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Mixed higher-order topology: Boundary non-Hermitian skin effect induced by a Floquet bulk

Hui Liu" and Ion Cosma Fulga
IFW Dresden and Wiirzburg-Dresden Cluster of Excellence ct.qmat, Helmholtzstrasse 20, 01069 Dresden, Germany

® (Received 7 October 2022; accepted 22 June 2023; published 5 July 2023)

We show that anomalous Floquet topological insulators generate intrinsic, non-Hermitian topology on their
boundaries. As a consequence, removing a boundary hopping from the time-evolution operator stops the
propagation of chiral edge modes, leading to a non-Hermitian skin effect. This does not occur in Floquet Chern
insulators, however, in which boundary modes continue propagating. The non-Hermitian skin effect on the
boundary is a consequence of the nontrivial topology of the bulk Floquet operator, which we show by designing
a real-space topological invariant. In this paper, we introduce a form of mixed higher-order topology, providing
a bridge between research on periodically driven systems and the study of non-Hermiticity. This suggests that
periodic driving, which has already been demonstrated in a wide range of experiments, may be used to generate

non-Hermitian skin effects.
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I. INTRODUCTION

The hermiticity of Hamiltonians is a principal feature of
quantum physics. As a consequence, time-evolution opera-
tors are unitary, with eigenvalues constrained to be phase
factors, thus maintaining probability conservation. In period-
ically driven systems, commonly characterized in terms of
their Floquet operators, this means that quasienergies & are
only defined modulo 27 /T, with T being the driving period.

The periodicity of Floquet eigenphases can have important
consequences in the context of band topology [1-3] since
it provides an extra bulk quasienergy gap (at ¢ = 7 /T)
to topological boundary modes. When this gap is nontrivial,
the resulting Floquet topological insulators are completely
induced by the time-periodic driving and thus have no coun-
terpart in static systems [4-11]. An example of such a
phase is the so-called anomalous Floquet topological insu-
lator (AFTI) [12], a two-dimensional (2D) system in which
each gap contains the same nonzero number of chiral edge
states, despite all bulk bands being topologically trivial. As a
result, the chiral edge modes wind around the [—n /T, 7w /T)
quasienergy zone, or equivalently, around the unit circle in the
complex plane.

When hermiticity is broken, the emergence of complex
Hamiltonian eigenvalues can alter the well-established fun-
damental concepts of band topology and yield additional
phenomena [13-15]. An interesting example is the non-
Hermitian skin effect, in which an extensive number of modes
pile up at the boundaries of a system [16-29]. One of the
simplest models showing this behavior is the Hatano-Nelson
model [30], a one-dimensional (1D) chain with nearest-
neighbor hoppings that are nonreciprocal. The skin modes that
occur in this system when open boundary conditions (OBCs)
are imposed have a topological origin. They are protected by
the winding number of the infinite system spectrum [31].
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The topology of unitary operators is mainly studied in
a Hermitian context, with a primary focus on periodically
driven Hermitian Hamiltonians [32-39]. Here, we examine
unitary operators from the point of view of non-Hermiticity,
showing that this leads to an alternate form of higher-order
topology. Intuitively, both the Hatano-Nelson model and the
AFTI are characterized by a nonzero spectral winding, of the
bulk states in the first case and of the chiral edge modes in
the second case. We show that these two windings are in fact
connected: The bulk Floquet topology induces the formation
of a non-Hermitian topological chain at the system boundary,
without the need for any additional perturbation.

Working with one of the most well-known AFTI mod-
els [12], we found that removing a hopping from the boundary
of the Floquet operator stops the propagation of chiral edge
modes; they pile up at the defect position instead. This is
not a property of all Floquet chiral edge modes, however,
but of those which have a nonzero spectral winding. When
chiral edge modes exist without spectral winding, such as in
a Floquet Chern insulator (CI) phase, the skin effect is not
robust, and the edge modes can continue propagating around
the defect. These two different behaviors can be predicted
by a real-space invariant computed directly from the full 2D
Floquet operator, confirming the presence of a mixed higher-
order topology.

The rest of this paper is organized as follows. In Sec. II, we
introduce the Floquet system and relate it to non-Hermitian
topology. In Sec. III, we cut the edge to show the boundary
skin effect in a 2D anomalous Floquet topological phase.
The topological protection of this phenomenon is studied in
Sec. IV. We conclude in Sec. V.

II. NON-HERMITIAN TOPOLOGY
IN A FLOQUET SYSTEM

We start with the Rudner-Lindner-Berg-Levin model [12],
a 2D bipartite lattice with hopping strength varied in dif-
ferent time steps [see Fig. 1(a)]. Its Hamiltonian reads

©2023 American Physical Society
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FIG. 1. (a) Periodically driven Hamiltonian model, with red and
black dots representing the sublattices A and B. The dotted, dashed,
dot-dashed, and solid lines correspond to the hopping terms of the
time steps 1, 2, 3, and 4, respectively. The red (black) arrows indi-
cate the evolutions of bulk modes on sublattice A (B) at resonant
driving. (b) Real-space Floquet operator at resonant driving. The
black arrows denote unidirectional hoppings, identical to those of
the Hatano-Nelson model in the limit of maximal nonreciprocity. The
edge cutting corresponds to removing the hopping from the shaded
area. (c) The smallest of the two bulk gaps (at ¢ =0 and 7 /T),
A =min(Ag, Ayr), is plotted as a function of J and d,p. (d) Map
of py., the real-space probability density summed over all states,
corresponding to the site adjacent to the cut hopping [top site en-
closed in the ellipse of (b)]. Larger densities (darker colors) suggest
the appearance of a non-Hermitian skin effect. The white and blue
dotted lines show the approximate location of gap closings at ¢ = 0
and 7 /T. The trivial (Tri), Chern insulator (CI), and anomalous Flo-
quet topological insulator (AFTI) phases are indicated. White arrows
show which phases replace the Cls at §,5 = 0. See the Supplemental
Material for numerical details [40].
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Here, ¢ is time, J is the hopping strength, and Cj\,i, i (e, )
denotes the creation (annihilation) operator for sublattice A
(B) in unit cell (i, j) [see Fig. 1(a)]. Setting /i = 1, the dy-
namics of the system is governed by a Floquet operator F =
T exp[— fOT iH (¢)dt], with 7 denoting time ordering. The
quasienergy spectrum ¢ is contained in the fundamental do-
main [—7 /T, 7 /T) and can be obtained from the eigenvalue
equation det[F — e~*T] = 0.

In a finite-sized geometry, when switching off the sublat-
tice potential (§aop = 0), there are two limits in which the
Floquet operator takes a particularly simple form. For the
trivial limit with JT = 0, we have F = 1, and no particles can

propagate. In the AFTI limit with JT = 5 /2 (also known as
the resonant driving point [39]), all bulk states come back to
their original sites after one driving cycle, forming two de-
generate, dispersionless Floquet bulk bands at ¢ = 0. Even if
states do not propagate throughout the bulk, an extra quantized
conducting channel is formed at the edge, allowing particles
to propagate unidirectionally. This is the chiral edge mode of
the AFTI, which winds in quasienergy from —m /T to 7 /T.

Atresonant driving, we draw a connection between Floquet
and non-Hermitian topology by using a duality that identifies
time-evolution operators with non-Hermitian Hamiltonians.
The latter has been used to study the bulk spectral proper-
ties of non-Hermitian systems [41,42] and for the purpose of
topological classification [43,44]. Here, instead, we focus on
its boundary manifestations. We obtain a unitary, static tight-
binding model by treating the real-space Floquet operator as a
Hamiltonian:

H,=F. 2

Mathematically, this means that we represent the Floquet
operator of the finite-sized system as a matrix in the real-
space basis corresponding to the site positions of the lattice
in Fig. 1(a). Thus, in matrix representation, [H,]jx = Fjx =
(x¢| F Ix;), with |x;) the position ket of site j. The diagonal
entries F;; become (possibly complex-valued) on-site terms,
whereas the off-diagonal terms F i, with j # k, are (possibly
nonreciprocal) hoppings.

At 6ap =0 and JT = 57 /2, the real-space structure of
H, is shown in Fig. 1(b). Its bulk contains decoupled sites
with unit on-site potentials F;; = 1, consistent with the exis-
tence of dispersionless bulk bands at energy E = 1 (meaning
quasienergy ¢ = 0 in Floquet language). On the boundary,
however, the unidirectional propagation of particles leads to
one-way hoppings Fj; = 1, where j and k correspond to sites
connected by an arrow in Fig. 1(b). The AFTI boundary is
identical to a maximally nonreciprocal Hatano-Nelson chain
with periodic boundary conditions (PBCs) [30]. As such, it
will show the same phenomenology as the Hatano-Nelson
chain: All states become localized at one end when changing
from PBCs to OBCs. We achieve the latter by removing one
hopping from the chain (setting the off-diagonal term corre-
sponding to the arrow in the shaded ellipse to Fj; = 0). The
propagation of the Floquet chiral edge modes stops, leading
to the formation of a non-Hermitian skin effect.

Note that this behavior is different from the recently-
introduced hybrid skin-topological modes of Refs. [45-48],
which are generated by adding gain and loss to either static
or periodically driven systems. Here, the 1D non-Hermitian
topology is intrinsic to the AFTI phase, it is the boundary
manifestation of a 2D AFTI bulk, and removing one hopping
simply serves to change the Hatano-Nelson chain from PBCs
to OBCs.

III. ROBUSTNESS OF THE NON-HERMITIAN
SKIN EFFECT

The emergence of 1D non-Hermitian topology at the
boundary of a 2D AFTI bulk is most apparent at resonant
driving, due to the simple form of the Floquet operator. Away
from this point, H, contains longer-range hopping terms (up
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to fourth-nearest neighbor, see the Supplemental Material
(SM) [40]), such that a direct, visual identification of the
boundary Hatano-Nelson chain is no longer possible. Never-
theless, as we show in the following, the skin effect formed by
removing a boundary hopping remains robust, provided that
the system is in an AFTI phase.

We study the phase diagram of the Floquet system numer-
ically. We use the KWANT package [49], provide details on the
numerical simulations in the SM [40] (see also Refs. [50,51]
therein), and share our code on Zenodo [52]. When §a5 = 0,
the AFTI and trivial phase are separated by a topological
phase transition at JT = 5m /4, at which the bulk gap around
e =m /T closes at the I' point of the Brillouin zone. At
JT = 157 /4, a second phase transition occurs at ¢ = 7 /T
and drives the system back to a trivial phase. No gap closing
and reopening occurs at ¢ = 0 for any value of JT', provided
that & AB = 0.

If 8ap # 0, however, the ¢ = 0 gap will open, but with a
gap size that vanishes as §ag — 0, see Fig. 1(c). Due to this
extra gap, CI phases appear, which separate the trivial from
the AFTI phase, as shown in Fig. 1(d). Thus, the CI phase
on the left side of the phase diagram in Fig. 1(d) transforms
into an AFTI due to the closing of the ¢ = 0 gap at §ag = 0.
In contrast, the CI on the right-hand side of the phase dia-
gram is transformed into a trivial phase (see SM for band
structure plots detailing this process [40]). Formally, the CI
phases persist for arbitrarily small values of 655, provided that
dap > 0, though in practice their observation will be hindered
by the smallness of the ¢ = 0 gap, which leads to significant
finite-sized effects.

Throughout the AFTI phase, even though the longer-range
hoppings in H, couple the edge and bulk sites, there exists a
large density accumulation at the site next to the defect. To
show this, we define the real-space probability density:

DRGSR 3)

n

where the sum runs over all of the right eigenvectors of the
Floquet operator |v,). The color scale of Fig. 1(d) corre-
sponds to the real-space probability density on the site just
above the cut hopping px_.

Notably, there is a region of large density also inside the
left-most CI phase, the one which evolves into an AFTI as §ap
goes to 0. In contrast, no density accumulation occurs in the
right-most CI, a phase which becomes trivial for a5 = 0. We
attribute this additional shoulder of large p. to the proximity
of the 645 = 0 AFTI phase. The skin effect is otherwise absent
from the CI phases.

We investigate the properties of the skin effect in a disk
geometry, going to polar coordinates r and ¢. The real-space
probability density corresponding to each of the sites [Eq. (3)]
is plotted as a function of the angular position ¢ in Fig. 2(a)
and shows two distinct behaviors. In the bulk of the disk
(see also the inset), the probability density is uniform, as
expected in Floquet systems. On the boundary, however, it is
peaked at the defect position, showing a profile that gradually
decays as a function of ¢, while remaining pinned to the edge
of the disk. Interestingly, the probability density curves ob-
tained for increasing disk radius R overlap in Fig. 2(a), which
means the skin effect of the chiral modes is a scale-invariant
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FIG. 2. The panel (a) is the real-space probability density as a
function of polar angle ¢ in the disk geometry with different radius
R. The inset is the same result in Cartesian coordinate representation
with R = 21. Here, the polar coordinate origin is fixed to make
the defect at ¢ = +m. The panel (b) is the corresponding energy
spectrum. All plots are with JT = 2.77 and 457 = 0.757. See the
Supplemental Material for numerical details [40].

phenomenon. This behavior has been dubbed the critical skin
effect in Ref. [26] and has been predicted to occur when two
or more non-Hermitian subsystems are coupled to each other.
In our case, we conjecture that it results from the nonzero
coupling between the edge and the bulk away from resonant
driving. As a final check of the critical nature of the skin
effect, we confirm in Fig. 2(b) one of its predicted hallmark
features: When the system size is increased, its eigenval-
ues approach the ones of the infinite system (here, the unit
circle) [53].

IV. REAL-SPACE TOPOLOGICAL INVARIANT

The robustness of the skin effect suggests that it is topolog-
ically protected. This is clearly the case at resonant driving,
where the boundary of the real-space Floquet operator is de-
coupled from the bulk, forming a purely 1D Hatano-Nelson
Hamiltonian with PBCs. For the latter, bulk-boundary cor-
respondence allows us to predict the accumulation of edge
modes under OBCs by computing the winding number of the
bulk spectrum [31]. Away from resonant driving, however,
the nonzero hoppings between bulk and edge sites of the 2D
Floquet operator obscure the distinction between PBCs and
OBCs.

To overcome this difficulty, we instead introduce a real-
space topological invariant which predicts the skin effect
of the chiral edge modes starting from the full 2D Floquet
operator. Our first ingredient is the well-established corre-
spondence between Hermitian and non-Hermitian topological
phases [24,31]. According to it, if Hyy is a 1D non-Hermitian
Hamiltonian that is topologically equivalent to the Hatano-
Nelson model, then

~ 0 Hoy — Ey
Hy = 4
=l ™0 ") @

is a Hermitian Hamiltonian that is topologically equivalent to
a Su-Schrieffer-Heeger (SSH) chain [54]. More precisely, the
winding number of the spectrum of H,y around the base point
E,, is identical to the SSH topological invariant of Hy;.
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FIG. 3. Signature as a function of Re[E,] and Im[E;] for
(a) JT = 0.57 (trivial), (b) JT = 7 [Chern insulator (CI)], and
(c) JT = 2 [anomalous Floquet topological insulator (AFTI)] with
3apT = 0.757m, respectively. The yellow and red lines represent bulk
and edge states of H,, respectively. (d) The phase diagram shows the
pair of signatures at base energies —0.9 and 0.9 as a function of 65
and J. The values (0, 0), (—1, —1), and (—1, 0) or (0, —1) are shown
as yellow, dark blue, and green, respectively. See the Supplemental
Material for numerical details [40].

Our second ingredient is based on the fact that, for a 1D
finite SSH chain with OBCs, previous work has shown that
the topological invariant can be determined from a quantity
known as the spectral localizer [55-58]. This is a Hermitian
matrix which directly measures the topological zero energy
modes of Hy with OBCs, taking the form:

L =[X +iHy]Q, &)

where X is the position operator, and Q = Diag[l, —1] is the
chiral symmetry operator, with I an identity matrix of the
same size as Hyg (see SM [40]). The real-space topological
invariant is defined as the signature of the spectral localizer
(denoted sig[L]), meaning the number of positive eigenvalues
of L minus the number of negative eigenvalues.

We use Eq. (5) to study the 2D system in the presence of a
boundary defect by replacing H,y with H, in the off-diagonal
blocks of Eq. (4). The effective Hatano-Nelson model is now
no longer positioned in a 1D space with position operator X
but at the boundary of a 2D disk. Therefore, we replace X in
Eq. (5) with the angular position operator in polar coordinates
® (see SM [40]).

The signature vanishes in the trivial phase at any base
energy, consistent with the absence of a skin effect [see
Fig. 3(a)]. In the AFTI phase, on the other hand, the skin
effect is present, and sig[L] = —1 everywhere inside of the
unit disk, as shown in Fig. 3(c). As the disk becomes larger
and larger, the density of eigenvalues increases, eventually
covering the full unit circle in the thermodynamic limit [see

Fig. 2(b)]. Thus, in non-Hermitian language, there exists a
nontrivial point gap at |Ey| < 1, the region of the complex
plane enclosed by the system spectrum, as expected in non-
Hermitian topological phases hosting the skin effect [43,44].
Note that this is a nontrivial invariant of the full 2D Floquet
operator H, = F, which contains both bulk as well as edge
states, and as such attests to the presence of higher-order
topology.

In the CI phase [Fig. 3(b)], however, no point gap is
formed, and we observe a gradual transition in which a sliding
domain wall appears between sig[L] = —1 and O regions of
the complex plane, interpolating between the trivial and AFTI
results of panels (a) and (c), as shown in the SM [40]. The
position of this domain wall depends on the size of the gaps
at B, = +1 and —1 (¢ = 0 and 7 /T in Floquet language) as
well as on the number of hoppings removed from the system
to produce the defect. The larger the bulk gap at either of these
two (quasi-) energies or the more hoppings are removed from
H,, the smaller the nontrivial region of Ey. This suggests that
the latter is a finite-sized effect, consistent with our expecta-
tion that the skin effect should not be protected in the absence
of a point gap.

These findings provide an indication that the non-
Hermitian point gap topology determines whether the chiral
edge modes stop (forming a skin effect, as in the AFTI) or
continue propagating around the cut hopping (as in the CI).
For a more complete picture, we present a phase diagram
of the topological invariant at two opposite base energies in
Fig. 3(d). It shows that sig[L] provides a good description of
both the trivial phase and the AFTI phase for a wide range
of on-site potentials 5o and hopping strengths J, while suf-
fering from finite-sized effects in the CI regions and close to
das = 0.

V. CONCLUSIONS AND OUTLOOK

In Refs. [59,60], it was shown that adding non-Hermitian
perturbations to the boundary of a periodically driven system
can enhance the robustness of AFTI edge modes by decou-
pling them from the bulk. Here, instead, we have shown that
non-Hermitian topology is an intrinsic boundary manifesta-
tion of the AFTI bulk: It occurs without the need for any
external perturbation. As such, a vanishingly small perturba-
tion, removing one hopping from an arbitrarily large Floquet
disk, causes the edge modes to stop altogether. They accumu-
late at the defect position instead, forming a non-Hermitian
skin effect.

This effect represents an alternate, mixed form of higher-
order topology, where the boundary of a 2D system char-
acterized by Floquet topology realizes 1D non-Hermitian
topology. The latter appears when Floquet edge modes wind
in quasienergy, it is robust against changing parameter values,
and it is general; we have checked that it occurs for a variety
of different AFTIs as well as network models. Along this di-
rection, it would be interesting to see how this skin effect can
form in an extrinic Floquet setting, the quantum walks [61].

We have shown that this effect is topological by adapt-
ing a tool that has been used mainly for Hermitian systems:
the spectral localizer. Finding other methods of studying the
robustness of this type of higher-order topology as well as
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exploring the number of dimensions, symmetry classes, and
space groups in which it may occur are interesting directions
for future work.

On a more practical level, in this paper, we suggest a
potentially simpler way of obtaining the non-Hermitian skin
effect, by starting from periodically driven topological phases.
The latter have matured over the last decade and can now be
reliably demonstrated in a variety of experimental platforms,
ranging from photonic crystals and coupled ring resonators
to acoustic systems and ultracold atoms [62—72]. Physically,
changing the boundary conditions of the non-Hermitian chain
by cutting a hopping from the real-space Floquet operator
corresponds to introducing loss to a single point on the edge

of the system. In contrast, the emerging experiments on non-
Hermitian topology mainly focus on gain and loss (or on
nonreciprocity) which is tailored to occur in a specific pattern
throughout the entire bulk of the system [73-85].
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