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Tunneling spectra of impurity states in unconventional superconductors
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We investigate the role of the Bloch functions and superconducting gap symmetries on the formation and
properties of impurity-induced resonances in a two-dimensional superconductor, and elucidate their manifesta-
tion in scanning tunneling spectra. We use and extend a recently developed scattering approach, conveniently
formulating the results in terms of the phase shifts of electron scattering off the impurity. We find that the
discrete subgap states in a nodeless-gap superconductor are insensitive to the potential scattering phase shift
(common for the two spin species) if time-reversal symmetry (TRS) is preserved. The independence of potential
scattering is exact for s-wave superconductors. It remains an accurate approximation over a broad range of
subgap energies when the gap function breaks the lattice point symmetry, except for a narrow region below the
gap edge. Breaking of TRS makes potential scattering capable of creating spin-degenerate subgap states, which
may be further split by spin-dependent scattering. In nodal-gap superconductors, impurity-induced resonances
are broadened by coupling to the quasiparticle continuum. We identify the conditions allowing for the formation
of narrow resonances. In addition to finding the energy spectrum, we evaluate the spin-resolved differential
conductance for all of the considered symmetries and gap structures.
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I. INTRODUCTION

Since its invention in 1982 [1,2], scanning tunneling
microscopy/spectroscopy (STM/STS) has developed into an
important tool for investigating properties of a wide range of
materials, including conventional and unconventional super-
conductors [3,4]. By applying a voltage bias between tip and
superconductor, a tunneling current is measured and trans-
lated into a differential conductance. In the weak tunneling
regime when the tip is away from the sample, the differential
conductance quantifies the density of states (DOS) of the
superconductor, provided that the tip’s DOS is featureless.
While a U-shaped profile of the differential conductance is
a signature of a nodeless gap as in conventional s-wave super-
conductors, a V-shaped profile is widely attributed to a nodal
superconducting gap as, e.g., in d-wave superconductors. The
observation of a V-shaped differential conductance was used
to claim unconventional pairing in high-Tc superconductors
such as, e.g., Bi2Sr2CaCu2O8+δ [5] and YBa2Cu3O7−δ [6].

Recently, there has been a new surge of interest in un-
conventional superconductors related to the experimental
realization of moiré heterostructures; see Ref. [7] for a review.
In particular, superconductivity was reported in twisted bi-
layer (TBG), trilayer (TTG), and multilayer graphene [8–15].
STS experiments on TBG and TTG [12,13] observed a
V-shaped profile of the differential conductance in the weak
tunneling regime. Combined with an enhanced low-bias
conductance in the strong tunneling regime [12], this was
interpreted as a signature of nodal superconductivity. The
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greater tunability of TBG and TTG compared to high-Tc

superconductors makes moiré heterostructures a promising
platform for investigating unconventional superconductivity.
A complete understanding of the symmetry of the supercon-
ducting gap in TBG and TTG, however, remains elusive.

Signatures of the symmetry of the superconducting or-
der parameter are also provided by investigating how the
local density of states (LDOS) is modified by defects or
impurities; see Refs. [16,17] for reviews. Scattering off an
impurity may result in the appearance of narrow peaks in
the differential conductance as a function of the applied volt-
age bias, indicative of bound states within a nodeless gap
and resonances within a nodal gap. For s-wave superconduc-
tors, bound states are induced only by scattering potentials
that break time-reversal symmetry (TRS) and are known as
Yu-Shiba-Rusinov (YSR) states [18–21]. Such a TRS-
breaking potential is induced, e.g., by magnetic adatoms, and
the corresponding YSR states were probed in Refs. [22–25];
see also Ref. [26] for a review. Unlike YSR states, resonances
in nodal gaps do not necessarily require a TRS-breaking scat-
tering potential [27–30] and can be seen as asymmetric peaks
in the conductance [31,32]. Information on the symmetry of
the gap can also be gleaned from the LDOS pattern around
the impurity; see, e.g., Refs. [29,30] for a theoretical analysis.
A fourfold impurity-induced LDOS pattern aligned with the
nodes of a d-wave superconducting gap was observed via
STM in Refs. [32,33]. In addition to the symmetry of the gap,
the spatial profile of a YSR state may also provide information
about the shape of the Fermi surface as was exemplified for an
s-wave superconductor in Ref. [34].

Theoretically, the formation of impurity states in su-
perconductors is typically studied by directly solving the
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Bogoliubov-de Gennes equations [20,35], applying the
T-matrix formalism [16,19,27], or using the numerical renor-
malization group [36,37]. While being powerful, these
approaches can be cumbersome and, for the most part, do
not take the structure of the Bloch functions into account. Re-
cently, we proposed an alternative approach to the differential
conductance in an STM setting [38]. Our method employs
the scattering matrix formalism to describe point-contact
tunneling into a superconductor, accounting for arbitrary
symmetries of the gap and the Bloch functions as well as
arbitrary transmission coefficients between tip and supercon-
ductor. Scattering theory accounts for the single-particle and
Andreev-reflection contributions to the conductance in a uni-
fied and intuitive way. An additional benefit of the scattering
framework is that it readily accounts for the scattering poten-
tial induced by the tip through the appropriate phase of the
contact’s scattering matrix.

In this work, we apply and extend this framework [38]
to describe impurity-induced subgap states and resonances
in superconductors. Considering two-dimensional (2D) super-
conductors, we focus on the role of the symmetries of the
superconducting order parameter and of the Bloch functions.
To this end, we extend the framework of Ref. [38] to scat-
tering off an impurity with arbitrary scattering potential, as
described in terms of phase shifts, while remaining in the
regime of weak tunneling between STM tip and supercon-
ductor. For nodeless gaps preserving TRS and lattice point
symmetry, the energy of YSR states depends only on the
spin-dependent scattering phase. This independence on the
potential-scattering phase shift becomes approximate but still
accurate in a broad subgap energy range for superconduc-
tors breaking the point symmetry. Deviations appear near the
gap edges, where the potential-scattering phase shift affects
the nucleation of subgap states. In a superconductor with
broken TRS, potential scattering can induce spin-degenerate
subgap states. The spin degeneracy is lifted when the scat-
tering phase shifts become spin dependent. Resonance states
in nodal-gap superconductors exist for any type of scattering
but are broadened by the states’ leakage into the quasipar-
ticle continuum. If the nodal gap preserves the lattice point
symmetry, the resonances are narrow and located near the
Fermi level for strong scattering. In the absence of the point
symmetry, the appearance of low-energy resonances requires
fine tuning. Along with the energy spectrum of the resonances,
we evaluate the spin-resolved differential conductance for all
of the considered symmetries and gaps. While the energies
of the resonances are always particle-hole symmetric, their
strengths as manifested in the peak heights in the differential
conductance develop strong asymmetry for nodal gaps. This
asymmetry is explained by the difference between the con-
ductance determined by the full scattering amplitudes and the
particle-hole-symmetric density of energy levels. Thus, our
results provide complementary information about the symme-
try of the gap and the Bloch functions as well as the properties
of the impurity. Experimentally, the spin-resolved differential
conductance can be mapped via spin-polarized STM/STS
[39,40]; see also Ref. [41] for a review of the technique.

This paper is organized as follows. We present the extended
scattering framework in Sec. II. The bound states for nodeless
gaps are analyzed in Sec. III for several symmetries of the

gap. Section IV is devoted to resonance states in nodal-gap
superconductors. The results are summarized and discussed
in Sec. V. Technical details of the derivation of scattering
amplitudes and approximate results for low-energy states are
given in Appendices A and B, respectively. The dispersion
relation of the bound states in a fully gapped dx2−y2 + idxy su-
perconductor and the differential conductance for above-gap
energies are presented in Appendices C and D, respectively.
Throughout this paper, we assume zero temperature.

II. SCATTERING THEORY FOR STS SPECTRA

The hybridization of impurity atom and substrate electrons
introduces both exchange and potential scattering. Placing the
tip above the impurity, the impurity spin is further hybridized
with the tip electrons. A Schrieffer-Wolff transformation elim-
inating empty and doubly occupied impurity orbitals leads to
the effective coupling

Hint =
∑
k,k′

∑
α,β

ψ
†
α,k,σ

[Vαβδσσ ′ + JαβS · sσσ ′]ψ
β,k′,σ ′ . (1)

Here, α, β ∈ {L, R} refer to the tip (L) and the substrate
(R) electrons, σ =↑,↓ denotes the spin projections, s is the
electron spin operator, and ψα,k,σ annihilates an electron in
the lead α, with the momentum k, and the spin σ . The first
term involving Vαβ represents potential coupling, the second
term involving Jαβ is the exchange coupling with the impurity
spin S.

We treat the impurity spin as classical, S = Sẑ [42]. Then,
for each spin polarization σ , the tip-substrate contact can
be described by a two-channel scattering matrix, with one
channel in the tip and the other in the substrate,

ŝσ (ε) =
(

s′
σ (ε) t ′

σ (ε)
tσ (ε) sσ (ε)

)
. (2)

In writing Eq. (2), we used the locality of the contact between
the tip and the 2D material, so that the contact can be consid-
ered as a single-mode quantum point contact opening into the
2D material. The impurity-induced formation of YSR states
or resonances results from the scattering matrix element sσ (ε)
describing scattering between incoming and outgoing particle
waves in the 2D system. The transmission matrix elements
t ′
σ (ε) and tσ (ε) determine the transfer rates from the tip into

the superconductor and vice versa. Finally, the scattering ma-
trix element s′

σ (ε) at energy ε describes reflection between
incoming and outgoing channels modeling the STM tip.

In the absence of tunneling, scattering within the 2D mate-
rial has |sσ (ε)| = 1, but the phase of sσ (ε) is nontrivial due to
electron scattering off the impurity. For a pointlike impurity,
these properties are encoded in the scattering phases δσ , which
are in general dependent on the spin direction σ due to the
exchange coupling [20],

tan δσ = −πν0(VRR − σJRRS). (3)

Here ν0 is the normal-state DOS at the Fermi level. It will
be useful to introduce the scattering phase shifts δs = δ↑ −
δ↓ and δc = δ↑ + δ↓, where δs describes spin-dependent and
δc potential scattering by the impurity. These phase shifts are
related, respectively, to the spin and charge of the impurity by
the Friedel sum rule; δs ∈ [−π, π ], δc ∈ [0, 2π ].
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Electron tunneling into the tip reduces the scattering ampli-
tude, |sσ (ε)|2 = 1 − |tσ (ε)|2, and also introduces corrections
∝ |tσ (ε)|2 into the scattering phases δσ . We assume that tun-
neling and image potential induced by the STM tip lead
only to weak perturbations. Accounting for nonzero values
of |tσ (ε)|2 is important in the evaluation of the tunneling
current, as the latter is ∝ |tσ (ε)|2. Tunneling also contributes
to the width of peaks in tunneling spectra. Such contributions
are ∝ |tσ (ε)|2. We will dispense, however, with the effect
of tunneling on δσ . The latter effect leads to shifts of the
spectral peaks, which are of the order of or smaller than
the peak widths (for further discussion of this effect, see
Sec. III). We will also disregard possible effects of the image
potential, which can be minimized by a proper choice of tip
material [43].

For contacts between a normal-metal tip and a 2D super-
conductor, it is convenient [44,45] to extend the scattering
matrix (2) to Nambu space by introducing scattering matrices
for particles, ŝp,σ (ε) = ŝσ (ε), and holes, ŝ∗

h,−σ (−ε) = ŝσ (ε).
Then, by using the particle-hole symmetry, one can consider
only positive energies ε > 0. In what follows, we neglect the
energy dependence of ŝσ (ε), assuming it to be featureless on
the energy scale of the superconducting gap,

sp,σ = s0e2iδσ , sh,−σ = s0e−2iδ−σ , |tp,σ | = |th,σ | ≡ |t |. (4)

As discussed above, at weak tunneling 1 − |s0|2 = |t |2 	 1,
the phases δσ ∈ [0, π ] encode the electron scattering off an
isolated impurity in a 2D material. Notice that the spin depen-
dence of the scattering matrix can originate from a magnetic
impurity or a magnetized tip. Thus, we do not require TRS of
the normal state of the contact [46].

For an impurity embedded in a uniform system, sp,σ de-
scribes scattering in the zero-angular-momentum channel. An
incoming wave ψ in is scattered into the outgoing wave

ψout = [(Î − P̂) + sp,σ P̂]ψ in (5)

with P̂ being the projector onto zero angular momentum.
While the zero-angular-momentum component of the incom-
ing wave is scattered by the contact (term proportional to P̂),
nonzero angular momenta remain unaffected (term propor-
tional to Î − P̂). In a 2D crystal, angular momentum is no
longer a good quantum number, and the angular distribution
at the position r0 of the impurity is governed by the Bloch
function uk(r0). The wave vectors k at a given energy ε are
defined by ξ (k) = ε with ξ (k) denoting the dispersion rela-
tion measured from the Fermi energy. The projection operator
then reads

P̂ψ in
k = uk(r0)

〈
u∗

k′ (r0)ψ in
k′

〉
ε

(6)

with a properly normalized uk(r0) and 〈. . . 〉ε denoting aver-
aging over the constant-energy contour.

To study the transport properties of the contact, we gener-
alize the steps outlined in Ref. [38], where potential scattering
off the tip was considered, see Fig. 1 for a schematic setup.
We relegate details to Appendix A and focus on the main line
of argument here. In the scattering framework, an electron
tunneling into a 2D material forms an expanding particle
wave with amplitude and directional profile determined by
the Bloch function uk(r0), see the blue arrows in Fig. 1. The

FIG. 1. Schematic setup with an STM tip placed above an im-
purity in a 2D superconductor. The symmetric blue arrows denote
the particle wave emitted by the tip, which carries information about
the symmetry of crystalline lattice as encoded in the Bloch function.
Asymmetric green arrows represent the Andreev-reflected hole wave
that carries information about the superconducting gap symmetry.
Bound-state and resonance formation result from repeated cycles of
scattering from superconductor and impurity.

superconductor retroreflects the particle wave into a counter-
propagating hole wave [47] that carries information about the
symmetry of superconducting order parameter, see the green
arrows in Fig. 1. Formally, this information enters through the
Andreev retroreflection amplitude αp(k, ε). In the eikonal ap-
proximation, which is valid when the coherence length of the
superconductor is large compared to the Fermi wavelength,
the Andreev retroreflection amplitude αp(k, ε) depends on the
superconducting gap �(k) at the same wave vector k. This
allows us to use the result of Refs. [44,45] at each k, see
Eq. (A2) for the explicit expression for αp(k, ε).

Since the tunneling tip absorbs only a small portion of the
returning wave, one needs to sum over many cycles in which
the impinging particles undergo Andreev scattering processes
and scatter off the contact. This multiple scattering leads to
the formation of the YSR bound states or resonances, which
are probed by the tip. For a spin-singlet superconductor, the
resulting Andreev- and normal-reflection amplitudes of parti-
cles incident from the tip are (see Appendix A for details)

rph,σ = t ′
h,−σ tp,σ

ap

Dσ

, (7)

rp,σ = s′
p,σ + t ′

p,σ tp,σ

aph + (1 − sh,−σ )
(
a2

ph − apah
)

Dσ

, (8)

where we use the notation

ap = 1

2i

〈
|uk(r0)|2 �∗(k)√

|�(k)|2 − ε2

〉
ε

, (9)

ah = 1

2i

〈
|uk(r0)|2�(k)√
|�(k)|2 − ε2

〉
ε

, (10)

aph = 1

2i

〈
|uk(r0)|2

[
ε√

|�(k)|2 − ε2
− i

]〉
ε

. (11)

We also introduced the shorthand

Dσ = 1 + (2 − sp,σ − sh,−σ )aph

+ (1 − sp,σ )(1 − sh,−σ )
(
a2

ph − apah
)

(12)
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for the denominator arising from multiple scattering of sub-
strate electrons and holes at the impurity. The analytical
continuation to ε > |�(k)| is defined as

√−z = −i
√|z| at

z > 0. The averaging 〈|uk(r0)|2 . . . 〉ε over the constant-energy
contour in Eqs. (9), (10), and (11) takes the explicit form

〈|uk(r0)|2 . . . 〉ε =
∫

d2k δ(ξ (k) − ε)|uk(r0)|2 . . .∫
d2k δ(ξ (k) − ε)|uk(r0)|2 . (13)

The scattering amplitudes for holes rhp,σ and rh,σ are obtained
by replacing ap ↔ ah, sp,σ ↔ sh,σ , s′

p,σ ↔ s′
h,σ , tp,σ ↔ th,σ ,

and t ′
p,σ ↔ t ′

h,σ in Eqs. (7) and (8).
Similar to Ref. [48], the spin-resolved differential conduc-

tance Gσ (V, r0) = dIσ (V, r0)/dV as a function of the voltage
bias V , the position of the tip r0, and the spin projection σ

reads

Gσ (V, r0) = GQ{1 + [|rph,σ (eV, r0)|2 − |rp,σ (eV, r0)|2]θ (V )

+ [|rhp,σ (−eV, r0)|2 − |rh,σ (−eV, r0)|2]θ (−V )}.
(14)

This expression reflects that two electrons are transferred from
tip to substrate in an Andreev reflection, while no electrons
are transferred for normal reflections. The scattering ampli-
tudes in Eqs. (7) and (8) are used for positive voltage bias
V > 0; see the discussion after Eq. (13) for the definition of
rhp,σ (−eV, r0) and rh,σ (−eV, r0). The conductance quantum
is GQ = e2/(2π h̄). In the following, we omit the explicit
arguments V and r0 if this does not lead to confusion.

The conductance for arbitrary symmetries of the super-
conducting gap and the Bloch functions is straightforwardly
obtained by substituting Eqs. (7)–(13) into Eq. (14). As the
final expressions are cumbersome, we focus on representative
analytical results in Secs. III and IV. To facilitate the cal-
culations, we find it convenient to rewrite the square of the
absolute value of the scattering amplitudes given in Eqs. (7)
and (8) as

|rp,σ |2 = | − s∗
p,σDσ + |t |2Np,σ |2

|Dσ |2 , |rph,σ |2 = |t |4 |ap|2
|Dσ |2 ,

(15)

where we used s′
p,σ = −s∗

p,σ tp,σ /(t ′
p,σ )∗ and |tp,σ | = |t ′

p,σ | =
|t |, which follow from the unitarity of the scattering matrix
(2). Similar expressions can be written for the scattering am-
plitudes of holes |rh,σ |2 and |rhp,σ |2, see also the replacement
rules after Eq. (13). The term in the numerator is

Np,σ = aph + (1 − sh,−σ )
(
a2

ph − apah
)

(16)

and Nh,σ is obtained by replacing sh,−σ → sp,−σ .
In what follows, we apply this scattering framework to in-

vestigate the formation and properties of bound states as well
as resonances in the setup, in which the STM tip is placed over
the impurity, see also Fig. 1, and discuss the corresponding
differential conductance. According to the general tenets of
scattering theory [49], the energies of bound states and res-
onances correspond to the poles of the scattering amplitudes
rph,σ and rp,σ , which are given in Eqs. (7) and (8), respectively.
Moreover, the differential conductance (14) also contains in-
formation about the eigenfunctions of the impurity-induced

states, which, as we explain in Sec. IV, can have characteristic
symmetry properties.

We consider the effects of impurity scattering for an
arbitrary scattering potential in two characteristic regimes:
(i) subgap energies ε < �min ≡ min{|�(k)|} for node-
less gaps and (ii) intermediate energies 0 < ε < �max ≡
max{|�(k)|} for nodal gaps. (The case of above-gap energies
ε > �max is briefly addressed in Appendix D.) In each of these
regimes, we pay special attention to the role of time-reversal
and lattice point symmetries.

III. BOUND STATES WITHIN A NODELESS GAP

We start by considering nodeless gaps and subgap energies
ε < �min. To determine the position of the bound states, we
look for zeros of the denominator of the scattering amplitudes,
Dσ (ε) = 0. For subgap energies, it is important to keep terms
of first order in |t |2 in the denominator, which determine
the width of the peaks in the differential conductance and
are thus crucial for describing the resonant tunneling into a
superconductor. The zero- and first-order terms in Dσ (ε) ≈
eiσδs [D(0)

σ (ε) + i|t |2D(1)
σ (ε)] read

D(0)
σ (ε) = cos δs + cos δc − σ sin δs[I+(ε) − I−(ε)]

+ (cos δs − cos δc) Re{I−(ε)I∗
+(ε)}, (17)

D(1)
σ (ε) ≈ 1

2(cos δs − cos δc)

[
σ cos δc sin δs

− I+(ε) − I−(ε)

2
(1 − cos δc cos δs)

]
, (18)

where

I±(ε) =
〈
|uk(r0)|2 �(k) ± ε√

|�(k)|2 − ε2

〉
ε

, (19)

and we used the definitions in Eqs. (9)–(12). It is straightfor-
ward to see that ap = −a∗

h = [I∗
+(ε) + I∗

−(ε)]/(4i) and aph =
[I+(ε) − I−(ε)]/(4i).

For weak tunneling, the contributions to the denominator,
which are first order in |t |2 are relevant only for energies
approaching the bound states. The energy of these states is
obtained from the characteristic equation D(0)

σ (ε) = 0. The
expression for D(1)

σ (ε) was simplified to the form of Eq. (18)
assuming that the equation D(0)

σ (ε) = 0 has a real-valued
positive solution 0 � εσ � �min. The spectrum of bound
states in the entire energy range [−�min,�min] follows by
particle-hole symmetry, εσ = −ε−σ . This justifies restricting
our considerations to energies ε > 0.

The differential conductance at ε < �min is determined by
Andreev reflections with |αp,h| = 1 and |rph,σ |2 + |rp,σ |2 =
|rhp,σ |2 + |rh,σ |2 = 1. Then, the conductance (14) reads

Gσ (V ) = G2
n

8GQ
|I+(eV ) + I−(eV )|2

×
[

θ (V )

|Dσ (eV )|2 + θ (−V )

|D−σ (−eV )|2
]
, (20)

where Gn = GQ|t |2 is the normal-state conductance and
|ap|2 = |ah|2 for subgap energies.

024505-4



TUNNELING SPECTRA OF IMPURITY STATES IN … PHYSICAL REVIEW B 108, 024505 (2023)

It is clear from Eq. (20) that for subgap energies Gσ (V ) ∼
G2

n/GQ, unless the spectrum contains a bound state and the
bias |eV | approaches the bound-state energy εσ . The conduc-
tance Gσ (V ) exhibits Lorentzian peaks at eV = εσ with max-
ima ∼GQ and peak widths ∼(Gn/GQ)|D(1)

σ (εσ )/[D(0)
σ (εσ )]′|.

Dispensing with the width, we may simplify Eq. (20) to

Gσ (V ) = π

2
Wσ (|V |)Gn�minδ(eV − εσ ), (21)

Wσ (V ) = 1
4 |I+(eV ) + I−(eV )|2|D(1)

σ (eV )
[
D(0)

σ (eV )
]′|−1.

(22)

Accounting for ∝ |t |2 corrections to the scattering phases δs

and δc would lead to a small shift ∝ Gn/GQ in the resonance
energy εσ . Below we neglect this small shift and analyze the
effects of the gap symmetry on subgap states.

A. Subgap states in an s-wave superconductor

To set the stage, we consider nodeless gaps that preserve
the lattice point and time-reversal symmetries. The simplest
example is an s-wave gap �(k) = � > 0. Then I−(ε)I∗

+(ε) =
1, as seen from Eq. (19). This condition makes D(0)

σ (ε) as de-
fined in Eq. (17) insensitive to δc, which allows us to simplify
the characteristic equation D(0)

σ (ε) = 0 to

cos δs − σ sin δs
ε√

�2 − ε2
= 0, (23)

independent of the Bloch functions uk(r0). The solutions of
Eq. (23) reproduce the standard expressions for the energy of
YSR states [18–21],

εσ = σ� cos δs, σ cot δs � 0. (24)

Subgap YSR states appear only if δs �= 0 and are spin polar-
ized, which makes them nondegenerate. The energy of the
YSR states is oblivious to the scattering phase δc, empha-
sizing the effectiveness of the scattering-theory formulation.
One recovers the familiar expression in terms of the coupling
strengths VRR and JRR using the relation (3) [18–21],

εσ = σ�
1 − α2 + β2√

(1 − α2 + β2)2 + 4α2
, (25)

where α = πν0JRRS and β = πν0VRR. Physically, the spin
scattering phase δs depends not only on JRR, but also on VRR,
since the scalar potential modifies the wave-function ampli-
tude at the location of the impurity and hence the strength of
spin-dependent scattering.

The YSR states with different spin projections lead to sym-
metric peaks of equal weight in the differential conductance.
Indeed, by using Eqs. (17), (18), and (19) in Eqs. (21) and
(22), we obtain the conductance

Gσ (V ) = π

2
W (|V |)Gn�δ(eV − εσ ), (26)

W (V ) =
√

1 − (eV )2/�2, (27)

where the energy of the YSR state is given in Eq. (24) and
is extended to negative values as εσ = −ε−σ . A nonvanishing
conductance in the weak tunneling regime is explained by the
resonant Andreev transfer process whereby a particle virtually
tunnels into a YSR state and is retroreflected as a hole. This

resonantly transfers a Cooper pair into the condensate. In
view of the particle-hole symmetry of Andreev processes,
the corresponding peaks in the differential conductance have
equal heights and symmetric positions. It is worth mentioning,
however, that the symmetry of the subgap peaks is a deli-
cate question. Many experimental studies show YSR peaks
of different heights in the differential spin-averaged conduc-
tance [22,25,50,51]. There are also reports of peaks with
symmetric heights [52]. According to the theoretical analy-
sis in Ref. [52,53], see also Eqs. (26) and (27), the subgap
peaks in the conductance should be particle-hole symmetric
and have the same height as long as inelastic contributions
to tunneling are negligible. This was supported in experiment
[52] by showing that for a normal-metal tip, the peaks become
more symmetric as the tip-substrate tunneling increases and
Andreev processes become increasingly important.

By using Eqs. (24), (26), and (27), we can clearly see the
evolution of the YSR peaks with scattering potential. First, we
notice that for a given spin projection σ , there is only one YSR
peak in the conductance. This is explained by the fact that
only particles with spin opposite to that of the impurity form a
bound state. (We assume antiferromagnetic exchange between
electron and impurity spins.) As the spin scattering phase δs

increases from 0 to π/2, the YSR peak moves from the gap
edge eV = � to zero energy, eV = 0. A further increase of
δs from π/2 to π makes the peak cross eV = 0 and reach
the other gap edge eV = −� for δs → π . As follows from
particle-hole symmetry, the YSR peak in Gσ (V ) with the
opposite spin projection moves in the opposite direction, i.e.,
it emerges at eV = −�, moves to eV = 0, and disappears at
eV = �.

B. Point-symmetry-breaking gaps

YSR states in an s-wave superconductor peel off the gap
edge at infinitesimally small spin scattering δs, and are in-
dependent of δc, see Eq. (24). Modulations of the gap �(k)
which break the lattice point symmetry make the energy of the
YSR states dependent on δc. Furthermore, YSR states appear
only once the spin scattering phase exceeds a threshold value.
As we discuss below, the latter depends on the gap modulation
and on δc.

To analyze the effect of TRS-preserving gap modulation on
YSR states, we write the characteristic equation D(0)

σ (ε) = 0,
see Eq. (17), in the form

cos δs + cos δc + σ I−(ε) sin δs

− [σ sin δs − I−(ε)(cos δs − cos δc)]I+(ε) = 0. (28)

One can readily see that the solution of Eq. (28) is independent
of δc if I+(ε)I−(ε) = 1. This condition is satisfied at any ε in
an s-wave superconductor, yielding Eq. (24). It is also satisfied
for ε = 0, regardless of the point symmetry: a zero-energy
state appears at δs = ±π/2.

The appearance of zero-energy bound states for δs =
±π/2 is a universal property of all nodeless TRS-preserving
gaps, irrespective of the presence of spatial symmetries. In-
deed, according to Bohr-Sommerfeld quantization, a bound
state emerges when the total phase accumulated during the
Andreev scattering cycle is a multiple of 2π . For a single
cycle (see also Appendix A for a discussion of the scattering
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processes), one finds the condition sp,σ αhsh,−σ αp = 1 for the
formation of the bound state. At ε → 0, αh = αp = −i for any
TRS-preserving nodeless gap, see Eq. (A2) for the definition
of αp,h. In this case, the scattering phase −π/2 for each
of the Andreev retroreflections in the cycle is compensated
by the phases acquired in the sequence of particle and hole
scatterings off the impurity.

A modulation of the gap, �min � �(k) � �max, leads to
I+(ε)I−(ε) �= 1 and a dependence of the YSR state energy on
both δs and δc, cf. Eq. (28). We consider the limit of weak
modulation, �max − �min 	 �max + �min, and dispense with
the effect of the Bloch functions in Eq. (19) to illustrate the
appearance of a threshold value of δs for YSR-state formation.
As ε ↗ �min, the function I+(ε) diverges logarithmically,

I+(ε) = 2N

√
�min

�′′
min

ln

(
�max − �min

�min − ε

)
, (29)

while I−(�min) ∼ √
(�max − �min)/(�max + �min) and,

therefore, I−(�min) 	 1. Here N is the number of equivalent
minima and �′′

min ∼ (�max − �min) is the second derivative
of the gap along the line of averaging in 〈. . . 〉ε. The upper
cutoff of the logarithmic function in Eq. (29) is defined up
to a factor ∼1. Keeping terms linear in δs in Eq. (28) and
implementing the described simplifications in solving it,
we find

ln

(
�max − �min

�min − εσ

)
=

√
�′′

min/�min

2N

1 + cos δc

σδs − δth
s

, (30)

δth
s = (1 − cos δc)I−(�min). (31)

This shows that at any δc �= 0, there is a finite threshold δth
s

for δs, at which a YSR level peels off from the quasiparticle
continuum. For a nascent YSR state, the difference �min − εσ

scales exponentially with −1/(δs − δth
s ). Using Eqs. (17)–(22)

and (30), it is easy to see that the corresponding conductance
peak weight scales as �min − εσ , and, therefore, is also expo-
nentially small. Accounting for the Bloch functions in Eq. (19)
does not alter these conclusions.

The threshold value δth
s and the value of �′′

min/�min are
sensitive to details of the gap function �(k). In addition,
the range of applicability of Eq. (30) is severely restricted
by the requirement that the logarithmic function therein takes
large values.

Away from the gap edges where Eq. (30) becomes in-
applicable, we find that I+(ε)I−(ε) − 1 is small for almost
any energy. This makes the normalized energies εσ /�min of
the YSR levels obtained from the exact characteristic equa-
tion (28) almost insensitive to the scattering phase δc and
allows us to rewrite Eq. (28) as

2 cos δs − σ sin δs[I+(ε) − I−(ε)] = 0, (32)

cf. Eq. (23) for s-wave gaps. Its low-energy solution is realized
at δs → ±π/2 and is similar to that in Eq. (24), albeit with

� → 〈�(k)〉0. A similar simplification of D(1)
σ (εσ ) shows

that, remarkably, it also becomes independent of δc. This
allows us to derive a counterpart of Eqs. (26) and (27),

Gσ (V ) = π

2
W (|V |)Gn�minδ(eV − εσ ), (33)

W (V ) = 1

2�min

[I+(eV ) + I−(eV )]2

|I ′+(eV ) − I ′−(eV )| . (34)

To illustrate the appearance of YSR states for gaps breaking
the lattice point symmetry, we show numerical results for
an s + dx2−y2 superconductor in Fig. 2. In agreement with
Eqs. (30) and (31), there is a threshold value for the scatter-
ing phase δs when δc �= 0. The threshold is larger for more
anisotropic gaps. The weak sensitivity to the scattering phase
δc in a broad energy region excluding near-edge energies is
evident from Fig. 2(b), where the inset shows I+(ε)I−(ε) − 1.
The smallness of the latter explains the insensitivity to δc away
from the gap edges.

In STS experiments, the bound states are manifested as
peaks of the differential conductance. Figure 3(a) illustrates
this for an impurity creating a state with energy ε↑ = 0.9 �min.
Even for such close proximity to the gap edge, the dependence
on the scattering phase δc is weak; it becomes undetectable
for energies ε↑ � 0.6 �min. The anisotropy of the gap has
a much larger effect on the conductance, which is evident
from the weight of the peaks shown in Fig. 3(b). While the
overall shape remains parabolic-like, the weight decreases for
anisotropic gaps. Indeed, since the scattering phase δc affects
only a narrow near-edge region, in the rest of the energy range
the weight resembles the result in Eqs. (26) and (27) with
� → 〈�(k)〉0.

C. TRS-broken gaps

To investigate the effects of broken TRS in the characteris-
tic equation for bound states, we return to Eq. (17) with I±(ε)
defined in Eq. (19). Due to particle-hole symmetry (εσ =
−ε−σ ), we can still constrain the solutions of D(0)

σ (ε) = 0 to
the interval [0,�min]. In a superconductor with broken TRS,
even a potential scatterer (δs = 0) may nucleate a subgap state.
Unlike the YSR level, such a state would be spin degenerate,
ε↑ = ε↓. The introduction of spin-dependent scattering would
split it. At small splitting, both nondegenerate levels may fall
into the subgap interval.

These results follow from Eq. (17). At δs = 0, D(0)
σ (ε) = 0

takes the form

1 + tan2

(
δc

2

)
Re{I−(ε)I∗

+(ε)} = 0. (35)

As in the TRS-preserving case, I+(ε) diverges at ε ↗ �min.
This divergence is logarithmic for an anisotropic gap (�max �=
�min), and carries over to a divergence of Re{I−(ε)I∗

+(ε)},

Re{I−(ε)I∗
+(ε)} = A{�(k)} ln

(
�max − �min

�min − ε

)
, A{�(k)} =

∑
j

|uk j (r0)|2
√

�min

|� j |′′ Re

{
I−(�min)

(
1 + �∗

j

�min

)}
, (36)
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(a) (b)

FIG. 2. (a) Normalized energy of subgap states ε↑/�min as a function of δs for a few �min/�max at δc = π/2. (b) Normalized energy of
subgap states ε↑/�min as a function of δs for a few δc at �min/�max = 0.5. The inset shows that I+(ε)I−(ε) − 1 remains small away from the
gap edge. In both panels, we assume a circular Fermi surface (parametrized by the angle ϕ), use the s + dx2−y2 gap �(ϕ) = (�max + �min )/2 +
(�max − �min ) cos (2ϕ)/2, and consider tunneling into a high-symmetry point. Dots mark the threshold values of the spin scattering phase δth

s

required for the subgap states. The horizontal dashed line in (b) denotes the energy of the subgap state fixed in Fig. 3(a).

where j labels equivalent gap minima. Here, the absolute
value of the coefficient |A{�(k)}| ∼ 1, but its sign is sensitive
to the structure of the gap �(k). (We further elaborate on
this at the end of this section.) If A{�(k)} < 0, a bound state
(albeit an exponentially shallow one) appears at arbitrarily
weak potential scattering δc 	 1,

ln

(
�max − �min

�min − εσ

)
= − 1

A{�(k)}
4

δ2
c

. (37)

Similar to the previous section, the weight of the conductance
peak associated with this bound state scales as �min − εσ , and
therefore is also exponentially small.

In the absence of both, TRS and lattice point symmetry,
there is no general rule controlling the sign of A{�(k)}, so that
a weak potential scatterer may or may not lead to a subgap
state. If point symmetry is preserved and �(k) belongs to
its nontrivial representation, then there is at least one bound
state for any scattering. To demonstrate this, we first note that
the terms in I±(ε) stemming from �(k) in the numerators of
the respective expressions average to zero, see Eq. (19). As a
result,

I+(ε) = −I−(ε) = I0(ε) ≡ ε

〈
|uk(r0)|2√

|�(k)|2 − ε2

〉
ε

. (38)

Returning to the notations δ↑ and δ↓, we may rewrite the
characteristic equation D(0)

σ (ε) = 0 in the form

[cos δ↑ − σ sin δ↑ I0(ε)][cos δ↓ + σ sin δ↓ I0(ε)] = 0, (39)

demonstrating the existence of bound states for any scattering.
In the two special cases δs = 0 and δc = 0, the state (with ε >

0) is doubly degenerate. The factorized form of Eq. (39) has a
symmetry origin: scattering off the impurity occurs only every
other cycle of Andreev reflection, which allows a particle (or
a hole) return to the zero angular momentum state. At fixed
spin, there are no more than two positive-energy solutions of
Eq. (39), ε

p
σ and εh

σ .

The eigenfunction of a spin-up (σ =↑) solution ε
p
↑ ob-

tained from setting the first factor in Eq. (39) to zero contains
an s-wave component of a spin-up particle. The eigenfunction
of a spin-up solution εh

↑ obtained from setting to zero the
second factor in Eq. (39) contains an s-wave component of
a spin-down hole. The symmetry of the bound-state eigen-
functions makes them invisible in the maximally symmetric
STM setting, which we consider here. To detect these states,
tunneling should occur at a point off the impurity site. Even
then, the spin selection rules may prevent their observation
in a tunneling experiment. For example, if Eq. (39) has two
spin-up solutions, only one will show up in G↑(V ). A weak
violation of the point group symmetry would lift the selec-
tion rule, while weakly affecting the energies of the localized
states.

Comparing Eq. (35) with the full equation, D(0)
σ (ε) = 0

[cf. Eqs. (17) and (19)], we see that the splitting of a spin-
degenerate level is linear in δs. We illustrate this effect in
Fig. 4 for the dx2−y2 + idxy gap �(k) = �mine2iϕ ; see also
Appendix C for the exact dispersion relation. Notice that since
the differential conductance for a dx2−y2 + idxy gap vanishes
for symmetry reasons, we added a small admixture of an
s-wave component breaking point symmetry in Fig. 4(b). The
weight of the peaks becomes larger at smaller energies, which
agrees with the behavior in Fig. 3(b) for TRS-preserving gaps.

D. Topology and bound states

Before ending our discussion of bound states within
a nodeless gap, we comment on the interplay between a
superconductor’s topology and bound states. A celebrated
consequence of a material’s nontrivial topology is the bulk-
boundary correspondence dictating the presence of edge states
at interfaces with topologically trivial materials. It was conjec-
tured in Ref. [54] that an impurity necessarily creates a bound
state in a topological TRS-preserving superconductor.

A straightforward application of our formalism allows us
to check whether this conjecture carries over to TRS-breaking
superconductors. The answer is in general negative: Depend-
ing on the momentum dependence of the gap �(k), a 2D
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(a) (b)

FIG. 3. (a) Normalized conductance as a function of bias voltage for several values of δc at ε↑ = 0.9 �min as indicated by the horizontal
dashed line in Fig. 2(b). (b) Weight of the peaks in the conductance W , see Eqs. (22), (27), and (34), as a function of bias voltage for several
values of �min/�max. In all panels, we assume a circular Fermi surface, consider tunneling into a high-symmetry point, and use the s + dx2−y2

gap �(ϕ) = (�max + �min )/2 + (�max − �min ) cos (2ϕ)/2; we fix Gn/GQ = 0.05 in (a) and δc = 0 in (b).

topological superconductor may or may not carry impurity-
induced bound states. Below we provide two respective
examples.

In a superconductor with �(k) = �0 + �1e2iϕ (exem-
plifying an s + dx2−y2 + idxy gap), the sign of A{�(k)} in
Eq. (37) and therefore the presence of the subgap states cor-
relate with a nontrivial topological invariant |C|. Here, the
topological invariant equals |C| = 2 if |�0| < |�1| and C = 0
if |�0| > |�1|; see, e.g., Refs. [55,56]. This correlation is,
however, nonuniversal.

To demonstrate this, we consider the gap function

�(ϕ) = �0e−a cos ϕei(ϕ−sin ϕ), (40)

which is topologically nontrivial, but need not support bound
states. Here, �0 is a dimensionful parameter, while a > 0 is
a dimensionless parameter that determines the minimal value
of |�(ϕ)|, i.e., �min = �0e−a; at a → ∞, �min → 0.

It is straightforward to check that the Chern number for
the gap in Eq. (40) is nontrivial for any value of a. Indeed,

assuming the BCS approximation, the Chern number reads

C =
∫ 2π

0

dϕ

4π

∫ ∞

−∞
dξ

�2
0e−2a cos ϕ (cos ϕ − 1)(
�2

0e−2a cos ϕ + ξ 2
)3/2

=
∫ 2π

0

dϕ

2π
(cos ϕ − 1) = −1, (41)

see, e.g., Ref. [55] for details.
For a gap that has a single type of minima �min, the crite-

rion of the appearance of bound states discussed in Sec. III C,
see Eqs. (36) and (37), reduces to the sign of A{�(k)},
sgn(A{�(k)}) = sgn( Re{I−(�min)}). Bound states exist if
Re{I−(�min)} < 0. By using Eqs. (19) and (40), we obtain

Re{I−(�min)} =
∫ 2π

0

dϕ

2π

e−a cos ϕ cos (ϕ − sin ϕ) − e−a

√
e−2a cos ϕ − e−2a

.

(42)

Here, for simplicity, we assumed a circular Fermi surface
and tunneling into a high-symmetry point with |uk(r0)| = 1.
At a → 0, the sign of Re{I−(�min)} is determined by the

(a) (b)

FIG. 4. (a) Normalized energy of the subgap states εσ /�min as a function of δc for δs = 0 (solid red line) and δs = 0.4 π/2 (blue and
green lines). Spin-dependent scattering splits the spin-degenerate level (red line) into two states ε↑ (blue line) and ε↓ (green line). Dashed
lines denote solutions of Eq. (38) with the same spin polarization, see also Appendix C for the exact dispersion relation. (b) Normalized
conductance as a function of bias voltage for several values of δs. We fix δc = 1.25 π/2, see the vertical dashed line in (a), and Gn/GQ = 0.05.
We assume a circular Fermi surface and tunneling into a high-symmetry point, use the s + dx2−y2 + idxy gap �(ϕ) = (�max + �min )/2 +
(�max − �min )e2iϕ/2, and fix �min/�max = 1 in (a) and �min/�max = 0.998 in (b).
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numerator, cos (ϕ − sin ϕ) − 1 � 0. Therefore, bound states
are allowed for a → 0. In the opposite limit, a → ∞, we
have lima→∞ Re{I−(�min)} = 2πJ1(1) > 0, where Jn(x) is
the Bessel function of the first kind. Since Re{I−(�min)} as a
function of a changes sign only once at a� ≈ 0.9, bound states
disappear at a > a�. Thus, the gap function (40) provides
a counterexample supporting our statement that there is no
general relation between the Chern number of the gap and the
number of subgap states.

IV. RESONANCES IN NODAL-GAP SUPERCONDUCTORS

We can also apply our scattering approach to investigate
impurity-induced resonances near the Fermi level in nodal-
gap superconductors. Such resonances remain narrow as long
as their energy is small, ε 	 �max. The energies of the
resonances, of course, satisfy the particle-hole-symmetry con-
dition. However, the strength of the resonances as manifested
in the differential-conductance peak amplitudes develops
strong asymmetry. The scattering theory, along with the
condition ε 	 �max, allows us to provide an intuitive inter-
pretation of this effect. The asymmetry of the tunneling DOS
persists to higher energies [16], albeit its description becomes
more involved.

For a nodal gap, the denominator of the scattering ampli-
tudes Dσ (ε) is a complex-valued function of energy. The poles
of the scattering amplitudes, determined by the characteristic
equation D(0)

σ (ε) = 0, shift away from the real axis, implying
a finite width of the conductance peaks. This allows us to
take the limit |t | → 0 in the full expression for Dσ (ε) and
replace it with D(0)

σ (ε). At energies ε 	 �max, the quasi-
particle DOS remains small, leading a parametrically small
Im D(0)

σ (ε) compared to ReD(0)
σ (ε), apart from the vicinity

of the poles. Therefore, we can evaluate D(0)
σ (ε) iteratively.

We first determine the position of the resonances by solving
ReD(0)

σ (ε) = 0. We subsequently expand ReD(0)
σ (ε) around

the solutions (ε = εσ ) and evaluate Im D(0)
σ (εσ ). The latter

allows us to determine the width �σ of the resonances.
In performing the first task, we may still use Eq. (17), after

judiciously taking the limit ε → 0. The resulting expression
for ReD(0)

σ (ε) depends crucially on the presence of lattice
point-group symmetry. In its absence, the characteristic equa-
tion takes the form

cos δs + cos δc + (cos δs − cos δc)

∣∣∣∣
〈
|uk(r0)|2 �(k)

|�(k)|
〉

0

∣∣∣∣
2

− 2σ sin δs

〈
|uk(r0)|2 ε

|�(k)|
〉
ε�|�(k)|

= 0. (43)

Here the term |〈. . . 〉0|2 �= 0 is allowed by the broken symme-
try. The average 〈. . . 〉 in the last term is performed only over
the part of the Fermi line where |�(k)| � ε; see Appendix B
for details. Because of the nodal gap structure, this average
scales with energy as 〈. . . 〉 ∝ ε ln (�max/ε). For Eq. (43) to
have a solution at ε 	 �max, spin scattering must be present,
sin δs �= 0. In addition, the scattering phases must satisfy the
stringent condition

cos δc

cos δs
≈

∣∣〈|uk(r0)|2�(k)/|�(k)|〉0∣∣2 + 1

|〈|uk(r0)|2�(k)/|�(k)|〉0|2 − 1
. (44)

The left- and right-hand sides depend, respectively, on the
properties of the impurity and the host material. It is thus
difficult to expect this relation to hold without fine tuning.
Therefore, we conclude that, in the absence of point-group
symmetry, the appearance of low-energy resonances is im-
probable. This prompts us to focus on the symmetric case in
the remainder of this section.

If lattice point symmetry is preserved and �(k) belongs to
its nontrivial representation, then 〈|uk(r0)|2�(k)/|�(k)|〉0 =
0, and the corresponding characteristic equation takes a form
similar to Eq. (39),[

cos δ↑ − σ sin δ↑

〈
|uk(r0)|2 ε

|�(k)|
〉
ε�|�(k)|

]

×
[

cos δ↓ + σ sin δ↓

〈
|uk(r0)|2 ε

|�(k)|
〉
ε�|�(k)|

]
= 0.

(45)

Upon evaluation of the averages 〈. . . 〉 with logarithmic accu-
racy, see Appendix B, we find the positive-energy solutions

εσ,η = ε�ση cot δη

ln |�max/(ε� cot δη )| ,

ε� = π∑
j |uk j (r0)|2/|�′

j |
,

ε�| cot δη|
�max

	 1, ση cot δη � 0. (46)

Here η =↑,↓, the derivative �′
j is taken over a dimensionless

vector tangential to the Fermi line, and j labels the gap nodes.
As before, particle-hole symmetry εσ,η = −ε−σ,η allowed us
to focus on solutions in the interval [0,�max]. If the last
condition in Eq. (46) is not fulfilled, then the bound state is
located in the interval [−�max, 0]. For a given direction of
spin σ , there are at most two solutions of Eq. (45), see the last
condition in Eq. (46). The typical value of the energy scale in-
troduced in Eq. (46) is ε� ∼ �max. Therefore, for a resonance
to be close to the Fermi level, the corresponding scattering
phase shift should satisfy the condition |δη − π/2| 	 1.

Expanding the denominator D(0)
σ (ε) in the vicinity of the

resonance ε = εσ,η, it is straightforward to obtain the width of
the resonance �σ,η = ImD(0)

σ (εσ,η )/Re [D(0)
σ (εσ,η )]′,

�σ,η = π

2

|εσ,η|
ln

∣∣�max/εσ,η

∣∣ . (47)

Here, the imaginary part of the average is free of divergence,
Im 〈|uk(r0)|2 ε/|�(k)|〉ε�|�(k)| = πε/(2ε�). As one can see,
�σ,η 	 εσ,η for δη → π/2 leading to well-defined low-energy
resonances in the strong scattering regime. We note in passing
that the condition δη → π/2 corresponds to resonant scatter-
ing in the absence of superconductivity, as well. However, in
the normal state, the resonances are typically broad (with the
width substantially exceeding �max) [27].

As mentioned at the beginning of this section, the energies
of the impurity resonances are particle-hole symmetric. This
symmetry, however, is not manifested in the differential con-
ductance. The reason is due to a crucial difference between
the conductance Gσ (V ) determined by the full scattering am-
plitudes, which depend on both energies and wave functions
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(a) (b)

FIG. 5. Differential conductance as a function of voltage bias for several values of the scattering phases. (a) Spin-independent scattering
δ↑ = δ↓ = 0.75 π/2 leads to a single spin-polarized peak in (G↑ + G↓)/Gn. (b) The peak is split by adding a spin-dependent scattering phase
with δ↑ = 0.9 π/2 and δ↓ = 0.6 π/2. Solid red and dashed blue lines correspond to spin-up (G↑/Gn) and spin-down (G↓/Gn) conductances,
respectively. Dash-dotted green lines denote the conductance summed over spin projections (G↑ + G↓)/Gn. In both panels, we assume a
circular Fermi surface, use the d-wave gap �(k) = � cos (2ϕ), and consider tunneling into a high-symmetry point.

of the resonant states, and the particle-hole-symmetric density
of energy levels determined by the structure of the poles of
these amplitudes. To show this, we evaluate the conductance
assuming strong scattering, point-symmetry preserving gaps,
and tunneling into high-symmetry points. Expanding the nu-
merator and denominator of the conductance in the vicinity of
the resonance and within logarithmic accuracy, we obtain

Gσ (V ) = πGn

2 ln2 |�max/εσ,σ |
|eV |ε�

(eV − εσ,σ )2 + �2
σ,σ

, (48)

see Eqs. (14) and (15) for the conductance expressed in terms
of scattering amplitudes as well as Eqs. (46) and (47) for
the definitions of εσ,σ and �σ,σ . In the conductance (48), the
energies of the bound states given in Eq. (46) were extended to
negative values by particle-hole symmetry, εσ,η = −ε−σ,η. As
one can see from Eq. (48), one of the two poles of the energy
denominator D(0)

σ (ε), cf. Eqs. (45) and (46), was canceled by
the numerator representing the eigenfunction of the state. This
demonstrates the crucial role of the resonance-state structure.

The conductance in Eq. (48) is manifestly particle-hole
asymmetric, with the strongest asymmetry achieved for po-
tential scattering δ↑ = δ↓. There is a single spin-degenerate
peak in the conductance in this case, as one may see from
Eq. (48). Spin-dependent scattering lifts the degeneracy and
splits the peaks with different spin polarizations, ultimately
leading to two symmetric peaks at π/2 − δ↑ = δ↓ − π/2. We
illustrate the splitting of the peaks in Fig. 5 for the d-wave gap
�(k) = � cos (2ϕ).

We end this section by emphasizing the different nature of
the subgap conductance in superconductors with nodeless and
nodal gaps. In the former case, an electron incoming from the
STM tip is reflected as a hole at |eV | � �min. This process
is inevitably particle-hole symmetric, resulting in the symme-
try of the differential conductance, Gσ (V ) = G−σ (−V ), see
Sec. III A. On the contrary, electron tunneling in a nodal-gap
superconductor turns into (to the first order in Gn) a quasi-
particle propagating into the superconductor. In this case, the
symmetry of the conductance may be violated, but only at
biases |eV | � �max, see also the Supplemental Material in
Ref. [38] for the detailed calculations and Appendix D for the

results at |eV | � �max. The origin of this symmetry violation
is in the interference between processes responsible for the
conversion of an impinging particle in the tip into a quasi-
particle propagating in the superconductor. There are direct
conversion processes and processes in which the particle com-
pletes a few Andreev scattering cycles before propagating into
the superconductor as a quasiparticle. Both types of processes
are allowed for nodal gaps.

V. SUMMARY

In this paper, we studied the role of the gap and Bloch-
function symmetries in the formation and properties of
impurity-induced states in a 2D superconductor, and inves-
tigated manifestations of these states in scanning tunneling
spectra. We applied the scattering approach developed by
us in Ref. [38] to treat weak tunneling between the STM
tip and the superconductor, extending it here to arbitrarily
strong scattering off an impurity in the superconductor. We
consider both spin-independent and spin-dependent scatter-
ing. The framework is conveniently formulated in terms of
the phase shifts of electron scattering off the impurity and is
summarized in Sec. II, see Eqs. (4) and (7)–(14). Our work
provides an intuitive approach to calculating the spectrum
of impurity-induced states and the differential conductance
in an STM setting. In addition, it complements and clarifies
previous studies of impurity resonances.

In agreement with the literature, the bound states for node-
less gaps that preserve TRS and lattice point symmetry are
found only for spin-dependent scattering and are independent
of the potential scattering phase δc, see Secs. III A as well
as Eqs. (24) and (26). These YSR states are particle-hole
symmetric, spin polarized, and lead to peaks of the same
weight in the differential conductance summed over both spin
projections, see also Eq. (26) and the subsequent discussion.

The modulation of a nodeless gap resulting from the break-
ing of the lattice point symmetry makes YSR states dependent
on the potential scattering phase δc. In this case, a YSR state
appears near the gap edge once the spin scattering phase
exceeds a threshold value determined by δc and the anisotropy
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of the gap, see Eqs. (30) and (31) as well as Fig. 2. Away
from the narrow energy range near the gap edges, the bound
state becomes almost insensitive to the scattering phase δc and
resembles the YSR state for an s-wave gap. In STS experi-
ments, the weight of the peaks of the differential conductance
decreases toward the gap edges, where it becomes sensitive to
δc, see Eqs. (33) and (34), and Fig. 3.

Breaking of TRS in a superconductor makes potential scat-
tering capable of creating spin-degenerate subgap states, see
Sec. III C and Eq. (37). Introducing spin-dependent scattering
lifts the degeneracy, leading to two spin-polarized states, as
is illustrated in Fig. 4. At small splitting, both states may
fall into the subgap interval and result in two peaks of dif-
ferent weights in the differential conductance. The predicted
bound states can be probed by spin-polarized STM/STS
[39,40]. While the corresponding superconducting gaps may
be topological, as we discussed in Sec. III D, bound states
for pointlike impurities generically do not enjoy topological
protection.

For nodal gaps, well-pronounced resonances appear at low
energies for strong scattering potentials of any type if the
gap preserves lattice point symmetry, see Eqs. (46) and (47).
The observation of low-energy resonances in the absence of
point-group symmetry might require fine tuning, see Eq. (44).
The resonance states are spin degenerate (spin polarized)
for potential (spin-dependent) scattering and always respect
particle-hole symmetry, see Eq. (46). Contrary to the density
of energy levels, the differential conductance (48), determined
by the full scattering amplitudes rather than their poles, is
particle-hole asymmetric. The strongest asymmetry is found
for potential scattering leading to a single spin-degenerate
peak in the conductance. Spin-dependent scattering lifts the
degeneracy and splits the peaks with different spin polariza-
tions as is illustrated in Fig. 5.

The theory presented in this work combines the gen-
eral scattering formalism with the eikonal approximation for
quasiparticles scattering off an impurity in a superconductor.
It offers a convenient and intuitive scheme for investigating
the impurity-induced resonances in the excitation spectrum of
superconductors. In this work, we exemplified the theory on
single-band superconductors with nontrivial scalar gap func-
tions. This provides the foundation for considering materials
with multiple bands and multicomponent superconducting or-
der parameters, which would extend its applicability to iron
pnictides [57–59] and twisted bilayer graphene [60].
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APPENDIX A: DETAILS OF THE SCATTERING THEORY

1. Scattering cycles

To derive the scattering amplitudes given in Eqs. (7) and
(8), we use the same approach as for a spin-unpolarized STM
tip developed in Ref. [38]. The model of the contact between
STM tip and 2D superconductor as well as key approxima-
tions are outlined in Sec. II. In this Appendix, we focus on the
technical details of the derivation.

The tip emits the particle wave ψ
(1)
p,k,σ

= tp,σ uk(r0) into
a 2D superconductor, where uk(r0) is the Bloch function at
the tunneling point r0 and tp,σ is the transmission matrix
element. We assume that the tip is spin polarized along or
opposite to the direction of the spin of the impurity and denote
the projection of the spin of impinging particles as σ =↑,↓.
The gap anisotropy becomes imprinted in the retroreflected
hole wave,

ψh,k,−σ = αp(k, ε)ψ (1)
p,k,σ . (A1)

Here, the Andreev retroreflection amplitudes for particles
αp(k, ε) and holes αh(k, ε) are

αp,h(k, ε) = exp

{
±i arg

[
ε

�(k)

]
− i arccos

∣∣∣∣ ε

�(k)

∣∣∣∣
}
.

(A2)

The analytical continuation to ε > |�(k)| is determined
by the requirement |αp,h| � 1 and the sign +(−) corresponds
to the particle-to-hole (hole-to-particle) conversion. In addi-
tion, we assume spin-singlet superconductors with �(k) being
a scalar.

Only part of the wave (A1), i.e., P̂ψh,k,−σ , can interact with
the tip, while the other part, (Î − P̂)ψh,k,−σ is oblivious to
its presence. Here, the single-channel nature of the electron
scattering of an incoming state is effected by the projection
operator

P̂ψ in
k,σ = uk(r0)

∑
ξ (k′ )=ε

u∗
k′ (r0)ψ in

k′,σ ≡ uk(r0)
〈
u∗

k′ (r0)ψ in
k′,σ

〉
ε
;

(A3)

the unit operator is denoted by Î . The averaging is performed
over the Fermi contour ξ (k) = ε with ξ (k) being the energy
dispersion relations measured from the Fermi energy; see
Eq. (13) for the explicit definition. Therefore, the hole wave
scattered off the tip is

ψ
(1)
h,k,−σ

= [Î − (1 − sh,−σ )P̂]ψh,k,−σ , (A4)

where sh,−σ is the scattering matrix element for holes associ-
ated with a single impurity in the absence of the tip.

Within the 2D material, the hole wave ψ
(1)
h,k,−σ

is retrore-

flected as a particle wave αh(k, ε)ψ (1)
h,k,−σ

. After interacting
with the tip, the scattered particle wave is

ψ
(2)
p,k,σ = [Î − (1 − sp,σ )P̂]αh(k, ε)ψ (1)

h,k,−σ

= [Î − (1 − sp,σ )P̂]αh(k, ε)[Î − (1 − sh,−σ )P̂]

× αp(k, ε)tp,σ uk(r0). (A5)

The particle wave ψ
(2)
p,k,σ

can be again retroreflected as a hole

wave αp(k, ε)ψ (2)
p,k,σ . This closes a single Andreev scattering
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cycle in which the impinging particle interacts with the tip and
is retroreflected as a hole. For particles to be retroreflected as
particles, an additional half cycle should be added.

By summing over cycles, we derive the following scattered
hole and particle wave functions:

ψout
h,k,−σ =

∞∑
n=0

L̂n
σαp(k, ε)tp,σ uk(r0), (A6)

ψout
p,k,σ = αh(k, ε)[Î − (1 − sh,−σ )P̂]ψout

h,k,−σ , (A7)

where the Andreev cycle operator is defined as

L̂σ = αp(k, ε)[Î − (1 − sp,σ )P̂]

× αh(k, ε)[Î − (1 − sh,−σ )P̂]. (A8)

Finally, by using the outgoing wave functions (A6) and (A7),
we derive the Andreev and normal scattering amplitudes for
particles with the spin projection σ :

rph,σ = t ′
h,−σ tp,σ

〈
u∗

k(r0)
∞∑

n=0

L̂n
σ αp(k, ε)uk(r0)

〉
ε

≡ t ′
h,−σ tp,σ 〈u∗

k(r0)Mσ (k)〉ε, (A9)

rp,σ = s′
p,σ + t ′

p,σ tp,σ 〈u∗
k(r0)αh(k, ε)

× [Î − (1 − sh,−σ )P̂]Mσ (k)〉ε, (A10)

where the normal reflection amplitude includes also a scatter-
ing matrix element in the tip s′

p,σ .

2. Scattering amplitudes

Let us perform the summation over all scattering cycles
in Eqs. (A9) and (A10), and derive the expressions for the
scattering amplitudes rph,σ and rp,σ . Symbolically, we have
the following relation in Eq. (A9):

Mσ (k) = (Î − L̂σ )−1αp(k, ε)uk(r0), (A11)

which can be rewritten as an integral equation

(Î − L̂σ )Mσ (k) = αp(k, ε)uk(r0). (A12)

Since the operator L̂σ defined in Eq. (A8) has a separable
kernel, the integral equation (A12) can be brought to a set of
algebraic equations; see, e.g., Ref. [61] for a generic approach.
Indeed, the action of the operator L̂σ on Mσ (k) reads

L̂σ Mσ (k) = αp(k, ε)αh(k, ε)Mσ (k) − (1 − sh,−σ )αp(k, ε)αh(k, ε)uk(r0)M1 − (1 − sp,σ )αp(k, ε)uk(r0)M2

+ (1 − sp,σ )(1 − sh,−σ )αp(k, ε)uk(r0)〈|uk(r0)|2αh(k, ε)〉εM1, (A13)

where

M1 = 〈u∗
k(r0)Mσ (k)〉ε, M2 = 〈u∗

k(r0)αh(k, ε)Mσ (k)〉ε.
(A14)

By substituting Eq. (A13) into Eq. (A12), we find the following expression for Mσ (k) in terms of M1 and M2:

Mσ (k) = uk(r0)αp(k, ε)

1 − αp(k, ε)αh(k, ε)
+ (1 − sp,σ )(1 − sh,−σ )

uk(r0)αp(k, ε)

1 − αp(k, ε)αh(k, ε)

〈|uk(r0)|2αh(k, ε)
〉
ε
M1

− (1 − sh,−σ )
uk(r0)αp(k)αh(k, ε)

1 − αp(k)αh(k, ε)
M1 − (1 − sp,σ )

uk(r0)αp(k, ε)

1 − αp(k, ε)αh(k, ε)
M2. (A15)

Then, by using this result in Eq. (A14), we obtain the set of algebraic equations for M1 and M2:

[1 − (1 − sp,σ )(1 − sh,−σ )ap〈|uk(r0)|2αh(k, ε)〉ε + (1 − sh,−σ )aph]M1 + (1 − sp,σ )apM2 = ap, (A16)

(1 − sh,−σ ){ah − [1 + (1 − sp,σ )aph]〈|uk(r0)|2αh(k, ε)〉ε}M1 + [1 + (1 − sp,σ )aph]M2 = aph. (A17)

Here, we used shorthand notations ap, ah, and aph given in Eqs. (9), (10), and (11), respectively. By solving the system of
algebraic equations (A16) and (A17), we obtain

M1 = ap

1 + (2 − sp,σ − sh,−σ )aph + (1 − sp,σ )(1 − sh,−σ )
(
a2

ph − apah
) , (A18)

M2 = aph + (1 − sh,−σ )
[
a2

ph − ap(ah − 〈|uk(r0)|2αh(k, ε)〉ε )
]

1 + (2 − sp,σ − sh,−σ )aph + (1 − sp,σ )(1 − sh,−σ )
(
a2

ph − apah
) . (A19)

The above equations allow us to derive the Andreev and normal reflection amplitudes

rph,σ = t ′
h,−σ tp,σ M1, (A20)

rp,σ = s′
p,σ + t ′

p,σ tp,σ [M2 − (1 − sh,−σ )〈|uk(r0)|2αh(k, ε)〉εM1]. (A21)

The final expressions are given in Eqs. (7) and (8).

024505-12



TUNNELING SPECTRA OF IMPURITY STATES IN … PHYSICAL REVIEW B 108, 024505 (2023)

APPENDIX B: LOW-ENERGY PROPERTIES OF
AVERAGES

In this section, we discuss the averages in the coefficients
ap,h and aph defined in Eqs. (9), (10), and (11) at small
energies ε 	 �max. The case of nodeless gaps is straightfor-
ward and is covered in the main text. Therefore, we consider
small-energy expansion for nodal gaps. Due to the presence
of the nodes, the coefficients ap,h and aph + 1/2 have real and
imaginary parts even in the presence of TRS. The correspond-
ing approximate expressions can be estimated by linearizing
�(k) in the vicinity of the nodes � j = 0 and performing the
integration over the small intervals of the Fermi line in the
vicinity of the nodes at ε � |�(k)| (imaginary part) or away
from the nodes at ε � |�(k)| (real part).

We find the leading asymptote for the integral in aph + 1/2
at ε � |�(k)|:〈

|uk(r0)|2 ε√
|�(k)|2 − ε2

〉
ε�|�(k)|

≈ i

〈
|uk(r0)|2 ε

|�(k)|
〉
ε�|�(k)|

≈ i
πε

2ε�
, (B1)

where ε� = π [
∑

j |uk j (r0)|2/|�′
j |]−1, the sum runs over all

nodes k j of the gap, and �′ = ∂�(k)/∂τ is the derivative of
the gap over a dimensionless vector tangential to the Fermi
line.

A similar analysis for the integral in ap,h shows that〈
|uk(r0)|2 �∗(k)√

|�(k)|2 − ε2

〉
ε�|�(k)|

≈ O

(
ε

ε�

)2

. (B2)

Unlike Eq. (B1), the above integral is nonzero only if �(k)
violates the lattice symmetry or if r0 is not a high-symmetry
point.

In the case ε � |�(k)|, aph/ε is logarithmically divergent
at ε → 0 with the leading asymptote scaling as〈

|uk(r0)|2 ε√
|�(k)|2 − ε2

〉
ε�|�(k)|

≈ ε

ε�
ln

(
�max

ε

)
. (B3)

Similar to Eq. (B2), the integral over the Fermi line in ap,h

at ε � |�(k)| vanishes if the gap �(k) or the tip position r0

does not violate the respective symmetries. We estimate the
corresponding integral as〈

|uk(r0)|2 �∗(k)√
|�(k)|2 − ε2

〉
ε�|�(k)|

≈
〈
|uk(r0)|2 �∗(k)

|�(k)|
〉

0

+ O

((
ε

ε�

)2

ln

(
�max

ε

))
. (B4)

The leading-order expansions given in Eqs. (B1), (B3), and
(B4) are used in Sec. IV.

APPENDIX C: BOUND STATES FOR A dx2−y2 + idxy GAP

In this section, we discuss subgap bound states for the
dx2−y2 + idxy gap �(ϕ) = �mine2iϕ used in Sec. III C in more
detail. This gap preserves the lattice point symmetry but,
obviously, breaks TRS. The dispersion relation of the subgap

FIG. 6. Normalized energy of the subgap states εσ /�min as a
function of δs for δc = 0 (red line) and δc = 0.4 π/2 (blue and
green lines). The presence of spin-dependent scattering splits the
spin-degenerate level (red line) into two states ε↑ (blue line) and
ε↓ (green line) at δs � δc. The bound states have the same spin
polarization for δs � δc. Solid and dashed lines show two different
branches of bound states with the same spin polarization, see ε

p
↑ and

εh
↑ in Eq. (C1). We assume a circular Fermi surface (parametrized by

the angle ϕ), consider tunneling into a high-symmetry point, and use
the dx2−y2 + idxy gap �(ϕ) = �mine2iϕ .

states with positive energies can be obtained exactly,

ε p,h
σ = �min cos

(
σδs ± δc

2

)
, cot (σδs ± δc) � 0; (C1)

see Eqs. (38) and (39). Here, δs = δ↑ − δ↓ and δc = δ↑ + δ↓.
The particle-hole symmetry dictates ε

p,h
σ = −ε

h,p
−σ . Perhaps,

the most noticeable feature of Eq. (C1), is the presence of two
spin-polarized subgap states due to the spin-dependent scatter-
ing if δs � δc and two states with the same spin polarization
at δs � δc. The bound states are spin polarized and doubly
degenerate at δc = 0. We illustrate the dispersion relation of
the bound states in Fig. 6, where a pair of spin-polarized states
at δs � δc evolves into a pair of states with the same spin
polarization at δs � δc; cf. Fig. 4(a). The observability of these
states in STS is discussed after Eq. (39).

APPENDIX D: ROLE OF SCATTERING POTENTIALS FOR
ABOVE-GAP ENERGIES

For the sake of completeness, let us address the role of
impurity scattering for the above-gap energies ε > �max =
max{|�(k)|}. While there are no bound states in this case, it
is instructive to show how the impurity scattering potential
affects the differential conductance.

By using Eqs. (14)–(16) and Eq. (19), and assuming the
tunneling limit |t |2 	 1 in which the Andreev scattering
amplitudes can be neglected, we obtain the following conduc-
tance for above-gap energies:

Gσ (V ) = Gn

64|Dσ |2
I−(|eV |) − I+(|eV |)

i
× ([1 − Re{I−(|eV |)I∗

+(|eV |)}] cos (δc − σδs)
+ Re{I−(|eV |)I∗

+(|eV |)} + 1), (D1)

where the analytical continuation to ε > |�(k)| in I±(|eV |)
given in Eq. (19) was defined as

√−z = −i
√|z| at z > 0.
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Notice that, for momentum-dependent gaps, the spin degen-
eracy of the above-gap conductance is lifted. In this case, the
last term in the curly brackets may remain nonvanishing if
Re{I−(|eV |)I∗

+(|eV |)} �= 1.
For the s-wave gap �(k) = �, the conductance (D1) is

simplified as

Gσ (V ) = Gn|eV |
√

(eV )2 − �2

(eV )2 − �2 cos2 (δs/2)
. (D2)

This conductance is spin degenerate and is unaffected by
potential scattering. At δs = 0, the conventional expression
for impurity-free superconductors with a square-root diver-
gency ∝ 1/

√
(eV )2 − �2 at |eV | → � is reproduced. On

the other hand, for spin-dependent scattering cos (δs/2) �=
1, the conductance (D2) vanishes as ∝

√
(eV )2 − �2 at

|eV | → �.
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