighboring 1D subsystem.
Such interactions couple pairs of fields with opposite chi-
rality in neighboring edges; they can become relevant in the
renormalization group sense, and, consequently, open a bulk
gap, only if Bea/h̄ = 2πρ1Dm, thus setting the value of the
filling factor ν = 1/m. In particular, the Laughlin state can be
mapped into a noninteracting state of composite fermions [58]
and its onset corresponds to interactions such that K = 1/m.

The previous interaction, however, does not affect two
counter-propagating modes lying at the edges of the 2D sys-
tem: under the previous assumptions, indeed, the combination
of fields ϕ1 − mθ1 and ϕL + mθL are not affected for sys-
tems with open boundaries. This provides a description of the
Laughlin edge modes based on chiral Luttinger liquids [59] of
the form

Hb = vm

2π

∫
dx(∂xϕe∗ ± ∂xθe∗ )2. (41)

The pair of dual bosonic field ϕe∗ = ϕ/m and θe∗ = θ are as-
sociated to the chiral (left or right) vertex operators describing
fractional quasiparticles with charge e∗ = e/m:

�
(L/R)
e∗ ∝ ei(ϕe∗ ±θe∗ ), (42)

and their equal-time commutation relation is given by

[ϕe∗ (x1), θe∗ (y)] = −i
π

m
�(y − x), (43)

such that, for m = 1, they describe chiral fermionic modes,
consistently with integer quantum Hall states. The electron
annihilation operators in the Laughlin edge states are instead
given by � (L/R)

e ∝ ei(mϕe∗ ±θe∗ ).
Following Sec. V, the suitable strange correlators to expose

topology can be identified exploiting the mapping between the
two-point functions of the conformal field theory defined by
Eqs. (38) and (41) and the two-point strange correlators in the
bulk [4]. When considering the ν = 1/3 Laughlin state, the
creation operators of the elementary e/3 fractional excitations
correspond to the conformal vertex operators (42), and deter-
mine the following scaling through Eq. (31):

〈�(N )|�L†
e∗ (r1)�L

e∗ (r2)|�L(N )〉
〈�(N )| �L(N )〉 ∝ |r1 − r2|−1/3, (44)

where |�(N )〉 represents a nontopological gapped state of N
electrons, whereas |�L(N )〉 corresponds to the Laughlin state
(or a state in the same universality class). The exponent 1/3
results from the scaling dimension ηe∗ = 1/6 of the quasi-
particle operators in Eq. (42), which can be derived by the
Hamiltonians (38) or (41). The related sum S̄ scales as L5/3.

In an analogous way, we can derive the decay of the
two-point strange correlator associated with the electronic
operators �e. It results

〈�(N )|�L†
e (r1)�L

e (r2)|�L(N )〉
〈�(N )| �L(N )〉 ∝ |r1 − r2|−5/3, (45)

consistent with a scaling dimension ηe = (1/4K ) + (K/4) =
5/6 for interacting electrons with K = 1/3. The related sum S̄
scales as L1/3.

The wire construction, recalled in Sec. V, of topological
phases of matter shows that the onset of gapped two-
dimensional bulk states hosting protected gapless edge modes,
described by conformal field theories, is signaled by the
power-law decay of the related strange correlators [4].

We emphasize, however, that this is not true in general for
topologically ordered states without protected gapless edge
modes. The main counterexample is indeed provided by Ki-
taev’s toric code [60] and its generalization to a pure Z2 lattice
gauge theory [59], in which two-point strange correlators of
local operators cannot discriminate between the topological
and the nontopological phase. In Appendix F, we show indeed
that two-point strange correlators display a trivial behavior for
the ground states of the toric code model. This is verified when
considering single-qubit operators. It is known, however, that
the creation of pairs of excitations in the toric code and lattice
gauge theories is associated in general with string-operators.
We also verified that a straightforward extension of the two-
point strange correlators to string-like strange correlators does
not provide either a diagnostic tool for the onset of topological
order in the toric code.

Finally, we observe that the construction of the strange
correlators can be extended to two-dimensional critical lattice
models [16] and to nonchiral states with true topological order
(as in the case of string-net models [61]) based on projected
entangled pair states, with suitable matrix product operator
(MPO) symmetries on the virtual level of these tensor net-
work states [62]. The construction of these strange correlators,
however, is based on the introduction of virtual anyonic defect
lines, which, in turn, result in the introduction of anyons in the
bulk of these topological systems [63]. This can be achieved
by acting with suitable open MPO strings on the virtual level
of these tensor network states. On the physical level, the
so-generalized strange correlators would no longer be simple
two-point functions, but they would rather correspond to the
application of suitable string operators in the bulk of the
system. The results of [62] therefore suggest that it could be
possible to generalize the strange correlators in Eq. (1) to a
string operator construction, without breaking the mapping
into suitable conformal field theories. This would provide a
useful tool to investigate the physics of anyonic models or
lattice gauge theories.
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VII. CONCLUSIONS

In this work, we analyzed the scaling behavior of the
strange correlators, for several examples of topological
phases of matter, characterized by gapless protected bound-
ary modes. The paradigmatic examples that we examined
include both models that display short-range entanglement
(symmetry-protected topology), as topological insulators and
superconductors in various dimensions, and models with
long-range entanglement (intrinsic topological order). We also
addressed long-range coupling effects.

In order to improve the efficiency in the diagnosis of topo-
logical states, as well as to reduce the impact of finite-size
effects and disorder, we considered the sum of the strange
correlators; and we showed, in particular, that the sum of their
moduli enables to detect the universal scaling dimensions of
the operators defining the related gapless boundary theories.
It is interesting that our results do not depend qualitatively on
the assumed boundary conditions.

Furthermore, we discussed a general strategy for the
optimal choice of the operators entering the definition of
the strange correlators, which must be based on the bulk-
boundary correspondence of the models under scrutiny. Our
results clarify and extend the validity of the strange cor-
relator approach to reveal the onset of topological phases
with protected gapless edge modes described by a confor-
mal field theory. Furthermore, they provide a tool to discern
these phases, already on small-enough systems, as those rel-
evant in typical numerical simulations. Overall, our work
contributes relevantly to elaborate a general strategy to probe
(symmetry-protected and genuine) topology in finite size
systems, possibly with different boundary conditions and dis-
order, and by local operators.

Our discussion pointed out the analogy of the strange cor-
relator approach with the analysis of off-diagonal long-range
order, used to define Bose-Einstein condensation. While this
work focused on systems at zero temperature, we think that
an interesting point to be clarified is whether one can actually
define a Penrose-Onsager criterion (or the equivalent of it)
criterion for topological phases at finite temperature.

The dependence of the strange correlators on the num-
ber and kind of edge modes (in turn related with the
values of the topological invariants), also requires further
investigation, as well as the formal generalization of the
construction in [4] to the more general case where |�〉 and
|�〉 have different nontrivial topologies. Instead, the valid-
ity of the same construction in the presence of long-range
couplings results debated from our analysis. Finally, we
leave open the general issue whether a direct strategy can
be drawn to measure the Chern numbers via the strange
correlators.
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APPENDIX A: DETAILS ON THE SCALING OF THE SUMS
OF STRANGE CORRELATORS

In this Appendix, we comment more on the scaling of the
sums of strange correlators, mentioned in Sec. II. Focusing
at first on translational invariant lattice systems, we can fix
conventionally a “zero-point” (which all the distances are
measured from) site and write:

S̄[ô, ô′]L =
∑

r

|s[ô, ô′]r,0|. (A1)

We assume first a power law scaling |s[ô, ô′]r,r′ | ∼ |r −
r′|−2α , and we compare the sum of the moduli of the strange
correlators at different sizes, S̄[ô, ô′]L+1 and S̄[ô, ô′]L, related
to two lattices with Ld and (L + 1)d sites respectively, in
the L → ∞ limit. The two quantities differ for the dominant
contributions of ∼Ld−1 sites around the boundaries of the
bigger lattice, having distance ∼L from the zero-point site.
Therefore we obtain, at the leading order:

S̄[ô, ô′]L+1 − S̄[ô, ô′]L ∼ Ld−1 L−2α = Ld−1−2α, (A2)

such that S̄[ô, ô′]L ∼ Ld−2α if α < d
2 . Instead, if α = d

2 , then
S̄[ô, ô′]L ∼ lnL. Finally, if α > d

2 , S̄[ô, ô′]L ∼ c + Ld−2α , c
being a dominating constant.

Vice versa, if we assume the scaling of the sums S̄[ô, ô′]L ∼
Ld−2α , we directly obtain Eq. (A2). In turn, because of the
same counting of the lattice sites as above, if α < d

2 , it results
immediately that, for L → ∞,

|s[ô, ô′]Ln,0| ∼ L−2α (A3)

(0 < α � 1 and n being a unit vector), plus possible sub-
dominant terms. Similar arguments immediately hold for the
case α � d

2 . We stress that no assumption is made about scale
invariance of the lattice, then on the possible presence of
a mass gap in its spectrum. In the absence of translational
invariance, the demonstration proceeds along similar lines as
above, at least if the asymptotical behaviour for |r − r′| → ∞
can be defined. If |�〉 = |�〉, the strange correlator reduces
to a standard correlator. In this case, the scaling of s[ô, ô′]L

has been exploited recently, for scale-invariant, i.e., critical,
lattice systems in [64] and gapped one-dimensional ones in
Refs. [6,65].

If |s[ô, ô′]r,r′ | decays exponentially, as for short-range
gapped systems, then S̄[ô, ô′]L tends to a constant [64,65],
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similarly to the case α > d
2 above. Indeed, from Eq. (A2) and

in the presence of an exponential decay, characterized by the
decay length ξ � L, we obtain that

S̄[ô, ô′]L+1 − S̄[ô, ô′]L ∼ Ld−1 e− L
ξ

L2α
→ 0 as L → ∞, (A4)

such that S̄[ô, ô′]L ∼ c′ + e
− L

ξ

L1+2α−d (the constant c′ being pos-
sibly vanishing) with L → ∞. Instead, Eq. (A4) implies a
subalgebraic scaling for s[ô, ô′]r,r′ . Notice that, if ξ → ∞ (at
the gapless points and with infinite L), the scaling in Eq. (A2)
is recovered. Finally, in the finite-size gapless regime we have

ξ = L, then we still recover the scaling in Eq. (A2), plus
possible subdominant finite-size terms.

APPENDIX B: DERIVATION OF THE STRANGE
CORRELATORS FOR A PERIODIC KITAEV CHAIN

From the definition of the eigenmodes of the Kitaev chain
in Eq. (11) on a generic Bogoliubov ground state |GS〉, we
obtain

〈GS|c†
kck|SS〉 = |vk|2, 〈GS|c†

kc†
−k|GS〉 = v∗

k uk . (B1)

Therefore the overlap between two normalized ground states
of the Kitaev chain in Eq. (9) can be easily derived by consid-
ering the form of two ground states |�〉 and |�〉:

〈�|�〉 = 〈0|
⎡
⎣ ∏

0�k�π

(u′∗
k + v′∗

k c−kck )

⎤
⎦
⎡
⎣ ∏

0�k�π

(uk + vkc†
kc†

−k )

⎤
⎦ |0〉

=
∏

0�k<π

(u′∗
k uk + v′∗

k vk ) =
∏

0�k<π

[
cos

θ (k)

2
cos

θ ′(k)

2
+ sin

θ (k)

2
sin

θ ′(k)

2

]
=
∏

0�k<π

[
cos

θ (k) − θ ′(k)

2

]
, (B2)

where all the primed coefficients are related to the ground state |�〉.
Also concerning the strange correlators, the terms in their numerators can be straightforwardly derived considering the form

of the ground states in Eq. (13). We the following convention for the Fourier transform of the operators c†
x =∑q eiqx/

√
L, and

we obtain

〈�| c†
xc†

y |�〉 = N ′N
∑
qq′

ei(qx+q′y)

L
〈0|
⎛
⎝ ∏

0�k<π

eg′∗
k c−kck

⎞
⎠c†

qc†
q′

⎛
⎝ ∏

0�k<π

egkc†
k c†

−k

⎞
⎠ |0〉 . (B3)

The only nonvanishing terms come for q = −q′, because in the other cases two different Cooper pairs are broken. Then we split
the sum over q into negative and positive values and we obtain

〈�| c†
xc†

y |�〉 = N ′N
∑
q>0

1

L
〈0| (1 + g′∗

q c−qcq)(eiq(x−y)c†
qc†

−q + e−iq(x−y)c†
−qc†

q ) |0〉 〈0|
∏

k 
=q,−q

eg′∗
k c−kck egkc†

k c†
−k |0〉

=
∑
q>0

2ig′∗
q

sin q(x − y)

L
u′

quq

∏
k 
=q

(u′
kuk + v′∗

k vk ) =
⎡
⎣ ∏

0�k<π

(u′
kuk + v′∗

k vk )

⎤
⎦∑

q>0

2iuqv
′∗
q sin q(x − y)

L(u′
quq + v′∗

q vq)
, (B4)

where we used that uq is real. For |�〉 = |�〉, this is consistent with Eq. (B1). The term in the square brackets matches exactly
Eq. (B2). Therefore the resulting strange correlator s[|�〉 , |�〉 , c†, c†]x,y is given by

〈�| c†
xc†

y |�〉
〈�|�〉 =

∑
q>0

2iuqv
′∗
q sin q(x − y)

L(u′
quq + v′∗

q vq)
= −

∑
q>0

2 sin q(x − y) cos θ (q)
2 sin θ ′(q)

2

L cos θ (q)−θ ′(q)
2

. (B5)

The calculation for s[c, c]x,y is analogous. Also the number conserving strange correlators s[|�〉 , |�〉 , c†, c]x,y are derived in a
similar way:

〈�| c†
xcy |�〉 = N N ′∑

q

1

L
〈0| (1 + g′∗

q c−qcq )eiq(x−y)c†
qcq(1 + gqc†

qc†
−q ) |0〉 〈0|

∏
0�k 
=q,−q

eg′∗
k c−kck egk c†

k c†
−k |0〉

=
∑
q>0

2g′∗
q gq

cos q(x − y)

L
u′

quq

∏
0�k 
=q

(u′
kuk + v′∗

k vk ) =
⎡
⎣ ∏

0�k<π

(u′
kuk + v′∗

k vk )

⎤
⎦∑

q>0

2v′∗
q vq cos q(x − y)

L(u′
quq + v′∗

q vq)
, (B6)
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such that

〈�| c†
xcy |�〉

〈�|�〉 =
∑
q>0

2v′∗
q vq cos q(x − y)

L(u′
quq + v′∗

q vq)

=
∑
q>0

2 cos q(x − y) sin θ (q)
2 sin θ ′(q)

2

L cos θ (q)−θ ′(q)
2

. (B7)

APPENDIX C: STRANGE CORRELATORS IN REAL SPACE
FOR GENERIC BCS STATES

To deal with systems without translational invariance in
real space, we consider the following definition of the eigen-
modes with positive energy, similarly to Ref. [66]:

ηl =
∑

i

(Uli ci − Vli c†
i ), (C1)

which generalizes Eq. (11). Here. the indices may include also
the spin degree of freedom.

In Ref. [66], it is shown that

|〈� ′|�〉|2 = | det(UU ′† + VV ′†)|, (C2)

which generalizes Eq. (B2). In the same paper, the authors
found a useful relation for the nontrivial strange correlator of
the eigenmodes η of one of the two BCS states. In particular,
we must define first

U = UU ′† + VV ′†, V = V ∗U ′† + U ∗V ′†. (C3)

Then we define

Z = (U†)−1V †. (C4)

The Z matrix is defined in such a way that

|� ′〉 = ˜N exp

⎡
⎣1

2

∑
a,b

Zabη
†
aη

†
b

⎤
⎦ |�〉 , (C5)

with the normalization ˜|N | = |〈� ′|�〉| given by Eq. (C2).
The result in Ref. [66] can be recast into

〈� ′| η†
xη

†
y |�〉

〈� ′|�〉 = Z∗
xy. (C6)

Indeed one has

〈� ′| η†
xη

†
y |�〉

= ˜N ∗ 〈�| exp

⎡
⎣1

2

∑
a,b

Z†
abη

†
aη

†
b

⎤
⎦η†

xη
†
y |�〉

= ˜N ∗ 〈�|
[
η†

x +
∑

a

Z†
axηa

]
exp

⎡
⎣1

2

∑
a,b

Z†
abηaηb

⎤
⎦η†

y |�〉

= ˜N ∗ 〈�| Z†
yx exp

⎡
⎣1

2

∑
a,b

Z†
abηaηb

⎤
⎦ |�〉 = Z†

yx〈� ′|�〉,

(C7)

where we used that Z is antisymmetric, that 〈�| η†
p = 0, and

the property

exp

⎡
⎣1

2

∑
a,b

Z†
abη

†
aη

†
b

⎤
⎦η†

x

=
⎛
⎝η†

x +
⎡
⎣1

2

∑
a,b

Z†
abηaηb, η

†
x

⎤
⎦
⎞
⎠ exp

⎡
⎣1

2

∑
a,b

Z†
abηaηb

⎤
⎦.

(C8)

Besides the main equation (C6), we need also to consider

〈� ′| ηxηy |�〉
〈� ′|�〉 = 〈� ′| η†

xηy |�〉
〈� ′|�〉 = 0,

〈� ′| ηxη
†
y |�〉

〈� ′|�〉 = δxy. (C9)

From Eqs. (C6) and (C9), we can derive all the strange corre-
lators, by inverting Eq. (C1):(

c
c†

)
=
(

U † −V T

−V † U T

)(
η

η†

)
. (C10)

From all the previous equations, we get (repeated indices are
summed)

〈� ′| c†
xc†

y |�〉
〈� ′|�〉

= 〈� ′| − VxaU T
ydηaη

†
d |�〉 + 〈� ′|U T

xbU
T
ydη

†
bη

†
d |�〉

〈� ′|�〉
= −(V †U )xy + (U T Z∗U )xy, (C11)

which generalizes Eq. (17) (in the diagonal case in momentum
space V †U = 0 because of the canonical conditions), and

〈� ′| c†
xcy |�〉

〈� ′|�〉

= 〈� ′|V †
xaV

T
ydηaη

†
d |�〉 − 〈� ′|U T

xbV
T

ydη
†
bη

†
d |�〉

〈� ′|�〉
= (V †V )xy − (U T Z∗V )xy, (C12)

which generalizes Eq. (16).

APPENDIX D: STRANGE CORRELATORS FOR THE
TRANSLATIONAL INVARIANT LATTICES IN SEC. III

1. Two-dimensional Chern insulator in Sec. III C

In this section, the sums S[c†
f , c f ′ ]L of the strange corre-

lators s[c†
f , c f ′ ]r,r′ , for the 2D BHZ model in Eq. (20), are

considered. We define the Fourier transform of the strange
correlators as

s[c†
f , c f ′ ]r,r′ = 1

Ld

∑
k

s̃[c†
f , c f ′ ]k eik·(r−r′ ), (D1)

where we considered that s[c†
f , c f ′ ]r,r′ depends only on r − r′

in translationally invariant systems. The following analytical
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expressions are easy to be derived:

S[c†
f , c f ′ ]L = 1

Ld

∑
r−r′

∑
k

s̃[c†
f , c f ′ ]k eik·(r−r′ )

= 1

Ld

∑
k

s̃[c†
f , c f ′ ]k

[
1 − eikxL

1 − eikx

1 − eikyL

1 − eiky
(1 − δkx,0)(1 − δky,0)

+ L
1 − eikyL

1 − eiky
δkx,0 (1 − δky,0) + L

1 − eikxL

1 − eikx
δky,0 (1 − δkx,0) + Ld δkx,0 δky,0

]
, (D2)

where from Eq. (22), the Fourier transform s̃[c†
f , c f ′ ]k results

s̃[c†
f , c f ′ ]k = a(�,−) ∗

f ,k a(�,−)
f ′,k

a(�,−) ∗
A,k a(�,−)

A,k + a(�,−) ∗
B,k a(�,−)

B,k

. (D3)

For periodic boundaries, we have eik j L = 1, and we obtain

S[c†
f , c f ′ ]L = s̃[c†

f , c f ′ ]0, (D4)

also derivable directly from the definition of Fourier transform
in (D2). For antiperiodic boundaries, we have eik j L = −1, and
we obtain

S[c†
f , c f ′ ]L = 1

Ld

∑
k

s̃[c†
f , c f ′ ]k

4

(1 − eikx )(1 − eiky )
. (D5)

We stress that, when periodic boundary conditions are as-
sumed, so that Eq. (25) is fulfilled, possible divergences in
k = 0 may arise due to the orthogonality of single-particle
states [4]. In order to regularize them, we evaluate the sums at
k = 2π

L (1, 1), instead that strictly at k = 0, as in Eq. (25).

2. Three-dimensional BHZ model in Sec. III D

In this section, we derive the expressions for some strange
correlators for translational invariant 4 × 4 model in Eq. (26).
As there, A and B are general indices, not changed by time-
reversal symmetry. The related Hamiltonian is

H =
∑

k

(c†
A↑k c†

B↑k c†
A↓k c†

B↓k )H (k)

⎛
⎜⎜⎝

cA↑k
cB↑k
cA↓k
cB↓k

⎞
⎟⎟⎠, (D6)

where H (k) is a 4 × 4 matrix depending on the parameter k.
H is diagonalized,

U †(k)H (k)U (k) =

⎛
⎜⎜⎝

ε1(k) 0 0 0
0 ε2(k) 0 0
0 0 ε3(k) 0
0 0 0 ε4(k)

⎞
⎟⎟⎠,

by the unitary transformation

[U (k)]i j = ui j (k), [U †(k)]i j = u∗
ji(k),

where

H (k)

⎛
⎜⎜⎝

u1 j

u2 j

u3 j

u4 j

⎞
⎟⎟⎠ = ε j (k)

⎛
⎜⎜⎝

u1 j

u2 j

u3 j

u4 j

⎞
⎟⎟⎠, U

⎛
⎜⎜⎝

γ1

γ2

γ3

γ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cA↑
cB↑
cA↓
cB↓

⎞
⎟⎟⎠.

Therefore

cik =
4∑

j=1

Ui jγ jk =
4∑

j=1

ui j (k)γ jk,

with 1 = A ↑, 2 = B ↑, 3 = A ↓, and 4 = B ↓. The corre-
sponding operators in the direct lattice are

c jr = 1

L
d
2

∑
k

c jke−ir·k = 1

L
d
2

∑
k,l

u jlγlke−ir·k,

γik =
4∑

j=1

U †
i jc jk = u∗

1i(k)cA↑k + u∗
2i(k)cB↑k + u∗

3i(k)cA↓k

+ u∗
4i(k)cB↓k =

4∑
j=1

u∗
ji(k)cik,

and

H =
4∑

j=1

∑
k

ε(k)γ †
j γ j .

As described in the main text, the model displays two degener-
ate bands, symmetric with the respect to zero energy. Suppose
now to fill only the lower bands ε1(k) and ε2(k), so that the
ground state reads

|�〉 =
∏

k

γ
†
2kγ

†
1k |0〉 .

Letting now the Hamiltonian to depend on a parameter M, we
denote as

|�〉 =
∏

k

γ
†
2kγ

†
1k |0〉 ,

the ground state of H (M ), and as

|�〉 =
∏

k

γ̃
†
2kγ̃

†
1k |0〉 ,

the ground state of H (M̃ ). The strange correlator

S[c†, c†]r,r′ = 〈�|c†
jrclr′ |�〉

〈�|�〉
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is calculated as follows:

〈�|�〉 = 〈0|
∏
k,q

γ̃1kγ̃2kγ
†
2qγ

†
1q|0〉 = 〈0|

∏
k

γ̃1kγ̃2kγ
†
2kγ

†
1k|0〉

= 〈0|
∏

k

⎛
⎝ 4∑

j=1

ũ∗
j1(k)c jk

⎞
⎠
⎛
⎝ 4∑

j=1

ũ∗
j2(k)c jk

⎞
⎠
⎛
⎝ 4∑

j=1

u j2(k)c†
jk

⎞
⎠
⎛
⎝ 4∑

j=1

u j1(k)c†
jk

⎞
⎠|0〉

= 〈0|
∏

k

4∑
l, j=1

(ũ∗
l1ũ∗

j2ul2u j1clkc jkc†
lkc†

jk + ũ∗
j1ũ∗

l2ul2u j1c jkclkc†
lkc†

jk )|0〉

= 〈0|
∏

k

4∑
l 
= j=1

(
1 − n jk

)
(1 − nlk )(ũ∗

l2ul2ũ∗
j1u j1 − ũ∗

j2u j1ũ∗
l1ul2)|0〉

=
∏

k

⎡
⎣ 4∑

l 
= j=1

(ũ∗
l2(k)ul2(k)ũ∗

j1(k)u j1(k) − ũ∗
j2(k)ul2(k)ũ∗

l1(k)u j1(k))

⎤
⎦.

Moreover, starting from

clr′ |�〉 = 1

L
d
2

∑
k, j

ul j (k)γ jke−ir′ ·k |�〉

= 1

L
d
2

∑
k

e−ir′ ·k(−1)h(k)[ul1(k)γ †
2k − ul2(k)γ †

1k]
∏
q 
=k

γ
†
2qγ

†
1q |0〉 ,

c jr |�〉 = 1

L
d
2

∑
k

e−ir·k(−1)h(k)[ũ j1(k)γ̃ †
2k − ũ j2(k)γ̃ †

1k]
∏
q 
=k

γ̃
†
2qγ̃

†
1q |0〉 ,

we obtain

〈�|c†
jrclr′ |�〉 = 1

Ld

∑
k

e−i(r−r′ )·k

⎡
⎣ũ∗

j1(k)ul1(k) 〈0| γ̃2kγ
†
2k

⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉

+ ũ∗
j2(k)ul2(k) 〈0| γ̃1kγ

†
1k

⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉

− ũ∗
j1(k)ul2(k) 〈0| γ̃2kγ

†
1k

⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉

− ũ∗
j2(k)ul1(k) 〈0| γ̃1kγ

†
2k

⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉

⎤
⎦

= 〈0| γ̃2kγ
†
2k

⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉 = 〈0|

⎛
⎝ 4∑

j=1

ũ∗
j2(k)c jk

⎞
⎠
⎛
⎝ 4∑

j=1

u j2(k)c†
jk

⎞
⎠
⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉

=
4∑

j=1

ũ∗
j2u j2 〈0| (1 − n jk

)⎛⎝∏
q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉

=
4∑

j=1

ũ∗
j2u j2 〈0|

⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉 ,
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〈0| γ̃1kγ
†
1k

⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉 = 〈0|

⎛
⎝ 4∑

j=1

ũ∗
j1(k)c jk

⎞
⎠
⎛
⎝ 4∑

j=1

u j1(k)c†
jk

⎞
⎠
⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉

=
4∑

j=1

ũ∗
j1u j1 〈0|

⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉 ,

〈0| γ̃1kγ
†
2k

⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉 = 〈0|

⎛
⎝ 4∑

j=1

ũ∗
j1(k)c jk

⎞
⎠
⎛
⎝ 4∑

j=1

u j2(k)c†
jk

⎞
⎠
⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉

=
4∑

j=1

ũ∗
j1u j2 〈0| (1 − n jk

)⎛⎝∏
q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉

=
4∑

j=1

ũ∗
j1u j2 〈0|

⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉 ,

〈0| γ̃2kγ
†
1k

⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉 =

4∑
s=1

ũ∗
j2u j1 〈0|

⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉 ,

〈�|c†
jrclr′ |�〉 = 1

Ld

∑
k

4∑
s=1

e−i(r−r′ )·k[ũ∗
j1ul1ũ∗

s2us2 + ũ∗
j2ul2ũ∗

s1us1 − ũ∗
j1ul2ũ∗

s2us1 − ũ∗
j2ul1ũ∗

s1us2]

×〈0|
⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉

= 1

Nd

∑
k

4∑
s=1

e−i(r−r′ )·k[(ũ∗
j2ũ∗

s1 − ũ∗
j1ũ∗

s2)(ul2us1 − ul1us2)] 〈0|
⎛
⎝∏

q 
=k

γ̃1qγ̃2qγ
†
2qγ

†
1q

⎞
⎠ |0〉 .

Therefore finally

S[c†, c†]r,r′ = 1

Ld

∑
k

∑4
s=1[
(
ũ∗

j2ũ∗
s1 − ũ∗

j1ũ∗
s2

)
(ul2us1 − ul1us2)]e−i(r−r′ )·k∑4

l 
= j=1(ũ∗
l2ul2ũ∗

j1u j1 − ũ∗
j2ul2ũ∗

l1u j1)
.

APPENDIX E: STRANGE CORRELATORS FOR GENERAL
HOPPING MODELS IN REAL SPACE

In this Appendix, we derive an expression for some strange
correlators of fermionic operators involving lattice ground
states and real lattice variables, as in Eq. (24). We consider
a lattice and with N sites with a purely hopping Hamiltonian
depending on a parameter x:

H (x) =
∑

i j

ti j (x)c†
i c j + H.c.

= (c†
1 c†

2 c†
3 . . .)T(x)

⎛
⎜⎜⎝

c1

c2

c3
...

⎞
⎟⎟⎠ = c†T(x)c. (E1)

Let TD(x) be the diagonal matrix whose elements are the
eigenvalues of T(x) (i.e., the single-particle energies), sorted

by an increasing order

(TD)11 = ε1(x) � (TD)22 = ε2(x) � (TD)33 = ε3(x) . . . ,

and U(x) the unitary matrix diagonalizing T(x), i.e.,
U(x)T(x)U†(x) = TD(x). This matrix acts on the c vector as

U(x)c = w(x) =

⎛
⎜⎜⎝

w1(x)
w2(x)
w3(x)

...

⎞
⎟⎟⎠,

so the Hamiltonian can be written in the diagonal form

H (x) = c†U†(x)U(x)T(x)U†(x)U(x)c

= w†(x)TD(x)w(x) =
∑

j

ε j w
†
j w j . (E2)

For fixed number of particles M, the ground state is

|g(x)〉 =
∏

k=1,...,M

w
†
k (x) |0〉 .
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Notice that

c = U†(x)w(x) ⇒ c j =
∑

l

U ∗
l j (x)wl (x),

w(y) = U(y)c = U(y)U†(x)w(x) = D(x, y)w(x)

⇒ wk (y) =
∑

l

Dkl (x, y)wl (x),

w†(y) = w†(x)D†(x, y) ⇒ w
†
k (y) =

∑
l

D∗
kl (x, y)w†

l (x).

The matrix D(x, y) is defined as

D(x, y) = U(y)U†(x) ⇒ Dkl (x, y) =
∑

r

Ukr (y)U ∗
lr (x).

It also holds

c j |g(x)〉 =
N∑

l=1

U ∗
l j (x)wl (x)

∏
k=1,...,M

w
†
k (x) |0〉

=
M∑

l=1

(−1)l+1U ∗
l j (x)

∏
k=1,...,l−1,l+1,...,M

w
†
k (x) |0〉

and

〈g(x)|c†
j ci|g(x)〉 =

M∑
l=1

Ul j (x)U ∗
li (x).

Choosing another parameter y, the ground state can be ex-
pressed in terms of w†(x), as

|g(y)〉 =
∏

k=1,...,M

w
†
k (y) |0〉

=
∏

k=1,...,M

N∑
s=1

D∗
ks(x, y)w†

s (x) |0〉

=
∑
{kr}M

�{kr}M

M∏
r=1

w
†
kr

(x) |0〉 ,

where we adopted the following notation:
(i) {kr}M = {k1, k2 . . . kM} is a string of M elements;
(ii) {kr}1,...,N

M means all the possible strings of M elements
selected from {1, . . . , N};

(iii) �{kr} = det[D∗]{kr}, where [.]{kr} is the submatrix
obtained selecting the first M lines and the columns corre-
sponding to the string {kr}.

Fixed the normalization

〈g(y)|g(x)〉 = �∗
{1,2,...,M} = det [D(x, y)]{1,2,...,M},

we have

c j |g(y)〉 =
N∑

l=1

U ∗
l j (x)wl (x)

∏
k=1,...,M

w
†
k (y) |0〉

=
N∑

l=1

U ∗
l j (x)wl (x)

∏
k=1,...,M

N∑
s=1

D∗
ks(x, y)w†

s (x) |0〉

=
N∑

l=1

U ∗
l j (x)wl (x)

∑
{kr}1,...,N

M

�{kr}
M∏

r=1

w
†
kr

(x) |0〉

=
M∑

l=1

U ∗
l j (x)wl (x)�{kr}1,...,M

M

M∏
r=1

w†
r (x) |0〉

+
N∑

l=M+1

U ∗
l j (x)wl (x)

∑
{kr}1,...,M

M−1 ∪{l}
�{kr}1,...,M

M−1 ∪{l}

(
M−1∏
r=1

w
†
kr

(x)

)
w

†
l (x) |0〉 + |R〉 ,

being |R〉 a remaining term of the combination that gives zero overlap with ci |g(x)〉. The latter expression can be managed as
follows:

c j |g(y)〉 =
M∑

l=1

(−1)l+1U ∗
l j (x)�{kr}1,...,M

M

∏
r=1,...,l−1,l+1...M

w†
r (x) |0〉

+(−1)M+1
N∑

l=M+1

U ∗
l j (x)

∑
{kr}1,...,M

M−1 ∪{l}
�{kr}1,...,M

M−1 ∪{l}

(
M−1∏
r=1

w
†
kr

(x)

)
|0〉 + |R〉

=
M∑

l=1

(−1)l+1U ∗
l j (x)�{1,...,M}

∏
r=1,...,l−1,l+1...M

w†
r (x) |0〉
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+(−1)M+1
M∑

l=1

⎡
⎣ N∑

s=M+1

U ∗
s j (x)�{1,...,l−1,l+1...M}∪{s}

⎤
⎦ ∏

r=1,...,l−1,l+1...M

w†
r (x) |0〉 + |R〉

=
M∑

l=1

η
( j)
l

∏
r=1,...,l−1,l+1...M

w†
r (x) |0〉 + |R〉 ,

with

η
( j)
l = −(−1)lU ∗

l j (x)�{1,...,M} − (−1)M
N∑

s=M+1

U ∗
s j (x)�{1,...,l−1,l+1...M}∪{s},

so that

〈gs(y)|c†
j ci|gs(x)〉 = −

M∑
l=1

(
η

( j)
l

)∗
(−1)lU ∗

li (x),

〈gs(y)|c†
j ci|gs(x)〉 = �∗

{1,...,M}
M∑

l=1

Ul j (x)U ∗
li (x) +

M∑
l=1

(−1)M+lU ∗
li (x)

N∑
s=M+1

�∗
{1,...,l−1,l+1...M}∪{s}Us j (x),

and finally

〈gs(y)|c†
j ci|gs(x)〉

〈g(y)|g(x)〉 =
M∑

l=1

Ul j (x)U ∗
li (x) + 1

�∗
{1,2,...,M}

M∑
l=1

(−1)M+lU ∗
li (x)

N∑
s=M+1

�∗
{1,...,l−1,l+1...M}∪{s}Us j (x).

If x = y, then D = I, so all �{1,...,M} = 1 and the others are
�{kr} = 0. Then we obtain again:

〈gs(x)|c†
j ci|gs(x)〉 =

M∑
l=1

Ul j (x)U ∗
li (x).

APPENDIX F: STRANGE CORRELATORS FOR THE
GROUND STATE OF THE TORIC CODE

Kitaev’s toric code [60] is the paradigmatic example of a
model with topological order, thus degenerate ground states
on the torus and anyonic excitations. For the purpose of es-
timating its strange correlators, we consider its surface code
extension to a system with smooth open boundaries [67]. The
system is defined by spin 1/2 degrees of freedom located on
the boundaries of an open square lattice, and its Hamiltonian
is dictated by

HTC = −JA

∑
s

Âs − JB

∑
p

B̂p, (F1)

where the operators Âs ≡∏i∈s σ̂ x
i and B̂p ≡∏i∈p σ̂ z

i both
contain four spins belonging to a star s and a plaquette p, re-
spectively. The model can be solved exactly, since the star and
plaquette operators commute with each other, i.e., [Âs, B̂p] =
0 for ∀ s, p; its ground state is given by

|�TC〉 =
∏

p

(
1 + B̂p√

2

)
|�〉 , (F2)

where |�〉 = |+ + + . . .〉 is a trivial product state of the pos-
itive eigenstates |+〉 of σ̂x. In the language of lattice gauge
theories, we can consider the operators Âs as local Z2 gauge
symmetries associated to the lattice vertices. In order to ex-

emplify the strange correlators in the universality class of
the toric code and Z2 lattice gauge theories, we consider the
gauge-invariant states |�TC〉, which represents the topological
phase, and |�〉, which is a trivial product state representing the
so-called confined phase in the corresponding gauge theory.
Both |�TC〉 and |�〉 are gauge invariant states, being eigen-
states of eigenvalue 1 for all the star operators Âs. Therefore
any strange correlator involving operators which are not gauge
invariant vanishes and cannot be adopted to detect topological
order. For instance, we have 〈�| σ̂ z

i σ̂ z
j |�TC〉 ∝ δi j .

Concerning gauge-invariant operators, instead, the related
strange correlators may be unsuitable to distinguish topolog-
ical and nontopological states. Let us, in particular, consider
the following example:

〈�| σ̂ x
i σ̂ x

j |�TC〉
〈�| �TC〉 = 1, (F3)

〈�| σ̂ x
i σ̂ x

j |�〉 = 1. (F4)

σ̂ x
i is a gauge-invariant operator which creates two plaquette

excitations when applied to |�TC〉, so that, in general, σ̂ x
i σ̂ x

j
creates four plaquette excitations. However, the strange cor-
relator in Eq. (F3) is equal to 1 because |�〉 is an eigenstate
for the σ̂ x operators. Furthermore, the same is trivially true
for the two-point correlation function in Eq. (F4). Hence, in
both cases, the result doe not depend on the positions i and j,
and this suggests that these strange correlators do not display
a different behavior for target states |�〉 in the topological and
nontopological phase.

These conclusions on the strange correlators can be gener-
alized to the pure Z2 lattice gauge theory (LGT) Hamiltonian,
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HLGT, defined by

HLGT(h) = HTC − h
∑

l

σ̂ x
l , (F5)

where we take JA → ∞. For increasing h, this Hamiltonian in-
terpolates between the topological and nontopological phases:
for h = 0, its ground state is |�TC〉, and for h → ∞ the ground
state is given by �. One can consider, in general, the ground
state of the model |�(h)〉. Also in this case, however, the two-
point strange correlators that do not fulfill gauge invariance
vanish, whereas for the σ̂ x correlators, we obtain again

〈�| σ̂ x
i σ̂ x

j |�(h)〉
〈�| �(h)〉 = 1, (F6)

independently on h.
Finally, we observe that similar observations concern the

possibility of introducing string-like strange correlators. Each

Pauli operator σ̂ a, with a = x, z, creates indeed two excita-
tions in the toric code (either electric or magnetic). Therefore
the previous correlators involve four excitations in total. In
order to evaluate strange correlators introducing only pairs of
excitations, we may extend the two point correlation function
to Wilson strings

∏
j∈� σ̂ z

j over a line � of the square lattice,
or ’t Hooft strings

∏
j∈�̃ σ̂ x

j over a line �̃ on the dual lattice.
In both cases, however, also these string-like strange operators
cannot be adopted to determine the onset of topological order:
the Wilson strings, as in the case of the σ̂ z operators, violate
the local gauge invariance in its end points; the ’t Hooft
strings, instead, acquire a trivial value on the state |�〉, as the
σ̂ x operators.

The negative results of the strange correlators concerning
the toric code, may indeed be related to the fact that such state
does not possess gapless edge modes. Therefore the conformal
field theory construction adopted to derive the relation in
Eq. (31) cannot be applied in this nonchiral state.
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