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Precise low-temperature expansions for the Sachdev-Ye-Kitaev model
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We solve numerically the large-N Dyson-Schwinger equations for the Sachdev-Ye-Kitaev (SYK) model
utilizing the Legendre polynomial decomposition and reaching 10−36 accuracy. Using this we compute the energy
of the SYK model at low temperatures T � J and obtain its series expansion up to T 7.54. While it was suggested
that the expansion contains terms T 3.77 and T 5.68, we find that the first noninteger power of temperature is T 6.54,
which comes from the two-point function of the fermion bilinear operator Oh1 = χ∂3

τ χ with scaling dimension
h1 ≈ 3.77. The coefficient in front of T 6.54 term agrees well with the prediction of the conformal perturbation
theory. We conclude that the conformal perturbation theory appears to work even though the SYK model is not
strictly conformal.
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I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) model is a quantum system
of N Majorana fermions with all-to-all random interactions
[1,2]. This model finds its application in different branches of
science including quantum computation [3–6] and there is a
variety of proposals for its realization in laboratory [7–16].
Reviews of the SYK model can be found in Refs. [17–20].

The SYK model low temperature behavior displays vari-
ous interesting properties. Particularly in the large-N limit it
exhibits emergent conformal symmetry in the infrared. This
suggests that conformal field theory methods can be used to
study the model. However, the symmetry is both explicitly
and spontaneously broken and therefore the term “nearly con-
formal quantum mechanics” or NCFT1 was coined for the
SYK model in Ref. [17]. The conformal symmetry still plays
a crucial role and a complete framework of its applicability is
not yet clear.

The SYK model is conjectured to be a dual description
of the gravitational theory in two dimensions [1,17]. To con-
struct and understand the full duality between the SYK model
and the gravitational theory it is crucial to establish the low-
temperature expansion of the free energy of the SYK model.
In this paper we investigate such an expansion using the con-
formal perturbation theory approach and confirm theoretical
predictions by extremely precise numerical computations. It
was previously assumed that the SYK model energy at low
temperatures contains noninteger powers of temperature T hk ,
where hk are scaling dimensions of fermion bilinear operators
Ohk and the first two dimensions are h1 ≈ 3.77 and h2 ≈ 5.68
for the q = 4 case. We show numerically that these terms are
not present and the first noninteger power of temperature is
T 2h1−1, which comes from the two-point function of the oper-
ator Oh1 . We find that the coefficient in front of this power term
agrees well with the prediction of the conformal perturbation
theory.

The paper is organized as follows: in Sec. II, we review
the SYK model. In Sec. III, we discuss the effective theory
approach to the SYK model and the low-temperature expan-

sion of the two-point function and free energy. In Sec. IV, we
discuss methods for numerical solution of the large-N Dyson-
Schwinger equations. Finally, in Sec. V, we present numerical
results and compare them with the theoretical predictions.

II. THE SACHDEV-YE-KITAEV MODEL

The Majorana SYK model is described by the following
Hamiltonian with even integer q

H = iq/2

q!

∑
i1,...,iq

Ji1...iqχi1 · · ·χiq , (1)

where N Majorana fermions χi with i = 1, . . . , N interact via
random couplings Ji1...iq drawn from a Gaussian ensemble with

zero mean Ji1...iq = 0 and variance J2
i1...iq

= (q − 1)!J2/Nq−1.
The free energy of the SYK model after disorder average is

−βF = ln Z = ∂nZn|n→0, (2)

where β = 1/T is the inverse temperature. In Refs. [21,22]
it was explained that, for the SYK model up to 1/Nq−2 order
Zn = (Z )n, therefore at leading N we get −βF = ln Z . Taking
disorder average of the partition function and integrating out
the Majorana fermions we obtain a functional integral over
two bilocal fields G and �:

e−βF =
∫

DG(τ1, τ2)D�(τ1, τ2)e−I[G,�], (3)

where G(τ1, τ2) has a meaning of imaginary time two-point
function of the Majorana fermions

G(τ1, τ2) = − 1

N
〈Tχi(τ1)χi(τ2)〉 (4)

and the (G, �) action I is [17,21]

− I[G, �]

N
= ln Pf(−σ − �)

− 1

2

∫ β

0
dτ1dτ2

[
�(τ1, τ2)G(τ1, τ2) − J2

q
G(τ1, τ2)q

]
,

(5)
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where σ (τ1, τ2) = δ′(τ1 − τ2). In the large-N limit the leading
contribution to the thermodynamic free energy F comes from
the saddle-point configuration (G∗, �∗) of the functional I ,
so βF∗ = I[G∗, �∗]. This configuration is a solution of the
Dyson-Schwinger (DS) equations

−∂τ1 G(τ1, τ2) −
∫ β

0
dτ ′�

(
τ1, τ

′)G(τ ′, τ2) = δ(τ12),

�(τ1, τ2)=J2G(τ1, τ2)q−1,

(6)

and it has translational symmetry G∗(τ1, τ2) = G∗(τ12). It is
well-know that the saddle-point solution for β, τ12 	 1/J can
be approximated by the power-law form [2,17,21,23]

Gc(τ ) = −b	

(
π

βJ
∣∣ sin πτ

β

∣∣
)2	

sgn(τ ), (7)

where 	 = 1/q and

b = 1

2π
(1 − 2	) tan (π	). (8)

This is a consequence of the emergent time reparametrization
invariance of the DS equations in the infrared (IR) limit.

Since βF∗ depends only on βJ , the large-N energy of the
system per particle is βE = J∂J (βF∗/N ) and thus we obtain
for the energy

E = −J2

q

∫ β

0
dτG∗(τ )q = −1

q
∂τ G∗(τ )|τ→0+ . (9)

This is an ultraviolet (UV) quantity and cannot be calculated
using the conformal approximation (7). At large βJ , the en-
ergy admits a 1/βJ expansion, so we have for the energy per
coupling J

ε(βJ ) = E/J = c0 + c2

(βJ )2 + c3

(βJ )3 + · · · , (10)

which is a function of βJ only. For the first three terms of the
energy it was found that [17,21,24–26]

ε(βJ ) = ε0 − π2k′(2)α0

3qa(βJ )2 + 2π2k′(2)α2
0

3a(βJ )3 + · · · , (11)

where a = [(q − 1)b]−1 and k(h) is given in (13) and for
q = 4 the ground-state energy is ε0 ≈ −0.0406 and α0 ≈
0.2648, which are determined numerically. The next-order
terms in the energy expansion are unknown. It was suggested
in Refs. [21,24] that the next-order term should have the
form ch1/(βJ )h1 , where h1 (≈3.77 for q = 4) is the scaling
dimension of the bilinear operator Oh1 = χi∂

3
τ χi. On the other

hand, the conformal perturbation theory and arguments based
on the large-q expansion in Refs. [27,28] imply that this term
should be absent. The main goal of this paper is to clarify
the low-temperature energy expansion of the Majorana SYK
model. For this, we used a high-precision computation of the
SYK model Green’s function G∗(τ ) at very low temperatures
(very large βJ). In the next section we discuss an effective
theory approach to the SYK model, which uses conformal
perturbation theory for computation of 1/βJ expansion of the
two-point function and the free energy.

III. SACHDEV-YE-KITAEV EFFECTIVE THEORY

The effective theory approach to the SYK model provides a
way to compute higher-power temperature corrections (higher
1/βJ terms) of the SYK free energy and the two-point func-
tion using the conformal perturbation theory. In this approach
one assumes that the (G, �) action I can be viewed as a
conformal field theory (CFT) action, perturbed by an infinite
series of irrelevant bilinear operators Oh(τ )

I = ICFT +
∑

h

gh

∫ β

0
dτOh(τ ), (12)

with the scaling exponents h obtained from the solution of the
equation k(h) = 1 with

k(h) = (2	 − h)(h + 2	 − 1)

(2	 − 2)(2	 + 1)

(
1 − sin (πh)

sin (2π	)

)
. (13)

For any 	 the lowest scaling exponent is h0 = 2, but the
higher scaling exponents depend on q and for q = 4 the next
three are

h1 ≈ 3.7735, h2 ≈ 5.6795, h3 ≈ 7.6320. (14)

The bilinear operators Ohk schematically are

Ohk (τ ) = χi(τ )∂2k+1
τ χi(τ ). (15)

Conformal SYK two-point function in (7) is obtained using
the ICFT action

Gc(τ12) = − 1

Z

∫
Dχi

1

N
χi(τ1)χi(τ2)e−ICFT . (16)

The 1/βJ corrections to the two-point function can be com-
puted using conformal perturbation theory with the action in
(12). For the first-order correction one uses the three-point
function [29–31]

1

N
〈χi(τ1)χi(τ2)Oh(τ3)〉

= chb	sgn(τ12)∣∣ βJ
π

sin πτ12
β

∣∣2	−h∣∣ βJ
π

sin πτ13
β

∣∣h∣∣ βJ
π

sin πτ23
β

∣∣h
, (17)

where the structure constants ch can be extracted from the
explicit computation of the connected part of the four-point
function of the Majorana fermions [17,29]

c2
h = a

k′(h)

(h − 1/2)

π tan (πh/2)

(h)2

(2h)
. (18)

The second order of the conformal perturbation theory re-
quires the computation of the four-point function, and so on
[27], this in turn uses the structure constants chh′h′′ of the
three-point function of the operators Oh, Oh′ , and Oh′′ . These
structure constants were computed in Ref. [30] from the six-
point correlation function of the Majorana fermions. Finally
this leads to the following expansion of the exact two-point
function

G∗(τ ) = Gc(τ )

(
1 −

∑
h

αh

(βJ )h−1 fh(τ )

−
∑
h,h′

ahh′αhαh′

(βJ )h+h′−2 fh,h′ (τ ) − · · ·
)

, (19)
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where the functions fh(τ ) are

fh(τ ) = (2π )h−1(h)2
[
Ah

(
e

2π iτ
β

) + Ah
(
e− 2π iτ

β

)]
2 sin πh

2 (2h − 1)
, (20)

with Ah(z) = (1 − z)hF(h, h, 1; z) and F is the regularized
hypergeometric function. Parameters αh are related to the
couplings gh as

g2
h = J2k′(h)

a

(h − 1/2)

π tan (πh/2)

(h)2

(2h)
α2

h, (21)

and the coefficients ahh′ , ahh′h′′ , etc. can be computed exactly
[27]. The functions fh,h′ (τ ) are unknown and depend on q,
but scale as fh,h′ (τ ) → (β/τ )h+h′−2 for β → ∞. For the Ma-
jorana SYK model the leading terms in this series expansion
are

G∗(τ ) = Gc(τ )

(
1 − α0

βJ
f0(τ ) − a00α

2
0

(βJ )2 f00(τ )

− α1

(βJ )h1−1 f1(τ ) − a000α
3
0

(βJ )3 f000(τ ) − · · ·
)

. (22)

In this approach, the coupling constants gh (or parameters
αh) are unknown real numbers. We can find αh by fitting
numerical solution for G∗(τ ) by the formula (22).

Similarly, using the conformal perturbation theory for the
action (12), we can obtain the 1/βJ expansion of the SYK
model free energy:

βF∗ = βFCFT +
∑

h

gh

∫ β

0
dτ 〈Oh〉β

− 1

2

∑
h

g2
h

∫ β

0
dτ1dτ2〈Oh(τ1)Oh(τ2)〉β + · · · , (23)

and βFCFT/N = βE0 − s0 is the conformal part of the free
energy, where E0 is the bare energy and s0 is the zero-
temperature entropy [23,32]

s0 =
∫ 1/2−	

0
dx

πx

tan (πx)
. (24)

Since in one-dimension we can map a line to a circle by the
transformation τ → ei2πτ/β we expect that correlation func-
tions on the thermal circle are determined by the conformal
symmetry. Therefore all one-point correlation functions of
primary operators should vanish, except for the identity [33].
Using the two-point function of operators

〈Oh(τ1)Oh(τ2)〉β = N

(
π

βJ sin πτ12
β

)2h

, (25)

we can compute its contribution to the free energy [27,34]:

βδ2Fh

N
= −π2h− 1

2 
(

1
2 − h

)
2(1 − h)

g2
h/J2

(βJ )2h−2 . (26)

For the SYK model this CFT approach has a big caveat.
The problem is that the operator Oh0 = χi∂τχi with h0 = 2
is essentially the Hamiltonian H of the SYK model and thus
correlation functions with it do not have the CFT structure. For
instance as was shown in Ref. [17] the two-point function of

Oh0 measures the energy fluctuations and is a constant rather
than a power law:

〈Oh0 (τ1)Oh0 (τ2)〉β = N
c

β3
, (27)

where c is the specific heat per particle,

c

2β
= −π2k′(2)

3qa

α0

βJ
, (28)

so βF∗/N = βE0 − s0 − c/(2β ) + · · · . One can say that the
operator Oh0 breaks conformal symmetry. On the other hand
if we assume that 〈Ohk 〉β = 0 for k = 1, 2, 3, . . . , then we can
heuristically argue that, for all n,

〈Oh0 (τ1) · · · Oh0 (τn)Ohk (τn+1)〉β = 0 (29)

because, as we mentioned above, Oh0 = H , and thus

〈H . . . HOhk (τn+1)〉β = Z−1(−∂β )nTr(Ohk e−βH ). (30)

Similarly we should conclude that, if 〈Ohk Ohm〉β ∝ δkm for
k, m = 1, 2, 3, . . . , then

〈Oh0 · · · Oh0 Ohk Ohm〉β ∝ δkm. (31)

We find below that our numerical results indeed support the
equations (29) and (26) and show some evidence for (31) in
the case of one Oh0 operator and k = m = 1.

Although the expression (19) can be obtained using the
CFT approach and assuming that Oh0 does not violate the
CFT structure of the correlation functions, the coefficients
ahh′ , ahh′h′′ and the first two terms in (11) of the energy ex-
pansion were computed using more direct method, developed
in Refs. [17,21,25,26]. In the Appendix C we show how to
reproduce (26) using this method. Nevertheless, this method
does not explain which powers of 1/βJ can be present in
the energy expansion. Therefore, in this paper we approach
this question using numerical computations. Particularly, we
analyze 1/βJ expansion of the energy ε(βJ ) and also Green’s
function G∗(β/2) at τ = β/2 point.

IV. NUMERICAL SOLUTION OF THE
DYSON-SCHWINGER EQUATIONS

Conventional approach to numerical solution of the SYK
Dyson-Schwinger equations (6) at finite βJ uses iterations of
the equations, starting with the free correlation function and
using the Fourier series expansion [17]

G(τ ) = 1

β

+∞∑
n=−∞

G(iωn)e−iωnτ , (32)

where ωn = 2π (n + 1/2)/β are the Matsubara frequencies.
In the Matsubara frequency space the first equation in (6) is
diagonal

[iωn − �(iωn)]G(iωn) = 1. (33)

Numerically, one keeps only Matsubara modes with |n| < NM

and because at large frequencies the Green’s function decays
as G(iωn) ∼ 1/(iωn) the error of the numerical solution scales
as O(N−1

M ). To improve accuracy of this approach one uses
the knowledge of the first p high-frequency expansion terms
of the Green’s function G(iωn) ≈ ∑p

k=1 gk/(iωn)k , where
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g1 = 1. This helps to reduce the error to the order O(N−p−1
M )

[35–38]. In Appendix B we discuss this approach to the Ma-
jorana SYK model.

In this paper we use the Legendre spectral method [35,39]
to solve numerically the Dyson-Schwinger equations (6)
much more efficiently. Namely we decompose the Green’s
function and the self-energy in the Legendre polynomials
(there are other orthogonal polynomials which can be used
[40] as well as methods [41])

G(τ ) =
∞∑

�=0

G�L�(x(τ )), �(τ ) =
∞∑

�=0

��L�(x(τ )), (34)

where x(τ ) = 2τ/β − 1. The Legendre coefficients G� and
�� decay exponentially with � [39] and therefore if we retain
only NL Legendre coefficients in the expansion (34) we expect
numerical solution to have exponentially high accuracy of the
order O(e−NL ).

An inherent particle-hole symmetry of the Majorana
fermions leads to the symmetry of Green’s function around
τ = β/2, so G(τ ) = G(β − τ ). This implies that all the odd
coefficients of the Legendre decomposition must be zero
G2k+1 = 0 for k = 0, 1, 2, . . . .

Using the Legendre polynomial expansion we can find the
energy of the SYK model (10) as

ε(βJ ) = 1

2βJ

∞∑
k=1

k(2k + 1)G2k, (35)

and also the two-point function at τ = β/2 point:

G(β/2) =
∞∑

k=0

(−1)k

4k

(2k)!

(k!)2 G2k, (36)

where we used that L′
�(−1) = (−1)�+1�(� + 1)/2 and

L2k+1(0) = 0 and

L2k (0) = (−1)k

4k

(2k)!

(k!)2 . (37)

Details of the numerical solution with the Legendre poly-
nomial expansion are discussed in Appendix A. In the next
section we present our numerical results and compare them
with the theoretical predictions.

V. NUMERICAL RESULTS

We find numerical solution for the Green’s function
G(τ ) in q = 4 SYK model in the range of parameter
βJ ∈ [10, 15 000] with accuracy around 10−36 solving the
equations (6) with the use of the Legendre polynomials de-
composition. To achieve this accuracy we retain NL Legendre
coefficients, where NL is such that the last Legendre coeffi-
cient GNL is smaller than 10−36. As we already mentioned
above the Legendre coefficients G� and �� decay exponen-
tially with � [39] and by fitting numerical results for different
βJ we find for q = 4

G� ≈ −e−3.32�/
√

βJ , �� ≈ −e−3.20�/
√

βJ . (38)

FIG. 1. Plot of the Legendre coefficients G2k and Gc,2k of G∗(τ )
and Gc(τ ), respectively, for βJ = 1000. Two black dashed lines
represent asymptotes (38) and (39) (only the first 11 coefficients Gc,2k

are shown).

In contrast, the Legendre coefficients of the conformal solu-
tion Gc(τ ) in (7) for q = 4 and large � = 2k are

Gc,2k ≈ − 2
√

2

π1/4
√

βJ

(
1 + 45

2048k4
+ · · ·

)
, (39)

and to derive it we used expansion in powers of 1 − x2 of the
function [cos(πx/2)]−2	 and the integral

∫ 1

−1

dxL2k (x)

(1 − x2)α
= (1 − α)

(
k + 1

2

)
(k + α)

(α)(k + 1)
(
k + 3

2 − α
) . (40)

A plot of the Legendre coefficients G2k and Gc,2k for βJ =
1000 is depicted in Fig. 1. We see that only first two Legendre
coefficients G0, G2 of the exact solution G∗(τ ) are close to
those of the conformal solution Gc(τ ).

We compute the energy using Eq. (35) and we can estimate
the accuracy of this computation assuming that each coeffi-
cient G� for � = 1, . . . , NL is computed with accuracy GNL

plus the sum in (35) from NL to ∞ with the asymptotic values
of G� from (38). This gives

δε ≈
(

N3
L

24βJ
+ N2

L

8 × 3.32
√

βJ

)
e−3.32NL/

√
βJ . (41)

For βJ ∈ [9600, 15 000] we used NL = 3000 and the lowest
accuracy for energy ε(βJ ) is at βJ = 15 000 and can be esti-
mated as δε ≈ 4 × 10−31. On the other hand the coefficient
(1/βJ )7.54 ≈ 3 × 10−32 at this value of βJ , so the overall
accuracy is enough to probe (1/βJ )7.54 dependence of the
energy. We also estimated accuracy of our computation using
the second relation in Eq. (B14). This estimate shows even
higher accuracy of the energy computation than Eq. (41),
confirming that we can reliably probe the (1/βJ )7.54 term.

We are interested in 1/βJ series expansion of the energy
ε(βJ ). This is an asymptotic series and the accuracy of its
approximation to ε(βJ ) for large enough βJ is proportional
to (1/βJ )p′

, where p′ > p is the next omitted power in the
series expansion up to the power p. So if we denote the series
expansion up to the power p by

εp(βJ ) = c0 + c2/(βJ )2 + · · · + cp/(βJ )p, (42)
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× × ×

FIG. 2. Log-log plot of the difference |ε(βJ ) − ε2h1 (βJ )| be-
tween the numerical values ε(βJ ) and their fit by the polynomial
ε2h1 (βJ ), which includes two non-integer powers 2h1 − 1 and 2h1.
We tune weights of the loss function (44) such that the difference
(red line) lies below (βJ )−p′

, where p′ = 8 is the next omitted power
in the expansion (black dashed line).

then we should expect

|ε(βJ ) − εp(βJ )| � cp′/(βJ )p′
. (43)

This should be true for asymptotic series provided we take
large enough βJ such that cp′/(βJ )p′ � cp/(βJ )p. We stress
that powers in this expansion can be noninteger numbers.

To extract series coefficients c0, c2, . . . , cp we perform
linear regression fit of the numerical data for ε(βJ ) by the
polynomial εp(βJ ) on the interval of couplings βJ using the
weighted least squares, i.e., minimizing the loss function

Lw(c0, c2, . . . , cp) =
∑

i

wi[ε(βJi ) − εp(βJi )]
2. (44)

We tune weights wi in such a way that the inequality (43) is
fulfilled on the interval of βJ . An example of such a fit on the
interval βJ ∈ [500, 15 000] for p = 2h1 ≈ 7.54 is depicted in
Fig. 2.

On general grounds, we expect that by fitting the numer-
ical data by the polynomial εp(βJ ) we can find coefficients
c0, c2, . . . , cp with the accuracy

δck ∝ 1/(βJmax)p′−k, (45)

where βJmax is the maximal value of the βJ interval and
p′ > p is the next omitted power in the series expansion. The
validity of the estimate (45) is not entirely clear, but it should
be certainly correct in the βJmax → ∞ limit. We also analyze
accuracy of our fit using the ratio c3/c2

2, which is independent
on α0 parameter and can be computed analytically from (11)

c3

c2
2

= − 384

π (2 + 3π )
≈ −10.6988. (46)

The accuracy of this ratio is essentially the accuracy of the
coefficient c3, since c2 should have much higher accuracy
than c3 for large βJmax according to (45). To further improve
accuracy of the numerical estimate of the coefficients ck , we fit
the data for different values of βJmax and then approximate the
results to βJmax → ∞ value. To rule out potentially possible
noninteger power terms ck/(βJ )k in the energy expansion, we
include these terms one at a time in the polynomial εp(βJ )

TABLE I. Fitting results for possible power expansion coeffi-
cients. We conclude that these coefficients are absent in the series
expansion. We also included nonexisting coefficient c1 to check
accuracy of the fit.

c1 ≈10−26

ch1 ≈10−13

ch1+1 ≈10−9

ch1+2 ≈10−5

ch2 ≈10−5

and by fitting them we find that their coefficients ck are tiny
numbers. We listed the results of such a fit by the polynomial
ε2h1 (βJ ) in Table I. We conclude that there are no terms
with powers p = h1, h1 + 1, h1 + 2 or h2, where hk are given
in (14) in the energy 1/βJ expansion. To check that non-
integer power terms ck/(βJ )k with k = 2h1 − 1 ≈ 6.54 and
k = 2h1 ≈ 7.54 are present in the energy expansion we fit
the numerical data for ε(βJ ) by the polynomials ε6(βJ ) and
ε7(βJ ) (with c2h1−1 term included in ε7) for different values of
βJmax and analyze behavior of the error δ(c3/c2

2 ) as a function
of βJmax. According to (45) and the discussion below (46)
we expect to find δ(c3/c2

2 ) ∝ 1/(βJmax)p′−3, where p′ is the
next omitted power after the power p of the fitting polynomial
εp(βJ ). The plot of δ(c3/c2

2 ) as a function of 1/βJmax and its
fit are depicted in Fig. 3. We find numerically p′ ≈ 6.52 and
p′ ≈ 7.44 for p = 6 and p = 7 cases correspondingly.

Finally we fit the numerical data by the polynomial
ε2h1 (βJ ) which includes c2h1−1 and c2h1 coefficients. Our re-
sults for the energy expansion coefficients are summarized
in Table II where we included all the significant digits with
the standard error in parenthesis. For these results the ratio
(46) has precision 10−18. We will see below that the coeffi-
cient c2h1−1 of the first noninteger power term in the energy
expansion is in perfect agreement with the prediction of the
conformal perturbation theory (26). To find numerically the
parameters α0, α1, α2 we compute G∗(β/2) on an inter-
val of βJ using the equation (36). We notice that L2k (0) ≈
(−1)k/

√
πk + O(k−3/2) for k 	 1, so the contribution of the

Legendre coefficients G2k in (36) decay with k, which makes
accuracy of G∗(β/2) computation even higher than the accu-
racy of the energy computation. Similarly to the energy we fit
the numerical results for G∗(β/2) by a polynomial of 1/βJ ,

(a) (b)

FIG. 3. Log-log plot of the error δ(c3/c2
2 ) as a function of

1/βJmax obtained from fitting ε(βJ ) by ε6(βJ ) in panel (a) and
by ε7(βJ ) in panel (b). Black dashed lines are proportional to
(βJmax)−3.52 and (βJmax)−4.44.
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TABLE II. 1/βJ expansion coefficients of the energy.

c0 −0.04063026975834491522143475022673(6)
c2 0.19800839700257657773045(3)
c3 −0.4194698967373753612(4)
c4 0.664982720599833(5)
c5 −2.57685914760(6)
c6 9.9321852(9)
c2h1−1 −13.0232(9)
c7 −26.8(9)
c2h1 109 ± 5

which includes only powers predicted theoretically in (22).
More precisely, to find α0, α1, α2 we fit the expression

√
βJG∗(β/2)

(π/4)1/4 + 1 = α0 f0(β/2)

βJ
+ a00α

2
0 f00(β/2)

(βJ )2

+ α1 f1(β/2)

(βJ )h1−1 +a000α
3
0 f000(β/2)

(βJ )3 + · · · ,

(47)

where we used that Gc(β/2) = −(π/4)1/4/
√

βJ . Numerical
results for the coefficients of the expansion in Eq. (47) are
shown in Table III. From these results we can find parameters
αh for h0, h1, and h2, using that f0(β/2) = 2, f1(β/2) ≈
4.7373, f2(β/2) ≈ 11.3971 from (20). The results for αh are
summarized in Table IV. We notice that numerical error of
α2 is large, since the two powers h2 − 1 ≈ 4.68 and h1 + 1 ≈
4.77 in 1/βJ expansion are very close to each other and
this lowers precision of the fit. We also obtain f00(β/2) ≈
5.009 69, f01(β/2) ≈ 19.9483 and f000(β/2) ≈ 2.527 85 us-
ing that a00 = 9/4, a01 ≈ 2.7229 and a000 = −65/4 [27]. As
a check of our accuracy we expect from (11)

ctheory
2 = 1

48
π (2 + 3π )α0. (48)

Using the results from Tables II and IV we find

c2 − ctheory
2 ≈ 10−17. (49)

This essentially shows the accuracy of α0 from Table IV,
since the coefficient c2 from Table II has higher accuracy, in

TABLE III. 1/βJ expansion coefficients in Eq. (47).

Power of 1/βJ Coefficient

1 0.529611247663296071(4)
2 0.7904019072219(3)
h1 − 1 1.548138356(4)
3 −0.76275663(4)
h1 9.40092(6)
4 −11.01(2)
h2 − 1 75 ± 20
h1 + 1 −140 ± 50
5 −10 ± 40

TABLE IV. Parameters αh obtained from Table III.

α0 0.26480562383164805(2)
α1 0.32679563(5)
α2 6.6 ± 1.8

agreement with (45). Similarly, from (26), we expect

ctheory
2h1−1 = (h1 − 1)π2h1− 1

2 
(

1
2 − h1

)
(1 − h1)

g2
h1

J2

≈ −121.9375α2
1, (50)

where gh is given in (21). Using the numerical result for α1

from Table IV, we obtain from the conformal perturbation
theory prediction

ctheory
2h1−1 ≈ −13.0224. (51)

We see that it coincides with our numerical estimate for c2h1−1

in Table I within an error of 8 × 10−4. We remark that such a
good agreement with the conformal perturbation theory indi-
rectly confirms that 〈Oh0 Oh2〉 = 0, otherwise it would produce
the power term h2 + 1 ≈ 6.68 in the energy expansion, which
would strongly interfere with the term 2h1 − 1 ≈ 6.54 and
thus lower the accuracy of the fit significantly.

VI. DISCUSSION

In this article we show numerically that the conformal
perturbation theory appears to work for the SYK model even
though the SYK model is not strictly conformal. We found
that there are no terms (βJ )−h1+1 and (βJ )−h2+1 in the 1/βJ
expansion of the SYK free energy and the first noninteger
power term is p = 2h1 − 2 (≈5.54 for q = 4). It comes from
the two-point function of the bilinear operator Oh1 = χ∂3

τ χ . It
would be interesting to investigate the low-temperature expan-
sion of the complex SYK model [42] with nonzero chemical
potential μ, where there is a local operator Oh = c†∂2

τ c with
the scaling dimension h ≈ 2.65 which depends slightly on μ

[32,43]. We expect that the first noninteger power in the cSYK
model free energy should be p = 2h − 2 (≈3.3 for q = 4)
and is much lower than in the Majorana SYK [44]. There
are variety of other random and nonrandom quantum models,
where the scaling dimensions of the bilinear operators depend
strongly on the models’ parameters [27,28,45–48]. In some of
these models the scaling dimensions of the lowest operators
can be less than 3/2 (and for some parameters can become
even relevant h < 1, thus breaking the conformal invariance
completely). For these type of models the validity of the con-
formal perturbation theory approach is of primary importance,
since it defines the leading behavior of the free energy.
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APPENDIX A: LEGENDRE SPECTRAL METHOD

In this Appendix, following Ref. [35], we briefly de-
scribe the Legendre spectral method for solving the Dyson-
Schwinger equations. We would like to solve numerically the
Dyson-Schwinger equation

∂τ G(τ ) +
∫ β

0
dτ ′�(τ − τ ′)G(τ ′) = −δ(τ ), (A1)

where �(τ ) = J2Gq−1(τ ). We expand Green’s function G(τ )
in the Legendre series

G(τ ) =
∞∑

�=0

G�L�(x(τ )), (A2)

where x = 2τ/β − 1. Since the Legendre polynomials
L�(x(τ )) are defined only on the interval τ ∈ [0, β] (x ∈
[−1, 1]) the δ function in (A1) can be omitted, but its effect
must be reinstated in the boundary condition for the Green’s
function1 G(0+) + G(β−) = −1. In terms of the Legendre
coefficients this boundary condition reads

∞∑
�=0

((−1)� + 1)G� = −1, (A3)

where we used that L�(−x) = (−1)�L�(x) and L�(1) = 1. For
the derivative of the Legendre polynomial we find

∂τ L�(x(τ )) = 2

β
∂xL�(x) = 2

β

∑
k

Dk�Lk (x), (A4)

where Dk� = (2k + 1) if k + � is odd and k < �, otherwise
Dk� = 0. The derivative matrix Dk� for the first several values
of k and � starting from 0 is

Dk� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 . . .

0 0 3 0 3 . . .

0 0 0 5 0 . . .

0 0 0 0 7 . . .

0 0 0 0 0 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A5)

so we obtain

∂τ G(τ ) = 2

β

∞∑
k=0

[ ∞∑
�=0

Dk�G�

]
Lk (x(τ )). (A6)

Next we write the convolution as the Legendre expansion∫ β

0
dτ ′�(τ − τ ′)G(τ ′) = β

2

∞∑
k,�=0

[�∗]k�G�Lk (x(τ )). (A7)

Therefore the Dyson-Schwinger equation (A1) reads

∞∑
�=0

(
Dk� + β2

4
[�∗]k�

)
G� = 0, (A8)

1The δ function implies the boundary condition G(0+) − G(0−) =
−1. Using the KMS condition G(−τ ) = −G(β − τ ) we arrive to the
boundary condition on the interval τ ∈ [0, β].

and it has to be supplemented with the boundary condition
(A3). We notice that, since G(τ ) = G(τ/β, βJ ), the Legendre
coefficients G� depend only on combination βJ and this is also
evident from the equation (A8). To find an expression for the
convolution matrix [�∗]k� we write∫ β

0
dτ ′�(τ − τ ′)

∞∑
�=0

G�L�(x′(τ ′))

= β

2

∞∑
k,�=0

[�∗]k�G�Lk (x(τ )), (A9)

therefore∫ 1

−1
dx′�[τ (x) − τ ′(x′)]L�(x′) =

∞∑
k=0

[�∗]k�Lk (x). (A10)

Now multiplying both sides by the Legendre polynomial and
integrating over x we obtain

[�∗]k� = 2k + 1

2

∫ 1

−1
dx′dx�[τ (x) − τ ′(x′)]Lk (x)L�(x′),

(A11)

where we used orthogonality of the Legendre polynomials,∫ 1

−1
dxLk (x)L�(x) = 2

2k + 1
δk�. (A12)

It is possible to express [�∗]k� through the Legendre coeffi-
cients �� of �(τ ) = ∑∞

�=0 ��L�(τ (x)). The matrix elements
of [�∗]k� can be found recursively [49]:

[�∗]k,�+1 = − 2� + 1

2k + 3
[�∗]k+1,�

+ 2� + 1

2k − 1
[�∗]k−1,� + [�∗]k,�−1. (A13)

The first two columns of the matrix [�∗]k,� are computed
using the relations

[�∗]k,0 = 2

(
�k−1

2k − 1
− �k+1

2k + 3

)
, k � 1,

[�∗]k,1 = [�∗]k−1,0

2k − 1
− [�∗]k+1,0

2k + 3
, k � 1, (A14)

with [�∗]0,0 = −2�1/3 and [�∗]0,1 = −[�∗]1,0/3. The re-
cursion relation (A13) works only for the lower triangular part
of the matrix [�∗]k,�, i.e., for k � �. To compute elements of
the upper triangular part one has to use the transpose relation

[�∗]k,� = (−1)�+k 2k + 1

2� + 1
[�∗]�,k . (A15)

In practice we retain only NL + 1 Legendre coefficients G�

and �� with � = 0, 1, . . . , NL and to find G� from given
�� we solve the (NL + 1) × (NL + 1) linear matrix equa-
tion composed of k = 0, 1, . . . , NL − 1 equations (A8) and
k = NL equation (A3). To perform fast transform from the
Legendre coefficients G� to the imaginary time Green’s func-
tion G(τ ) we discretize the imaginary time τ = β(1 + x)/2
using the Legendre-Gauss-Lobatto (LGL) points xi with i =
0, 1, 2, . . . , N , where xi are solutions of the equation

(1 − x2)L′
N (x) = 0 (A16)
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and they fill the interval x ∈ [−1, 1] with boundary values
x0 = −1 and xN = 1. The main statement for this particular
choice of points xi is that the following equation holds for any
polynomial p(x) of degree less than 2N :∫ +1

−1
dxp(x) =

N∑
i=0

ωi p(xi ), (A17)

where ωi = 2
N (N+1)

1
[LN (xi )]2 are called weights [50]. We assume

that we expand G(τ ) in Legendre series up to the NLth Legen-
dre polynomial

G(τi ) =
NL∑
�=0

G�L�(xi ) =
NL∑
�=0

Li�G�, (A18)

with xi = 2τi/β − 1. Therefore, the transformation from the
Legendre coefficients G� to the discretized values of the imag-
inary time Green’s function G(τi ) is a multiplication by the
matrix Li� = L�(xi ). To transform from G(τ ) to G� we need to
compute the integral∫ β

0
dτG(τ )L�(x(τ )) = β

2� + 1
G�. (A19)

On the other hand if � + NL < 2N we use (A17) to get∫ β

0
dτG(τ )L�(x(τ )) = β

2

N∑
i=0

ωiG(τi )L�(xi ), (A20)

and therefore we find

G� =
N∑

i=0

S�iG(τi ), S�i = 2� + 1

2
ωiL�(xi ). (A21)

In our numerical computations we take N = NL. We solve
the Dyson-Schwinger equation (A1) using iterations with the
weighted update [17]:

G( j+1)
� = (1 − u)G( j)

� + u

× solution of
[
Eq.(A8) + Eq.(A3) with [�∗]( j)

k�

]
,

(A22)

where u is the weighting parameter and [�∗]( j)
k�

is constructed
from �

( j)
� = J2S�iG( j)(τi )q−1. We start with the bare solution

G(0)
� = −δ�,0/2 and weight u = 1/2. We monitor the differ-

ence u−1 ∑
i 	τi|G( j+1)(τi ) − G( j)(τi )|2 between successive

iterations and divide u by a half if this difference increases.
The iteration cycle is depicted in Fig. 4. We performed all
computations in Wolfram Mathematica and used small com-
puter cluster to perform computations for different values of
βJ in parallel.

APPENDIX B: MATSUBARA SPECTRAL METHOD

In this Appendix we discuss improved numerical method
for solving the Dyson-Schwinger equations (6) using the
standard Matsubara frequency approach. Since in the Ma-
jorana SYK model G(β − τ ) = G(τ ) Green’s function in
the frequency space is antisymmetric, G(−iωn) = −G(iωn),
and therefore the high-frequency expansions of it and of the

FIG. 4. Graphic representation of the iteration cycle for the
Legendre spectral method. The upper horizontal arrow uses the
equation �(τ ) = J2G(τ )q−1 and the lower horizontal arrow uses
the equation (A22).

self-energy have only odd powers of frequency with real co-
efficients

G(iωn) =
∞∑

k=1

g2k−1

(iωn)2k−1 , �(iωn) =
∞∑

k=1

s2k−1

(iωn)2k−1 , (B1)

and g1 = 1. Expanding the right-hand side of the DS equation

G(iωn) = [iωn − �(iωn)]−1 (B2)

for large iωn we find relations between the coefficients g2k−1

and s2k−1:

g3 = s1, g5 = s2
1 + s3, g7 = s3

1 + 2s1s3 + s5, . . . . (B3)

Denoting an inverse Fourier transform of a given frequency
power as

Qp(τ ) = 1

β

+∞∑
n=−∞

e−iωnτ

(iωn)p = res
z=0

(
−ez(β/2−τ )

2zp cosh
(

βz
2

)
)

, (B4)

where the first three functions are Q1(τ ) = −1/2, Q2(τ ) =
(2τ − β )/4, Q3(τ ) = τ (β − τ )/4, and using the equa-
tion �(τ ) = J2G(τ )q−1 we find

s1 = J2/2q−2, (B5)

and thus g3 = J2/2q−2. This allows us to write expansion of
the Green’s function for Jτ � 1:

G(τ ) = −1

2
− qεJτ − (Jτ )2

2q
+ · · · , (B6)

where we used Eqs. (9) and (10) to write the linear τ term.
Consequently this fixes a small Jτ expansion of the self-
energy

�(τ ) = − J2

[
1

2q−1
+ q(q − 1)

2q−2
εJτ

+
(

q − 1

22q−2
+ q2(q − 1)(q − 2)

2q−2
ε2

)
(Jτ )2 + · · ·

]
.

(B7)

Since we can write �(τ ) as

�(τ ) =
∞∑

k=1

s2k−1Q2k−1(τ ), (B8)

and only Q3(τ ) contains τ 2 term we find

s3 = J4

(
q − 1

22q−4
+ q2(q − 1)(q − 2)

2q−4
ε2

)
(B9)
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and therefore from (B3) we obtain

g5 = J4

(
q

22q−4
+ q2(q − 1)(q − 2)

2q−4
ε2

)
. (B10)

We see that only g1, g3, and s1 coefficients are known explic-
itly, whereas already g5 and s3 contain the energy ε, which
itself can be computed only from the exact solution of the
DS equations. Finally, we note that the Matsubara coefficients
G(iωn) are related to the Legendre coefficients G� as [39]

G(iωn) =
∞∑

�=0

Tn�G�, (B11)

where the matrix Tn� is

Tn� = β(−1)ni�+1 j�(βωn/2) (B12)

and j�(z) are the spherical Bessel functions. The matrix Tn�

satisfies
∑

n T
∗

n�Tn�′ = β2δ��′/(2� + 1). Using the properties
of the spherical Bessel functions one can relate the coefficients
gk to the Legendre coefficients G�:

gk = 2(−1)k

βk−1

∞∑
�=0

(� + k − 1)!

(k − 1)!(� − k + 1)!
δ�+k,oddG�. (B13)

This relation imposes constrains on the Legendre coefficients
of the Majorana SYK two-point function

∞∑
�=0:2

G� = −1

2
,

∞∑
�=0:2

(� − 1)�(� + 1)(� + 2)G� = − (βJ )2

2q−2
, (B14)

where we used expressions for the g1 and g3 coefficients. The
first equation in (B14) is essentially the boundary condition
(A3) and our numerical solution for G� automatically satisfies
it. The second equation in (B14) can be used to estimate
the accuracy of the numerical results for G� coefficients. To
increase the numerical accuracy of the Matsubara spectral
method we rewrite the DS equations in terms of the reduced
functions

G̃(iωn) = G(iωn) − 1

iωn
− J2

2q−2(iωn)3 ,

�̃(τ ) = �(τ ) + J2

2q−1
, (B15)

and �(τ ) is computed as

�(τ ) = J2

(
G̃(τ ) + Q1(τ ) + J2

2q−2
Q3(τ )

)q−1

. (B16)

Therefore, the fast Fourier transform (FFT) is performed with
the functions G̃(iωn) and �̃(iωn), which decay faster than
G(iωn) and �(iωn) in the frequency space. The iteration cycle
is depicted in Fig. 5. Finally, we discuss the computation of
ln Pf(∂τ − �), which contains the zero-temperature entropy

FIG. 5. Graphic representation of the iteration cycle for the im-
proved Matsubara spectral method.

(24) and has a 1/βJ expansion of the form

2 ln Pf(∂τ − �) = − (q + 1)βJε0 + 2s0

− (q − 3)
c2

βJ
− (q − 2)

c3

(βJ )2 − · · · ,

(B17)

where ck are the expansion coefficients of the energy (10). A
naive computation with the use of the Legendre coefficients

2 ln Pf(∂τ − �) = ln 2det

(
1 + β2

4
D−1[�∗]

)
(B18)

has very low accuracy of the order O(N−1
L ). Notice that in the

matrix Dkl the last k = NL row is (−1)� + 1 and represents
the boundary condition (A3). To improve the accuracy one
can compute Matsubara coefficients from the Legendre coef-
ficients using (B11) and then compute

ln Pf(∂τ − �) = 1

2
ln

[
2 cosh2

(
βJ

2q/2

)]

+
NM∑
n=0

ln

(
1 + iωn�̃(iωn)

ω2
n + J2/2q−2

)
, (B19)

where �̃(iωn) is the reduced self-energy (B15). We remark
that, whereas the accuracy of gk computed from G� using
(B13) decay exponentially with k because of the exponen-
tially growing factors, the accuracy of G(iωn) computed using
(B11) remains exponential.

APPENDIX C: COMPUTATION OF THE FREE ENERGY
USING KITAEV-SUH RESONANCE THEORY

We can rewrite the SYK (G, �) action (5) in the following
form:

− I

N
= ln Pf(−�̂) − 1

2

∫ β

0
dτ1dτ2

[
�̂(τ1, τ2)G(τ1, τ2)

− J2

q
G(τ1, τ2)q

]
+ 1

2

∫
dτ1dτ2σ (τ1, τ2)G(τ1, τ2),

(C1)

where we made a replacement �̂ = σ + �. The first part
of this action without the last term is invariant under
reparametrizations of time [21] and can be viewed as −ICFT/N
introduced in (12). The saddle-point configuration of ICFT is
(Gc(τ ), �c(τ )). The last term in (C1) is considered as a per-
turbation. The leading correction to the free energy is obtained
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from first-order perturbation theory:

−βδF

N
= 1

2

∫ β

0
dτ1dτ2σ (τ1, τ2)〈G(τ1, τ2)〉

= β

2

∫ β

0
dτσ (τ )Gc(τ ). (C2)

We cannot use direct expression for the source function
σ (τ ) = δ′(τ ) in this formula, as it leads to uncontrolled diver-
gence. It was proposed in Ref. [21] that the source function σ

can be replaced by the expression

σ (τ ) = −
∑

h

σh
J2sgn(τ )

b	a1/2|Jτ |h+1−2	
u(ξ ), (C3)

where a = [(q − 1)b]−1 and the sum goes over the scaling
exponents of the bilinear operators in (15) and u(ξ ) with ξ =
ln |Jτ | is the window function, which serves as a regulator
with the normalization

∫
dξu(ξ ) = 1. From the computation

of the corrections to the two-point function, one derives that
the coefficients αh in (19) are related to σh as [21]

αh = σha1/2

−k′(h)
. (C4)

Then the contribution to δF comes from the h0 = 2 scaling
exponent and the second-order term of τ/β expansion of Gc:

−βδF

N
= − βσ0J2

2b	a1/2

× 2
∫ β/2

0
dτ

u(ξ )

|Jτ |3−2	

(
− b	

|Jτ |2	

π2	

3

τ 2

β2

)
, (C5)

where the factor of two in front of the integral is due to the
other half of the thermal circle. Using normalization of the
window function and (C4) we find the leading correction to
the free energy:

βδF

N
= π2k′(2)

3qa

α0

βJ
, (C6)

which agrees with (28) and (11). It is not clear why a sim-
ilar calculation with the higher-scaling exponents h would
not produce 1/(βJ )h−1 contribution. The next δ2F contribu-
tion to the free energy comes from second-order perturbation
theory,

−βδ2F

N
= N

8

∫ β

0
dτ1 · · · dτ4σ (τ1, τ2)σ (τ1, τ2)

× 〈G(τ1, τ2)G(τ3, τ4)〉conn. (C7)

The connected correlation function of two G(τ1, τ2) fields is
equal to the connected part of the four-point function

〈G(τ1, τ2)G(τ3, τ4)〉conn = 1

N
F (τ1, τ2; τ3, τ4). (C8)

The h0 = 2 contribution to the four-point function is special
and we only consider h �= 2 sector here. It is well known
that in this sector the four-point function can be written as
[17,21,29]

Fh �=2(τ1, τ2; τ3, τ4) = Gc(τ12)Gc(τ34)

×
∞∑

k=1

c2
hk

χ
hk
2 F1(hk, hk, 2hk, χ ), (C9)

where ch are given in (18) and the cross-ratio χ at finite
temperature is

χ =
sin πτ12

β
sin πτ34

β

sin πτ13
β

sin πτ24
β

. (C10)

Taking only σh terms from σ functions and picking term with
the scaling dimension h in (C9) we find the contribution to the
free energy:

−βδ2Fh

N
= J4c2

hσ
2
h

8a

∫ β

0
dτ1 · · · dτ4

× u(ξ12)u(ξ34)

|Jτ12|h+1|Jτ34|h+1
χh

2 F1(h, h, 2h, χ ).

(C11)

Since the window function decays quickly when ξ = ln |Jτ |
is not small, we assume that the integrals acquire the main
contribution for τ12 → 0 and τ34 → 0, therefore we use that
2F1(h, h, 2h, χ ) ≈ 1 + · · · and get

−βδ2Fh

N
= J4c2

hσ
2
h

8a
4

∫ β/2

0
dxdx′

×
∫ β

0
dydy′ u(ξ )u(ξ ′)

|Jx|h+1|Jx′|h+1

(
πx
β

πx′
β

sin2 π (y−y′ )
β

)h

,

(C12)

where we introduced x = τ12, x′ = τ34 and y = (τ1 + τ2)/2,
y′ = (τ3 + τ4)/2. Using normalization of the window function
u(ξ ), the relation between σh and αh in (C4) as well as the one
between αh and gh in (21), and the expression for ch in (18),
we finally obtain

βδ2Fh

N
= −1

2
g2

h

∫ β

0
dydy′

(
π

βJ sin π (y−y′ )
β

)2h

. (C13)

This is exactly equal to the result of the conformal perturba-
tion theory (26).
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