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Theory of a single magnetic impurity on a thin metal film in proximity to a superconductor
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We argue that the formation of Yu-Shiba-Rusinov excitations in proximitized thin films is largely mediated
by a type of Andreev-bound state named after de Gennes and Saint-James. This is shown by studying an
experimentally motivated model and computing the overlap of the wave functions of these two subgap states.
We find the overlap stays close to unity even as the system moves away from weak coupling across the
parity-changing quantum phase transition. Based on this observation, we introduce a single-site model of the
bound state coupled to a quantum spin. The adequacy of this description is assessed by reintroducing the coupling
to the continuum as a weak perturbation and studying its scaling flow using Anderson’s poor man’s scaling.
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I. INTRODUCTION

The presence of impurities on superconductors results
in subgap bound states known as Yu-Shiba-Rusinov (YSR)
states [1–3] (see, e.g., Ref. [4] for a review). These excitations
can be probed using scanning tunneling spectroscopy (STS)
and appear as narrow resonances in tunneling spectra [5,6].
YSR states were originally discovered as solutions to the
scattering problem of a magnetic impurity in bulk supercon-
ductors, by treating the magnetic exchange with the impurity
as a classical Zeeman field that couples to the local spin
density of quasiparticles [1–4]. However, this approximation
does not take into account the quantum nature of the impurity
spin, which can give rise to many-particle effects such as the
Kondo effect [7] and it is determinant when e.g. describing the
spin carried by the YSR excitations [8].

A fully quantum-mechanical treatment of this problem
aimed at providing a comprehensive description of ex-
periments [9] often requires the use of sophisticated but
numerically costly methods such as the numerical renormal-
ization group (NRG) [10,11] or continuous time Montecarlo
[12]. In recent years, single-site models [13–15] have emerged
as a computationally affordable approach to treat some of the
quantum many-particle aspects of the YSR problem and allow
to treat higher spin and anisotropic impurities [15]. These
models have already been successfully used to explain some
spectral features observed in recent experiments [16–18].
Moreover, it has been also applied to explain the complex
many-body physics of a magnetic molecule on a clean gold
film proximitized by a superconducting substrate [16].

The main goal of this work is to significantly expand the
application of the single-site model [15]. We aim at describ-
ing a single magnetic impurity when it interacts with a thin
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metallic film proximitized by a superconductor. Recently, this
system has received a great deal of experimental attention
[16,19,20], and holds much potential for ground-breaking
discoveries.

Proximitized systems have been studied mainly in the dif-
fusive limit using the Usadel formalism [21]. This approach
predicts the decay of the proximity effect as well as spectro-
scopic features such as the closing of the gap and the forma-
tion of a minigap [22,23]. Experiments with diffussive sys-
tems [23–26] have clearly confirmed those predictions. How-
ever, the systems studied in this context are mesoscopic in size
and the experimental probes that have been employed cannot
resolve the behavior of a single magnetic impurity. On the
other hand, thanks to currently available growth techniques,
it is possible to grow clean metallic overlayers with thick-
nesses of few atomic layers on top of superconductors [16,27–
29]. These novel hybrid systems open the door to otherwise
impossible on-surface synthesis, and may allow one day the
study of self-organized spin chains [30–32] as well as other,
more complex, molecular structures [33] on superconductors.
Such systems are clearly not in the diffusive limit and have
to be described within the ballistic limit. In this case, subgap
bound states appear in the normal region and extend into the
superconductor over distances of the order of the coherence
length. The existence of such states has been known for some
time, since the work of de Gennes and Saint James [34,35].

Below, we first study the system treating the magnetic
impurity as a classical spin in the ballistic limit where there is
a single de Gennes-Saint James (dGSJ) bound state in the gap.
We find that a large overlap exists between the Bogoliubov-de
Gennes (BdG) spinors of the dGSJ and YSR states. Moti-
vated by this result, we propose that the single-site model
is a relevant simplified model for complex system consisting
of the magnetic impurity on the proximitized thin film. The
model can be solved exactly and also provides a computation-
ally cheap way to treat the many-particle effects associated
with the quantum spin of the impurity. The adequacy of the
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FIG. 1. (a) shows a sketch of the studied system: a magnetic
impurity interacting via exchange with a proximitized thin metal
film. (b) and (c) are the local density of states (LDoS) in the bulk of
the superconductor and in the thin proximitized metallic film. (d) is
a convoluted [6] spectroscopic measurement using STM of a thin
(about four monolayers) proximitized Au film on V(100).

single-site model for the system of interest here is assessed
by means of a “poor man’s” scaling analysis. To this end,
we introduce a Hamiltonian consisting of a single-site model
perturbed by an impurity-mediated coupling to the continuum
of other excitations. Under certain conditions we find that,
as the high-energy continuum states are integrated out, the
impurity remains most strongly coupled to the single site
describing the dGSJ state.

The structure of the article is the following. In Sec. II, we
describe the system and the approximations used. Section III
is divided in two sections with the first focusing on the YSR
states resulting from the interaction of the magnetic impurity
with the proximitized film. This study is undertaken assuming
the spin of the magnetic impurity can be treated classically.
In the second section, we describe the calculation of the
wave function overlap between the YSR and dGSJ states. In
Sec. IV, we introduce the single-site model for the magnetic
impurity on a proximitized film. Finally, in section V, we ar-
gue that the single-site model provides an accurate description
of this system using the poor man’s scaling [36]. The most
technical details of the calculations have been relegated to the
Appendixes.

II. SYSTEM AND MODEL

Figure 1 shows a schematic picture of the system studied
in this work, which is motivated by experiments reported
in Ref. [16] and Refs. [27–29]. The system consists of a
magnetic impurity on top of a thin normal metal film (N)
in proximity to a superconductor (S). The superconductor
occupies the half-space x > 0, while the N film corresponds
to −a < x < 0. The system is translationally invariant in

the (y, z) plane, so it is convenient to describe the electron
wave function as ψ (x, k‖), where k‖ is the component of the
momentum vector parallel to the S/N interface at x = 0. We
assume a perfect S/N interface with no Fermi-level mismatch
or potential barrier. The effect of a Fermi-level mismatch is
to change the effective thickness of the metallic layer for
different momentum directions, thus modifying the energy
of the bound dGSJ state (see Ref. [37] and Appendix B for
an extended discussion). This would mainly affect the non-
normal propagation direction, which will be disregarded due
to the geometry and nature of the analyzed system. In the ab-
sence of mismatch, the N region acts as a cavity for electrons
with energy E < �: they undergo Andreev retroreflections
at the S/N interface and normal specular reflections at the
interface with vacuum. According to the Bohr-Sommerfeld
quantization rule, the phase accumulated along a closed clas-
sical trajectory must be a multiple of 2π . In the N/S system
under consideration, a closed trajectory consists of two An-
dreev retro-reflections at the S/N interface and two normal
reflections at x = −a. Thus

2a

ξ cos ϕ

E

�
− cos−1

(
E

�

)
= nπ, (1)

where cos−1(E/�) is the phase shift associated to each AR,
ξ = h̄vF

�
is the coherence length of the superconductor and

sin ϕ = k‖/kF . Equation (1), determines the subgap bound
states, also known as De Gennes-Saint James (dGSJ) states
[34].1It is valid for clean N layers with a mean free path larger
than the thickness a, and it describes a continuum of subgap
states [34,38].

For the STM experiments of interest to us here, assuming
specular tunneling [39], the decay of the wave function of
these excitations in vacuum is determined by the metal work-
function. This energy scale is of the order of one electron-volt
and therefore much larger than the superconducting gap.
Therefore, in vacuum, the tail of the dGSJ wave function is
essentially indistinguishable from that of an electron at the
Fermi level in the normal state, and excitations with finite
k‖ penetrate less into the vacuum. As a result, when probed
with a STM in the tunneling regime, excitations with large
|k‖| are filtered out [39–41] and dGSJ states are observed
as narrow subgap resonances made of dGSJ quasiparticles
with k‖ ≈ 0 [16]. Moreover, a small amount of disorder will
randomize trajectories with cos ϕ < a/l , where l is the mean
free path, suppressing the coherence of such trajectories. A
magnetic impurity on top of the proximitized film has compact
and anisotropic orbitals that typically couple to several scat-
tering channels from the substrate. However, since the dGSJ
quasiparticles with k‖ � 0 penetrate farther into the vacuum,

1The de Gennes-Saint James states in S/N structures arises from
the same phenomenon as the Andreev bound states (ABS) in SNS
junctions, specifically the Andreev reflection at an S/N interface.
This has been discussed, for example, in Ref. [52]. Equation (1),
which describes the de Gennes-Saint James states in an S/N struc-
ture, coincides with the equation for the Andreev bound states in an
SNS junction when the length of the normal region N is twice the
value of the film thickness a and the phase difference between the
superconductors is zero.
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FIG. 2. (a) Evolution of the dGSJ states as a function of the thickness of the metallic layer. We define the coherence length as ξ = h̄vF /�.
(b) Evolution of a YSR spectral density on a pure superconductor (i.e., a = 0) (c) Evolution of the YSR state spectral density for a fixed
metallic layer thickness (a ∼ 0.2ξ ) as a function of the exchange coupling. (c) Zoom-in of the evolution of the YSR state spectral density.
(d) Particle component of the amplitude the dGSJ and YSR states, as calculated from the residue of the GF, averaged over distances � k−1

F .

they are also expected to contribute substantially to the most
strongly coupled scattering channel. Thus one can effectively
approximate the tunneling problem using a one-dimensional
model which neglects the motion parallel to the surface:

H = H0 + HJ , (2)

where

H0 =
∑

σ

∫ ∞

−a
dx ψ†

σ (x)

[
− h̄2

2m∗ ∂2
x − EF

]
ψσ (x′)

+
∫ ∞

0
dx � ψ

†
↑(x)ψ↓(x) + H.c. (3)

and

HJ =
∑
σσ ′

Jψ
†
0σ S · sσσ ′ψ0σ ′ . (4)

Here, ψσ (x) (ψ†
σ (x)) represents the annihilation (creation)

operator for an electron with spin σ =↑,↓ in the metal-
superconductor substrate. H0 describes a proximitized thin
film of thickness a > 0. The first term contains the kinetic
energy and chemical potential EF , and the second term is
the s-wave pairing potential. The pairing potential is not self-
consistently calculated. Corrections due to self-consistency
result in a spatially nonuniform pairing potential �(x), but
they have only a small effect on the spectral properties of the
dGSJ states [40,41]. The magnetic exchange with the impurity
is described by HJ , with s denoting the electron-spin Pauli ma-
trices and S denoting the impurity spin operator. The operators
ψ0σ (ψ†

0σ ) annihilate (create) electrons at the position of the
impurity. For the one-dimensional model introduced above,
ψ0σ = ψσ (x = −a). In the following section, we analyze this
model using the approach of Yu, Shiba, and Rusinov (YSR)
[1–3], where the impurity spin S is treated as a classical vector.

III. YSR IN PROXIMITIZED THIN FILMS

In the previous section, we have derived the equation that
determines the spectrum of subgap states [cf. Eq. (1)] using
the Bohr-Sommerfeld semiclassical approximation. As ex-
plained above, we will focus on the one-dimensional case,
which corresponds to cos ϕ = 1 in Eq. (1). To deal with the
coupling to the magnetic impurity, we solve the model de-
scribed by Eqs. (2)–(4). To this end, we use Green’s functions
(GFs) and follow the approach outlined in Ref. [41]. The tech-
nical details of the calculation are described in Appendix A.
From the knowledge of the retarded GFs, G(ω + iη, x, x),
the local density of states (LDoS) ρ(ω, x) of the system is
obtained by using ρ(ω, x) = − 1

π
� Tr G(ω + iη, x, x).

Figure 2(a) shows the LDoS on the surface as a function
of film thickness. As we increase the thickness, new dGSJ
states enter the gap. The GF also has poles with a finite imag-
inary part outside the superconducting gap which correspond
to states in the continuum (i.e., above the superconductor
gap) and give rise to McMillan-Rowell-Tomasch oscillations
[42,43]. From here on, we focus our discussion on thin films
with a single subgap bound state. In the following section, we
tackle the coupling to the magnetic impurity.

A. YSR states

The GF for the S/N system provides the starting point
for calculating the spectral properties of the YSR excitations.
The properties of the latter can be obtained by solving the
following integral equation:

GYSR(x, x′) = G(x, x′) + G(x,−a)V

× (1 − V G(−a,−a))−1G(−a, x′). (5)
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FIG. 3. Overlap between the YSR and SJdG wave functions. (a) and (b) show the calculation done from the continuous model for different
SJdG bound state energies and values of EF /�. (c) shows the same calculation done with a tight-binding model (see Appendix B for details
about the latter).

Here, G(x, x′) is the GF obtained in the previous section.
The scattering potential for a spin-S impurity in the Nambu
notation is V = JSσzτ0, assuming that the impurity (classical)
spin points along the z axis.

Figures 2(b) and 2(c) shows the evolution of the YSR state
(for a = 0 and a ∼ 0.2ξ , respectively) as a function of the ex-
change coupling α = ν0πJS, with ν0 being the normal metal
DoS defined so that the quantum phase transition (QPT),
where the energy of the YSR state crosses the center of the
gap, happens for α = 1 [1–3]. Note that the exchange cou-
pling splits dGSJ state into two states (spin up and down), one
of which shifts to higher energy while the other shifts to lower
energy, see Fig. 2(c). As J increases beyond a certain value,
the higher energy state disappears into the continuum. From
this point on, the energy of the remaining subgap state behaves
similarly to a YSR in a bulk superconductor [1–3]. For thicker
films, with more than one dGSJ state, the behavior is similar:
each bound state splits in two, shifting in opposite directions
depending on their spin projection, with more excited states
eventually merging with the continuum and disappearing.

The transmutation of the dGSJ into the YSR state can be
regarded as a consequence of a spectral reorganization taking
place around |ω| = � caused by AR [see Fig. 1(c)]. Us-
ing an analogy to semiconductor physics, YSR states appear
in a superconductor because the coherence “peak” behavior
∼(ω2 − �2)−1/2 [cf. Fig. 1(b)] resembles a van Hove singu-
larity at the bottom (top) of the conduction (valence) band
of a one-dimensional insulator. Bound states appear due to
the infinitesimal attraction provided by the magnetic impurity
Dirac-delta potential. However, in a proximitized film, AR
reorganizes the spectral weight by removing the van Hove-like
singularity while shifting most of its spectral weight to the
dGSJ state [cf. Fig. 1(c)]. Together with the localization of the
dGSJ states at the surface, this enables the transmutation of
one of the dGSJ states per spin into a YSR. Thus a large over-
lap of the wavefunctions of YSR and dGSJ states is expected,
as explicitly demonstrate in the following section.

B. Overlap between SJdG and YSR States

In this section, we compute the overlap of the YSR and the
dGSJ states as a function of the exchange coupling J . This
can be achieved by using the GF obtained from the scattering
solution of the problem with and without magnetic impurity.

The square of the overlap is computed from the following
integral involving the residue of the two GFs:

|�|2 =
∫

dx[udGSJ(x)u∗
YSR(x) + vdGSJ(x)v∗

YSR(x)]

=
∫

dxdx′ Tr{Res G(x, x′))Res GYSR(x′, x)}. (6)

Here ResGY RS (ResG) is the residue of the Nambu GF matrix
at the YSR (dGSJ) pole with spin up, related to the BdG
Nambu spinor amplitudes uYSR and vYSR (udGSJ and vdGSJ),
see Appendix A.

In Figs. 3(a) and 3(b), we show the behavior of the overlap
� as a function of exchange coupling J for different values of
film thickness (which determines the dGSJ state energy). To
check our results beyond the leading order in �/EF , we also
compute the overlap by solving the Bogoliubov-de Gennes
equations for a one-dimensional tight-biding chain containing
up to 1500 sites. The results are shown in Fig. 3(c) as a
function of J normalized to the critical value Jc where the
system undergoes the parity-changing quantum phase transi-
tion [1–4]. The overlap between the YSR and dGSJ states
decreases as the exchange coupling increases, but it remains
close to unity even across the quantum phase transition. It
is worth noting that the energy of the YSR excitation shifts
away from that of the dGSJ state as the exchange coupling
is increased. The significant overlap between the two states
suggests that the YSR state primarily descends from the dGSJ
state, with a minor contribution from the continuum states of
the proximitized film. Therefore, in a first approximation, the
coupling with the magnetic impurity can be described by re-
placing the proximitized film with a single level representing
the dGSJ state.

IV. SINGLE-SITE MODEL

Motivated by the results of the previous section, we intro-
duce a simplified model that replaces the entire proximitized
film with a single site representing the dGSJ state. As we show
below, this model is useful for analyzing the coupling between
the dGSJ state and a quantum spin. The Hamiltonian of the
single site is given by

H0 =
∑

σ

Es

(
γ †

σ γσ − 1

2

)
, (7)
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where γσ (γ †
σ ) are the annihilation (creation) operators for a

dGSJ quasiparticle with spin σ =↑,↓, and Es is the eigen-
value of the BdG Hamiltonian (in the absence of magnetic
impurity). As explained in Appendix D, this Hamiltonian can
be recast in terms of electron operators dσ , d†

σ as follows:

H0 = U
∑

σ

nσ + [�sd↓d↑ + H.c.], (8)

where nσ = d†
σ dσ ; U and �s are effective scattering and

pairing potentials, respectively. In terms of U and �s, Es =√
U 2 + �2

s . Without loss of generality, below we discuss
the particle-hole symmetric case where U = 0 and therefore
Es = �s.

Next, we introduce the coupling to the impurity. To make
contact with the classical description employed in the previ-
ous section, we first discuss the Ising limit of the exchange
coupling, i.e.,

H Ising
J = J‖

dd Sz(n↑ − n↓), (9)

where J‖
dd > 0 is the exchange coupling with the dGSJ quasi-

particle. This model reproduces the most salient features of
the YSR states described above. To begin with, note that,
besides the fermion parity P = ∏

σ (−1)nσ = ±1, the impurity
spin operator Sz is also conserved in this limit, i.e., [Sz, H0 +
H Ising

J ] = 0. Thus the ground state is doubly degenerate cor-
responding to the two possible orientations of the classical
vector S = ±Sẑ: For Jdd < Jc = 2�s the ground state is one
of the two following states {|BCS〉 ⊗ |± 1

2 〉} with P = +1
and γσ |BCS〉 = 0. For Jdd > Jc, the ground state is one in
{|↑〉 ⊗ |− 1

2 〉, |↓〉 ⊗ |+ 1
2 〉} with P = −1 and |σ 〉 = γ †

σ |BCS〉.
The YSR excitation is a transition between these two ground
states of opposite parity with excitation energy [15,16] |�s −
Jdd/2|. In addition, the odd parity sector of the Hilbert space
also contains the following two states: {|↑〉 ⊗ |+ 1

2 〉, |↓〉 ⊗
|− 1

2 〉} with excitation energy equal to �s + Jdd/2. For small
Jdd , a transition from the ground state with P = +1 to these
states corresponds to the second subgap peak in the LDoS of
the classical approach that shifts up in energy with increasing
exchange and eventually disappears into the continuum, see
Fig. 2(e).

Next, we generalize Eq. (9) by adding the spin-flip term,
which allows the impurity spin to fluctuate:

Hd
J = J‖

dd Sz(n↑ − n↓) + J⊥
dd (S+d†

↓d↑ + H.c.) (10)

As argued in Refs. [14,15], the single-site model provides
an economical and fully quantum-mechanical description of
YSR spectra in superconductors which compares well with
the results obtained using sophisticated but computation-
ally expensive methods like the Numerical Renormalization
Group (NRG) [11]. The accuracy of this description in the
present system will be addressed in the following section.

The spin-flip term, ∝ J⊥
dd > 0, has important consequences

for the spectrum of the model. In the weak coupling limit,
i.e., for J‖

dd + 2J⊥
dd < 2�s, (assuming an unbiased preparation

of the system) the ground state is described by the following
density matrix:

ρGS = 1
2

[∣∣BCS,+ 1
2

〉〈〈+ 1
2 , BCS

∣∣+ ∣∣BCS,− 1
2

〉〈− 1
2 , BCS

∣∣],
(11)

On the other hand, in the strong coupling limit where J‖
dd +

2J⊥
dd > 2�s, the ground state is a singlet:

|GS〉 = 1√
2

(
|↑〉 ⊗

∣∣∣∣+1

2

〉
− |↓〉 ⊗

∣∣∣∣−1

2

〉)
. (12)

that is, a pure state resulting from the quantum superposition
of the two ground states of the Ising limit of the model. In
weak and strong-coupling regimes, unlike the conventional
classical approach of YSR [1–3], the quantum model predicts
that YSR excitations carry no spin polarization [8].

Finally, since in the original model [cf. Eq. (4)], the energy
of the YSR does not grow without bound as the exchange
with the magnetic impurity J becomes arbitrarily large, the
couplings J⊥

dd , J‖
dd cannot be much larger than �s in the

single-site model. Note that, for large J⊥
dd , J‖

dd the energy of
the YSR grows like max{J⊥

dd , J‖
dd}. Thus, for the energy of

the YSR to remain within the gap, the exchange couplings
of the single-site model must saturate to an upper bound so
that max{J⊥

dd , J‖
dd} � �s. Therefore, they must be regarded as

renormalized exchange interactions, which are also the result
of the spectral reorganization and localization of excitations
with energy ∼�s caused by Andreev reflection at the S/N
interface.

V. SCALING APPROACH

In order to investigate the accuracy of the single-site model,
we reintroduce the coupling to the continuum of excitations
as a perturbation. Whether this perturbation changes the low-
energy spectrum substantially or not can be assessed using
the poor man’s scaling method [36], as we describe in the
following.

In the single-site model, the effective exchange coupling
of the impurity and dGSJ quasiparticle is Jdd = J⊥

dd = J‖
dd ,

where, for the sake of simplicity, we assume an isotropic
coupling. Our conclusions also apply to the anisotropic case
with small modifications. Through the exchange interaction
with the magnetic impurity, the dGSJ quasiparticles can
also couple to the continuum of excitations of the proximi-
tized film. Let us introduce the following modified exchange
coupling which, besides the coupling to the dGSJ, de-
scribes an impurity-mediated coupling of the dGSJ-site to the
continuum, and will be treated below as a perturbation:

Hdc
J =

∑
σσ ′

(Jdd d†
σ sσσ ′dσ ′ + J�� �

†
0σ sσσ ′�0σ ′ ) · S

+ Jd�

∑
σσ ′

(d†
σ sσσ ′�0σ ′ + �

†
0σ sσσ ′dσ ′ ) · S. (13)

The operators �0σ ,�
†
0σ are the annihilation and creation

operators for electrons in the continuum at the position of
magnetic impurity. Phenomenologically, we have assumed
different couplings for the various processes involving the
scattering of the dGSJ and the continuum excitations by the
impurity. These couplings can be calculated from first prin-
ciples. However, they depend on microscopic details of the
matrix elements of the impurity orbitals and the continuum
of both subgap and outer-gap excitations which are difficult
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to model. For this reason, we treat their bare values as free
parameters in the analysis below.

We carry out the poor man’s scaling analysis [36] of the
model (13) by integrating out the high energy degrees of
freedom from the continuum with energies of the order of
the band width D ∼ EF . Since these band-edge modes exhibit
vanishing superconducting correlations because their energies
are well above the gap, the calculations do not differ much
from those of the standard Kondo scaling of a magnetic impu-
rity [36]. Some details are provided in Appendix D. In what
follows, we focus on the discussion of the solutions to the
scaling equations, which read

dg��

d�
= g2

��, (14)

dgd�

d�
= gd�g��, (15)

dgdd

d�
= g2

d�. (16)

Here gdd = 2ν0Jdd , gd� = 2ν0Jd�, and g�� = 2ν0J�� are di-
mensionless couplings, ν0 ∼ 1/D being the mean density of
continuum states. The scaling variable � is defined such that
the bandwidth is reduced according to D(�) = De−� → 0 as
� → +∞, where D ∼ EF .

As the bandwidth of the system is reduced, the above scal-
ing equations imply that the renormalization of gdd and gd� is
driven by the growth of g��. Indeed, Eq. (14) for g�� is math-
ematically identical to the scaling equation for the exchange
coupling of a magnetic impurity in a normal metal (Kondo
scaling). It can be readily solved by the ansatz g��(�) =
(�∗ − �)−1, where �∗ = 1/g��(0). Like the ordinary Kondo
scaling, �∗ corresponds to the logarithmic scale where g��(�)
diverges and the perturbative renormalization breaks down.
This happens when the bandwidth becomes of the order of
a “Kondo temperature”, T �

K , i.e., for �∗ = ln(D/T �
K ). Hence,

g��(� → �∗) → +∞ leads to T �
K = De1/(2ν0J�� ). Note that

T �
K � �s would imply that the continuum states at energies

much higher than the superconducting gap are strongly cou-
pled to the magnetic impurity. In this situation, the single-site
description as introduced above breaks down. In the classical
approach, such a strong coupling to the continuum should
result in substantial suppression of the overlap between the
YSR and dSGJ states.

Indeed, the wave-function overlap � (cf. Fig. 3) can be
used to obtain a rough estimate the ratios of the bare couplings
gd�(0)/gdd (0), and g��(0)/gdd (0). To this end, we first no-
tice that gdd ∼ Jdd , gd� ∼ Jd�, and g��(0) ∼ J�� contain
matrix elements with zero, one, and two powers of the contin-
uum orbitals, respectively (recall that the exchange couplings
are second order in the matrix element describing the tunnel-
ing between the impurity magnetic orbital and the metallic
host states). Let γ = 1 − |�| measure the degree of admixture
of the YSR state with the continuum; γ will be enhanced by
quantum fluctuations relative to the estimates provided by the
classical approach (cf. Sec. III). Nonetheless, we expect γ to
remain much smaller than one. Thus gdd (0) ∼ γ 0, gd� ∼ γ ,

and g�� ∼ γ 2, to leading order in γ . Furthermore, gdd (0) =
2ν0Jdd ∼ �s/D ∼ �/D � 1 according to the discussion at
the end of the previous section.

Next, we proceed to obtain solutions to the scaling equa-
tions using the above estimates for the initial conditions of
the flow. Concerning the solutions of (15) and (16), we notice
that (15) is solved by the ansatz gd�(�) = rd�/(�∗ − �) with
rd� = gd�(0)/g��(0). Introducing this result into Eq. (14)
and integrating, we obtain the following renormalized cou-
pling between the impurity and the dSGJ:

gdd (�) = gdd (0) + g2
d�(0)

g��(0)

(�/�∗)

1 − (�/�∗)
. (17)

Using g2
d�(0)/g��(0) = γ 2g2

dd (0)/[γ 2gdd (0)] � γ 0gdd (0),
the above expression simplifies to

gdd (�) � gdd (0)

1 − (�/�∗)
. (18)

which needs to be compared with the behavior of the renor-
malized coupling to the continuum after setting g��(0) �
γ 2gdd (0):

g��(�) � γ 2gdd (0)

1 − (�/�∗)
. (19)

Note that both couplings diverge at �∗ = ln(D/T �
K ) with

T �
K � De−1/2(ν0γ

2Jdd ) � � if γ � 1, which is consistent with
what was discussed above. For instance, if we choose γ ≈ 0.2
(corresponding to � ≈ 0.8), then

g��(�)

gdd (�)
� γ 2 � 1. (20)

Thus, as the continuum states are integrated out, the impurity
remains most strongly coupled to the single site describing
the dGSJ quasiparticle and therefore the single-site model
remains an accurate description of the magnetic impurity on
the proximitized thin film.

Let us close this section by pointing out some potential
problems with the scaling analysis described above. First of
all, like the original poor man’s scaling [36], the equations are
obtained perturbatively. Therefore the solutions to the scal-
ing equations are valid provided the couplings remain small
compared to unity. This is not a problem under the above
assumptions because the scale where the couplings diverge �∗
is much smaller than the superconductor gap and the scaling
must be stopped at the scale of �. As we get closer to the gap
scale, the superconducting correlations cannot be neglected,
and taking them into account will modify the flows of the
renormalized couplings. Nevertheless, we should interpret the
above analysis as providing information on the tendency of
the high-energy continuum states to couple to the impurity in
the presence of the coupling to the dGSJ state. In order to
follow the renormalization of the coupling to the continuum
from high to low energies, it would be desirable to carry out
calculations using the NRG and starting from a more micro-
scopic description of the system, e.g., using model parameters
obtained from first principle calculations. Such calculation
should provide a more quantitative assessment of the accuracy
the single-site model introduced in this work for proximitized
films.
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VI. CONCLUSIONS

We have studied the YSR excitations in a thin metal
film proximitized by a superconductor. This has been carried
out by introducing a one-dimensional model of the metal
film/superconductor substrate. We have discussed the spec-
trum of this model, which consists of subgap bound states
known as de Gennes-Saint James (dGSJ) states. We have
shown that Andreeev-reflection at the metal/superconductor
interface leads to a substantial spectral reorganization around
and below the gap energy. Next, the spectrum of the system
when a magnetic impurity is deposited on the metal film has
been also described. Treating the impurity spin as a classi-
cal vector, we have found there is a substantial overlap of
the wavefunctions of the Yu-Shiba-Rusinov (YSR) and the
dGSJ states. Motivated by these results, a single-site model
has been introduced. This model replaces the complexity of
the proximitized film with a single-site that represents the
dGSJ quasiparticle excitation and is coupled to the impurity
with an effective exchange coupling. The single-site model
is exactly solvable and allows us to go beyond the classi-
cal description of the impurity by treating its spin quantum
mechanically. Finally, we have addressed the accuracy of
the single-site model by phenomenologically reintroducing
the coupling to the continuum of excitations of the prox-
imitized film as a perturbation and using the poor man’s
scaling method: under conditions suggested by the findings
of the classical approach, we have shown that the exchange
coupling with the site that describes the dGSJ quasiparti-
cle excitation remains the dominant coupling under scaling.
Thus, the continuum of excitations of the proximitized film
can be neglected in a first approximation, and the YSR
states can be regarded as resulting from the exchange inter-
action of the magnetic (quantum) impurity with the dGSJ
quasiparticles.

The approach used here can be generalized to treat im-
purities with higher spin and account for a single ion as
well as magnetic exchange anisotropies. Our results provide
theoretical support for the model used to analyze the STS
spectra reported in Ref. [16]. Moreover, we believe that our
findings are also of relevance to superconductor/quantum
dots [44–46] hybrid systems. In particular, similar single-site
models can be developed using the methods introduced here
in order to describe the spectroscopic properties of quantum
dot systems[47–50], which can find potential uses as qubits.
In addition, since the single-site model introduced here is
computationally cheaper than more sophisticated numerical
methods like the numerical renormalization group (NRG) [11]
or continuous-time Monte Carlo [12], it can be used to model
more complex systems such as chains or other nanostructures
of magnetic impurities on proximitized films, which would be

otherwise rather intractable by those methods. For this reason,
we also believe it is worth revisiting the system studied here
using much more sophisticated numerical tools, in order to
quantitatively assess the limitations of the single-site model
as introduced in this work.

ACKNOWLEDGMENTS

We acknowledge financial support from MCIN
Grants No. PID2020-120614GB-I00 (ENACT), No.
PID2019-107338RB-C61, No. CEX2020-001038-M, No.
PID2020-112811GB-I00, No. TED2021-130292B-C42,
and No. PID2020-114252GB-I00, funded by MCIN/AEI/
10.13039/501100011033, from the Diputación Foral de
Guipuzcoa, the ELKARTEK project BRTA QUANTUM
(No. KK-2022/00041), and from the European Union (EU)
through the Horizon 2020 FET-Open projects SPRING (No.
863098), and the European Regional Development Fund
(ERDF). M.A.C. has been supported by Ikerbasque, Basque
Foundation for Science. F.S.B. thanks financial support from
the Basque Government through Grant No. IT-1591-22.
J.O. acknowledges the scholarship PRE_2022_2_0095 from
the Basque Government. The authors also thank Katerina
Vaxevani and Stefano Trivini for their help measuring the
experimental spectrum on Fig. 1(d) and several discussions.

APPENDIX A: TWO-LAYER GREEN’S FUNCTIONS

As discussed in Ref. [51], the GFs of a composite sys-
tem (3) can be obtained from the GFs of the constituent
subsystems. We denote the GFs of each subsystem as
gi(x, x′), with i = N, S. We impose the following boundary
conditions:

dgi(x, x′)
dx

∣∣∣
x=0

= 0,
dgi(x, x′)

dx′

∣∣∣
x′=0

= 0, (A1)

dgN (x, x′)
dx

∣∣∣
x=−a

= 0,
dgN (x, x′)

dx′

∣∣∣
x′=−a

= 0, (A2)

gS (x → +∞, x′) = 0, gS (x, x′ → +∞) = 0, (A3)

lim
δ→0+

τ3
dgi(x, x′)

dx

∣∣∣x=x′+δ

x=x′−δ
= 2m

h̄2 ,

lim
δ→0+

τ3
dgi(x, x′)

dx′

∣∣∣x′=x+δ

x′=x−δ
= 2m

h̄2 . (A4)

We assume a zero derivative at the vacuum interface, except
for the semi-infinite superconductor at x, x′ → ∞, for which
the GFs are assumed to vanish.

Using the above boundary conditions, and assuming conti-
nuity of the full GF and its derivative at the N/S interface, we
obtain the following relations:

G(x, x′) =
{

gS (x, x′)θ (x′) ∓ gS (x, 0)[gS (0, 0) + gN (0, 0)]−1gS,N (0, x′), for x > 0, x′ ≷ 0

gN (x, x′)θ (−x′) ∓ gN (x, 0)[gS (0, 0) + gN (0, 0)]−1gS,N (0, x′), for x < 0, x ≷ 0
. (A5)

The GFs for the isolated system are easy to calculate from Bogoliubov-de Gennes equation [39]. After that, one can get the
dressed GF from (A5), see Ref. [41]. The GF shows a pole with the following energy distribution:

ω√
�2 − ω2

tan

(
2ma

h̄2kF
ω

)
= 1. (A6)
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Note that by expanding the tangent around zero to the first order, we arrive at the same solution as obtained from a semi-classical
argument Eq. (1).

From the knowledge of the GFs we can calculate the BdG spinors from the residue of the corresponding pole, as follows from
the spectral representation of the GFs:

GR(x, x′, ω) =
∑

n

φn(x)φ†
n (x′)

ω − ξn + iη
. (A7)

In the case of a continuum eigenbasis, we have

GR(x, x′, ω) = L
∫

dk

2π

φk (x)φ†
k (x′)

ω − ξk + iη
= L

2π

∫
dEk

∣∣∣∣ dk

dEk

∣∣∣∣φ(Ek, x)φ†(Ekm, x′)
ω − ξk + iη

∼ iL

∣∣∣∣ dk

dEk

∣∣∣∣
kF

φ(ω, x)φ†(ω, x′) + LP
∫

dk
φk (x)φ†

k (x′)
ω − ξk

= ∼ iLN0φ(ω, x)φ†(ω, x′) + LP
∫

dk
φk (x)φ†

k (x′)
ω − ξk

. (A8)

However, in our case, the eigenbasis can be divided into a continuum part (ω > �) and a discrete part corresponding to the dGSJ
or YSR states (for ω < �). Thus

GR(x, x′, ω) =
⎧⎨
⎩

iLN0φ(ω, x)φ†(ω, x′) + LP
∫

da φ(a,x)φ†(a,x′ )
ω−ξk

for ω > �,∑
n

φn(x)φ†
n (x′ )

ω−ξn+iη for ω < �.
(A9)

Hence,

Resω→En GR(x, x′, ω < �) = φn(x)φ†
n (x′) =

(
u(x)u(x′) u(x)v(x′)

v(x)u(x′) v(x)v(x′)

)
. (A10)

APPENDIX B: TIGHT-BINDING MODEL

In order to carry out some of the calculations of Sec. III
beyond the leading order in �/EF and to investigate the effect
of a mismatch in the Fermi level, we use a one-dimensional
tight-binding model which describes a short normal chain
coupled to a longer superconducting chain. The exchange
potential describing a classical magnetic impurity acts on the
first site of the (normal) chain. The Hamiltonian reads

HTB = H0 + HJ , (B1)

where

H0 = −
∑
〈i, j〉σ

tic
†
iσ c jσ −

∑
i

μic
†
iσ ciσ +

∑
i

�ic
†
iσ c†

jσ + H.c.

(B2)
Here, ti = tmetalθ (Nmetal − i) + tSCθ (i − Nmetal ), μi =
μmetalθ (Nmetal − i) + μSCθ (i − Nmetal ) and �i = �θ (i −
Nmetal ). The interaction the chain and the magnetic impurity
is described by

HJ = J (c†
0↑c0↑ − c†

0↓c0↓) (B3)

We diagonalize this Hamiltonian for a chain of 1500 sites
and calculate the overlap between the Nambu spinors of

the lowest-lying level of H0 and HTB for different values
of J . The results are shown in Fig. 3, where the calcula-
tion was performed for μmetal = μSC, i.e., no Fermi-level
mismatch at the interface. Figure 4 shows the overlap be-
tween the dGSJ and YSR states for a larger parameter
space of the tight-binding model. Some particular values
of Fermi-level mismatch, such as, μSC/μmetal = 20�, 40�

are shown. Comparing this figure with Fig. 3(c), we
note a small reduction of the overlap due to the mis-
match. Nevertheless, the values of the overlap are still
fairly close to unity, and in line with what was discussed
in Sec. V we do not expect substantial modifications to
our results concerning the applicability of the single-site
model.

APPENDIX C: SINGLE SITE HAMILTONIAN
FOR A PROXIMITIZED SUPERCONDUCTOR

By solving the Bogoliubov-de Gennes equations for the
proximitized thin film, the electron field operator at the
position of the magnetic impurity, φ0σ , can be written as
follows:

ψ0σ = u0γσ + σv∗
0γ

†
−σ + √

1 − Z �oσ . (C1)
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FIG. 4. Exploration of the overlap between dGSJ and YSR eigenstates for varying exchange coupling on a larger parameter space of the
tight-binding model. We set the hopping between superconducting sites to tSC = 1 and the superconducting gap to � = 0.05 and change the
hopping in the normal metal and the Fermi-level mismatch. (a) t = 1.0 and (b) 2.5. The two panels show the overlap for different values
of the mismatch of the Fermi energy and two different dGSJ energies, one closer to Fermi energy and the other close to the
superconducting gap.

We start by changing the basis on the unperturbed Hamil-
tonian (3), where first two terms described the dGSJ
quasiparticle and �0σ describes the modes in the continuum.
We now introduce a rotation for the operators creating the
discrete state:(

dσ

d†
−σ

)
=
(

cos θ − sin θ

sin θ cos θ

)(
γ0σ

γ
†
0−σ

)
. (C2)

This rotation leads to (8), where U = Es cos 2θ and �s =
Es sin 2θ . Furthermore, requiring that

ψ↑ =
√

Zd↑+√
1 − Z�0↑ = u0γσ + σv∗

0γ
†
−σ + √

1 − Z �0↑.

(C3)

Hence, tan θ = −v0/u0 and Z = u2
0 + v2

0 , where U = Es(u2
0 −

v2
0 ) and �s = 2Esu0v0.

APPENDIX D: CALCULATION OF THE SCALING EQUATIONS

In order to perturbatively obtain the scaling equations of the model introduced in Sec. V, we consider an expansion of the
partition function of the system, i.e.,

Z (D) = Z0(D)

〈
T exp

[
−
∫ β

0
Hdc

J (τ )

]〉
0

, (D1)

in powers of the couplings Jdd , Jd�, and J��. In the above expression for Z (D) Z0(D) = Tr eβH0 is the partition function of
the system without magnetic impurity at inverse absolute temperature β = (kBT )−1; 〈. . .〉0 is the expectation value over the
noninteracting grand canonical ensemble described by H0. The operator HJ (τ ) = eH0τ HJe−H0τ , where HJ is given in Eq. (13),
describes the magnetic exchange with the impurity in the interaction representation and T is the imaginary time-ordering symbol.
We have also introduced a parameter, D EF , which is the bandwidth of the composite thin film and superconductor system.

Following Anderson [36], we shall use perturbation theory to obtain a map onto a system with smaller bandwidth D′ =
D − δD < D. Associated with the bandwidths D and D′, there are also the following characteristic (imaginary) time scale
(in units where h̄ = 1) τc = D−1 and τ ′

c = (D′)−1 > τc. The lowest order terms of the perturbation series for the system with
bandwidth D read

Z (D) = Z0(D)

{
1 −

∫
dτ
〈
Hdc

J (τ )
〉
0 + 1

2!

∫
|τ−τ ′|>τc=D−1

dτdτ ′ 〈T [Hdc
J (τ )Hdc

J (τ ′)
]〉

0 + · · ·
}
, (D2)

where we have made explicit the constraints on τ imposed by the finite bandwidth of the continuum of states described by �σ

and �†
σ .

Next, let us integrate out the high energy degrees of freedom contained �0σ and �
†
0σ (recall that dσ , d†

σ describe a low-
energy subgap state and it cannot be integrated out). Such degrees of freedom involve excitations with energies ∼D above the
ground state and therefore determine the short imaginary time behavior of the Green’s functions for �σ . Note that, since at
excitation energies ∼D Bogoliubov quasiparticles either behave as electrons or holes (in other words, either u → 0 or v → 0),
the anomalous GFs involving the operator �0, i.e., 〈T [�0↑(τ )�0↓(τ ′)]〉0, etc., vanish for |τ − τ ′| � τ−1

c . Thus, in the above
perturbation series, for |τ − τ ′| ∼ τc, we need to consider only normal correlations, which take the familiar Fermi liquid form:

〈
T
[
�0σ (τ )�†

0σ ′ (τ ′)
]〉

0 � ν0δσσ ′

(τ − τ ′)
(D3)
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for |τ ′ − τ | � τ−1
c , where ν0 is the (mean) density of states of the normal state. Thus the first nonconstant contribution to the

scaling of the couplings stems from the second-order term. We first split the integrals over τ, τ ′ according to∫
|τ−τ ′|>τc=D−1

dτdτ ′ . . . =
∫

|τ−τ ′|>τ ′
c=(D′ )−1

dτdτ ′ . . . +
∫

τ ′
c=(D′ )−1>|τ−τ ′|>τc=D−1

dτdτ ′ . . . (D4)

and consider the terms in the second term for which τ ′
c > |τ − τ ′| > τc. Expanding the second-order term in powers, corrections

to the couplings contained in the first-order term are generated at O(J2
d�), O(Jd�J��), and O(J2

��). We explicity evaluate below
the O(J2

d�) term. The calculations for the remaining terms are similar and not reproduced here. Einstein’s convention of repeated
index summation is used throughout:

O
(
J2

d�

) = J2
d�(D)

2!

∫
τ ′

c>|τ−τ ′|>τc

dτdτ ′ {〈T [Sa(τ )Sb(τ ′)]〉0
(
sa
σσ ′sb

λλ′
)〈T [d†

σ (τ )�0σ ′ (τ )�†
0λ(τ ′)dλ′ (τ ′)]〉0

+〈T [Sa(τ )Sb(τ ′)]〉0
(
sa
σσ ′sb

λλ′
)〈T [�†

0σ (τ )dσ ′ (τ )d†
λ (τ ′)�0λ′ (τ ′)]〉0

}
(D5)

= J2
d�(D)ν0

2!

∫
τ ′

c>|τ−τ ′|>τc

dτdτ ′
{

〈T [Sa(τ )Sb(τ ′)]〉0

(
sa
σλsb

λλ′
)

(τ − τ ′)
〈T [d†

σ (τ )dλ′ (τ ′)]〉0

+〈T [Sa(τ )Sb(τ ′)]〉0

(
sb
λσ sa

σσ ′
)

(τ − τ ′)
〈T [dσ ′ (τ )d†

λ (τ ′)]〉0

}
(D6)

= −J2
d�(D)ν0

4

∫
τ ′

c>|τ−τ ′|>τc

dτdτ ′ iεabc[sa, sb]σσ ′

|τ − τ ′| 〈T [Sc(τ )]〉0〈T [d†
σ (τ )dσ ′ (τ ′)]〉0 (D7)

= −J2
d�(D)ν0

2

∫
τ ′

c>|τ−τ ′|>τc

dτdτ ′
(
εabcεab f s f

σσ ′
)

|τ − τ ′| 〈T [Sc(τ )]〉0〈T [d†
σ (τ )dσ ′ (τ ′)]〉0 (D8)

= −J2
d�(D)ν0

2

∫
τ ′

c>|τ−τ ′|>τc

dτdτ ′ 1

|τ − τ ′| 〈T [d†
σ (τ )Sc(τ )sc

σσ ′dσ ′ (τ ′)]〉0. (D9)

In the above derivation we have used the following results: εabcεabd = 2δcd and

T [Sa(τ )Sb(τ ′)] = θ (τ − τ ′)SaSb + θ (τ ′ − τ )SbSa (D10)

= 1

2
(SaSb − SbSa)[θ (τ − τ ′) − θ (τ ′ − τ )] + 1

2
(SaSb + SbSa) (D11)

= i

2
εabcScsgn(τ − τ ′) + {Sa, Sb} (D12)

because Sa(τ ) = eH0τ Sae−H0τ = Sa. As noted above, the operators describing the dGSJ quasiparticle have time dynamics varying
on the scale of �−1 � τ ′

c, which is very slow compared to the fast degrees of freedom being integrated out from �0c and �†
c .

Introducing τ− = τ − τ ′ and τ+ = (τ + τ ′)/2. Thus the term proportional to {Sa, Sb} drops because it is multiplied by τ−1
− rather

than |τ−|−1 and the integral over τ− of former vanishes to leading order. Thus, to leading order in τ−, we are left with

O
(
J2

d�

) = −J2
d�(D)ν0

∫
dτ+ 〈T [d†

σ (τ+)S(τ+) · sσσ ′ (τ+)dσ (τ+)]〉0

∫
τ ′

c>|τ−|>τc

dτ−
|τ−| (D13)

= −2ν0
δD

D
J2

d�(D)
∫

dτ 〈T [d†
σ (τ )S(τ ) · sσσ ′ (τ )dσ (τ )]〉0. (D14)

In the last expression, we have evaluated the integral over τ− using∫
τ ′

c>|τ−|>τc

dτ−
|τ−| = 2 ln

(
τ ′

c

τc

)
= 2 ln

(
D

D′

)
= −2 ln

(
D − δD

D

)
� 2δD

D
, (D15)

and replaced τ+ → τ . Notice that the resulting expression in Eq. (D14) takes the same form as the contribution ∝ Jdd in the
first-order term of (D2). This leads to the following recursion relation:

Jdd (D − δD) = Jdd (D) + 2ν0J2
d�(D)

δD

D
. (D16)

Assuming the couplings are continuous functions of the cutoff
D, the recursion relation becomes a differential equation:

D
dJdd (D)

dD
= −2ν0J2

d�, (D17)

which implies that Jcc increases with decreasing bandwidth D.
Similarly, we can tackle the terms at O(Jd�J��) and

O(J��) (note the latter one is the only one present in the
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standard poor man’s scaling treatment of the Kondo model).
From those terms, the following differential equations are
obtained:

D
dJd�(D)

dD
= −2ν0Jd�J��, (D18)

D
dJdd (D)

dD
= −2ν0J2

��. (D19)

It is convenient to introduce a new scaling variable defined by
the differential equation:

dD

D
= −d� ⇒ D(�) = D0e−�. (D20)

Thus as � → +∞ D(�) → 0. Furthermore, if we define the
dimensionless couplings gdd = 2ν0Jdd , gd� = 2ν0Jd�, and
g�� = 2ν0J��, we finally arrive at the scaling equations (14)
to (16) discussed in Sec. V.
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