
PHYSICAL REVIEW B 108, 024507 (2023)

Optimized proximity thermometer for ultrasensitive detection: Role of an ohmic
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We propose a mesoscopic thermometer for ultrasensitive detection based on the proximity effect in
superconductor–normal metal (SN) heterostructures. The device is based on the zero-bias anomaly due to
the inelastic Cooper-pair tunneling in an SNIS junction (I stands for an insulator) coupled to an ohmic
electromagnetic (EM) environment. The theoretical model is done in the framework of the quasiclassical Usadel
Green’s formalism and the dynamical Coulomb blockade. The usage of an ohmic EM environment makes
the thermometer highly sensitive down to very low temperatures, T � 5 mK. Moreover, defined in this way,
the thermometer is stable against small but nonvanishing voltage amplitudes typically used for measuring the
zero-bias differential conductance in experiments. Finally, we propose a simplified view, based on an analytic
treatment, which is in very good agreement with numerical results and can serve as a tool for the development,
calibration, and optimization of such devices in future experiments in quantum calorimetry.
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I. INTRODUCTION

Any temperature-dependent parameter, particularly one
that varies monotonically, can provide a fundamental frame-
work for thermometry [1,2]. In the past decades, several tech-
niques for measuring the local temperature at nanoscale have
been developed [3–12]. In previous works [13,14], we have
proposed a technique based on the temperature-dependent
proximity effect in a superconductor–normal metal–insulator–
superconductor (SNIS) hybrid junction yielding sensitive
thermometry with ultralow dissipation. The thermometer was
based on the zero-bias anomaly (ZBA) in the current-voltage
(I-V) characteristics of such junctions. This on-chip technique
has proven to be well suited for detecting tiny heat currents
through calorimetry, and also for performing fast thermometry
towards the lowest temperatures in mesoscopic systems.

The theoretical model presented in Ref. [14] is based on
the superconducting proximity effect and dynamical Coulomb
blockade. The latter assumes the presence of an electromag-
netic (EM) environment which was modeled as an infinite
resistor-capacitor (RC) transmission line with effective (fit-
ting) parameters [see the upper plot in Fig. 1(a)]. Defined in
this way, our model has quantitatively reproduced the exper-
iments. However, we have found that the thermometer is not
reliable at very low temperatures since it is highly sensitive to
the nonzero voltage amplitudes, δV , used for measuring the
ZBA [see the lower plot in Fig. 1(a)]. Namely, in calorimetric
measurements the ZBA is typically measured at the small
but nonvanishing lock-in voltage excitation, here referred to
as δV . Hence, to have a well-defined ZBA thermometer, it
is required to minimize the dependence of the ZBA on δV ,
and throughout the paper we say that the response is “robust”

when the measured conductance does not depend strongly on
δV . Besides this, the developed theory was phenomenological
since the EM environment was not fabricated on purpose.

In the present work, we propose a device based on an
ohmic EM environment that overcomes the mentioned issues
[see the upper plot in Fig. 1(b)]. Namely, as we shall show,
the thermometer defined in this way is robust (in the sense
discussed above) against nonzero voltage amplitudes [see the
lower plot in Fig. 1(b)], especially in the experimentally rele-
vant range δV � 0.5 µV, and it is well defined since an ohmic
impedance can be experimentally fabricated on purpose.

The thermometer we propose here is based on an SNIS
proximity junction schematically shown in Fig. 1(c). A semi-
infinite (total length is much larger than the superconducting
coherence length; ξ ) quasi-one-dimensional normal metal
wire N (orange) is proximitized by a BCS superconductor (S1;
blue) via clean contact. On distance L from the clean contact
another superconductor (S2; blue) is put on top of the N wire
via good tunnel contact of resistance RT and this structure acts
as a thermometer. As already mentioned, the EM environment
is modeled as an ohmic impedance [see Fig. 1(b)]. As a
result, we end up with a well-defined experimentally feasible
thermometer. Namely, as we shall show in the subsequent
sections, the ZBA, mediated by the inelastic tunneling of
Cooper pairs, in such contacts scales monotonically with the
temperature down to very low values, T � 5 mK. In addi-
tion, the device displays robustness against nonzero voltage
amplitudes.

The paper is organized as follows. After the Introduction,
in Sec. II we provide the microscopic model of the proposed
device based on the quasiclassical Green’s function method
and dynamical Coulomb blockade. In Sec. III we discuss the
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FIG. 1. (a) Schematic view of the circuit examined in Ref. [14]
where an SNIS proximity structure is coupled to an infinite RC
transmission line. Lower panel shows the low-bias conductance
vs temperature for different bias voltage amplitudes. (b) The cor-
responding circuit involving an ohmic environment instead. The
low-bias conductance vs temperature is robust against nonzero volt-
age amplitudes typically unavoidable in experiments, making the
proposed device stable and well defined. (c) A scheme of the SNIS
junction studied in the paper. (d) The P(E ) function for an ohmic
electromagnetic environment shown in panel (b) for various resis-
tances R. For certain resistances the zero-bias conductance does not
lose sensitivity at low temperatures.

results of numerical calculations focusing on the operating
regime of the thermometer, i.e., the ZBA vs temperature. In
addition, here we provide a simplified analytic model that can
be used as a calibration tool for the device. Finally, in Sec. IV
we enclose our discussion by giving concluding remarks and
perspectives.

II. THEORETICAL FRAMEWORK

As already mentioned above, to obtain a full model of the
proposed device we need to account for two key ingredients:
(i) the proximity effect in an SNIS junction described in the
framework of the quasiclassical Green’s formalism and (ii)
the inelastic Cooper-pair tunneling in the system caused by
the dynamical Coulomb blockade. In this section, we discuss
these.

A. Usadel formalism: SNIS proximity junction

The superconducting proximity effect is conveniently de-
scribed by making use of the quasiclassical Green’s function
method [15–18]. In our model, all metallic parts are in the
diffusive limit which assumes � � ξ , where � = vF τ and
ξ = √

h̄D/(2�0) are the elastic mean free path and the super-
conducting coherence length, respectively. For an aluminum
superconductor, typical values for these are �Al ∼ 20 nm and
ξAl ∼ 150 nm. In equilibrium, the Green’s function is a 2 × 2

matrix in particle-hole space

Ĝ(r) =
(

G(r) F (r)

F †(r) −G(r)

)
, (1)

which is subject to the normalization Ĝ2(r) = τ̂0 ⇒ G2(r) +
F (r)F †(r) = 1 and satisfies the Usadel equation [19]

h̄D∇[Ĝ(r)∇Ĝ(r)] = [ωnτ̂3 + �̂(r), Ĝ(r)]. (2)

Here, r is the center-of-mass coordinate, ωn = (2n + 1)πkBTJ

are fermionic Matsubara frequencies with n = 0,±1,±2, . . .

and the electron temperature TJ, D = vF �/3 is the diffusion
coefficient of the material, and [·, ·] denotes a commutator. In
addition, τ̂i are the Pauli matrices in particle-hole space and �̂

is the gap matrix given by

�̂(r) =
(

0 �

�∗ 0

)
= �(r)

(
0 eiφ(r)

e−iφ(r) 0

)
, (3)

with φ(r) being the superconducting phase.
Once known, the Green’s function provides us with the full

information about the equilibrium properties of the system
under study, e.g., the supercurrent. If we deal with the system
consisting of two superconductors separated by an insulating
barrier of resistance RT , the supercurrent is given by the stan-
dard sinusoidal current-phase relation with the critical current
[20–23]

Ic = 2πkBTJ

eRT

∑
n�0

F1(ωn)F2(ωn), (4)

where the index 1 (2) refers to the left (right) superconduct-
ing electrode. This formula will be used for calculating the
Josephson energy of the thermometer, EJ = h̄Ic/(2e). Finally,
we stress that the gap here is not calculated self-consistently
and for its temperature dependence we use the interpola-
tion formula �(TJ ) = �0 tanh(1.74

√
Tc/TJ − 1), where �0

denotes the gap at TJ = 0 and Tc = �0/(1.764kB) is the su-
perconducting transition temperature [24]. As we show below,
Eq. (4) applies to the case of an SNIS system sketched in
Fig. 1(c). Namely, the proximitized N wire behaves as a
superconductor inheriting some superconducting properties
including the phase from the S1 lead.

As anticipated, the proposed device is based on an SNIS
junction sketched in Fig. 1(c), where a semi-infinite S1N prox-
imity contact is coupled to another BCS superconductor S2 on
distance L. The NS2 interface has high resistance RT = 1/GT

and therefore Eq. (4) applies. To describe the proximity effect
in N induced by S1, we employ the so-called θ parametriza-
tion, where G = cos θ and F = sin θ , and Eq. (2) adopts the
form [18,25]

h̄D

2

d2θn(x)

dx2
= ωn sin θn(x) − �(x) cos θn(x). (5)

Here we neglect the inverse proximity effect, i.e., for the gap
we take a stepwise potential, �(x) = ��(−x), where �(x)
stands for the Heaviside step function. For simplicity, we
assume the diffusion coefficient to be the same in both mate-
rials, DS = DN = D. To obtain a full solution to the problem,
the Usadel equation should be supplemented by the appro-
priate boundary conditions, θn(x = 0−) = θn(x = 0+) and
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σS∂xθn|x=0− = σN∂xθn|x=0+, where σS/N is the normal-state
conductivity of the S/N region [26]. Two other boundary con-
ditions read θn(x → ∞) = 0 and θn(x → −∞) = θS

n , with
θS

n = atan(�/ωn) being the BCS bulk solution.
Under the assumptions given above, the solution of Eq. (5)

in the N wire reads [27,28]

θn(x) = 4atan

[
tan

(
θ0

n

4

)
exp[−

√
2ωn/(h̄D)x]

]
, (6)

where the θ0
n function satisfies the equation

sin

(
θ0

n − θS
n

2

)
= −γ

(
ω2

n

ω2
n + �2

)1/4

sin

(
θ0

n

2

)
. (7)

Here, γ = σN
√

DS/(σS
√

DN ) is the so-called diffusivity mis-
match parameter, which in our case measures the mismatch
in the normal-state conductivities of two materials since we
assume DS = DN = D.

Having obtained the solution in the N wire, we can calcu-
late the critical current across the NS2 interface by applying
Eq. (4), i.e.,

Ic(L) = 2πkBTJ

eRT

∑
n�0

� sin θn(x = L)√
ω2

n + �2
, (8)

where L is the distance between the superconductors S1 and
S2 [see Fig. 1(c)]. Note that we neglect the inverse proxim-
ity effect in S2, i.e., we assume it as a bulk homogeneous
BCS superconductor, F2 = �/�n, where �n = √

ω2
n + �2.

The resulting critical current is presented in Fig. 2. Panel (a)
shows the Ic(TJ ) function for various distances between the
superconductors L and γ = 1. The critical current is getting
suppressed on longer distances (see the solid violet line) since
the proximity effect weakens as the Cooper pairs propagate
deeper into the N wire from the S1N interface. Panel (b) shows
the same quantity for L = ξ and different values of the γ

parameter. Increasing γ significantly suppresses the critical
current.

B. P(E ) theory: Ohmic EM environment

The second ingredient necessary for calculating the tun-
neling current in the SNIS thermometer is information about
an EM environment coupled to the junction. A Josephson
junction of sufficiently high charging energy, EC = 2e2/C 	
EJ , C being the junction capacitance, can feature the single
Cooper-pair tunneling carrying the current [29,30]

Is(V ) = πeE2
J

h̄
[P(2eV ) − P(−2eV )]. (9)

Here, EJ = h̄Ic/(2e) is the Josephson energy and P(E ) is the
probability for a Cooper pair to emit a photon of energy E
to the EM environment during the inelastic tunneling across
the junction. Note that the Josephson energy directly depends
on the junction’s properties through Eq. (8) [see also Eq. (4)].
The P(E ) function is given by

P(E ) = 1

2π h̄

∫ ∞

−∞
dt exp

[
4J (t ) + i

h̄
Et

]
, (10)

where J (t ) = 〈[ϕ(t ) − ϕ(0)]ϕ(0)〉 is the equilibrium corre-
lation function of the phase ϕ(t ) = (e/h̄)

∫ t
−∞ V (t ′)dt ′ with

FIG. 2. The critical current Ic in an SNIS thermometer as a
function of the junction’s temperature TJ for (a) various distances L
between the clean and the tunnel contact and γ = 1 and (b) various
γ and L = ξ .

V (t ) being the voltage across the junction. The J (t ) function
depends on the total impedance of the system seen by the
junction, Zt (ω), and reads

J (t ) = 2
∫ ∞

0

dω

ω

Re[Zt (ω)]

RK

×
{

coth

(
h̄ω

2kBTEM

)
[cos(ωt ) − 1] − i sin(ωt )

}
,

(11)

where RK = h/e2 ≈ 25.8 k� is the von Klitzing constant
denoting the resistance quantum and TEM is the environmental
temperature. Finally, the total impedance of the system Zt (ω)
reads

Zt (ω) = 1

iωC + Z−1(ω)
, (12)

where C, as introduced earlier, is the capacitance of the junc-
tion and Z (ω) is the impedance of the EM environment itself.
As already mentioned, the usage of an infinite RC transmis-
sion line succeeds in describing a proximity thermometer and
quantitatively reproduces experimental data [14]. However,
this approach is phenomenological, since no EM environment
has been fabricated on purpose in the experiment.
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In the present model, the EM environment is assumed to be
an ohmic impedance of resistance R, where

Re[Zt (ω)]

RK
= 1

RK

R

1 + (ωRC)2
= ρ

1 + (ω/ωR)2
, (13)

with ρ = R/RK and

ωR = 1

RC
= 1

4πρ

EC

h̄
. (14)

The corresponding P(E ) function for several environmental
resistances R and temperature kBTEM/EC = 0.01 is shown
in Fig. 1(d) [30]. As one may notice, low resistances (R <

RK/8 ≈ 3.23 k�) lead to a divergence of the function at
low energies (see the solid black and dashed red lines). Ac-
cording to Eq. (9) this would lead to a divergence of the
current itself, which means that the latter formula is out of
range of validity. Namely, it can be shown that the formula
for the tunneling current given in Eq. (9), as a perturbative
result in EJ , breaks down for sufficiently small environmental
resistances, R < RK/8, and for low energies [30,31]. In this
case, one is required to calculate the contributions from all
orders in EJ as was done in Ref. [32]. However, in the regime
R > RK/8, Eq. (9) is valid and it can be used for describing
the Cooper-pair-mediated ZBA in I-V responses.

III. DESCRIPTION OF THE THERMOMETER

The following discussion is mainly based on Eq. (9). It
is important to stress that both the junction and the environ-
mental contribution depend on temperatures that do not need
to be equal in general. As already indicated in the previous
section, we term these TJ and TEM, respectively. Note that the
natural energy units for these are the superconducting gap,
�0, and the charging energy of the junction, EC , respectively.
All results are obtained for EC = �0, where we take the zero-
temperature gap value for aluminum, �0 ≈ 200 µeV, which
corresponds to the critical temperature Tc ≈ 1.3 K. In all
calculations EJ < 0.1EC , thus, we are in the range of validity
of Eq. (9).

A. I-V curves: ZBA

Let us here for a moment ignore the properties of the junc-
tion itself and analyze only the P(E ) contribution to Eq. (9).
The I-V curves are shown in Fig. 3. Panel (a) shows the I-V
responses for various environmental temperatures TEM and the
resistance R = 5 k�. Note that the current itself is scaled
in units of GK E2

J /(eEC ), where GK = e2/h = 1/RK is the
conductance quantum and EJ is the Josephson energy, which
we do not calculate here. We just assume that the temperature
of the junction, TJ, is fixed and in general different than the en-
vironmental one, TEM. We see that I-V’s are getting suppressed
with increasing TEM. The inset shows a closer look into I-V’s
that are linear for small voltages. This important feature indi-
cates the robustness of the low-bias differential conductance
against nonzero bias voltages, the effect we discuss explicitly
below.

Panel (b) shows the same function for various envi-
ronmental resistances R and temperature kBTEM/EC = 0.01.
The maximum is shifted towards higher voltages, i.e., for

FIG. 3. (a) The I-V characteristics of a junction of Josephson
energy EJ and charging energy EC coupled to an ohmic electromag-
netic environment at various temperatures and R = 5 k�. The inset
shows a closer look into I-V’s that are linear at low voltages. (b) The
same quantity calculated for various environmental resistances R and
temperature kBTEM/EC = 0.01. The inset shows the corresponding
zero-bias conductance vs temperature.

larger R the dynamical Coulomb blockade is enhanced.
The corresponding zero-bias differential conductance G0 vs
temperature TEM is shown in the inset. Apparently, lower
resistances lead to monotonically decreasing behavior (see the
solid blue and dash-dotted orange lines) making our model
a suitable thermometer. Furthermore, the responsivity of the
thermometer, R = |dG0/dTEM|, is enhanced with decreasing
resistance. However, we emphasize that R cannot be arbi-
trarily small since the theory breaks down for R < RK/8 ≈
3.23 k�, as already discussed in Sec. II B. Therefore, we
expect the thermometer to display the best performances for
resistances R ∼ 4–6 k�. Larger resistances, R > 6 k�, how-
ever, lead to a nonmonotonic behavior of the device (see, for
instance, the black solid line) at certain temperatures; in this
case T � 200 mK.

B. Operating regime of the thermometer

The main question that arises in our discussion is how to
optimize the proposed device. There are several criteria to do
so; however, here we shall focus on two: (i) sensitivity of
the proposed device at low temperatures and (ii) robustness
against small but nonvanishing voltages whose presence is
unavoidable in calorimetric measurements. Considering the
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FIG. 4. Effect of a nonzero voltage amplitude: The low-bias con-
ductance G0 as a function of temperature of the junction TJ in an
SNIS junction coupled to an ohmic environment of resistance R =
6 k� for (a) equal temperatures of the junction and the environment,
TJ = TEM and (b) fixed environmental temperature TEM = 15 mK.
Lower panels show the corresponding quantity in the case of an
infinite RC transmission line characterized by κ = 0.02 (for more
details, see Ref. [14]). In all panels, the junction’s parameters are
L = 3ξ and γ = 1. Note that the legend of panel (b) applies to all
panels.

temperature dependence, in what follows we distinguish two
cases: (i) the temperature of the junction TJ equals the tem-
perature of the EM environment TEM and (ii) the latter is fixed
and heating processes change only the former. Under certain
circumstances, the second scenario is experimentally relevant.

Figures 4(a) and 4(b) show the low-bias differential con-
ductance as a function of temperature for different amplitudes
of the applied voltages. The SNIS junction of length L = 3ξ

and γ = 1 is coupled to the ohmic EM environment of re-
sistance R = 6 k�. Panel (a) assumes the same temperatures
of the junction and the environment, TJ = TEM. First, we no-
tice that the thermometer does not lose sensitivity even at
very low temperatures, T < 5 mK, even for nonzero voltage
amplitudes δV [see the black solid and red dashed lines in
Fig. 4(a)]. The second important feature is that the device is
robust against δV in a wide range of values, δV ∼ 0–2 µeV,
at reasonably low temperatures, T ∼ 10 mK. This is espe-
cially significant in the experimentally most relevant regime,
δV � 0.5 µV, where the robustness is high even at T < 5 mK.
In panel (b) we show the same quantity as a function of the
junction’s temperature TJ while the environmental tempera-
ture is fixed at TEM = 15 mK. As one may notice, this scenario
also supports the results presented in panel (a). However,
in this regime, the thermometer loses sensitivity but at low
temperatures, T ∼ 5–10 mK.

For comparison, in Figs. 4(c) and 4(d) we present the
characterization of the thermometer based on an infinite
RC transmission line described by κ = R0C/(RKC0) = 0.02,

where R0 and C0 denote, respectively, the resistance and the
capacitance per unit length of the line. Correspondingly, panel
(c) shows the case of the equal temperatures of the junction
and the environment, TJ = TEM, while panel (d) assumes the
fixed temperature of the environment, TEM = 15 mK. Other
parameters are the same as in panels (a) and (b). Such a
device was examined in detail in Ref. [14]. Although display-
ing higher responsivity, a thermometer defined in this way is
disadvantageous in two ways. First, it shows nonmonotonic
behavior at significantly larger temperatures than the ohmic
case discussed above; here T � 30 mK [the solid black line
in Fig. 4(c)]. Second, it is sensitive to nonzero amplitudes at
T � 30 mK. However, above a certain temperature threshold,
in this case T ∼ 30 mK, an RC transmission line can be
utilized as an EM environment and this was the regime con-
sidered in Ref. [14]. On the other hand, if the environmental
temperature is fixed, the thermometer loses sensitivity at very
low temperatures, T ∼ 5–10 mK, similarly to the ohmic case.
However, the sensitivity to a nonzero voltage amplitude is still
an issue [see Fig. 4(d)].

C. Calibration of the thermometer: Analytic formula

Under certain assumptions, the picture presented above
can be simplified and expressed in an analytic manner. The
following approach can be utilized as an optimization and
calibration tool in future experiments.

As reported in Ref. [33], the zero-bias conductance in the
case of an ohmic EM environment at low temperatures can be
expressed as

G0

GK
= 4π4

(
EJ

EC

)2

(4ρ)8ρ �(4ρ)2

�(8ρ)
e−8ζρ

(
βEMEC

2π2

)2−8ρ

,

(15)

where �(x) denotes the Euler gamma function, while
ζ = 0.5772 . . . is Euler’s constant (conveniently denoted as
γ , but we use different notation to avoid ambiguity with the
mismatch parameter γ used throughout the paper). In other
words, the temperature dependence that comes from the envi-
ronment only scales as ∼T 8ρ−2

EM . Note that the formula above
does not specify anything about the Josephson energy EJ .

To describe the proximitized N wire, we linearize the Us-
adel equation [see Eq. (5)] in θn. Namely, by supposing that θn

is substantially suppressed in the normal metal, θn ≈ δθn � θS
n ,

and being close to the BCS bulk value in the superconducting
electrode, θn ≈ θS

n − δθn, the Usadel equation (5) can be lin-
earized in δθn and solved analytically. Having obtained the
solution of the proximity angle in N, we can calculate the
critical current in the thermometer [see Eq. (4)] arriving at
the following equation for the Josephson energy:

EJ = hkBTJ

2e2RT

∑
n�0

� sin δθn√
ω2

n + �2
, (16)

where

δθn(x) = θS
n exp[−√

2ωn/(h̄D)x]

1 + γ
√

ωn/�n
(17)

with the corresponding notation as in Sec. II. Note that strictly
speaking the equations above are only valid in the case
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FIG. 5. Calibration of the thermometer: The zero-bias conduc-
tance G0 as a function of the junction’s temperature TJ for various
environmental resistances R and (a) equal temperatures of the junc-
tion and the environment TJ = TEM and (b) fixed environmental
temperature TEM = 15 mK. Dotted lines correspond to the analytic
formula obtained by combining Eqs. (15)–(17). Junction’s parame-
ters are γ = 1 and L = 3ξ .

of small δθn(x), which is achieved for, e.g., L 	 ξ and/or
γ 	 1.

In accordance with the discussion from the previous sec-
tions, here we discuss two cases regarding the temperatures
of the junction and the environment. In this respect, Fig. 5(a)
shows the zero-bias conductance G0 as a function of temper-
ature which is the same for the junction and the environment,

TJ = TEM. Different curves correspond to different environ-
mental resistances R and the junction’s parameters are L = 3ξ

and γ = 1. The dotted lines represent the approximate result
obtained by combining Eqs. (15)–(17). Apparently, our sim-
plified model quantitatively reproduces the full theory with
small deviations. Correspondingly, Fig. 5(b) shows the same
quantity as a function of the junction’s temperature TJ while
the environmental one is fixed at TEM = 15 mK. Similarly to
panel (a), the analytic formulas resemble the full theory [see
the dotted lines in Fig. 5(b)].

IV. CONCLUSIONS

We have proposed a proximity thermometer for ultrasen-
sitive detection. The device is based on the Cooper-pair-
mediated ZBA in an SNIS system coupled to an ohmic EM
environment. The calculations have been carried out in the
framework of the quasiclassical Usadel Green’s formalism
and dynamical Coulomb blockade [the P(E ) theory].

Owing to the ohmic EM environment, the thermometer
shows high responsivity and does not lose sensitivity even
at low temperatures, T � 5 mK. In addition, we have con-
sidered two distinct cases concerning the temperature: (i) the
temperature of the junction equal to the environmental tem-
perature, TJ = TEM, and (ii) the heating effects only affect the
junction’s temperature TJ whereas the environmental one is
fixed, TEM = const.

Since calorimetric measurements are typically performed
by applying small but nonvanishing voltage amplitudes, we
have addressed this question explicitly. In this respect, our
device shows robustness against nonzero voltages even at
very low temperatures, especially in the experimental relevant
range, δV � 0.5 µV, and therefore it can be utilized as a
thermometer with well-defined characteristics.

Finally, in order to calibrate our device, we have provided
a simplified analytic view based on the linearized Usadel
equation which is in good agreement with the full theory. This
approach can be easily implemented as a calibration and op-
timization tool in future experiments in quantum calorimetry
[34–38].
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