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Bose-Fermi systems such as mixtures of electrons with excitons or exciton-polaritons are extensively dis-
cussed as candidates to host a variety of intriguing phenomena, including polaron formation, drag effects,
supersolidity, and superconductivity. In this paper, assuming the strong-coupling regime between the semicon-
ductor excitons and cavity photons, we develop the many-body theory approach addressing the interplay of
different types of interaction among various species in such a mixture, wherein we take into account dynamical
density responses of both the Bose-condensed exciton-polaritons and the two-dimensional electron gas inside an
optical microcavity. As anticipated previously, at high enough polariton densities, the lower hybrid mode of the
system’s excitation spectrum acquires a roton minimum, making the system prone to superconducting pairing
in the vicinity of the roton instability. We analyze the possibility of polariton-BEC-mediated superconductivity
in the electron gas, taking into account full momentum and frequency dependence of the gap, as well as in
the Eliashberg approach where the momentum dependence is neglected, and in the Bardeen-Cooper-Schrieffer
approach that discards the frequency dependence and dynamical effects. Considering the interaction screening
in Thomas-Fermi and random-phase approximations, we estimate the critical temperatures of superconductivity
to be not larger than 0.1 K in the vicinity of instability. As possible realizations of the coupled polariton-electron
system, semiconductor quantum wells and two-dimensional transition metal dichalcogenides are considered.
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I. INTRODUCTION

Recently, with the advent of two-dimensional transition
metal dichalcogenides (TMDs) hosting strongly bound and
polarization-controlled excitons, trions, biexcitons, and other
complexes, the many-body physics of Bose-Fermi mixtures of
excitons and electrons is intensively shifting from a theoreti-
cal possibility to an experimentally approachable challenge.
Placing TMDs into an optical microcavity allows to couple
excitonic complexes with light [1–8], while stacking TMDs
into Moiré heterostructures [9–12] opens unique degrees of
freedom to manipulate both the Bose and Fermi quasiparticles
in such systems.

Exciton-polaritons resulting from light-matter coupling in
optical microcavities were extensively studied in a variety
of material systems based on quantum wells (QWs) [13],
molecular dyes [14,15], perovskites [16,17], and TMDs [5,6].
Their most striking feature is the ability to form macroscop-
ically coherent states like Bose-Einstein condensates (BECs)
[17–19] and superfluid phases [20]. Until recently, however,
all related phenomena were limited by cryogenic temperatures
and generally reduced exciton-exciton interactions. In the last
decade, with the emergence of organic materials and TMD-
based heterostructures, the situation rapidly changed as the
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reduced dimensionality and large binding energies brought
excitons into the regime of strong interactions [16,21,22] and
stability at room temperature [7].

When a two-dimensional electron gas (2DEG) is added as
an additional layer, among the effects predicted for strongly
coupled electron-exciton or electron-polariton systems due
to interactions between different species are the Coulomb
and superfluid drag [23–25], the roton instability formation
[26,27], and exciton supersolidity [28]. Another frontier of
Bose-Fermi systems is the polaron-polariton physics emerg-
ing in TMDs when the electron density is increased [29–34].
If Bose condensation occurs in the exciton or exciton-
polariton subsystems, the many-body processes between the
BEC and the 2DEG may become enhanced due to the ef-
fect of Bose stimulation. One such phenomena theoretically
proposed is the superconductivity mediated by an exciton
or polariton BEC [35–46]. Unlike the exciton mechanism
of superconductivity proposed by W. A. Little [47], where
the pairing interaction occurs due to virtual excitons, here
it is mediated by virtual Bogoliubov excitations (or bo-
golons) emerging from the exciton or polariton BEC. This
setup has two advantages. First is the stimulation of bogolon
creation and annihilation in the presence of a BEC, which en-
hances the pairing interaction proportionally to the number of
Bose-condensed particles. Second, thanks to their gapless dis-
persion and generally lower energies, the Bogoliubov modes
provide enhanced contribution to the resulting coupling
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constant in comparison to excitons. The polariton-BEC setting
is especially attractive, compared to the exciton BEC, due to
high critical temperature of the BEC formation [18,19].

The aim of this paper is to develop a consistent many-body
description for the system of Bose-condensed exciton-
polaritons strongly coupled to a 2DEG, taking into account
interaction screening and dynamical effects. Previous works
on such systems assumed unscreened [35–42] or only stati-
cally screened [43,44] interactions and overlooked effects of
dynamical screening. Therefore, the aim of this paper is to
revisit the potentiality of superconducting pairing in 2DEG
mediated by virtual Bogoliubov excitations of the polariton
BEC. According to our estimates, contrary to the previous
predictions [35–41,43] (while in agreement with Ref. [44]),
the exciton-polariton mechanism of superconductivity in the
2DEG can be realized only in a very narrow vicinity of the
roton instability because of the dominating contribution of
low-frequency roton excitations to the pairing. We also show
that the pair-bogolon processes which were claimed to domi-
nate the pairing [38–41] in fact provide negligible contribution
when the interaction screening is taken into account. Our
calculations rely on the mean-field approaches that are widely
used in the many-body analysis of electronic and polaritonic
systems, such as the Bogoliubov theory, Gor’kov equa-
tions, and random-phase approximation (RPA) for interaction
screening. Although some nonperturbative correlation effects
may be overlooked in these descriptions, especially in a close
vicinity of the roton instability, the main goal of our paper is
to reveal the important role of screening and dynamical ef-
fects, in particular, in the context of polariton-BEC-mediated
superconductivity, even at the mean-field theory level.

The paper is organized as follows. In Sec. II, we introduce
the system, describe the screening of interactions by density
responses of both the exciton and 2DEG layers, and provide
the parameters we use throughout the paper. For the 2DEG
density response, we consider both the static Thomas-Fermi
approximation (TFA) and dynamical RPA. In Sec. III, we
introduce the spectrum of excitations consisting of two hy-
brid modes that originate from the coupling of Bogoliubov
quasiparticles on top of the polariton BEC with plasmons
and single-particle excitations of the 2DEG. We resolve the
contributions of different excitation branches to the electron-
electron pairing interaction by characterizing them using
Eliashberg functions and dimensionless coupling constants.
Many-body theory of superconducting pairing is described
in Sec. IV, where we employ and compare several widely
used approaches. The most elaborate analysis takes into ac-
count both the momentum and frequency dependence of the
gap and renormalization functions. The Eliashberg approach
(and the analytical Allen-Dynes formula approximating its
results) catches only the dynamical effects using frequency-
dependent functions, while the momentum dependence is
neglected. The Bardeen-Cooper-Schrieffer (BCS) approach
includes only the momentum dependence and disregards
dynamical effects. We revisit the problem of polariton-BEC-
mediated superconducting pairing in all three approaches and
demonstrate the importance of interaction screening and dy-
namical effects, showing that the BCS approach provides
greatly overestimated critical temperatures of superconduc-
tivity. Our conclusions are stated in Sec. V. Appendix A

FIG. 1. System schematic: Semiconducting (TMD or QW) bi-
layer with the interlayer separation d hosting dipolar excitons at
the distance L from the 2DEG layer inside Fabry-Pérot optical mi-
crocavity. Exchange by virtual Bogoliubov excitations (dotted line)
knocked out from the polariton BEC (zigzag lines) induces effective
attraction between electrons in the 2DEG.

contains simple formulas which can be used to estimate the
superconducting coupling constant and critical temperature.
Appendix B provides details of the momentum and frequency
dependence of the gap and renormalization functions. Ap-
pendix C demonstrates the difference between the Eliashberg
and BCS approaches, and Appendix D is devoted to analysis
of the role of pair-bogolon processes.

II. ELECTRON-POLARITON SYSTEM

The schematic of the system is shown in Fig. 1. We as-
sume that the exciton layer hosts dipolar excitons coupled
to microcavity photons to form polaritons. Possible material
realizations are based on recently emerging TMD bilayers
[48–51] or, alternatively, well-studied conventional semicon-
ductor coupled QWs. The coupled electron-polariton system
is described by the Hamiltonian

H = He + Hp + He−e + Hp−p + He−p, (1)

where He = ∑
ks εe

k c+
kscks, Hp = ∑

k ε
p
k b+

k bk are the Hamilto-
nians of bare electrons and lower polaritons whose annihi-
lation operators are, respectively, cks and bk at momentum
k (s is the electron spin and valley index, and the polariton
spin is omitted). The dispersion relation for electrons with
the effective mass m∗

e in the 2DEG is εe
k = k2/2m∗

e (hereafter,
we assume h̄ ≡ 1), and for the lower polaritons we take the
standard dispersion provided by the coupled-oscillator model
(see, e.g., Ref. [44]):

ε
p
k = 1

2

{√
δ2 + 4�2

R + k2

2mp
−

√
(δEk )2 + 4�2

R

}
. (2)

Here m−1
p = m−1

x + m−1
c , with mx and mc being the exciton

and cavity photon effective masses, respectively, �R is the
Rabi frequency, δEk = δ + k2(m−1

c − m−1
x )/2 is the differ-

ence between photon and exciton energy dispersions, and δ

is the photon-to-exciton detuning at zero momentum.
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The bare electron-electron Coulomb interaction is

He−e = 1

2S

∑
kk′q

∑
ss′

vee
q c+

k+q,sc
+
k′−q,s′ck′s′cks, (3)

with vee
q = 2πe2/εq being the Fourier image of the Coulomb

potential screened by the dielectric constant ε of the surround-
ing medium. The polariton-polariton interaction

Hp−p = 1

2S

∑
kk′q

vxx
q X|k+q|X|k′−q|Xk′Xkb+

k+qb+
k′−qbk′bk (4)

here, for simplicity, is assumed to be governed by the contact
exciton-exciton interaction vxx

q = U dressed with the Hopfield
coefficients

Xk =
√√√√1

2

{
1 + δEk√

(δEk )2 + 4�2
R

}
(5)

which determine the amplitude of the exciton component of
the lower polariton wave function. Strictly speaking, dipolar
exciton-polaritons that we consider here assume the disper-
sion law differing from the regular lower-polariton dispersion
Eq. (2) since dipolaritons in TMD bilayers (or in QWs) are
mixtures of three modes: photon, direct (intralayer) and in-
direct (interlayer) excitons [50–53]. However, as discussed
in Ref. [53], the BEC of dipolaritons occurs on the lowest
of the three branches and hence the deviation of their bare-
particle dispersion from Eq. (2) is negligible. Moreover, the
interaction matrix element of indirect excitons in bilayers
may strongly depend on transferred momentum [54], thus the
assumption of the contact interaction made in Eq. (4) is not
always applicable. Nevertheless, as will be discussed below,
only vxx

q at q near the roton minimum is important for such
many-body effects as roton instability and superconductivity,
so the full dependence of vxx

q on q in a wide range of momenta
may be omitted.

Finally, the electron-polariton interaction

He−p = 1

S

∑
kk′qs

vex
q X|k+q|Xkb+

k+qc+
k′−q,sck′sbk (6)

is defined by the Fourier image vex
q of the electron-exciton

interaction dressed with the Hopfield coefficients. For the
former, we take the following form accounting for the dipole
moment of indirect excitons and in-plane spread of their wave
function [35,44]:

vex
q = 2πe2

εq

⎧⎨⎩ e−q(L−βed )[
1 + (

βeqaB

2

)2] 3
2

− e−q(L+βhd )[
1 + (

βhqaB

2

)2] 3
2

⎫⎬⎭. (7)

Here βe,h = me,h/mx and mx = me + mh, me,h are the effective
masses of an electron and a hole making up the exciton, d
is the interlayer separation between electrons and holes in
the bilayer hosting excitons, L is the out-of-plane distance
between the centers of masses of the electron and exciton
wave functions (see Fig. 1), and aB is the exciton in-plane
Bohr radius.

The many-body approximations we use are summarized
in terms of Feynman diagrams in Fig. 2. The main quantity

FIG. 2. Feynman diagrams describing our approach: (a) dress-
ing of the 2DEG density response by the Coulomb interaction [see
Eq. (10)]; (b), (c) renormalization of the electron-exciton [Eq. (11)]
and exciton-exciton [Eq. (12)] interactions, respectively, by the den-
sity response of the 2DEG (here the symmetry vex

q = vxe
q , ṽex

q = ṽxe
q

is implied); (d) dressing of the excitonic density response by in-
teractions [see Eq. (14)], (e) screened electron-electron interaction
[Eq. (15)] as a sum of intralayer interaction in the 2DEG (V1, first
line of diagrams) and polariton-induced interaction (V2, second line
of diagrams); (f) Gor’kov equations (25) for the electron Cooper
pairing. In all panels, the straight single and double lines represent
the bare and dressed electron Green’s functions, respectively; single
and double wiggled lines represent the bare and screened interac-
tions among different kinds of particles; the dotted line is the bare
polariton Green’s function, and the zigzag lines denote the BEC of
polaritons.

of interest in our approach is the screened electron-electron
interaction Vee which contains both the direct Coulomb repul-
sion of electrons in an isolated 2DEG and effective attraction
caused by virtual Bogoliubov excitations in the neighboring
polariton system. It is given by the standard electrodynamic
formula for the screened intralayer interaction in a double-
layer system:

Vee(q, iωn) = vee
q − vee

q vxx
q 	x + (

vex
q

)2
	x(

1−vee
q 	e

)(
1−vxx

q 	x
) − (

vex
q

)2
	e	x

. (8)

Here 	e is the irreducible density response function of the
2DEG, 	x is the density response of excitons in the polariton
system. Both 	e,x(q, iωn) are considered at a given wave vec-
tor q and bosonic Matsubara frequency iωn = 2π inT , where
T denotes the temperature. We take 	e either in RPA where it
is given by the density response function of a noninteracting
2DEG [55] or in TFA, which is applicable at q → 0, ω = 0
and yields 	TFA

e = −gm∗
e/2π . Here g is the spin or spin-valley

degeneracy factor which is equal to 2 for QWs and 4 for
TMDs. Note that TFA was used in Refs. [35,36] studying
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the polariton mechanism of superconductivity and in Ref. [24]
studying electron-polariton drag.

We assume the polariton system in the BEC state at the
temperatures much lower than the critical temperature TBEC

of Bose-Einstein condensation. At these conditions, the po-
lariton system can be described by the Bogoliubov theory
[56], implying that the vast majority of polaritons belong to
the condensate, so the condensate density np

0 is almost equal
to the total density of polaritons np. The excitonic density
response 	x of the polariton system in RPA is a response
of noninteracting system of polaritons. At T � TBEC, it is
dominated by the condensate processes [57] with excitation
of a single particle out of the condensate:

	x(q, iωn) = 2X 2
0 X 2

q np
0ε̃

p
q

(iωn)2 − (
ε̃

p
q
)2 . (9)

The role of the Hopfield coefficients X0,q here is to relate the
polariton density to the excitonic one. We note that the po-
lariton dispersion Eq. (2) is renormalized here by the Hartree
mean-field interaction with the condensate [58]: ε̃

p
q = ε

p
q +

X 2
0 (X 2

q − X 2
0 )np

0v
xx
0 .

It is useful to introduce the density response of the inter-
acting electron gas [the corresponding diagram is shown in
Fig. 2(a)] as

	̃e(q, iωn) = 	e(q, iωn) + 	e(q, iωn)vee
q 	̃e(q, iωn)

= 	e(q, iωn)

1 − vee
q 	e(q, iωn)

, (10)

which renormalizes both the electron-exciton [Fig. 2(b)]

ṽex
q (iωn) = vex

q + vee
q 	̃e(q, iωn)vex

q

= vex
q

1 − vee
q 	e(q, iωn)

(11)

and the exciton-exciton [Fig. 2(c)]

ṽxx
q (iωn) = vxx

q + vxe
q 	̃e(q, iωn)vex

q

= vxx
q + (

vex
q

)2 	e(q, iωn)

1 − vee
q 	e(q, iωn)

(12)

interactions. Physically, the second term in Eq. (12) describes
the contribution of virtual electron-hole pair and plasmon
excitations in the 2DEG to the exciton-exciton interaction.

Bose-condensed system of polaritons interacting via
Eq. (12) is characterized by the Bogoliubov self-energies:

Ep
q (iωn) =

√
ε̃

p
q
[
ε̃

p
q + 2X 2

0 X 2
q np

0ṽ
xx
q (iωn)

]
. (13)

Since the interaction ṽxx
q (iωn) is generally frequency depen-

dent due to the dynamical screening, Ep
q (iωn) depends on

frequency, hence the bogolon dispersion ω(q) should be found
self-consistently as ω(q) = Ep

q (ω(q)). The excitonic density
response of the interacting polariton system [shown in the
diagrammatic form in Fig. 2(d)],

	̃x(q, iωn)=	x(q, iωn) + 	x(q, iωn)ṽxx
q (iωn)	̃x(q, iωn)

= 	x(q, iωn)

1−ṽxx
q (iωn)	x(q, iωn)

= 2X 2
0 X 2

q np
0ε̃

p
q

(iωn)2 − [
Ep

q (iωn)
]2 ,

(14)

has poles at the bogolon energies Eq. (13).

Using the notations Eqs. (11) and (14) in Eq. (8), we
can represent the screened electron-electron interaction as
[Fig. 2(e)]

Vee(q, iωn) = V1(q, iωn) + V2(q, iωn), (15)

V1(q, iωn) = vee
q

1 − vee
q 	e(q, iωn)

, (16)

V2(q, iωn) = (
ṽex

q

)2
	̃x(q, iωn). (17)

Here V1 is the dynamically screened interaction in the 2DEG,
which exists in the absence of polaritons, and V2 is the
polariton-induced contribution to the electron-electron inter-
action mediated by virtual Bogoliubov excitations (	̃x) in the
polariton system through the second-order interlayer interac-
tion (ṽex

q ) screened by the 2DEG.
In our calculations in the following sections, we consider

two possible experimental setups, based on TMD bilayers
and coupled QWs embedded into an optical microcavity. In
the TMD-based setup, we consider dipolar excitons with the
out-of-plane electron-hole distance d = 1 nm [48,49,59]. We
take electron and hole effective masses me ≈ mh = 0.5m0

(where m0 is the free electron mass) and the dielectric constant
of the surrounding medium ε = 4.4, which are the common
parameters of TMD bilayers encapsulated in hexagonal boron
nitride, see, e.g., Refs. [60–62]. The corresponding exciton
Bohr radius is of the order of aB = 1 nm. For the 2DEG layer
that we consider being a doped TMD monolayer separated
from the exciton center-of-mass by the distance L = 2 nm
(see Fig. 1), we take the electron effective mass m∗

e = 0.5m0

and density ne = 1013 cm−2. The photon effective mass in
the microcavity is mc = 4 × 10−5m0 and the Rabi splitting is
�R = 20 meV [19,50,51]. To enhance electron-exciton inter-
action by increasing the excitonic fraction in a lower polariton,
we assume positive photon-to-exciton detuning δ = 40 meV.
The density of polaritons np = 7.8987 × 1012 cm−2 is taken
slightly below the critical density for the roton instability
ncrit

p = 7.8989 × 1012 cm−2.
For the QW-based setup, we consider three-layered sys-

tem with the typical GaAs parameters: d = 9 nm, me = m∗
e =

0.067m0, mh = 0.45m0, ε = 13, aB = 7 nm, ne = 1012 cm−2,
L = 13.5 nm. The microcavity parameters in this case
are mc = 4 × 10−5m0, �R = 5 meV, δ = 10 meV (see, e.g.,
Refs. [13,18,20] and references therein). To illustrate the role
of the roton minimum and study the problem of Cooper pair-
ing, we take the polariton density np = 3.103 × 1011 cm−2 in
the vicinity of the roton instability that occurs at the critical
density ncrit

p = 3.1051 × 1011 cm−2. However, for exciton-
polaritons in QWs, where the typical densities are or the order
of 1010 cm−2, this value may be beyond the reach of current
experiments.

For both material systems, the exciton-exciton interaction
constant is taken U = 0.1μeV μm2. The bare exciton-exciton
interaction is usually assumed to be stronger, especially
in QWs (see, e.g., Ref. [21]). However, as was shown in
Refs. [53,54], the exciton-exciton interaction matrix element
for indirect excitons is a decaying function of the transferred
momentum, hence for momenta that lie in the region of the
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FIG. 3. Dispersions of excitations in the coupled electron-
polariton system based on (a) TMD at the polariton density np =
7.8987 × 1012 cm−2, and (b) QW at np = 3.103 × 1011 cm−2. Circles
and dashed line: Excitations in individual layers, i.e., 2DEG plasmon
and lower polarison dispersions. Red and olive solid lines: Upper
and lower bogolon-plasmon hybrid modes calculated in RPA. Stars:
Bogoliubov mode dispersion calculated in TFA; thin purple lines
show the same dispersions at progressively lower polariton densities
np indicated on the right. The lower bogolon-plasmon hybrid modes,
entering the single-particle continua (grey shaded areas), acquire
finite lifetimes. Insets show the magnified view of their dispersions in
RPA and TFA near the roton minimum superimposed on the spectral
density −(1/π )Im Vee(q, ω + iδ).

roton minimum that are of interest in the current paper, the
effective value of U can be lower.

III. SPECTRUM OF EXCITATIONS AND
ELIASHBERG FUNCTIONS

A. Roton minimum and instability

The denominator of Eq. (8) determines the dispersions of
excitations in the system, i.e., the real frequencies ω where the
denominator vanishes and the interaction has poles at iωn →
ω + iδ (with δ → +0).

When the density responses are considered in the static
limit of TFA (q → 0, ω = 0), 	e does not depend on fre-
quency and one obtains a single pole ω = Ep

q corresponding
to the Bogoliubov dispersion of excitations [Eq. (13) with the
statically screened ṽxx

q ]. As pointed out in Refs. [26,28,44]
addressing this limit, upon the increase of the polariton den-
sity np (or decrease of the interlayer distance L), the negative
contribution to the renormalized exciton-exciton interaction
ṽxx

q Eq. (12) due to the 2DEG response starts to dominate over
the positive terms, strongly softening the bogolon dispersion.
Such softened dispersions are shown in Fig. 3 by stars, as cal-
culated for both TMD- [Fig. 3(a)] and QW-based [Fig. 3(b)]
realizations at the high polariton densities np approaching the

FIG. 4. Phase diagram of stability of the electron-polariton sys-
tem based on TMD (a) and QW (b) in terms of the interlayer distance
L and polariton density np at different photon-to-exciton detunings
δ shown in the legends. The system stays in a spatially uniform
BEC state below the critical line and undergoes the roton instability
above it.

critical values ncrit
p . Taking progressively lower np, as shown

by purple lines, we can observe gradual disappearance of
the roton minimum. Thus, the effect of interactions in the
strongly coupled Bose-Fermi system on the bare polariton
dispersion (orange dashed lines in Fig. 3) is twofold: first,
quadratic dispersion in the region of small momenta q → 0
becomes linear (“sound” waves in a BEC), and, second, the
dispersion becomes softened at higher momenta q ∼ 1/2L
(see Appendix A for details).

When we take into account dynamical screening effects,
	e becomes frequency-dependent, hence ṽxx

q and the Bogoli-
ubov spectrum Eq. (13) become frequency-dependent, too.
In this case, one obtains two solutions iωn = ωi

q of the dis-
persion equation. They correspond to the undamped upper
(i = up) and lower (i = low) hybrid mode dispersions shown
in Fig. 3 by olive lines at the highest polariton densities np.
The lower hybrid mode becomes damped upon submerging
into the single-particle continuum of electron-hole excitations
in the 2DEG ω � (q2 + 2qkF)/2m, which is marked by the
shaded area in Figs. 3(a) and 3(b). In this regime, the energy
ωlow

q of the damped mode is obtained by fitting the spec-
tral density −(1/π )Im Vee(q, ω + iδ) with the Fano resonance
line shape (see details discussed in a separate work [63]). In
RPA, we observe the same softening of the lower hybrid mode
dispersion ωlow

q due to the 2DEG-induced renormalization
of exciton-exciton interaction as in TFA. The broadening of
the lower hybrid mode inside the continuum is demonstrated
in the insets of Fig. 3 by overlaying the close-up view of
its dispersion in the vicinity of the roton minimum on the
spectral density −(1/π )Im Vee(q, ω + iδ). The dispersion of
undamped bogolons calculated in TFA [44] plotted in the
same panels with star symbols demonstrates an upward energy
shift. Note that in the QW-based case shown in Fig. 3(b), the
lower hybrid mode is damped at all momenta.

Formation of the roton minimum is an important phe-
nomenon determining the system stability [26] and signifi-
cantly contributing to the electron pairing interaction [44].
Similar roton enhancement of the fermion pairing was pre-
dicted for atomic Bose-Fermi mixtures [64]. The system is
stable when the roton minimum energy is positive, and the
instability occurs whenever Ep

q (iωn = 0) = 0 at finite q. In
Fig. 4, we show the phase diagrams with the regions of a stable
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uniform BEC of polaritons (below the phase boundary line)
and some other symmetry-breaking phases (above the line)
resulting from the roton instability, which can be a supersolid
state or a density wave [28,65,66]. In this figure, in addition to
the aforementioned values of the detuning δ used in our super-
conductivity calculations, we chose several different values to
demonstrate that the instability is achievable at lower np as δ is
increased, since lower polaritons become more excitonic and
hence stronger interacting with the electrons. Our calculations
(see below) show that the Cooper pairing in the 2DEG occurs
only in a close vicinity of the unstable region due to the
dominating contribution of low-energy roton excitations to
electron-electron attraction.

B. Eliashberg functions and coupling constants

To demonstrate the role of virtual excitations in the effec-
tive electron-electron attraction resolved over the frequency
ω, we calculate the Eliashberg function:

α2F (ω) = −N
π

〈Im Vee(|k − k′|, ω + iδ)〉FS

= α2Fup(ω) + α2Flow(ω) + α2Fsp(ω). (18)

Here N = m∗
e/2π is the density of states at the Fermi level

of the 2DEG, and 〈. . .〉FS denotes angular averaging with both
momenta k and k′ encircling the Fermi surface |k| = kF (here
kF = √

4πne/g is the Fermi momentum), so q = |k − k′|
changes from 0 to 2kF.

Using the spectral representation of the electron-electron
interaction Eq. (8),

Vee(q, iωn) = vee
q + 2W up

q ω
up
q

(iωn)2 − (
ω

up
q

)2 + 2W low
q ωlow

q

(iωn)2 − (
ωlow

q

)2

− 1

π

∫ ∞

0
Im Vee(q, ν)

2ν dν

(iωn)2 − ν2
, (19)

we have separated the contributions of the upper and lower
hybrid modes, as well as that of the single-particle continuum
in the second line of Eq. (18). The spectral weights W up,low

q are
found from residues of Vee at the corresponding poles iωn =
ω

up,low
q . When the lower hybrid mode enters the continuum,

the third term on the right-hand side of Eq. (19) is absent so
W low

q is undefined, but W up
q can always be found.

In parallel, we consider a similar spectral representation of
the screened Coulomb interaction in the 2DEG Eq. (16):

V1(q, iωn) = vee
q + 2W pl

q ω
pl
q

(iωn)2 − (
ω

pl
q
)2

− 1

π

∫ ∞

0
Im V1(q, ν)

2ν dν

(iωn)2 − ν2
. (20)

The terms on the right-hand side correspond to the un-
screened Coulomb repulsion, attraction due to the 2DEG
plasmons, and single-particle excitations. The dispersion ω

pl
q

of the 2DEG plasmons is found as poles of V1(q, iω), where
1 − vee

q 	e(q, ω
pl
q ) = 0, and the spectral weight W pl

q is found
from the residues of V1 at these poles. Correspondingly, the

FIG. 5. Eliashberg functions of the screened electron-electron
interaction in the 2DEG for (a) TMD- and (b) QW-based systems,
separated into different parts. The Eliashberg function α2F Eq. (18)
in the presence of the polariton layer is divided into contributions
of the upper hybrid mode (α2Fup, red solid line), lower hybrid mode
both outside and inside the continuum (α2Flow, olive solid line), and
single-particle continuum of the 2DEG (α2Fsp, stars). The Eliashberg
function for 2DEG in the absence of polariton layer α2F1 Eq. (21)
consists of the contributions of the same single particle continuum
α2Fsp and of the plasmons (α2F1,pl, circles). The contributions of the
depicted functions to the coupling constants are shown in Table I.

Eliashberg function for an isolated 2DEG,

α2F1(ω) = −N
π

〈Im V1(|k − k′|, ω + iδ)〉FS

= α2Fpl(ω) + α2Fsp(ω), (21)

is separated into contributions of plasmons and single-particle
excitations. Note that the difference between the Eliashberg
functions Eqs. (18) and (21) is caused by the interaction V2 =
Vee − V1 Eq. (17) of the 2DEG with the polariton subsystem,
so we assume that the contribution of the single-particle con-
tinuum α2Fsp(ω) to both α2F (ω) and α2F1(ω) is the same. The
contribution of the lower hybrid mode α2Flow(ω) to Eq. (18)
is attributed in our approach to both undamped and damped
regions of its dispersion.

Figure 5 shows the parts of the Eliashberg functions
Eqs. (18) and (21) calculated in the RPA under the condi-
tions of Fig. 3. The dominating contributions are provided,
respectively, by the plasmon and by the upper hybrid mode,
which corresponds to a slightly modified plasmon too. The
attractive interactions due to these modes severely compete
with the bare Coulomb repulsion in the electron gas [67]. Con-
tribution of the single-particle continuum is smooth and small
in magnitude, while that of the lower hybrid mode has peaks
corresponding to extrema of its dispersion: the maximum at
ω ∼ �R (it is almost unseen in the QW case since it is reached
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TABLE I. Contributions to the coupling constants λ Eq. (22) and
λ2 Eq. (24) from different terms in the Eliashberg functions α2F
Eq. (18) and α2F2 Eq. (23), calculated for the TMD- and QW-based
systems under the conditions of Fig. 3.

Contribution to λ from TMD QW

α2Fup ∞ ∞
α2Fsp 0.15 0.06
α2Flow 0.45 0.20

Contribution to λ2 from TMD QW

α2Fup − α2Fpl −0.038 −0.001
α2Flow 0.45 0.20

inside the continuum and thus is subject to broadening) and
the roton minimum at very low energies.

The Eliashberg function determines the dimensionless cou-
pling constant

λ = 2
∫ ∞

0

α2F (ω)

ω
dω, (22)

which is relevant to superconductivity and Fermi-liquid
properties. Separating α2F (ω) into physically distinct parts
Eq. (18) allows us to single out corresponding contributions
to λ listed in the upper part of Table I. The lower hybrid mode
provides rather large contribution since the integral Eq. (22) is
dominated by the vicinity of the low-energy roton minimum
due to the factor 1/ω. The upper hybrid mode, correspond-
ing to the renormalized 2DEG plasmon with the dispersion
ω

up
q ∝ √

q and the spectral weight W up
q ∝ 1/

√
q at q → 0

provides α2Fup(ω) �= 0 in the limit ω → 0, which makes its
contribution to λ formally divergent. Physically, this divergent
effect of attraction at the Fermi surface due to renormalized
plasmons should be compensated by the opposite divergence
of Coulomb repulsion (see also Appendix B). However, the
Eliashberg function is not intended to properly take into ac-
count such compensation that requires stepping away from the
Fermi surface in momentum space.

To avoid the clash of divergences on the Fermi surface, we
focus only on the part V2 of the total electron-electron interac-
tion Vee = V1 + V2 [Eq. (15)], which is caused by the presence
of the polariton subsystem. In the absence of polaritons, the
screened electron-electron repulsion V1 Eq. (16) in the 2DEG
can be described by the effective Coulomb pseudopotential
μ. This quantity has a meaning of the dimensionless product
of N and V1, the latter averaged over the Fermi surface. It
is the change V2 = Vee − V1 Eq. (17) of the interaction due
to polaritons which is physically the most meaningful for
the problem of polariton-mediated superconductivity, hence
we consider its Eliashberg function [i.e., the difference of
Eqs. (18) and (21)] separately:

α2F2(ω) = −N
π

〈Im V2(|k − k′|, ω + iδ)〉FS

= α2Fup(ω) − α2Fpl(ω) + α2Flow(ω). (23)

This function refers to the pairing interaction induced in the
2DEG by the polariton layer. The corresponding coupling

constant

λ2 = 2
∫ ∞

0

α2F2(ω)

ω
dω, (24)

similarly to Eq. (22), consists of physically distinct contribu-
tions, shown in the lower part of Table I. The first two terms
on the right-hand side of Eq. (23) provide together a finite
(and very small) contribution to λ2 because in the limit q → 0
both the 2DEG plasmon and the upper hybrid mode have
the same dispersions ω

pl
q ≈ ω

up
q ∝ √

q and spectral weights
W pl

q ≈ W up
q ∝ 1/

√
q, leading to α2Fpl(ω) ≈ α2Fup(ω) at ω →

0 (compare the circles and red lines in Fig. 5). The over-
whelming contribution to both λ and λ2 is provided by the
lower hybrid mode α2Flow(ω) due to its softness near the roton
minimum (olive lines in Fig. 5).

IV. THEORY OF SUPERCONDUCTIVITY

A. Momentum and frequency resolved gap equations

We analyze the electron Cooper pairing in the 2DEG start-
ing from the Gor’kov equations given in the diagrammatic
form in Fig. 2(f):

Ĝ = Ĝ0 + Ĝ0̂Ĝ. (25)

Here the Nambu notation is used for the matrix Green’s func-
tion of electrons Ĝ(k, τ ) = −〈Tτ ĉk(τ )ĉ+

k (0)〉 defined in terms
of Nambu spinors ĉk = (ck↑, c+

−k↓)T . The self-energy

̂(k, iεn) = −T
∑
k′εm

Vee(|k−k′|, iεn−iεm)σzĜ(k′, iεm)σz

(26)

is found self-consistently from Ĝ; here iεn = π i(n + 1/2)T
are the fermionic Matsubara frequencies. Decomposing the
self-energy in a usual way over the Pauli matrices ̂ =
iεn(1 − Z ) + σxϕ + σzχ (the σy term can be eliminated by a
gauge transformation) and taking into account that the nonin-
teracting electron Green’s function is given by Ĝ0(k, iεn) =
(iεn + σzμe − σzε

e
k )−1, we find the solution of the Gor’kov

equations

Ĝ(k, iεn) = iεnZ + σxϕ + σzξ

(iεnZ )2 − ϕ2 − ξ 2
, (27)

where ξ = εe
k − μe + χ is the renormalized electron energy

counted from the chemical potential μe ≈ EF = k2
F/2m∗

e of
the 2DEG. The functions Z , ϕ, χ depend on (k, iεn) and
are responsible for renormalization of quasiparticles in a
superconducting state, appearance of an energy gap, and
the interaction-induced change of the electron dispersion,
respectively.

Substitution of Eq. (27) into Eq. (26) yields the self-
consistent gap equation. As adopted in the Eliashberg theory
[68–71], we assume that the renormalization χ of the quasi-
particle dispersion near the Fermi surface (|k| = kF, εn = 0) is
smooth and hence can be absorbed into εe

k − μe, so χ can be
omitted. Linearizing the gap equation at T = Tc when ϕ → 0,
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FIG. 6. Superconducting critical temperatures Tc in TMD- [panels (a)–(c) on the left-hand side] and QW-based [panels (d)–(f) on the right-
hand side] systems as functions of the polariton density np in the vicinity of the roton instability (vertical dashed lines). (a), (d) Calculations
with the screening in TFA. Solutions of the self-consistency Eqs. (28) and (29) with the full frequency-momentum dependence are shown
by the blue solid lines; the dashed red lines, stars, and circles show solutions of the Eliashberg Eqs. (36) and (37) at different Coulomb
pseudopotentials μ shown in the legends. Results of the Allen-Dynes formula are shown by the dotted lines. (b), (e) Calculations with the
screening in RPA. Solutions of the self-consistency Eqs. (28) and (29) with full frequency-momentum dependence are shown by the blue solid
lines, and the result of the Allen-Dynes formula for the QW-based system is shown by the orange dotted line. (c), (f) Results of the BCS
approach Eq. (40) with the statically screened interaction.

and projecting it on the unity matrix and on σx, we obtain the
set of equations:

εn[1 − Z (k, iεn)] = − T

S

∑
k′εm

Vee(|k − k′|, iεn − iεm)

× εmZ (k′, iεm)

[iεmZ (k′, iεm)]2 − ξ 2
k′

, (28)

ϕ(k, iεn) = T

S

∑
k′εm

Vee(|k − k′|, iεn − iεm)

× ϕ(k′, iεm)

[iεmZ (k′, iεm)]2 − ξ 2
k′

, (29)

where ξk′ = εe
k′ − μe.

The problem of superconductivity in the 2DEG admits sev-
eral different approaches that we employ and compare below.
The first one is the direct numerical solution of Eqs. (28) and
(29), taking into account both the momentum and frequency
dependencies of Z and ϕ. The first equation, Eq. (28), is
solved iteratively to obtain Z , which is then substituted into
the second equation, Eq. (29). The latter is solved as the
eigenfunction problem for ϕ with eigenvalue 1. The ranges
of both k and εn are separated into sufficiently small (until

the results converge) intervals in which the functions Z , ϕ,
Vee can be treated as constants, and the high-frequency tails
of the sums over εn are approximated with the integrals. In
Appendix B, we provide more details about the frequency and
momentum dependence of Z and ϕ.

The results of this direct numerical solution depend on
the approximation describing the interaction screening. In
Figs. 6(a) and 6(d), the solid lines show the results of this
approach when Vee is screened in TFA. Any noticeable pairing
exists only in a very close vicinity of the roton instability,
where the polariton density np is no more than 0.01% smaller
than the critical value (indicated by the vertical dashed lines).
This circumstance was clearly seen during analysis of Fig. 5
and Table I, where the overwhelming contribution to the
low-frequency Eliashberg function and hence to the coupling
constant Eq. (22) was provided by the hybrid Bogoliubov
excitations near the roton minimum. Similar conclusions were
made in Ref. [44], where only TFA was used to account for the
interaction screening.

Considering the interaction Vee in RPA, which takes into
account the dynamical effects such as plasmon-bogolon hy-
bridization and damping of the lower hybrid mode near
the roton minimum, yields controversial results displayed in
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Figs. 6(b) and 6(e). The critical temperature for the TMD-
based system Tc ≈ 17 K [see Fig. 6(b)] turns out to be rather
high. Furthermore, the Cooper pairing exists in this approach
even in the absence of polaritons (at np = 0), i.e., in an
isolated 2DEG, merely due to plasmon-mediated electron
attraction. A similar artifact of the RPA-screened Coulomb
interaction was discovered in a three-dimensional electron
gas (3DEG) in the strongly interacting regime [67]. Inclusion
of vertex corrections (or local field factors) which provide
spin-selective weakening of the screening at small distances
generally diminishes or excludes the plasmon-mediated pair-
ing [72,73] in the 3DEG. Thus, we conclude that in the
strongly interacting regime which emerges in the considered
TMD-based system, RPA produces unreliable results. Indeed,
the relative strength rs = m∗

e e2/εh̄2√πne of Coulomb inter-
action in the 2DEG is markedly larger than unity, rs = 3.8,
at TMD-based parameters. In contrast, for the QW-based sys-
tem [Fig. 6(e)], Tc obtained in RPA is about 3.5 times lower
than that in TFA [Fig. 6(d)], and the pairing exists again
only in a close vicinity of the critical polariton density. The
spurious plasmon-mediated pairing does not develop in this
case because of the generally weaker electron-electron and
electron-exciton interaction, rs = 0.55.

B. Eliashberg equations

The second approach to solve the self-consistency
Eqs. (28) and (29) is the Eliashberg theory [68–71] where the
momentum dependence of Z and ϕ is assumed to be smooth in
the vicinity of the Fermi surface, so Z (k, iεn) ≈ Z (kF, iεn) ≡
Z (iεn), and the same for ϕ(iεn). This assumption allows us to
perform summation over k in Eqs. (28) and (29) according to
the rule

1

S

∑
k′

Vee(|k − k′|, iεn − iεm)
f (k′)

[iεmZ (k′, iεm)]2 − ξ 2
k′

≈ −πNV FS
ee (iεn, iεm)

f (kF)

|εm|Z (iεm)
, (30)

where V FS
ee (iεn, iεm) = 〈Vee(|k − k′|, iεn − iεm)〉FS. In the re-

sulting set of Eliashberg equations

εn[1 − Z (iεn)] = πNT
∑
εm

V FS
ee (iεn, iεm) sgn(εm), (31)

ϕ(iεn) = −πNT
∑
εm

V FS
ee (iεn, iεm)

ϕ(iεm)

|εm|Z (iεm)
, (32)

Eq. (31) is actually an explicit expression for Z (iεn), while
Eq. (32) should be regularized to take into account the high-
frequency tail of Vee which provides the divergent contribution
to the frequency sum. The conventional approach [68,70,71]
here is to separate the dimensionless interaction NV FS

ee into
the repulsive Coulomb pseudopotential μ which is almost
constant in a broad frequency range of the order of the
characteristic 2DEG energy EF, and the attractive pairing
contribution K (iεn − iεm) which is essentially dynamical and
exists below the Debye frequency ωD, i.e., NV FS

ee (iεn, iεm) =
μ�(EF − |εn|)�(EF − |εm|) − K (iεn − iεm). Here ωD can be
understood as the highest energy of virtual excitations in the
polariton system, which is close to �R. Due to the factor
sgn(εm), μ is canceled in Eq. (31), while Eq. (32) takes the

form

ϕ(iεn) = πT
∑

|εm|<ωD

{K (iεn − iεm) − μ} ϕ(iεm)

|εm|Z (iεm)

− μϕ∞ log(EF/ωD). (33)

The last term comes from the high-frequency sum∑
ωD<|εm|<EF

ϕ(iεm)/|εm|Z (iεm) transformed into an integral
with ϕ(iεm) ≈ ϕ∞ and Z (iεm) ≈ 1 at |εm| > ωD. Taking
high frequencies ωD < |εn| < EF in Eq. (33), we obtain ϕ∞
and substitute it back into Eq. (33) taken at low frequencies
|εn| < ωD, which yields

ϕ(iεn) = πT
∑

|εm|<ωD

{K (iεn − iεm) − μ∗} ϕ(iεm)

|εm|Z (iεm)
, (34)

where

μ∗ = μ

1 + μ log(EF/ωD)
(35)

is the Coulomb pseudopotential renormalized when being
transferred from the high-frequency ωD < |εm| < EF to the
low-frequency |εm| < ωD region. The substitution μ∗ →
μ∗�(ωD − |εm|) in Eq. (34) allows us to safely extend the
frequency summation back to infinity, so the final set of regu-
larized Eliashberg equations reads

εn[1 − Z (iεn)] = πT
∑
εm

K (iεn − iεm) sgn(εm), (36)

ϕ(iεn) = πT
∑
εm

{K (iεn − iεm) − μ∗�(ωD − |εm|)}

× ϕ(iεm)

|εm|Z (iεm)
. (37)

This set of equations is solved numerically by grouping the
frequencies εn to intervals where ϕ(iεn) is approximately con-
stant, and performing analytical integration of high-frequency
tails of the frequency sums. The Coulomb pseudopotential μ

can be considered as a single parameter characterizing the
strength of Coulomb repulsion V1, which exists in the 2DEG
in the absence of polaritons as well. On the other hand, the
pairing interaction K (iωn), which is responsible for the Fermi-
surface-averaged polariton-mediated interaction V2 Eq. (17),
relates to its Eliashberg function Eq. (23) as

K (iωn)=−N 〈V2(|k − k′|, iωn)〉FS =
∫ ∞

0
α2F2(ν)

2ν dν

ω2
n +ν2

.

(38)

To estimate ωD in Eq. (35), we use McMillan’s recipe [71,74]

ωD =
∫ ∞

0
α2F2(ν) dν

/ ∫ ∞

0

α2F2(ν)

ν
dν, (39)

which provides ωD ≈ 0.025EF and 0.005EF for the TMD and
QW cases, respectively.

The results for Tc obtained from the regularized Eliashberg
Eqs. (36) and (37) are shown in Figs. 6(a) and 6(d) for dif-
ferent Coulomb pseudopotentials μ. Typical values of μ for
conventional superconductors are in the range 0.1–0.4 [75],
and our calculations using the expression μ = N 〈V1(|k −
k′|, iωn = 0)〉FS with the screening taken in the TFA provide
μ = 0.23 for TMDs and μ = 0.21 for QWs [see dashed red
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lines in Figs. 6(a) and 6(d)]. Results of the Eliashberg ap-
proach turn out to be surprisingly close to the solution of the
self-consistency Eqs. (28) and (29) with the full frequency-
momentum dependence, although its underlying presumption
of smooth momentum dependence near the Fermi surface is
not valid, as shown in Appendix B. Taking slightly higher or
lower μ results in a respective decrease or increase of Tc [stars
and circles in Figs. 6(a) and 6(d)].

C. Allen-Dynes formula

Instead of solving the Eliashberg equations numerically,
one can rely on the Allen-Dynes formula [74], the improved
version of the McMillan formula [71] fitting the numeri-
cal solutions for a number of conventional superconductors.
It provides Tc in terms of the coupling constant λ, renor-
malized Coulomb pseudopotential μ∗, and several moments
of the Eliashberg function α2F (ω). The latter can be taken
in two approximations: (i) α2F (ω) Eq. (18) for the total
electron-electron interaction Vee screened in the TFA and (ii)
α2F2(ω) Eq. (23) for the polariton-induced contribution V2

to the electron-electron interaction calculated in the RPA.
In both cases, we obtain close values of the coupling con-
stants λ Eq. (22) and λ2 Eq. (24). The critical temperatures
Tc obtained in this calculation are plotted in Figs. 6(a) and
6(d) [with the approximation (i)] and in Fig. 6(e) [with the
approximation (ii), but only for the QW-based setup where
the RPA works adequately]. The Coulomb pseudopotentials
μ were calculated, as in the previous section, by averaging the
TFA-screened Coulomb interaction V1 over the Fermi surface,
and then renormalized to μ∗ using Eq. (35).

In both cases, the Allen-Dynes formula provides Tc of the
same order as the results of the numerical solution of the
Eliashberg equations with the same approximation for the
screening: TFA in Figs. 6(a) and 6(d) and RPA in Fig. 6(e). Al-
though the coupling constants are similar in these two cases,
Tc for the QW in the RPA [solid line in Fig. 6(e)] is several
times lower than in TFA [dotted line in Fig. 6(d)] due to the
smaller pre-exponential factor (or characteristic energy of the
pairing excitations) ∼ωD, which is determined by the roton
minimum energy in the RPA and by a higher energy �R in the
TFA.

D. Bardeen-Cooper-Schrieffer approach

Finally, to solve the Cooper pairing problem, one can
also use the BCS approach, where the dynamical effects are
neglected and only the momentum dependencies of the gap
and interaction are accounted for. To apply this approach, we
take Z = 1 in Eq. (29), replace Vee by the statically screened
interaction, Vee(|k − k′|, iεn − iεm) → Vee(|k − k′|, 0), and
assume ϕ to be frequency independent. After summation over
εn, we obtain the linearized BCS gap equation

ϕ(k) = −1

S

∑
k′

Vee(|k − k′|, 0)
ϕ(k′)
2|ξk′ | tanh

|ξk′ |
2T

, (40)

which is solved numerically as the eigenfunction problem.
The resulting BCS values of Tc, shown in Figs. 6(c) and 6(f),
are orders of magnitude higher than the critical temperatures
obtained in the Eliashberg approach, and can even reach room

temperature. We note that using the BCS approach, other
authors obtained similar overestimated Tc [35–40,43]; there-
fore, we conclude that neglecting the dynamical effects in the
analysis of superconducting pairing is misleading.

In Appendix C, we investigate the origin of the large
discrepancy between the predictions of the Eliashberg and
BCS approaches described above. On a simple example of the
TFA-screened interaction dominated by the roton exchange
in the vicinity of the roton instability, we demonstrate that
the Eliashberg and BCS approaches implicitly assume dif-
ferent energy widths of the pairing region originating from
the energy and momentum of rotons, respectively. Since the
energy width involved in the BCS calculations is 2–3 orders
of magnitude larger than in the Eliashberg description, the
predicted critical temperature turns out to be proportionally
higher.

V. CONCLUSIONS

The hybrid Bose-Fermi system of exciton-polaritons in
the Bose-condensed regime coupled to a 2DEG via an in-
terlayer electron-exciton interaction was considered using the
many-body quantum theory, with special attention paid to the
problem of potential superconductivity induced in the 2DEG
in the presence of a polariton BEC [35–44]. We analyzed the
electron-electron interaction undergoing combined screening
by density responses of the polariton BEC and the 2DEG, the
latter taken both in the TFA and RPA. Taking into account
dynamical effects, hybridization of Bogoliubov quasiparticles
of the polariton system with plasmons and single-particle ex-
citations of the 2DEG is revealed, with the lower hybrid mode
being damped when its dispersion overlaps with the 2DEG
single-particle continuum.

Dispersion of the lower hybrid mode softens to develop the
roton minimum, which becomes deeper with the increase of
the polariton density np. It is caused by the effective polariton-
polariton attraction mediated by the density response of the
2DEG, as also noted in Refs. [26,44]. Above the critical
polariton density ncrit

p , the system becomes unstable against
supersolid [28,65,66] or density wave formation, since the
energy of the roton minimum becomes negative. As spe-
cific physical realizations, we considered the setups based on
two-dimensional TMD bilayers and coupled semiconductor
QWs. In both cases, we consider the spatially indirect ex-
citons which interact with the neighboring 2DEG relatively
strongly due to their persistent dipole moment. For the TMD-
based setup, the instability occurs at ncrit

p ∼ 1012 − 1013 cm−2,
which could be close to the experimentally relevant condi-
tions. In contrast, the setup based on GaAs-type QWs requires
high polariton densities ncrit

p ∼ 1011 cm−2, which are much
harder to be achieved due to larger excitonic Bohr radius in
these materials.

In a close vicinity of the critical polariton density ncrit
p ,

the low-energy rotons dominate the pairing interaction, as
evidenced by the analysis of their Eliashberg functions in
Sec. III B, and this regime is the most promising for a possible
superconducting pairing. We analyze superconducting Cooper
pairing in the 2DEG induced by the screened electron-electron
interaction Vee in different approximations. The first one is the
numerical solution of the set of self-consistency equations for
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momentum and frequency dependent gap and renormaliza-
tion functions. Direct solution of these equations provides
Tc up to 0.1 K and 0.03 K for, respectively, TMD- and
QW-based setups with the screening in the TFA. Taking into
account dynamical screening in the RPA provides contro-
versial results: In the TMD-based case, due to entering the
strongly-interacting regime, the unphysical Cooper pairing in
the 2DEG appears even in the absence of polaritons. This
artifact of the RPA [67] can be avoided by a more accurate
treatment of the interaction screening when taking into ac-
count vertex corrections [72,73]. This is not the case for the
QW-based system, where the electron interactions are not as
strong, and the RPA results in maximal Tc ∼ 0.01 K.

Another widely used approach we employed to calculate Tc

is the Eliashberg equations, where the momentum dependence
of the gap and renormalization functions is neglected and
only the frequency dependence is retained. Taking realistic
values of the Coulomb pseudopotential which characterize
the effective electron-electron repulsion competing with the
polariton-induced attraction, we obtain Tc close to that found
from the aforementioned full numerical solution in TFA. The
Allen-Dynes formula, which approximates solutions of the
Eliashberg equations, also provides similar results. Neverthe-
less, the assumption of smooth momentum dependence of the
gap and renormalization functions is not justified in our case
(see Appendix B), so care should be taken when transferring
the well-established methods of the phonon-mediated super-
conductivity to other pairing mechanisms. The third approach,
namely, the BCS approximation, where the dynamical effects
are neglected, results in extremely high Tc reaching room
temperatures, in agreement with the results of other authors
[35–40,43]. Appendix C is devoted to the origin of such a
discrepancy between the Eliashberg and BCS approaches. In
the BCS approach, the mapping of characteristic energy width
of the pairing region (determined by the roton energies in the
vicinity of the instability) to the momentum space of electrons
distorts the results due to significant mismatch between the
electron and bogolon dispersions. As a consequence, the en-
ergy width of the pairing region in the static BCS approach
is determined by the energy of electron excitations possess-
ing the roton momentum, which is 2–3 orders of magnitude
larger than the original energy of rotons. The latter is taken
into account in the dynamical Eliashberg approach. This re-
sults in the corresponding difference of critical temperatures
predicted in the two approaches. We conclude that the predic-
tions of room-temperature superconductivity induced by the
polariton-BEC mechanism obtained in the BCS approach are
highly biased due to the neglection of dynamical effects. Other
calculations based on the Eliashberg approach that appear
in the literature [41,46], which also predicted high Tc about
tens and hundreds of Kelvins, correctly took into account
dynamical effects but neglected the screening of interaction
by the 2DEG.

According to our calculations which take into account both
screening and dynamical effects, Tc could reach no more than
fractions of a Kelvin, and only in a very close vicinity of
the roton instability. For completeness of our analysis, we
also studied the role of the pair-bogolon, or noncondensate,
processes which were recently proposed in Refs. [38–41] to be
dominant in the pairing interaction. As shown in Appendix D,

when the interaction screening is taken into account, the con-
tribution of pair-bogolon processes to the electron-electron
pairing interaction appears to be very small.

The approximate analytical expressions presented in Ap-
pendix A allow to estimate the instability threshold ncrit

p
for polariton density, superconducting coupling constant λ,
and critical temperature Tc at given system parameters. We
also considered the possibility of the (px + ipy)-wave pairing
suggested for Bose-Fermi systems [44,46]. In this case, the
pairing interaction Vee in Eqs. (28) and (29) should be multi-
plied by the angular factor cos(k̂, k′). It does not appreciably
change the coupling constant λ because of the dominating
contribution of the roton minimum at rather low momentum
q � kF, although the reduction of the Coulomb repulsion (and
hence the Coulomb pseudopotential μ) is stronger in the p-
wave channel. Our numerical calculations, taking into account
both these effects, show that Tc for the p-wave pairing can be
slightly higher than in the case of ordinary s-wave pairing at
the same conditions.

The main conclusion of this paper is that interaction
screening and dynamical effects are both crucial for correct
analysis of low-temperature many-body phenomena in Bose-
Fermi hybrid systems of strongly coupled exciton-polaritons
and electrons. Possible directions of future research may
include analysis of polaronic effects at lower exciton den-
sities, experimental detection of the predicted hybrid upper
and lower modes, and analysis of enhancement of preexist-
ing superconductivity due to polariton BEC in a microcavity
[42]. Fermi-polaron effects, i.e., dressing of individual polari-
tons by a cloud of virtual excitations of the 2DEG (which
reduces to the trion formation at low electron density), ac-
cording to the recent studies, can renormalize and split the
polariton energies [29–31], induce additional 2DEG-mediated
polariton-polariton interactions [32,33], and affect polariton
BEC [34]. From the point of view of our diagrammatic
approach, polaronic effects correspond to ladder diagrams
where the interlayer electron-exciton interaction connect the
Green’s functions of electrons and bogolons multiple times.
Such processes can be referred to as vertex corrections to the
pairing interaction, and lie beyond our mean-field approach.
Moreover, the ladder diagrams, involving the scattering of bo-
golons, are of the noncondensate type and thus do not get the
benefit from Bose stimulation, which enhances the mean-field
pairing interaction [see Figs. 2(d) and 2(e)]. Nevertheless,
such processes can be enhanced in a close vicinity of the
roton instability due to low energy of bogolons with the roton
momenta, similar to other correlation effects.

As a further outlook, going beyond the mean-field ap-
proximations used in our calculations could allow to possibly
discover unexplored regimes of the considered electron-
polariton system in the vicinity of (or inside) the supersolid
phase. For example, the nonperturbative dynamical mean-
field theory (DMFT) revealed an interplay of dynamical
phonon-mediated and static Coulomb interactions [76] in
electron Cooper pairing. At the same time, recently, the non-
local extensions of DMFT, taking into account both frequency
and momentum dependencies, have significantly advanced the
theory of superconductivity in correlated electron systems
[77,78]. Therefore, development of similar nonperturbative
approaches for coupled Bose-Fermi systems could be very
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promising to support experimental progress in the area of
microcavity-integrated 2D materials. Treating excitons and
photons as separate particles subject to intertwined Bose-
condensations and at the same time interacting with the 2DEG
could also reveal unique phases [79].

ACKNOWLEDGMENTS

The paper was supported by the Russian Foundation for
Basic Research (RFBR) within Project No. 21-52-12038.
N.S.V. acknowledges the financial support of the NRNU
MEPhI Priority 2030 program. Yu.E.L. was supported by the
Program of Basic Research of the Higher School of Eco-
nomics.

APPENDIX A: ANALYTICAL ESTIMATES

When the polariton density np is close to the critical one
ncrit

p , the major contribution to the coupling constant λ comes
from the vicinity of the low-energy roton minimum. In this
Appendix, we provide approximate formulas which could be
useful for the estimation of ncrit

p , λ, and Tc in this regime.
Since the roton minimum is very low in frequency, we can

resort to the TFA static limit of Eq. (13):

Ep
q =

√
ε̃

p
q
(
ε̃

p
q + 2X 2

0 X 2
q np

0ṽ
xx
q

)∣∣∣∣
	e→	TFA

e

. (A1)

To find ncrit
p , we consider the condition when Eq. (A1) touches

the abscissa at q = q0:

Ep
q |q=q0 = 0, ∂Ep

q /∂q|q=q0 = 0. (A2)

As seen in Fig. 3, at q = q0, one is deeply in the excitonic part
of the polariton dispersion (dashed lines), so we can take ε

p
q ≈

(
√

δ2 + 4�2
R − δ)/2 = (1 − X 2

0 )
√

δ2 + 4�2
R, X 2

q ≈ 1, and

X 2
0 ≈ 1

2

(
1 + δ√

δ2 + 4�2
R

)
. (A3)

Introducing the function fnp (q) = ε̃
p
q + 2X 2

0 X 2
q npṽ

xx
q , we

rewrite Eq. (A1) in the form

Ep
q =

√
ε̃

p
q fnp (q). (A4)

Noting that q0d, q0aB ∼ 0.2 � 1, we can simplify the
electron-exciton interaction Eq. (7) as vex

q ≈ 2πe2de−qL/ε,
and, using Eq. (12), we obtain in the TFA,

fnp (q) ≈ (
1 − X 2

0

)√
δ2 + 4�2

R

+ 2npX 2
0

{
U − 2πe2d2e−2qL

ε

qqTF

q + qTF

}
, (A5)

where qTF = ge2m∗
e/ε is the Thomas-Fermi screening wave

vector. From the roton minimum condition f ′
np

(q0) ≈ 0, we

find q2
0 + q0qTF − qTF/2L ≈ 0 and, since 2qTFL � 1, we ob-

tain the approximate momentum of the roton minimum:

q0 ≈ 1/2L. (A6)

Substituting Eq. (A6) to (A5) and equating fncrit
p

(q0) = 0, we
obtain the critical density of polaritons:

ncrit
p =

(
1 − X 2

0

)√
δ2 + 4�2

R

2X 2
0 {πe2d2/εL exp(1) − U } . (A7)

The formula Eq. (A7) can be used together with Eq. (A3)
to estimate an order of magnitude of ncrit

p at given system
parameters. However, the exact value of ncrit

p which defines
the phase boundary in Fig. 4 may be several times higher or
lower due to a more complex momentum dependence of the
Bogoliubov dispersion and electron-exciton interaction.

When the polariton density np considered in our
calculations is slightly lower than the critical one,
np = ncrit

p − δnp, δnp � ncrit
p , we can approximate fnp (q) ≈

fnp (q0) + 1
2 (q − q0)2 f ′′

np
(q0) near the roton minimum. Using

Eq. (A5), one finds fnp (q0) = (δnp/ncrit
p )(1 − X 2

0 )
√

δ2 + 4�2
R,

f ′′
np

(q0) ≈ 4L2(1 − X 2
0 )

√
δ2 + 4�2

R. In the latter formula,

we have taken f ′′
np

(q0) ≈ f ′′
ncrit

p
(q0) and used Eq. (A7)

with neglecting U in the denominator, which is sufficient
for a rough estimate of the steepness of fnp (q) near the
minimum. The coupling constant λ can be calculated
in the RPA Eq. (24) or in TFA Eq. (22) because these
expressions both provide close results. In the latter case,
the polariton-induced electron attraction Eq. (17) reads
V2(q, iωn) = 2s2

qEp
q /[(iωn)2 − (Ep

q )2]. It is mediated by the
exchange of Bogoliubov quasiparticles with the squared
interaction vertex:

s2
q = X 2

0 npε̃
p
q

Ep
q

[
2πe2qde−qL

ε(q + qTF)

]2

. (A8)

The Eliashberg function Eq. (23) for this kind of interaction is
α2F2(ω) = N 〈s2

|k−k′ |δ(ω − Ep
k−k′ )〉FS, and the coupling con-

stant Eq. (24) is

λ = 2N
π

∫ π

0

s2
q

Ep
q

dϕ, q = 2kF sin
ϕ

2
. (A9)

The main contribution to the integral Eq. (A9) comes from
the vicinity of the roton minimum q0. Assuming q0 � kF and
using Eq. (A4) with the quadratic decomposition of fnp (q)
introduced above, we obtain the estimate of the coupling
constant at given system parameters:

λ = 1√
1 − UεL exp(1)/πe2d2

× ε

4
√

2πneg3/2m∗
e e2L2

√
δnp/ncrit

p

. (A10)

This formula is relatively simple and provides a correct order
of magnitude for λ, as well as its dependence on values of
system parameters. Note that λ diverges when the polari-
ton density approaches the critical value, i.e., δnp = ncrit

p −
np → 0.

When estimating the critical temperature Tc, we note that
it does not exceed the characteristic energy of Bogoliubov

quasiparticles near the roton minimum 〈ω〉 =
√

ε̃
p
q0 fnp (q0).
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FIG. 7. (a), (c) Frequency and momentum dependence of −ϕ∞
(red solid lines) and ϕd and (b), (d) the same for Z , for the QW-
based system at the polariton density np = 3.103 × 1011 cm−2. Top
[(a), (b)] and bottom [(c), (d)] panels correspond to the solution of
the self-consistency Eqs. (28) and (29) with the interaction Vee taken
in TFA and RPA, respectively.

Using Eq. (A5), we obtain

Tc � 〈ω〉 =
√

δnp

ncrit
p

(
1 − X 2

0

)√
δ2 + 4�2

R√
1 − UεL exp(1)/πe2d2

. (A11)

This formula provides a correct order of magnitude of max-
imal achievable Tc in the vicinity of the roton instability
δnp → 0.

APPENDIX B: FREQUENCY AND MOMENTUM
DEPENDENCE OF THE FUNCTIONS Z AND ϕ

Here we analyze how the functions Z and ϕ found from
the self-consistency Eqs. (28) and (29) depend on momentum
k and the Matsubara frequency εn. In the Eliashberg approach
[69], their momentum dependence is assumed to be smooth
enough to take Z (k, iεn) ≈ Z (kF, iεn), ϕ(k, iεn) ≈ ϕ(kF, iεn),
while in the BCS approach [35], oppositely, the frequency
dependence is neglected: ϕ(k, iεn) ≈ ϕ(k). Our goal is to
check whether these assumptions are justified in our case.

Similarly to the separation of anomalous self-energy into
Coulomb and phonon parts in the Eliashberg theory [70],
we represent ϕ(k, iεn) = ϕ∞(k) + ϕd(k, iεn) as a sum of the
frequency-independent ϕ∞(k) = limεn→∞ ϕ(k, iεn) and the
remaining dynamical ϕd(k, iεn) parts. In Figs. 7(a) and 7(b),
we plot ϕ∞, ϕd, and Z as functions of k and Matsubara
frequency ε for the case of the QW-based system when the
interaction Vee is screened in TFA [which corresponds to the
solid line in Fig. 6(d)]. Note that the function ϕ∞ depends
only on k, so it is plotted by the red curve. For convenience,
we plot ϕ∞ with the negative sign, so the total gap function ϕ

is represented by the difference between the 2D surface and
1D line in Fig. 7(a).

Both ϕd and Z display sharp peaks at momenta k = kF ±
q0, where q0 is the momentum corresponding to the roton
minimum [see Fig. 3(b)]. This reflects the important role of
low-frequency excitations (at the finite momentum q0) that
amplify the pairing strength. We see that the assumption
of smoothness of the momentum dependence, which could
be plausible for short-range electron-phonon interaction in
metals, is barely justified in the case of polariton-mediated
superconductivity, especially since the peak values are several
times larger than those at the Fermi surface. Nevertheless, the
Eliashberg approach and full solution of the self-consistency
equations eventually provide similar results for Tc [compare
solid and dashed lines in Fig. 6(d)]. Note that ϕ∞(k) [red line
in Fig. 7(a)] remains smooth due to the short-range character
of the TFA-screened Coulomb interaction V1.

Figures 7(c) and 7(d) show what happens when the in-
teraction Vee is dynamically screened in the RPA [which
corresponds to Fig. 6(e)]. The peaks in ϕd and Z at k = kF ±
q0 become even sharper. In addition, the new peak develops at
k = kF in both ϕ∞ and ϕd, which reflects the long-range singu-
larity of Coulomb interaction being averaged over the Fermi
surface. However, the peaks in ϕd and ϕ∞ at k = kF almost
compensate each other, which demonstrates the cancellation
of divergences due to direct Coulomb repulsion vee

q and to
plasmon-mediated attraction in V1 discussed in Sec. III B.
Thus the assumption of momentum smoothness of ϕ and Z
near the Fermi surface, which is crucial for derivation of the
Eliashberg equations, becomes even more unrealistic when
screening is accounted for in the RPA.

APPENDIX C: COMPARISON OF THE ELIASHBERG
AND BCS APPROACHES

In this Appendix, we investigate the origin of the orders-
of-magnitude difference in the critical temperatures obtained
in the Eliashberg (see Sec. IV B) and BCS (Sec. IV D)
approaches. We consider the simplified version of the self-
consistent gap Eq. (29) from which both the Eliashberg and
BCS gap equations are derived:

ϕ(k, iεn) = −T

S

∑
k′εm

V2(|k − k′|, iεn − iεm)
ϕ(k′, iεm)

ε2
m + ξ 2

k′
.

(C1)

Here we omitted the renormalization function Z and the part
V1 of the total electron-electron interaction potential Vee =
V1 + V2 which corresponds to the screened electron repul-
sion. Performing the integration over the direction of k′ and
switching from momenta k, k′ to the electron energies counted
from the Fermi level ξ = k2/2m∗

e − EF, ξ ′ = k′2/2m∗
e − EF,

we obtain

ϕ(ξ, iεn) = T
∑
εm

∫
dξ ′ F (ξ, ξ ′, εn − εm)

ϕ(ξ ′, iεm)

ε2
m + ξ ′2 , (C2)

where the dimensionless pairing attraction is

F (ξ, ξ ′, ω) = − N
2π

∫ 2π

0
dθ V2(|k − k′|, iω) (C3)

(k and k′ are related to ξ and ξ ′, and θ is the angle between
the vectors k and k′).
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Specifically, here we consider the QW-based system at the
polariton density np = 3.103 × 1011 cm−2, where the Eliash-
berg approach predicts Tc = 5.6 × 10−4 K, while the BCS
approach predicts Tc = 0.38 K, which is three orders of mag-
nitude higher [cf. Figs. 6(d) and 6(f)]. For simplicity, we
will consider the interaction screening in the TFA where
the renormalization function Z ∼ 1.5 in the most relevant
region near the Fermi surface [see Fig. 7(b)], and the screened
electron-electron repulsion V1(q) = 2πe2/ε(q + qTF), being
multiplied by the density of states at the Fermi level N =
m∗

e/2π , provides the contribution 〈NV1(q)〉FS = 0.12 at the
Fermi surface, which is significantly smaller than F near the
Fermi level. Thus the simplifications in Eq. (C2) may bring
some quantitative errors to the calculated Tc, but they should
not obscure the origin of the large quantitative discrepancy
between the two predictions.

Physically, the pairing interaction F (ξ, ξ ′, ω) is dominated
by the contribution of virtual bogolons near the roton mini-
mum [see Fig. 3(b)] at the momentum q0 = 0.022 nm−1 and
energy E0 ≡ Ep

q0 = 0.054 meV. Hence, it is approximately
confined within the region k, k′ > q0, |k − k′| < q0 in mo-
mentum space, and has the width of the order of E0 along
the frequency axis. Proceeding further toward approximate
solutions of the gap Eq. (C2) on the left-hand side, we fix
both the momentum and energy at the Fermi surface (ξ = 0,
εn = 0), while for the right-hand side we assume that ϕ is
approximately constant in the integral throughout momentum
and frequency ranges where F provides the dominating con-
tribution. Such approximations, which are widely used in both
the Eliashberg and BCS approaches to estimate Tc, yield the
equation

1 = T
∑
εm

∫
dξ ′ F (0, ξ ′, εm)

1

ε2
m + ξ ′2 . (C4)

Figure 8(a) showing the function F (0, ξ ′, ω) confirms our
expectations: the interaction is approximately confined to the
region |ξ ′| < ξ0 ≡ kFq0/m∗

e = 0.18EF in momentum space
and has half width at half maximum ω � aE0 = 0.0026EF in
the frequency space (where the factor a ≈ 1.72 is introduced
to account for the effective increase of the characteristic roton
energy with respect to the minimal E0 due to momentum
integration). We can crudely assume the following model form
of this function:

F (0, ξ ′, ω) ≈ C
�(ξ0 − |ξ ′|)

(ω/aE0)2 + 1
, (C5)

with the typical magnitude near the Fermi level C ≈ 0.3.
In the Eliashberg approach (see Sec. IV B), we neglect the

momentum (i.e., ξ ′) dependence of F and replace F (0, ξ ′, ω)
by F (0, 0, ω) ≈ C/[(ω/aE0)2 + 1]. Figure 8(b) demonstrates
that F (0, 0, ω) indeed has the characteristic frequency width
aE0. The actual gap function ϕ(iω) obtained numerically from
the complete Eliashberg equations also demonstrates the con-
finement of its rapidly changing part to this region (apart from
slowly decaying tails originating from Coulomb interaction).
After performing the integration over ξ ′ in the gap Eq. (C4),
we obtain

1 = πT
∑
εm

C

|εm|{(εm/aE0)2 + 1} . (C6)

FIG. 8. (a) Dimensionless pairing interaction F (0, ξ ′, ω) as a
function of the energy distances from the Fermi level along momen-
tum ξ ′ and frequency ω axes calculated for the QW-based system.
(b) Cross section F (0, 0, ω) along the frequency axis used in the
Eliashberg approach (solid line) plotted together with the gap func-
tion ϕ(iω) obtained by numerical solution of the Eliashberg Eqs. (36)
and (37) (dotted line, in arbitrary units). (c) Cross section F (0, ξ ′, 0)
along the momentum axis used in the BCS approach (solid line) plot-
ted together with the gap function ϕ(ξ ′) obtained numerically from
the BCS gap Eq. (40) (dotted line, in arbitrary units). Vertical dashed
lines in (b) and (c) show characteristic widths of both the pairing
interaction and the gap functions along the frequency (|ω| � aE0)
and momentum (|ξ ′| < ξ0) axes, respectively.

Summation over the fermionic Matsubara frequencies εm =
πT (2m + 1) can be performed analytically in the limit T �
E0 in terms of the digamma function [68], so the resulting
estimate for Tc in the Eliashberg approach is

T El
c = (2eγ /π )aE0e−1/C, (C7)

where γ ≈ 0.577 is the Euler’s gamma constant.
In the BCS approach (see Sec. IV D), we neglect the

frequency dependence of F and replace F (0, ξ ′, ω) by
F (0, ξ ′, 0) ≈ C�(ξ0 − |ξ ′|). Figure 8(c) confirms the approx-
imate confinement of both the static interaction F (0, ξ ′, 0)
and numerical solution ϕ(ξ ′) of the BCS gap equation (again,
apart from the slowly decaying tails) to the region |ξ ′| < ξ0.
After summation over εm, Eq. (C4) reduces to the simplified
BCS equation for critical temperature

1 =
∫ ξ0

−ξ0

dξ ′ C

2|ξ ′| tanh
|ξ ′|
2T

. (C8)

The standard solution of this equation in the limit T � ξ0

provides, in turn, the BCS estimate

T BCS
c = (2eγ /π )ξ0e−1/C . (C9)

Our estimates Eqs. (C7) and (C9) for the critical tempera-
ture in both approaches provide T El

c ≈ 0.044 K and T BCS
c ≈

2.98 K (given that EF = 415 K). These values are overes-
timated in comparison to T El

c = 5.6 × 10−4 K and T BCS
c =

0.38 K obtained by numerical solutions of the Eliashberg and
BCS equations, respectively [see Figs. 6(d) and 6(f)], because
we have used several crude approximations to obtain the
above analytical results. Nevertheless, the presented analysis
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demonstrates the key difference between the Eliashberg and
BCS approaches: in the former, the pairing region is restricted
by the characteristic energy E0 of bogolons near the roton
minimum, while in the latter this region is determined by the
energy ξ0 ≈ εe

kF+q0
− EF acquired by electrons on the Fermi

surface when they emit or absorb bogolons with the roton-
minimum momentum q0. Since the roton minimum in our
case is located far below the edge of electron-hole continuum
[see Fig. 3(b)], ξ0 is 2–3 orders of magnitude higher than E0,
which results in the corresponding huge difference between
T BCS

c and T El
c . The same feature is demonstrated by numer-

ical solutions of the Eliashberg and BCS equations obtained
without the simplifications of this Appendix: the characteristic
energy width of both the pairing region and gap function in the
BCS approach [Fig. 8(c)] is 2–3 orders of magnitude larger
than in the Eliashberg approach [Fig. 8(b)], which results in
the proportional ratio of the critical temperatures obtained in
these calculations.

APPENDIX D: ROLE OF NONCONDENSATE PROCESSES

Here we estimate the contribution of noncondensate, or
pair-bogolon, processes to the excitonic density response
function 	x, which were claimed to be dominant in the
pairing interaction Vee and superconducting coupling con-
stant [38–41]. Consideration of these processes results in an
additional term, 	x → 	x + 	nc

x , in the excitonic density
response beyond the dominating [57] condensate contribution
Eq. (9). The noncondensate density response

	nc
x (q, iωn) = − 1

S

∑
k

X 2
k X 2

|k−q|

⎧⎨⎩(ukuk−q + vkvk−q)2

× ( fk − fk−q)
(
Ep

k − Ep
k−q

)
(iωn)2 − (

Ep
k − Ep

k−q

)2

− (ukvk−q + vkuk−q)2

× (1 + fk + fk−q)
(
Ep

k + Ep
k−q

)
(iωn)2 − (

Ep
k + Ep

k−q

)2

⎫⎬⎭ (D1)

is given by the RPA-type one-loop polarization di-
agram with two virtual Bogoliubov quasiparticles.

Here {
uk
vk

}
= ±

√
1

2

(
ε̃

p
k + X 2

0 X 2
k np

0ṽ
xx
k

Ep
k

± 1

)
(D2)

are the bosonic Bogoliubov coefficients for polaritons and
fk = {exp(Ep

k /T ) − 1}−1 are the Bose-Einstein occupation
numbers of Bogoliubov excitations with the energies Ep

k ,
which, for the estimation purpose, can be calculated in the
TFA using Eq. (A1).

The integration over momenta k in Eq. (D1) is logarith-
mically divergent at |k| → 0 in two dimensions, which is
related to the absence of a true Bose condensate in 2D systems
[80,81]. To obtain a physically meaningful result, we impose
the long-wavelength cutoff |k| > 2π/L, where L ∼ 10μm is
the linear size of the polariton BEC cloud. According to our
numerical calculations, in realistic conditions at any (q, iωn),
	nc

x is at least three orders of magnitude smaller than the
leading-order condensate term 	x.

Therefore, we conclude that the noncondensate processes
are negligible for the pairing. However, in Refs. [38–41], it
is argued that the noncondensate processes should provide
a dominant contribution to the coupling constant, because
the competing condensate contribution Eq. (9) is suppressed,
	x(q, iωn) → 0, at low momenta q → 0 by the factor ε̃

p
q ∝ q2

(as interpreted in terms of destructive interference between the
coherence factors uk, vk), while the noncondensate contribu-
tion is free of such suppression, 	nc

x (q, iωn) → 	nc
x (0, iωn) �=

0 at q → 0.
In our approach, the noncondensate contribution to 	x

and hence to 	̃x is dressed in Eq. (17) with the square of
the screened electron-exciton interaction Eq. (11), and thus
in TFA it acquires the factor [1 − vee

q 	e]−2 ∝ q2 in the limit
q → 0. This factor, originating from the screening, was omit-
ted in Refs. [38,40,41]. It suppresses the long-wavelength
contributions of both 	x and 	̃x to the pairing interaction,
so the difference between their long-wavelength behaviors
becomes unimportant. Moreover, as we show in Sec. III,
the dominating contribution to the coupling constant is pro-
vided by the softened Bogoliubov excitations near the roton
minimum at q = q0 ≈ 1/2L and not by the long-wavelength
modes with q → 0. This circumstances explain why the
pair-bogolon processes do not provide any appreciable con-
tribution to the pairing constant in our analysis, where the
interaction screening and formation of the roton minimum are
taken into account.
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