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The conventional Bardeen-Cooper-Schrieffer model of superconductivity assumes a frequency-independent
order parameter, which allows a relatively simple description of the superconducting state. In particular, its
excitation spectrum readily follows from the Bogoliubov–de Gennes (BdG) equations. A more realistic descrip-
tion of a superconductor is the Migdal-Eliashberg theory where the pairing interaction, the order parameter,
and electronic self-energy are strongly frequency dependent. This paper combines these ingredients of phonon-
mediated superconductivity with the standard BdG approach. Surprisingly, we find qualitatively new features,
such as the emergence of a shadow superconducting gap in the quasiparticle spectrum at energies close to the
Debye energy. We show how these features reveal themselves in standard tunneling experiments. Finally, we
also predict the existence of additional high-energy bound states, which we dub “dark Andreev states.”
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I. INTRODUCTION

Bardeen-Cooper-Schrieffer (BCS) theory of superconduc-
tivity [1] and Bogoliubov–de Gennes (BdG) equations have
proven to be relatively simple and reliable tools to describe
a variety of conventional superconductors. A key simplifying
assumption of this approach is that the superconducting order
parameter is energy independent [2]. Although it is clearly not
the case in any real superconductor, many features, such as the
quasiparticle spectrum, thermodynamic, and electromagnetic
properties [1,2] appear insensitive to this approximation. It is
reasonable because the omitted energy dependence normally
does not affect low-energy physics. In contrast, accurate de-
termination of the transition temperature is sensitive to the
details of the phonon dispersion, the dynamical screening of
Coulomb interaction and the structure of the superconducting
gap. The latter can be obtained from the Migdal-Eliashberg
equations [3,4], which are integral equations in both energy
and momentum.

This Migdal-Eliashberg theory [5] predicts a nontrivial
structure of the superconducting gap as a function of real fre-
quency. In particular, it was shown that for superconductivity
mediated by the Einstein phonon modes [6,7], the gap func-
tion has sharp resonancelike features, such as a pole, which is
located close to the real-frequency axis. Equivalently, such a
pole can be interpreted as a presence of an “antivortex” [8] in a
frequency-dependent gap. In the weak-coupling regime, these
features can be well approximated by the Lorentz function
centered at the Debye frequency. Another interesting real-
frequency behavior of the gap function is discussed in Ref. [8]
where the authors predict the possibility of formation of
frequency-domain vortices in the presence of phonon-induced
attraction and Coulomb repulsion.

In this paper, we study how a frequency-dependent order
parameter affects the quasiparticle spectrum and tunnel-
ing properties of a superconductor. We assume that the
frequency dependence has a Lorentz shape, which corre-
sponds to optical-phonon-mediated pairing [4]. We solve the

corresponding generalized BdG equations and show that an
additional gap emerges in the qusiparticle spectrum at higher
energies. In the case of a SNS junction, we also find that
additional Andreev in-gap high-energy states can form. We
note that high-energy features were also studied in the field of
point-contact spectroscopy [9,10]. In contrast, in the current
paper, we study the properties of quasiparticles in the presence
of sharp features of the gap function. We use an analogy with
quantum optics to interpret these high-energy peaks in terms
of “dark” resonance features [11–13] of the BdG Hamiltonian
with a frequency-dependent order parameter. This suggests a
speculation that these finite-energy states could potentially be
used to reliably store quantum information.

In this paper, we consider the conventional s-wave su-
perconductor but keeping a complete realistic frequency
dependence of the order parameter. We restrict our discus-
sion to the mean-field level and rely on the Bogoliubov–de
Gennes approach, which requires a straightforward gen-
eralization. Consider an electron gas with the creation
(annihilation) operators ψ

†
k,σ=↑,↓(ψk,σ ), where k denotes the

electron momentum. For the two-component spinor �k,n =
{ψk,↓(iεn), ψ†

−k,↑(−iεn)}T , the Green’s function is defined as

Ĝk(iεn) ≡ −〈�k,n ⊗ �
†
k,n〉, where εn = (2n + 1)π/β is the

standard of the fermionic Matsubara frequency, β is the
inverse temperature, and n ∈ Z. Neglecting the momentum
dependence of the self-energy, the Green’s function of an
interacting Fermi gas can be written as [4,14]

Ĝ−1
k (iεn) = iεnZnτ̂0 − φnτ̂1 − ξk τ̂3, (1)

where ξk = k2/2m − μ, m is the electron mass, μ is the
chemical potential, τi are Pauli matrices. and Zn denotes the
inverse quasiparticle residue obtained from the odd part of
the normal-state self-energy. The off-diagonal matrix element
φn stands for the anomalous self-energy. Zn and φn naturally
appear in both intrinsic and proximity-induced superconduc-
tors [15,16]. The BdG equations correspond to Ĝ−1

k (iε)χ = 0,
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FIG. 1. (a) Effective proximity system, which induces a Lorentz-
shape frequency dependence of the order parameter. The fictitious
flat-band superconductor is shown in blue, and a normal-state metal
is shown in orange. (b) Quasiparticle spectrum of the BdG equa-
tion with the frequency-dependent order parameter. Additional band
gaps are formed close to the characteristic frequency of the order
parameter frequency dependence. Blue solid lines correspond to the
eigenenergies of Eq. (3). Orange dashed stands for the conventional
BCS gap (±φ0), and dashed green lines Ek = ω0 and Ek ≈ ω0 + φ0

correspond to the additional gap due to the frequency dependence
of the order parameter. In the simulation, we assumed φ0 = ω0/10.
(c) Schematic of the four-state system equivalent to the on-shell
quasielectron branch of the BdG Hamiltonian Eq. (4) in the limit
of weak-coupling t → 0.

which parametrically determines the sought-after quasiparti-
cle dispersion (here, χ is a Nambu spinor).

To calculate the quasiparticle spectrum, we need an ex-
plicit form of the frequency dependence of the anomalous
self-energy. In what follows, we consider the aforementioned
Lorentz-shaped form (parametrized by its amplitude φ0 and
the characteristic frequency ω0)

φn = φ0
ω2

0

ε2
n + ω2

0

. (2)

As demonstrated in Refs. [6,7] this solution naturally appears
in superconductors where pairing is induced by an optical
phonon mode with the Einstein spectrum at weak coupling.
We now consider the spectrum of quasiparticles in Eq. (1).

To develop intuition, it is instructive to consider an
auxiliary setup, which involves a fictitious flat-band supercon-
ductor with a frequency-independent gap proximity coupled
to a normal metal as shown in Fig. 1. As we show, a proper
choice of parameters in this setup gives rise to a Green’s
function, which replicates Eq. 1 with the order parameter (2).
The advantage of this construction is that its BdG Hamiltonian
below involves only standard, frequency-independent param-
eters,

Ĝ ′−1
k (iεn) = iεnτ̂0σ̂0 − ĤBdG (3)

HBdG = ξk τ̂3
(σ̂3 + 1̂)

2
− ω0τ̂1

(1̂ − σ̂3)

2
+ t τ̂3σ̂1, (4)

Her, τ̂i represents Pauli matrices in the Nambu space, and
σ̂ parametrizes an effective two-band model: (σ̂3 + 1̂)/2
projects on the normal metal fermion modes and (1̂ − σ̂3)/2
projector on the fictitious flat-band superconductor. The or-
der parameter in the latter is set the characteristic phonon

frequency ω0. We note that we assumed no intrinsic order
parameter for the original fermions. The coefficient t denotes
the tunneling amplitude between the superconductor and the
metal. The auxiliary superconductor can be integrated out
generating both the anomalous and the normal self-energies.
By choosing t = √

φ0ω0, we can exactly match frequency
dependence of the order parameter to reproduce Eq. (2). The
corresponding Z factor in Eq. (1) is equal to Zn = [1 +
φ0ω0/(ω2

0 + ε2
n )] ≈ 1 for φ0  ω0. This procedure effectively

replaces the integrating out the bosonic Einstein-phonon de-
gree of freedom (which generates the frequency dependence
of the gap in the physical setup) with the integrating out the
degrees of freedom of the auxiliary flat-band superconduc-
tor. Note that this picture is introduced for the purposes of
illustration only. All results can reproduced in the original
model directly. As we discuss in the Supplemental Material
(SM) [17], the inverse quasiparicle residue, Zn cannot be
set identically to one because it would result in an unstable
spectrum.

The quasiparticle spectrum can now be found by diago-
nalizing the static BdG Hamiltonian HBdG given in Eq. (4).
The result is shown in Fig. 1(b), and it has two band gaps.
First, we observe the conventional BCS-like band gap at low
frequencies [−φ0, φ0]. It can be obtained by, e.g., neglecting
the frequency dependence of the self-energy in Eq. (1), which
reduces it to the textbook case. The second band gap at high
energies is a specific feature of the two-band system as defined
in Eq. (3). As a result of the flatness of one of the dispersion
relations, the avoided crossing forms a band gap close to
the frequency ω0. The value of this second band gap can be
readily obtained analytically from Eq. (3),

φ2 =
√

ω0

2

[√
ω0(4φ0 + ω0) + φ0 + ω0

2

]
− ω0 ≈ φ0, (5)

where the approximate sign corresponds to the limit φ0  ω0,
which must hold for weak coupling.

We now define the local density of states (LDOS) of the
electron gas as −1

π

∫
dξkIm[Gk(ω + i0+)]1,1, where Gk is the

Green’s function 3 analytically continued to real frequencies.
As the direct consequence of the band gap, the LDOS is
strongly depleted at frequencies ≈ [ω0, ω0 + φ0] as shown in
the inset in Fig. 2. We note that the exactly zero density of
states is a feature of the flat-band dispersion of the auxiliary
superconductor/Einstein phonons. However, as we discuss in
the SM, the introduction of a finite curvature to the phonon
dispersion would still lead to a significant depletion of the
density of states. As we discuss below, this secondary gap can
host additional Andreev [18] reflection peaks, observable in
metal-superconductor heterostructures.

We now explore how the additional sharp Lorentz-like fea-
tures of the gap function affect the superconducting proximity
effect. In order to describe the transmission and reflection
of quasiparticles, we employ the Blonder-Tinkham-Klapwijk
(BTK) formalism [19]. We consider a heterostructure con-
sisting of semi-infinite normal and superconducting metals
(NS) with the junction located at z = 0 as shown in Fig. 3.
Following Ref. [19], we consider the scattering of an incident
electron off of the barrier. The strength of the proximity effect
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FIG. 2. Andreev reflection coefficient as function of the incident
electron frequency assuming H = 0. As result of the additional band
gap, the additional Andreev reflection peak is observed at frequencies
close to ω0. The blue solid line corresponds to the BdG equa-
tion with the frequency-dependent anomalous self-energy. Orange
dashed stands for the conventional BdG assuming no frequency
dependence of the order parameter. The inset shows the local density
of states of the Green’s function Eq. (1). The gap is chosen such that
φ0 = ω0/10.

can be characterized by the probability for an electron to
scatter into a hole-type excitation.

Within the BTK theory, the boundary condition (assumed
to be at z = 0) is given by

�ψN (0) = �ψS (0), (6)

∂z

2mN

�ψN (0) = ∂z

2mS

�ψS (0) + H �ψS (0), (7)

where mS and mN are the effective electron masses and H is
the δ-barrier height. Performing the analytic continuation and
replacing iεn → ω + i0+, the wave functions on supercon-
ducting side satisfy the equation Ĝ−1

k (ω + i0+) �ψS = 0. On
the normal side, the equation is the same with the substitution
φ(ω + i0+) → 0 and Z (ω + i0+) → 1. In the following, we
do not explicitly write 0+ for shortness. The normal-state so-
lution representing an incident electron and reflected electron
and hole components is as follows:

�ψN =
[

1
0

]
eikez +

[
rN

0

]
e−ikez +

[
0
rA

]
eikhz, (8)

where rN and rA denote the reflection amplitude in the elec-
tron and hole channels, respectively, and the electron/hole
momenta are given by ke/h = √

2m(μ ± ω). Analogously, we
find the solution for the quasielectrons and quasiholes propa-
gating in the superconductor,

�ψS ≈ Cqe

[
1
η+

]
eikqez + Cqh

[
1
η−

]
e−ikqhz, (9)

where Cqe and Cqh are the corresponding amplitudes of
the quasielectron and quasiholes and we denoted the
corresponding coherence factors as η± = φ(ω)/[Z (ω)ω ±√
Z2(ω)ω2 − φ2(ω)]. In the quasiclassical limit, the quasi-

electron and quasihole momenta kqe, kqh can be taken to be
equal to the corresponding Fermi momenta.

(a)

(b)

FIG. 3. (a) Schematic of the NS junction setup we consider in the
BTK calculation. (b) Differential tunneling conductance as function
of bias voltage (expressed in frequency units) for different values of
the barrier height: Z = 0 solid blue, Z = 1 dashed orange, and Z = 3
dot-dashed green. The inset shows the same at low frequencies. The
assumed electron-phonon coupling is λ = 0.3 (see the Supplemental
Material [17]). The normal-state resistance is denoted as RN = (Z2 +
1)/(2ν0e2vFA), where A is the contact surface area.

Upon solving the set of equations Eqs. (6)–(9) in the
quasiclassical [20] limit and assuming mS = mN we find the
Andreev reflection coefficient to be as follows:

rA = η−η+
η− + Z2(η− − η+)

, (10)

rN = −Z (i + Z )

η− + Z2(η− − η+)
(η− − η+), (11)

where the normalized barrier height is defined as Z ≡
mH/

√
2mμ. We note that the conventional Andreev reflection

can be obtained from Eq. (10) by simply assuming frequency-
independent Z and φ. In the limit of Z = 0, the Andreev
reflection coefficient is given by rA = η+. We, therefore, find
that in order to have a strong Andreev reflection the condition
φ � Zω should be satisfied. The latter condition is always
satisfied at very low frequencies leading to the conventional
Andreev reflection [18] result |rA| ≈ 1. However, it can also
be satisfied at large frequencies if the frequency-dependent
order parameter �(ω) ≡ φ(ω)/Z (ω) is larger than the fre-
quency �(ω) � ω. In this case, the reflection is up to a
possible phase factor identical to the low-frequency case. As
shown in Fig. 2, this scenario is realized for the Lorentz-like
order parameter introduced above in the frequency range close
to the resonance ω ∼ ω0.
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II. FINITE-ENERGY BOUND STATES

We now consider the possibility of having the finite-energy
Andreev bound states [18] in the junction consisting of two
superconductors separated by a metallic region with the two
boundaries located at L/2 and −L/2. We assume the phase
difference between two superconductors to be γ . In order to
find the bound states, we now follow the same procedure as
for outlined above for the Andreev reflection but matching
solutions at the two boundaries simultaneously. The general
solution can be obtained analytically, but it is too cumber-
some, and we, therefore, consider some simple limiting case.
In particular, as we demonstrate in the Supplemental Mate-
rial [17], in the limits φ0  ω0 and L → 0, there are two
additional in-gap bound states ω ∈ [ω0, ω0 + φ0] with the
frequencies ωα (both positive and negative),

ωα = ω0 + 1

2

{
1 + α cos

γ

2

}
, (12)

with α = ±. We, thus, find the frequency of these bound
states is of the order of the characteristic frequency of the
order parameter frequency dependence. For both intrinsic and
proximity superconductors, ω0 can be expected to be on the
order of several terahertz. This implies the existence of such
bound states can potentially be probed by means of laser
excitation. Their response is equivalent to a two-level system,
thus, making them a good candidate for realization of solid
state qubits.

III. INTERPRETATION AS DARK RESONANCE

We now discuss the interpretation of the additional An-
dreev reflection peak in terms of the so-called dark resonance.
The concept of dark resonance is extensively studied within
the field of quantum optics [12]. It is based on the existence of
“slowly”-evolving superposition states in a quantum system,
which are decoupled from the “fast,” e.g., environment modes.
For example, such optical phenomena as the electromagneti-
cally induced transparency [11] are based on the existence of
a dark resonance in a driven three-level system. The on-shell
BdG Green’s function Eq. (3), can be expressed as follows:

Ĝ′−1
k→k(ω)(ω + i0+) =

⎛
⎜⎜⎝

ω − ξ±(ω) 0 t 0
0 ω + ξ±(ω) 0 −t
t 0 ω ω0

0 −t ω0 ω

⎞
⎟⎟⎠,

where ξ±(ω) = ±√
[(t2 − ω2)2 − ω2ω2

0]/(ω2 − ω2
0 ) is the

on-shell quasielectron and quasihole dispersions. By con-
struction, the Green’s function has the flat-band supercon-
ducting degree of freedom, which can be considered slow.
By dark, we, thus, define states, which have projection onto
the auxiliary degrees of freedom only. Let us now find the
quasielectron and quasihole coherence vectors correspond-
ing to the on-shell Green’s function Eqs. (3) and (4). The
latter is schematically shown in Fig. 1(c) in the limit of
t → 0. At frequencies ω ≈ ω0, one of the eigenstates of the
auxiliary degrees of freedom crosses ω = 0, therefore, be-
ing degenerate with the electron branch. The corresponding
eigenvector is readily found to be given by ≈ [0, 0, 1, 1]T /

√
2.

Thus, this vector only has slow nonpropagating (flat-band)

components and are decoupled from the other degrees of
freedom.

IV. EINSTEIN PHONON MODEL

Finally, we demonstrate that key results and conclusions
of the toy model, involving the auxiliary superconductor,
hold in the physical setup of interest where the pairing
interaction is induced by the optical phonon mode. More
specifically, we now consider the gap function induced by
the interaction with the optical phonon mode with the propa-
gator Dq(iνm) = −2ω0/(ω2

0 + ν2
m), where νm ≡ 2πm/β, m ∈

Z. As we demonstrate in the Supplemental Material [17],
the matrix-valued self-energy �̂(iεn) is found by solving
the Dyson’s equation. The latter reduces to two coupled
equations for the inverse quasiparticle residue Zn, and the
gap function φn in the case when the phonon propagator
is momentum independent: �̂(iεn) = (1 − Zn)iεnτ̂0 + φnτ̂1.
The approximate analytical form of the phonon-induced self-
energy can be obtained in the limit of weak electron-phonon
coupling. As was shown in Refs. [6,7], the imaginary-axis
dependence of the order parameter has the Lorentz form φn ∝
ω2

0/(ω2
0 + ε2

n ) and Zn ≈ 1. This is, thus, in agreement with the
assumed gap-frequency behavior in Eq. (1). At finite electron-
phonon coupling strength, the gap frequency dependence
deviates from the Lorentz form and additional resonances at
frequencies nω0 with n = 1–3 · · · [7] emerge. However, the
sharp features of the gap function, reminiscent to the pure
Lorentz case, remain even at finite coupling strength [4,6,7].
We now study how these features affect the Andreev reflec-
tion from the NS boundary. More precisely, we consider the
differential tunneling conductance, which expresses through
the reflection coefficients Eqs. (10) and (11) as dI/dV ∝
1 + |rA|2 − |rN |2 [19]. Both reflection coefficients are found
numerically by solving the complete set of Migdal-Eliashberg
equations. The result of the numerical calculation is shown
in Fig. 3 for different values of the barrier height Z . We find
the prominent additional reflection peaks close to the Debye
frequency, which correspond to the dark Andreev resonances.
Note that the exact solution for the phonon case involves
imaginary self-energy contributions, which give rise to a finite
lifetime of the superconducting quasiparticles (absent in the
toy model). However, these complications do not appear to
affect the qualitative picture, and the signatures of the dark
Andreev states are preserved.

V. CONCLUSIONS AND OUTLOOK

In this paper, we studied the quasiparticle properties of a
superconductor with a frequency-dependent order parameter.
When the latter has resonant features, we find an additional
depletion of the high-energy density of states. We provide a
physically equivalent two-band picture with an additional su-
perconducting band gap emerging at high energies. For the NS
junction, the band gap leads to additional Andreev reflection
peaks at high energies. In the case of an SNS junction, we
find Andreev bound states within the high-energy band gap.
We provide an interpretation of these phenomena in terms of
the dark resonance of the BdG Hamiltonian.We expect that
the predicted phenomena should be accessible in experiments
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with superconductors where the interaction is mediated by a
well-localized bosonic, e.g., optical-phonon mode (for exam-
ple, in MgB2 [21], K3C60 [22], etc.) and proximity systems
involving flat-band and heavy-fermion materials [23]. We note
that similar effects were observed in doped semiconductors,
such as SrTiO3 [24] where the interaction with phonons leads
to the appearance of additional shadow/replica bands away
from Fermi surface. The presence of these bands reveals itself
in additional peaks in point-contact spectrum. This paper also
suggests a number of follow-up ideas, at the intersection of
superconductivity and quantum optics: e.g., the possibility of
control of the dark Andreev states by external laser driving.

Furthermore, it would be interesting to explore the role of
frequency dependence of the order parameter on the quasi-
particle spectrum in topological superconductors and whether
dark Majorana-like states are possible.
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