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Interlayer electronic superfluid in an external magnetic field in graphene double layers
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We investigate the formation mechanism of the recently proposed interlayer electronic superfluid state due to
repulsive interaction in graphene double layers. Using the renormalization group argumentation we show how
the emergence of a particular interlayer staggered order parameter wins the competition between several possible
pairing mechanisms. We determine the effective action for the fluctuations of the order parameter and study its
behavior in strong background magnetic fields. The filling factors obtained from the constraint conditions put on
this action are in qualitative agreement with the previously experimentally observed results.

DOI: 10.1103/PhysRevB.108.024502

I. INTRODUCTION

Even after having been studied for several decades [1–3]
the superfluidity of paired objects in layered electronic and
electron-hole systems keeps attracting substantial attention,
both experimentally and theoretically [4,5]. In particular,
nearly two decades of graphene-based bilayer studies [6–8]
have revealed partially unexpected physics, e.g., the proposed
room temperature superconductivity [9] or flat-band super-
conductivity in twisted graphene bilayers, which was recently
found in a series of spectacular experiments [10,11] based
on earlier theoretical studies [12,13]. Moreover, these systems
continue to represent the playground for proposing new phys-
ical effects and their experimental detection. For instance, the
condensation of paired objects in electronic multilayers due
to strong repulsive interaction has long been proposed [14].
In our recent work we have considered the possibility for
the pairing formation due to repulsive interactions between
electrons in the layered systems consisting of either two layers
hosting Dirac electron gas [15] or heterostructures with Dirac
and conventional electron gases [16] in each layer. For the
pairing mechanism of two Dirac electron species described in
Ref. [15] a duality between electron-electron and electron-
hole systems has been stressed, which suggest an equivalence
with the exciton condensation of electron-hole pairs. More-
over, an anomalous Josephson effect for this phase has been
proposed in Ref. [17].

The phenomenology of the pairing transition between
two Dirac fermion gases due to mutual repulsion suggests
emergence of the staggered order parameter, which anticom-
mutes with the interaction-free Hamiltonian and therefore
has a stable mean-field solution. It is difficult to antici-
pate the emergence of such an order parameter from the
most general interaction between the electron densities from
different layers. It needs to be shown how this pairing
order parameter emerges from the simple Hubbard-like in-
teraction and prevails in the competition with the other
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possible pairing channels. In this paper we resolve this ques-
tion using the Fierz-like transformations of the interaction
and the renormalization group. The former allows for the
representation of the interlayer Hubbard-like interaction in
terms of different interlayer pairing order parameters, and
the renormalization group (RG) flow sheds light on the
competition between them. The RG flow of the relevant
coupling parameter reveals a singularity, called the Lan-
dau pole. The scale at which this singularity occurs is in
a qualitative agreement with the onset of the pairing order
parameter which follows from the corresponding mean-field
equation.

After completing this preparatory work, we turn our atten-
tion to the studies of the behavior of that state in the strong
magnetic field. Recent experiments Refs. [18–20] reported
a measurement of interlayer fractional quantum Hall states,
which appear in vertically stacked double layers perfectly
aligned in an AA stacking. The interpretation of these experi-
ments suggests that upon bringing two two-dimensional (2D)
conducting layers to proximity, a new set of correlated states
can emerge due to interactions between electrons in both
layers. The experimental setup realizes an electric separation
of both layers by a thing isolating film which suppresses the
interlayer electron hopping. This phenomenological picture
is remarkably reminiscent to the interlayer electron-electron-
pairing mechanism suggested by us in Ref. [15]. In the
presence of strong magnetic field one observes the emergence
of a topological quantum Hall liquid state due to charged
interlayer Bose-Einstein condensate. The analysis of exper-
iments of Refs. [18–20] in terms of the composite fermion
theory [21] assumes the phenomenon of the flux attachment
to the charged particle. Microscopically, the flux attachment
is captured by the introduction of an internal Chern-Simons
gauge field, which couples to the charged particle. Since the
gauge field couples to the matter minimally, i.e., via co-
variant derivative, one needs to determine the low-energetic
dynamics of the order parameter. This happens to be given in
terms of a Lorenz-invariant effective action, rather than the
Galilean-invariant action similar to the Zhang, Hannson, and
Kivelson (ZHK) model [22,23]. From this action we extract
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FIG. 1. The schematic representation of the studied system: The
Dirac particles dwelling in the individual layers form interlayer
paired states shown by the gray clouds.

the expression for the filling factors and argue that they are
in qualitative agreement with the observed sequences of the
fractional quantum Hall sates. The interaction and correlation
physics in different realizations of graphene double-layers and
bilayers have been intensively studied for almost two decades.
We especially emphasize the importance of Refs. [24–30] for
our work.

Structurally the paper is organized as follows: In Sec. II
we introduce the model and discuss the heuristic approach
to the mean-field equations for the order parameter of the
paired state. In Sec. III we discuss the renormalization group
equations which describe the competition between different
channels, which appear in the interaction after its reordering
using the Fierz identities. In Sec. IV we decouple the effective
interaction using a suitable Hubbard-Stratonovich transforma-
tion and determine the effective action, which governs the
dynamics of the fluctuations of the order parameter. By at-
taching the magnetic field to the energetically lower branch
of the fluctuations we arrive at the above-mentioned effective
model in Sec. V. We discuss the consequences from this
fact for the Chern-Simons electrodynamics and extract the
filling factor for the corresponding fractional quantum Hall
states. The lengthy computational passages are placed into the
Appendices.

II. THE MODEL

We adopt the model formulated in Ref. [15]. It describes
in a simplified form the pairing of electrons which reside in
two layers of graphene. For both graphene layers we assume a
strict AA orientation, which implies an exact matching of both
honeycomb lattices and correspondingly interlayer hopping
processes between the same sublattices. Nonetheless, the AA
stake is perfectly realizable in an experimental setup [31].
Our first intention is to perform the renormalization group
analysis, which is more convenient to do in the functional
integral formalism. We show the considered system in Fig. 1.
For a bipartite honeycomb lattice at half-filling we introduce
a sublattice representation, at which each lattice site at the
coordinates r is populated by two-component fermions. Then
the hopping Hamiltonians Hs (s =↑,↓) read in terms of

fermionic creation (annihilation) operators ĉ†
s;r (ĉs;r)

Hs =
2∑

j=1

∑
r,r′

h j;rr′ ĉ†
s;r · σ j ĉs;r′ , (1)

where σ j=1,2 are Pauli matrices. The fermionic annihilation
operators are written as column vectors ĉs;r = (cs;r, ds;r )T,
whose upper (lower) component refers to sublattice A (B).
The interaction term reads

HI = g

2

∑
r

n↑rn↓r, nsr = c†
srcsr + d†

srdsr. (2)

Recent experimental breakthroughs in manipulating
graphene bilayers Ref. [10,11] give strong support to the
thesis, that all main effects of the graphene bilayer physics
can be very well understood within the simplified approach
taking a single Dirac fermion into account, in which the
effects of internode scattering in each layer or between nodes
with different chirality in opposite layers of the bilayer can
be ignored. This thesis does also find strong theoretical
support in Refs. [12,13]. Thus, in low-energy approximation
we retain only one Dirac point in Eq. (1) in the kinetic
energy part and also neglect the internodal contribution in
the interaction term. This is not dictated by an anticipated
technical effort, but rather by our wish to shape the analysis
in a most transparent way. We comment on several places in
the text on the analogies to the two-cone model. With these
simplifications, the bare action of the system reads

S =
∑

s=↑,↓
ψ†

s · [∂τ + h]ψs + g

2
(ψ†

↑ψ↑)(ψ†
↓ψ↓), (3)

where h = i∇ · σ and ψ↑,↓ are the Grassmann fields, which
appear in the action in place of operators in the coherent
states basis, cf. Appendix A. The interaction is local and
instantaneous, and the summation over the spinor indices and
integration over the position space and imaginary time is
understood. The introduction of different correlation channels
in the interlayer space, which ultimately give rise to differ-
ent pairing order parameters, is achieved with the help of
fermionic transformations similar in the spirit to the so-called
Fierz identities [32]

Sg = g

2
(ψ†

↑ψ↑)(ψ†
↓ψ↓) = −g

4
(ψ†

↑σμψ↓)(ψ†
↓σμψ↑), (4)

where it is summed over μ = 0, 1, 2, 3 and σμ are the Pauli
matrices and the 2D unity matrix (σ0) in usual representa-
tion. The details of the transformation are summarized in
Appendix A. This factorization can be also generalized to
the case of nonlocal extended interactions, cf. Ref. [33].
Factorizations of that kind are by no means unique to the
single-cone model. A model which takes both cones can be
factorized in the same way, but using instead 16 Dirac matri-
ces �μν = σμ ⊗ σν . For �s being a four-component bispinor,
the Hubbard-like interaction would transform as

(�†
↑�↑)(�†

↓�↓) = − 1
4 (�†

↑�μν�↓)(�†
↓�μν�↑), (5)

which can be checked with some effort, cf. Appendix A 2.
The manipulations with such interactions become consider-
ably more cumbersome with not much additional physical
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gains when compared to the simple one-cone model. The
way particular interaction channels are introduced here differs
from the considerations of Refs. [24,25]. These works study
the superconductivity in graphene with considerable doping,
which lifts the Fermi surface up to the saddle points in the
spectrum at approximately 3 eV. The highly populated states
residing at these points give rise to van Hove singularities
in the density of states and interact with each other over
a plethora of repulsive interactions, which are deduced by
means of “fermionology” or “g-ology” of possible scattering
processes. This approach is very different in its nature to
the one pursued in the present paper. Here different channels
are not deduced but appear as a consequence of a suitable
representation of the original simple interaction.

In Ref. [15] we made the assumption that among four com-
plex order parameters 	μ recognizable from the interaction
Eq. (4) and given by the self-consistent equations

	μ = −g

4
〈ψ†

s σμψs′ 〉, (6)

the one with μ = 3 is the most dominant. The corresponding
equation reads

	 = g

4
tr{σ3〈ψs′ψ

†
s 〉} (7)

and describes the staggered order parameter with opposite
signs on both sublattices. The emergent phase describes the
pairing between the electrons from the opposite layers. There-
fore the correlator 〈ψs′ψ

†
s 〉 represents the off-diagonal term of

the local Green’s function

G(X, X ) =
(

∂τ + h 	σ3

	∗σ3 ∂τ + h

)−1

X,X

. (8)

Inverting the matrix and dropping the rotationally noninvari-
ant terms we get

G(X, X ) =
∫ 
 d2q

(2π )2

∫
dq0

2π

1

q2
0+ q2+ |	|2

(
0 	σ3

	∗σ3 0

)
.

(9)

Inserting the Greens function into the Eq. (7) yields the usual
condition for the nontrivial phase

1 = g

2

∫ 
 d2q

(2π )2

∫
dq0

2π

1

q2
0 + q2 + |	|2 . (10)

The solutions for this type of equations are well known and
can be found elsewhere, e.g., Ref. [33]. For our purposes it
is important to recognize that this equation is intrinsically
related to the notion of the Landau pole, i.e., to the singularity
in the renormalization group flow of the coupling parameter g.
The analog of the order parameter Eq. (7) for the model with
two cones in each layer and interaction Eq. (5) is explained in
Appendix A 3.

III. RENORMALIZATION GROUP ANALYSIS

The main point for the criticism of the analysis presented in
the previous section is, that it assumes a priori, that σ3 channel
somehow wins in the competition against the others. Our task
now is to give a firm support to this claim by means of the

renormalization group (RG). The main idea is to let each Pauli
channel evolve under RG transform intependently. For this we
modify the interaction term

Sg = −gμ

4
(ψ†

↑σμψ↓)(ψ†
↓σμψ↑), (11)

where the four coupling parameter have the same initial value
only at the start of the RG flow gμ(0) = g. Splitting the Grass-
mann fields in fast and slow components ψs → ψs,< + ψs,>,
the action Eq. (3) separates into the terms containing only
slow/fast fields S<, S>. Correspondingly, the interaction term
Eq. (11) splits into the term topologically identical to Eq. (11)
comprising only of slow fields and mixed terms

Sg → S<
g + δS<,>

g . (12)

In the latter we integrate out fast terms perturbatively

e−δS< ≈ 〈e−δS<,>〉> ≈ 〈
1 − δS<,> + 1

2δS<,>δS<,>
〉
>
. (13)

Since the electronic propagators have no interlayer terms,
this must be taken into account in functional integrations. In
particular only fields from the same layer can be contracted.
The detailed discussion of the diagrams is presented in Ap-
pendix B 1. Here we only give the final important results.
The only allowed diagrams are shown in Fig. 2. The leading
order self-energy correction is zero by angular integration.
The process which renormalizes the bare interaction vertex
is given by the second diagram (“bubble”). It reads

g̃μ = −g2
μ

16
Tr

∫
d3Q

(2π )3
G(Q)σμG(Q)σμ. (14)

The correction turns out to be diagonal in the Pauli channel
indices μ due to the combined action of the trace over Pauli
matrices and angular integration. We evaluate Eq. (14) for
each combination of channel indices in Appendix B 2. Here
we only present the final result of these calculations:

∂g0 = 0, ∂g1,2 = g2
1,2

32


0

2π
, ∂g3 = g2

3

16


0

2π
. (15)

The equation for g0 suggests its absolute marginality to one-
loop order. The analysis of two further equations becomes
more transparent after rescaling the interaction strength as
gi → 32πgi/
0. In case of g3 this gives

∂g3 = g2
3, (16)

which has the solution

g3() = g

1 − g
, (17)

with the initial condition g3(0) = g. At ∗ = g−1 the solution
has a singularity, known as the Landau pole. Analogous eval-
uation of the RG equation for g1,2 yields

g1,2() = 2g

2 − g
, (18)

which also has a Landau pole, which however lies at much
higher energy and is therefore subordinate to the singularity of
g3. Restoring the original scaling of the interaction strength,
the Landau pole position for g3 is at

1 = g

16


0

2π
∗ = g

16


0

2π
log


0


∗
, (19)
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FIG. 2. Allowed first- and second-order perturbative processes.

from where the relevant energy scale can be extracted 
∗ =

0 exp[−32π/g
0]. Up to an irrelevant constant factor, this
result also follows from the mean-field condition Eq. (9) for
	 = 0 and momentum integration being carried out over the
thin shell. The Landau pole is therefore imprinted into the
mean-field equation. Close to the Landau pole the σ3 chan-
nel becomes dominant and we can surely ignore all other
channels. The singularity in turn manifests the breaking down
of the perturbative approach and justifies changing to the
mean-field framework. On the physical side, to avoid the
Landau pole singularity, the system reorganizes by forming
the condensate of the coupled electrons from opposite lay-
ers. Phenomenologically, this transition has been analyzed in
Ref. [15]. An instability similar in spirit has been reported
earlier in Ref. [30].

IV. BEYOND THE MEAN-FIELD ANALYSIS:
THE FLUCTUATIONS OF THE ORDER PARAMETER

The analysis of the fluctuations is almost exclusively done
in the functional integral formalism. At energy scale close to
the Landau pole we replace the initial action Eq. (3) by

S =
∑

s=↑,↓
ψ†

s · [∂τ + h]ψs − g

4
(ψ†

↑σ3ψ↓)(ψ†
↓σ3ψ↑), (20)

where we now use simply g in place of original g3. The
interaction term is decoupled by means of the suitable
Hubbard-Stratonovitch transformation

− g

4
(ψ†

↑σ3ψ↓)(ψ†
↓σ3ψ↑)

→ 1

2g
Q∗Q + 1

2
√

2
(ψ†

↑Q∗σ3ψ↓)

+ 1

2
√

2
(ψ†

↓Qσ3ψ↑). (21)

The constant prefactors can be removed by rescaling the
Hubbard-Stratonovich fields as Q → 2

√
2Q, which then

leads to the decoupled action

S[Q, �] = 4

g
Q · Q + �† · [

G−1
0 + Q · �̂

]
�. (22)

Here we decomposed the complex Hubbard-Stratonovich
fields into their real and imaginary parts Q# → Q1 ± iQ2 and
introduced Q · �̂ = Q1�13 + Q2�23, where the vector �̂ =
{�13, �23} and the inverse propagator of free Dirac particles
G−1

0 = ∂τ�00 + i∇1�01 + i∇2�02 using some of the 16 ma-
trices �i j = σi ⊗ σ j , i, j = 0, 1, 2, 3 mentioned before. With
exception of the unity matrix �00 all matrices appearing in
the action mutually anticommute, which makes the inversion
of the matrix particularly simple. Integrating out the fermions

leads to the nonlinear action

S[Q] = 4

g
Q · Q − tr log

[
G−1

0 + Q · �̂]
, (23)

which is then expanded in powers of Q · �̂, that is in in-
verse powers of the superconducting gap parameter 	. The
details of the evaluation are put into the Appendix C. The
nontrivial saddle point of this action yields the saddle-point
equations identical with Eq. (9). Expansion in fluctuations
to the second order reveals the presence of a gapless mode
already reported in Ref. [15]. However, its spectrum acquires
a mass through the coupling to the other mode to cubic or-
der. The unbinding of both modes at a global minimum to
the fourth-order expansion term reveals a surprisingly simple
structure of the low-energetic effective action

S[ϕ] = 2

π
	3

[
1

2
ϕ · [− ξ 2∂2

μ

]
ϕ − 1

2
ϕ2 + 1

4
ϕ4

]
. (24)

The real dimensionless (i.e., rescaled in units of the mean-
field gap) fields ϕ represent the fluctuations of the field Q2
above the mean-field gap 	, cf. Appendix C. They have only
Ising Z2 symmetry. ξ = (2	)−1 is the correlation length. The
corresponding stationary expression has a form typical for the
Ginzburg-Landau free-energy functionals. Without an exter-
nal magnetic field, the action of this type shows instability
towards the formations of the solitons [34]. The formation of
the soliton follows from the solution of the instanton equation

− δ

δϕ
S[ϕ] = 0 = 2

	3

π

[
ξ 2∂2

μϕ + ϕ − ϕ3
]
, (25)

for which the existence of the time-independent solutions is
forbidden by the Derrick’s theorem, though, cf. Ref. [31] in
[34]. If however the system is subject to an external mag-
netic field, then this action describes the formation of the
vortices (with a Z2 symmetry in this particular case). In d = 2,
however, vortices relate to the the fractional quantum Hall
effect [35]. Let us now switch on the magnetic field in the
system with the condensate. Because the condensate is built
of charged particles, it fills the presence of the magnetic field
and sticks to it.

V. FRACTIONAL FILLING FACTORS IN
QUANTUM HALL REGIME

Without magnetic field, the gap fluctuation field ϕ is shown
to be real, i.e., it cannot have any phase. With the magnetic
field the situation must change. In this case we have to replace
the usual derivatives by the covariant ones ∂μ → ∂μ + i2Aμ,
where the factor 2 appears since the condensate is composed
of two electrons. Due to the general gauge invariance prin-
ciple, any shift of the gauge fields Ai=1,2 → Ai − ∂iλ, A0 →
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A0 − ∂τλ has to be compensated by the phase of the field
ϕ → exp[−i2λ]ϕ, which therefore must become complex.
The phase must disappear again if the field is turned off, i.e.,
it must depend on the fields itself. On the other hand, the
Aharonov-Bohm phase of the real field must obey

�

φ0

= nπ, (26)

with n being a natural number and φ0 the elementary flux
quantum, such that exp[i�/φ0] = ±1. The interlayer frac-
tional quantum Hall effect measured in layered systems, cf.
Refs. [19,20], suggests the possibility of phenomenological
inclusion of the internal statistical vector potential, cf. Refs.
[22,23,36]:

S[a, A, ϕ] = κεμνρaμ∂νaρ + 1
2 |(∂μ + i2aμ + i2Aμ)ϕ|2

+ 1
4 (|ϕ|2 − 1)2, (27)

where we absorbed ξ into the derivatives and neglect a con-
stant term, which is not an integration variable and cancels by
the same term in the normalization of a correlation function.
The model looks like a relativistic extension of the ZHK
model [23]. It is left to future activities to study the impli-
cations of these changes on the vortex formation in the model
Eq. (27). The obvious minimum of the action Eq. (27) is given
by the “self-dual” field configuration |ϕ|2 = 1 and aμ = −Aμ,
in which the external gauge field is totally compensated by the
Chern-Simons field. Correspondingly, the external magnetic
field (i.e., the curl of A) is compensated by the internal field.
The major difference from the ZHK model is that, since we
start with the bosonic fields ϕ, we are not bound by the
constraint for κ being fixed to 1/2π (2k + 1) with integer k.
In our case, there is no need to require the preservation of
the anticommutation relations for the composite bosons. Be-
cause of the well- known deficiency of the phenomenological
Chern-Simons theories, the value of κ should therefore be
chosen to satisfy the experimental data and cannot in general
be fixed by any microscopic reasoning [37].

Another significant difference is due to the fact that the curl
of the statistical field is linked not to the particle density, but
to the zeroth component of the current density. To see this
we vary the action with respect to the a0 component of the
statistical gauge field and get

0 = 2κεμν∂μaν − 1

i
ξ 2[ϕ̄D0ϕ − ϕD̄0ϕ̄]

= 2κb + 2J0 + 4(a0 + A0)ρ, (28)

where ρ = ϕ̄ϕ and

J0 = 1

2i
[ϕ∂τ ϕ̄ − ϕ̄∂τϕ] = ρ∂τ θ, (29)

with θ representing the phase of the field ϕ. A solution in-
dependent of external fields is given at the “self-dual point”
a0 = −A0, which then leaves us with

κb = −J0, (30)

where b = εμν∂μaν . This is the constraint condition of the
relativistic model, which appears in place of the usual ZHK
condition κb = −ρ [23]. As discussed in Ref. [38] (with

reference to Refs. [39,40]) the integral over the whole space
time of Eq. (30) relates the magnetic flux to the electric charge

κ� = Q, (31)

in a typical fashion for anions. Our aim is to clarify the
structure of the filling factors from Eq. (30). At scales much
larger than ξ the density of quasiparticles ρ should approach
a uniform value, as suggested by the potential minimum of
Eq. (27). Then integrating the current J0 along the closed time
contour should give ∮

|τ |�1
dτJ0 ≈ πnρ, (32)

where the vorticity quantization is chosen in accord with
the constraint condition Eq. (26). The same operation on
the right-hand side must reduce the time dependent Chern-
Simons magnetic field b = εμν∂μaν to the time-independent
flux density

κ

∮
|τ |�1

dτb ≈ κBCS = −κBext, (33)

where Bext represents the external flux density and introduced
after exploiting the “self-dual point” condition. Putting κ =
πk we, therefore, deduce the expression for the filling factor

ν = ρ

Bext
= k

n
, (34)

and, therefore, the anticipated expressions for the Hall con-
ductivities

Rxy = 1

σ0

1

ν
= 1

σ0

n

k
, (35)

with the universal conductivity σ0 = e2/2π h̄. As it was
pointed out before, while n is fixed to be an integer number,
k represents a free parameter of the Chern-Simons theory.
In general, 1/k is related to the total angular momentum of
the system and appears in the exponent of the corresponding
Laughlin state [41]. The ratios n/k are read off the experi-
mental data in a form of a rational numbers, e.g., Ref. [19].
We discuss the physical consequences of Eq. (34) at the end
of the Conclusions.

VI. CONCLUSIONS

One of the unresolved problems in our previous work Ref.
[15] was the solid justification of the emergent staggered order
parameter. This order parameter is hard to anticipate from the
superficial inspection of the original Hubbard-like interaction
term, which is given in terms of electronic densities, which
dwell in opposite layers and feel each other across the inter-
layer gap through the Coulomb repulsion. Here we deliver a
conclusive argument employing a combination of the Fierz-
like transformations and renormalization group analysis. The
first suggests the existence of a particular representation of
the original interaction between densities laying in different
layers in terms of composite interacting objects, which are
formed from the particles from both layers. However, there are
several species of such composite objects which are described
in terms of different Pauli channels. Does the model take both
Dirac particles in each layer into account, then the number of
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channels increases quadratically. A priori it is not clear which
of the channels should be dominant and one can anticipate a
number of possible order parameters. The decisive insight is
gained with the help of the RG arguments.

From the theory of phase transitions it is known that the
realistic physical interactions which govern them usually dif-
fer from the simple phenomenological ansaetze we use in the
modeling. The RG provides for a formal (even if phenomeno-
logical) tool to select, which of the interactions becomes
dominant in the energy area of interest. This is the essential
idea of what is called the “emergency principle”. The result of
Eq. (17) reflects just that: while all coupling parameters start
running at the same bare value, the coupling parameter in the
σ3 channel grows faster than the competitors and develops a
Landau pole. The related singularity signals, that (1) the σ3

channel is in fact the physical interaction responsible for the
pairing; (2) the perturbative approach breaks down and we
must employ self-consistent mean-field approaches instead.
The scale of the Landau pole can also be approximately ex-
tracted from the mean-field equation for the order parameter.
Hence, we interpret the Landau pole as the manifestation of
transition into the paired phase and the emerging staggered
order as the dominant pairing mechanism.

In order to analyze the consequences resulting from the
interaction between the condensate and external magnetic
field it is not sufficient to restrict the considerations only to
the mean-field equations. Instead what we need is detailed
information about the structure of the effective action, which
describes the behavior of fluctuations of the order parameter.
This task is similar in nature to the usual Ginzburg-Landau
program of the superconductivity, which has been also applied
to the fractional quantum Hall effects for simple filling factors
[36]. To clarify the structure of the effective action which
governs the behavior of fluctuations we perform an expan-
sion in powers of the inverse superconducting gap parameter
combined with the gradient expansion in the quadratic part.
The main difference in contrast to the conventional Ginzburg-
Landau program is that the low-energy effective action for the
fluctuations of the order parameter turns out to be Lorentzian
invariant; that is the classical equation of motion of the fluc-
tuations appear to be not a type of Schrödinger equation but
rather a Klein - Gordon equation. This simple fact has signif-
icant consequences for the behavior of the condensate in the
magnetic field.

Since the interlayer condensate is not electrically neutral
but possesses a charge twice the value of the single electron
it must feel the presence of the background magnetic field
and behave according to the common understanding of the
quantum Hall physics. In particular the composite particles
formed by the attachment of flux quanta to the charged fluc-
tuations of the superconducting order parameter must appear.
Technically, the flux attachment is caught by the introduction
of the Chern-Simons fields, which couples minimally, e.g.,
via the covariant derivative to the condensate. The specifics
of our model as compared to the ZHK model [22,23] is due to
its Lorentzian invariance, which results in different constraint
conditions. For instance, because of this the time component
of the curl of the Chern-Simons gauge field is linked to the
time component of the current and not to the density of
particles. Upon the time integration, this constraint condition

boils down to the relationship between the external magnetic
field and particles density, that is the filling factor, which is
principally different than that of the ZHK model. It is of great
interest to study the Chern-Simons vortex phase of the model
Eq. (27) and the response of the system in the corresponding
phase. The results of these investigations will be reported in a
separate publication.

Chern-Simons theories of the fractional quantum Hall ef-
fects represent merely a phenomenological description of the
phenomenon, as do the semimicroscopic approaches based
on the analysis of the Laughlin states. Both are related to
each other and the exponent in the holomorphic term of the
Laughlin wave function represents the inverse of the factor k
in front of the respective Chern-Simons term [37]. In simple
cases (e.g., �-function potential) the exponents are related to
the total angular momentum of the physical state, we refer, for
instance, to a thorough discussion in Fradkins book [41]. In
general, though, it is not clear what fixes those numbers. The
known sequences, i.e., Jain sequences [21], do not capture all
fractional Hall states observed so far. In practice, the filling
factors of experimentally observed plateaus are extracted as
ratio total flux/elementary flux, for which then an appropriate
rational number is sought. A glimpse at the experimental
data, e.g., presented in Fig. 1 in Ref. [19], reveals how cum-
bersome this task might be. Here, a large portion of clearly
visible plateaus remained unidentified. Upon completing the
identification task, these numbers are brought into connection
with the related Laughlin states and Chern-Simons theories
[22,37]. Hence, Eq. (34) includes all fractional filling factors
reportedly measured in Ref. [20]. For more detailed discus-
sions of the role and predictable power of phenomenological
approaches we refer to a number of excellent reviews and
lectures on the topic in Refs. [41–44].
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APPENDIX A: DENSITY-DENSITY INTERACTION
REPRESENTATION IN THE INTERLAYER BASIS

In the subsequent chapters we explain explicitly the rep-
resentation of the initial interaction between densities in each
individual layer in the interlayer basis for several cases.

1. The reparametrization of the effective Hubbard
interaction on the lattice

We start with the effective Hubbard interaction for two-
component fermion on each lattice site introduced in Ref. [15]
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without proof

1

2
n↑n↓ = 1

2
(n↑ + n↓) − 1

8

3∑
μ=0

[(ĉ†
↑σμĉ↓)(ĉ†

↓σμĉ↑)

+ (ĉ†
↓σμĉ↑)(ĉ†

↑σμĉ↓)], (A1)

where the density operators ns = c†
s cs + d†

s ds, and the spinors
ĉs = (cs, ds)T are composed of fermions related to each sub-
lattice, i.e., ĉ1s = cs and ĉ2s = ds. The usual anticommutation
relations for the components of the spinors

{ĉ†
is, ĉi′s′ } = δii′δss′ , (A2)

together with the Pauli prohibition relations

ĉ†
isĉ

†
is = 0 = ĉisĉis, (A3)

means that the normal ordering of the operators on the
left-hand side in Eq. (A1) does not produce any density mono-
mials:

n↑n↓ = c†
↑c†

↓c↓c↑ + c†
↑d†

↓d↓c↑ + d†
↑c†

↓c↓d↑ + d†
↑d†

↓d↓d↑.

(A4)

In the functional integral it allows the direct introduction of
the Grassmann coherent states |ϕ↑, ϕ↓, χ↑, χ↓〉, and direct
replacement of the fermionic second quantization operators
by the respective Grassmann fields. Therefore, the structure
of the interaction terms remains the same also in the action of
the functional integral:

n↑n↓ → (ψ†
↑ψ↑)(ψ†

↓ψ↓), (A5)

where ψs = (ϕs, χs)T. Next, we consider the right-hand side
of Eq. (A1). First term under the sum over μ reads

3∑
μ=0

(ĉ†
↑σμĉ↓)(ĉ†

↓σμĉ↑) = ĉ†
s↑σ ss′

μ ĉs′↓ ĉ†
p↓σ pp′

μ ĉp′↑, (A6)

where we now employ the Einstein summation convection
(the repeated symbols is summed over) for all symbols, i.e.,
also μ. The nonzero elements of the Pauli matrices are

σ 11
0 = σ 22

0 = 1; σ 11
3 = −σ 22

3 = 1;

σ 12
1 = σ 21

1 = 1; σ 12
2 = −σ 21

0 = −i. (A7)

This implies for Eq. (A6)

ĉ†
s↑σ ss′

μ ĉs′↓ ĉ†
p↓σ pp′

μ ĉp′↑

= [c†
↑c↓ + d†

↑d↓][c†
↓c↑ + d†

↓d↑]︸ ︷︷ ︸
μ=0

+ [c†
↑c↓ − d†

↑d↓][c†
↓c↑ − d†

↓d↑]︸ ︷︷ ︸
μ=3

(A8)

+ [c†
↑d↓ + d†

↑c↓][c†
↓d↑ + d†

↓c↑]︸ ︷︷ ︸
μ=1

− [c†
↑d↓ − d†

↑c↓][c†
↓d↑ − d†

↓c↑]︸ ︷︷ ︸
μ=2

(A9)

= 2[c†
↑c↑ + d†

↑d↑][c↓c†
↓ + d↓d†

↓]

= 4n↑ − 2n↑n↓. (A10)

Analogously we get for the second term

3∑
μ=0

(ĉ†
↓σμĉ↑)(ĉ†

↑σμĉ↓) = 4n↓ − 2n↑n↓. (A11)

Inserting both Eqs. (A8) and (A11) into Eq. (A1) finalizes the
proof. It can be easily generalized to extended interactions.

The results are slightly different when working with Grass-
mann fields. Because of the Grassmann numbers algebra
χiχ j = −χ jχi (for a generic Grassmann number χ ), similar
evaluations do not produce any density monomials. Further-
emore, both terms under the sum on the right-hand side of
Eq. (A1) turn out to be identical. One, therefore, directly gets
to the equality

1
2 (ψ†

↑ψ↑)(ψ†
↓ψ↓) = − 1

4 (ψ†
↑σμψ↓)(ψ†

↓σμψ↑), (A12)

which is supposed to be the starting action for the renor-
malization group flow. Introducing the counter terms in each
channel in the form

− 1
4 (Zμ − 1)(ψ†

↑σμψ↓)(ψ†
↓σμψ↑), (A13)

and consequently the flowing interactions gμ = gZμ we finally
get to the action Eq. (11).

2. Interaction for two Dirac cones

In the case where both cones are accounted for as in Eq. (5)
the calculations are similar. Here we use the Grassmann fields
formalism. The bispinors in the layer s read �s = (ψas, ψbs)T,
where a and b refer to each of two Dirac cones. The product
of density bilineals on the left-hand side of Eq. (5) is

(�†
↑�↑)(�†

↓�↓) =
∑

α=a,b

∑
β=a,b

(ψ†
α↑ψα↑)(ψ†

β↓ψβ↓). (A14)

For the consideration on the right-hand side of Eq. (5) we first
write out the sum over μ using Eq. (A7) (and skipping the
constant factors for the time being)

(�†
↑�μν�↓)(�†

↓�μν�↑)

= [ψ†
a↑σνψa↓ + ψ

†
b↑σνψb↓][ψ†

a↓σνψa↑ + ψ
†
b↓σνψb↑]︸ ︷︷ ︸

μ=0

(A15)

+ [ψ†
a↑σνψa↓ − ψ

†
b↑σνψb↓][ψ†

a↓σνψa↑ − ψ
†
b↓σνψb↑]︸ ︷︷ ︸

μ=3

(A16)

+ [ψ†
a↑σνψb↓ + ψ

†
b↑σνψa↓][ψ†

a↓σνψb↑ + ψ
†
b↓σνψa↑]︸ ︷︷ ︸

μ=1

(A17)

− [ψ†
a↑σνψb↓ − ψ

†
b↑σνψa↓][ψ†

a↓σνψb↑ − ψ
†
b↓σνψa↑]︸ ︷︷ ︸

μ=2

(A18)

= 2
∑

α,β=a,b

(ψ†
α↑σνψβ↓)(ψ†

β↓σνψα↑). (A19)
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Further, each of the elements on the right-hand side

2(ψ†
α↑σνψβ↓)(ψ†

β↓σνψα↑)

= 2 [ψ†
1α↑ψ1β↓ + ψ

†
2α↑ψ2β↓][ψ†

1β↓ψ1α↑ + ψ
†
2β↓ψ2α↑]︸ ︷︷ ︸

ν=0

(A20)

+ 2 [ψ†
1α↑ψ1β↓ − ψ

†
2α↑ψ2β↓][ψ†

1β↓ψ1α↑ − ψ
†
2β↓ψ2α↑]︸ ︷︷ ︸

ν=3

(A21)

+ 2 [ψ†
1α↑ψ2β↓ + ψ

†
2α↑ψ1β↓][ψ†

1β↓ψ2α↑ + ψ
†
2β↓ψ1α↑]︸ ︷︷ ︸

ν=1

(A22)

− 2 [ψ†
1α↑ψ2β↓ − ψ

†
2α↑ψ1β↓][ψ†

1β↓ψ2α↑ − ψ
†
2β↓ψ1α↑]︸ ︷︷ ︸

ν=2

(A23)

= 4ψ
†
1α↑ψ1β↓ψ

†
1β↓ψ1α↑ + 4ψ

†
2α↑ψ2β↓ψ

†
2β↓ψ2α↑ (A24)

+ 4ψ
†
1α↑ψ2β↓ψ

†
2β↓ψ1α↑ + 4ψ

†
2α↑ψ1β↓ψ

†
1β↓ψ2α↑

(A25)

= −4(ψ†
α↑ψα↑)(ψ†

β↓ψβ↓). (A26)

Hence

− 1

4
(�†

↑�μν�↓)(�†
↓�μν�↑)

=
∑

α,β=a,b

(ψ†
α↑ψα↑)(ψ†

β↓ψβ↓) = (�†
↑�↑)(�†

↓�↓), (A27)

where we used Eq. (A14). This proofs Eq. (5).

3. The analogon of Eq. (7) for the model with
two Dirac cones per layer

For the model with two Dirac cones with different chirality
per layer the initial action reads

S =
∑
s=↑↓

�†
s · [∂τ�00 + H0]�s − g

8
(�†

↑�μν�↓)(�†
↓�μν�↑).

(A28)
The difference in the chirality of the cones is reflected in the
form of the Hamiltonian H0

H0 = i∂x�01 + i∂y�32. (A29)

The mean-field approximation

	μν = −g

8
〈�†

↑�μν�↓〉 (A30)

leads then to the Bogoliubov–de Gennes action

SBdG =
(

�↑
�↓

)T

·
(

∂τ�00 + H0 	μν

	∗
μν ∂τ�00 + H0

)(
�↑
�↓

)
,

(A31)

with the matrix representing the inverse Greens function.
Order parameters which correspond to the stable phase should

allow for the inversion of the Greens function without produc-
ing any singularities. This is given if the components of the
order parameters anticommute mutually and with the Hamil-
tonian H0. This restricts the possible candidates to

	1�22 + 	2�12, (A32)

since indeed

{�22, �12} = 0, {�12, H0} = 0, {�22, H0} = 0. (A33)

These constraints lead to the similar equations for 	1 and 	2

	1 = g

8
tr�22

∫
d3Q

(2π )3

	1�22 + 	2�12

Q2 + |	|2 , (A34)

	2 = g

8
tr�12

∫
d3Q

(2π )3

	1�22 + 	2�12

Q2 + |	|2 , (A35)

where |	|2 = 	∗
1	1 + 	∗

2	2. Both equations lead further to

1 = g

2

∫ 
 d2q

(2π )2

∫
dq0

2π

1

q2
0 + q2 + |	|2 , (A36)

which is formally similar to Eq. (10) for the one-cone model.
It only fixes |	| but not each component individually. This
allows one to assume them to be real and equal to each other.

APPENDIX B: DERIVATION AND EVALUATION OF THE
RENORMALIZATION GROUP EQUATIONS

In this Appendix we consider possible perturbative pro-
cesses below the pairing transition. This phase is characterized
by the absence of the off-diagonal elements in the Greens
function. In particular this means that only fields from the
same layer correlate and can be contracted

〈ψX↑ψ
†
X ′↑〉 = G(X, X ′) = 〈ψX↓ψ

†
X ′↓〉, (B1)

〈ψX↑ψ
†
X ′↓〉 = 0 = 〈ψX↓ψ

†
X ′↑〉. (B2)

The interaction term (ψ†
↑σμψ↓)(ψ†

↓σμψ↑) has the following
diagrammatic form:

where the ingoing leg denotes the field ψ and the outgoing
the field ψ†. When evaluating second-order perturbative pro-
cesses we need only those which recover the same topology
of the interaction term.

1. Diagrammatics of the perturbative processes
to first- and second-order

Generally, there two topological classes of first-order per-
turbative processes for the fermionic self-energy:

(1a). The first order bubble diagram
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This contribution requires contracting fields from different
layers and is therefore zero.

(1b). The first-order rainbow diagram

The contribution from this diagram vanishes by angular inte-
gration.

In the second-order of perturbative expansion there are
in general four topological processes which renormalize the
interaction term. These are

(2a). The “ladder” diagram

This diagram has the form (ψ†
↓σμψ↓)(ψ†

↑σμψ↑), which is
different from the original interaction. This contribution does
not renormalize the bare interaction but creates a higher-order
interaction term.

(2b). The “fan” diagram

This processes creates the subordinate interaction of the type
(ψ†

↑σμψ↑)(ψ†
↑σμψ↑) and again does not renormalize the bare

interaction.
(2c). The “penguin” diagram

This diagram requires contracting fields from different layers
and is therefore zero.

(2d). The “bubble” diagram

This contribution recovers correctly the topology of the bare
interaction term. This is the only process which gives the
renormalization of the original interaction. In analytical form
this process leads to Eq. (14) and is evaluated in Appendix B 2
for all channels.

2. Evaluation of the RG equation Eq. (14)

In this Appendix we evaluate the master RG equa-
tion Eq. (14) for different channels.

(1) μ = 0, this channel does not get renormalized to the
leading order, since it vanishes after the frequency integration
from infinity to infinity:

Tr
∫

dq0

2π
G(Q)σ0G(Q)σ0

=
∫

dq0

2π

1[
q2

0 + q2
]2 Tr{[q · σ − iq0σ0][q · σ − iq0σ0]}

∼
∫

dq0

2π

q2 − q2
0[

q2
0 + q2

]2 . (B3)

The numerator is replaced by the derivatives to the auxiliary
variable α∫

dq0

2π

q2 − q2
0[

q2
0 + q2

]2

= ∂

∂α

∣∣∣∣
α=1

∫
dq0

2π

[
1

αq2
0 + q2

− 1

q2
0 + αq2

]
. (B4)

The integration goes from −∞ to +∞, which enables us
to rescale the integration variable in the first term as q0 →
q0/

√
α and to carry out the integral by the Cauchy theorem∫

dq0

2π

[
1

αq2
0 + q2

− 1

q2
0 + αq2

]

=
∫

dq0

2π

[
1√
α

1

q2
0 + q2

− 1

q2
0 + αq2

]

= 1√
α

1

2q
− 1

2
√

αq
= 0. (B5)

Hence, this channel remains invariant under the RG transfor-
mation to one-loop order and can be neglected in comparison
to the more relevant channels.

(2) μ = 1, 2. The important detail for the further computa-
tions concerns the behavior of the spatial momenta under the
trace and angular integration. We carry out the calculations for
μ = 1, the other case is absolutely analogous:∫ 2π

0

dφ

2π
q · σσ1q · σσ1

=
∫ 2π

0

dφ

2π
qiq j σiσ1σ jσ1

= 1

2
q2δi jσiσ1σ jσ1

∫ 2π

0

dφ

2π
. (B6)

The product of Pauli matrices becomes zero

σiσ1σiσ1 = σ1σ1σ1σ1 + σ2σ1σ2σ1 = σ0 − σ0 = 0. (B7)

The remaining parts give the following result:

g̃1,2 = −g2
1,2

16
Tr

∫
d3Q

(2π )3
G(Q)σ1,2G(Q)σ1,2

= −g2
1,2

8

∫
d3Q

(2π )3

−q2
0[

q2
0 + q2

]2 . (B8)
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The evaluation with the help of auxiliary variable as in the
previous example gives

g̃1,2 = g2
1,2

32

∫ 
 d2q

(2π )2

1

q
= g2

1,2

32


0 − 


2π
. (B9)

For the thin momentum shell we can express the lower cutoff
as 
 ∼ 
0e− ∼ 
0(1 − ), such that the correction becomes

g̃1,2 = g2
1,2

32


0

2π
, (B10)

which upon rising into the exponent yields the renormaliza-
tion correction for these channels

ḡ1,2 = g1,2 + g2
1,2

32


0

2π
, (B11)

and correspondingly the differential RG flow equa-
tion Eq. (15).

(3) μ = 3. The reasoning here is analogous to the previous
case:

Tr
∫ 2π

0

dφ

2π
q · σσ3q · σσ3 = Tr

∫ 2π

0

dφ

2π
qiq j σiσ3σ jσ3

= 1

2
q2Trσiσ3σiσ3 = −q2, (B12)

the sign is because σ3 anticommutes with both σ1,2. Therefore,
the numerator becomes −q2

0 − q2, which then cancels one
power in the denominator. The result becomes

g̃3 = − g2
3

16
Tr

∫
d3Q

(2π )3
G(Q)σ3G(Q)σ3

= g2
3

8

∫
d3Q

(2π )3

1

q2
0 + q2

= g2
3

16

∫ 
 d2q

(2π )2

1

q
= g2

3

16


0 − 


2π
,

(B13)

i.e., twice the value of g1,2. In differential form the RG equa-
tion becomes Eq. (15).

APPENDIX C: LOOP EXPANSION OF
THE ACTION EQ. (23)

Shifting the Hubbard-Stratonovich fields in Eq. (23) by the
pairing condensate Q → 	 + Q, the shifted action becomes

S[Q] = 4

g
( 	 · 	 + 2 	 · Q + Q · Q) − tr log[G−1]

− tr log[1 + G Q · �̂], (C1)

where the propagator in the condensed phase is G−1 = G−1
0 +

	 · �̂. The minimization of the Q-independent term (the vac-
uum energy) yields the saddle-point equations identical with
Eq. (9)

2

g
=

∫
d3Q

(2π )3

1

Q2 + 	2
, (C2)

where 	 = | 	|, and guarantees for the vanishing of all
terms in the action, which appear to the linear order in Q.

The expansion of the log term in the action reads

tr log[1 + G Q · �̂] = tr(G Q · �̂) − 1
2 tr(G Q · �̂)2

+ 1
3 tr(G Q · �̂)3 − 1

4 tr(G Q · �̂)4 · · · .

(C3)

Dropping linear terms we get

S[Q] = 4

g
Q · Q + 1

2
tr(G Q · �̂)2

− 1

3
tr(G Q · �̂)3 + 1

4 tr(G Q · �̂)4. (C4)

With the help of the saddle-point equation Eq. (C2), the
quadratic part becomes to the leading order in the gradient
expansion

S (2)[Q] = Q · M−1 Q, (C5)

where the elements of the matrix M are

M11 = 	2
1

2π	
+ 2	2 + 	2

2

24π	3
P2, (C6)

M12 = 	1	2

2π	
− 	1	2

24π	3
P2 = M21, (C7)

M22 = 	2
2

2π	
+ 2	2 + 	2

1

24π	3
P2, (C8)

P2 = p2
0 + p2. Of two eigenvalues of the matrix M one is

gapless (Goldstone mode, EG) and the other gaped (Higgs
mode, EH)

EG = P2

8π	
, EH = 	

2π
+ P2

12π	
. (C9)

The diagonalization of the matrix M−1 is done by the orthog-
onal and self-inverse transformation

U = 1

	

(−	1 −	2−	2 	1

)
. (C10)

The fields Q transform into diagonal representation C as

Q1 = −	1

	
C1 − 	2

	
C2, Q2 = −	2

	
C1 + 	1

	
C2. (C11)

In the C basis, the quadratic action is

S (2) = C1 · EHC1 + C2 · EGC2. (C12)

The cubic part of the action follows as

− 1
3 tr(G Q · �̂)3 = −α111Q3

1 − α112Q2
1Q2

− α122Q1Q2
2 − α222Q3

2. (C13)

The expansion coefficients read

α111 = 	3
1

6π	3
− 	1

2π	
, α112 = − 	3

2

2π	3
,

α122 = − 	3
1

2π	3
, α222 = 	3

2

6π	3
− 	2

2π	
. (C14)

Rotation into the diagonal basis simplifies the cubic term
considerably:

S (3) = − 1

3π
C3

1 − 1

2π
C1C2

2 . (C15)
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Here, the second term gapes the spectrum of the field C2. Next
we determine the fourth-order term

1
4 tr(G Q · �̂)4 = β1111Q4

1 + β1112Q3
1Q2 + (β1122 + β1212)

× Q2
1Q2

2 + β1222Q1Q3
2 + β2222Q4

2, (C16)

where

β1111 = 	4
2

8π	5
, β1112 = −	1	

3
2

2π	
,

β1122 = 	4
1 + 4	2

1	
2
2 + 	4

2

4π	5
, (C17)

β1212 = −	4
1 + 	2

1	
2
2 + 	4

2

4π	5
, β1222 = −	3

1	2

2π	
,

β2222 = 	4
1

8π	5
. (C18)

Rotation into the diagonal basis simplifies strongly the struc-
ture of the fourth-order term:

S (4) = 1

8π	
C4

2 . (C19)

The whole action to fourth order reads

S [C1, C2] ≈ C1 · EHC1 − 1

3π
C3

1 + C2 · EGC2

− 1

2π
C1C2

2 + 1

8π	
C4

2 . (C20)

The effective potential reads (S = ∫
L = ∫

[K − V ], K stay-
ing for kinetic and V for potential energy)

V [C1, C2] ≈ − 	

2π
C2

1 + 1

3π
C3

1 + 1

2π
C1C2

2 − 1

8π	
C4

2 ,

(C21)
which suggests a complex landscape. The minima of the po-
tential follow from variations

δ

δC1

V [C1, C2] = 0 = −	

π
C1 + 1

π
C2

1 + 1

2π
C2

2 , (C22)

δ

δC2

V [C1, C2] = 0 = 1

π
C1C2 − 1

2π	
C3

2 . (C23)

FIG. 3. The projection of the effective potential in Eq. (C21) on
the line C2 = 0.

The trivial solution is C1 = 0, C2 = 0. Another possibility,
which follows from the second equation is C1 = C2

2/(2	),
which upon inserting into the first equation leads to C4

2 = 0.
Finally, there is the third possibility, C2 = 0 and C1 = 	.
The second derivative with respect to the fields taken at this
extremum

δ2

δC2
1

V [C1, C2]

∣∣∣∣
C1=	

= 	

π
, (C24)

is positive, and therefore the extremum is a local minimum on
the C1 axis and a maximum on the C2 axis, i.e., it is a saddle
point, which corresponds to a stable phase. The cut through
the potential along the line C2 = 0 is shown in Fig. 3. At this
point, the gapless fluctuations effectively decouple from the
gaped

S[C2] ≈ C2 ·
[
− ∂2

μ

8π	

]
C2 − 	

2π
C2

2 + 1

8π	
C4

2 , (C25)

for the price of losing its gaplessness. This effect might be
regarded as the Higgs mechanism, which forbids gapless fluc-
tuations of the superconducting order parameter. Rescaling
the variables C2 → √

2	ϕ we obtain the usual ϕ4 model
Eq. (24) with Ising symmetry.
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